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Abstract

The package fitdistrplus provides functions for fitting univariate distributions to dif-
ferent types of data (continuous censored or non-censored data and discrete data) and
allowing different estimation methods (maximum likelihood, moment matching, quantile
matching and maximum goodness-of-fit estimation). Outputs of fitdist and fitdistcens

functions are S3 objects, for which specific methods are provided, including summary, plot
and quantile. This package also provides various functions to compare the fit of sev-
eral distributions to the same data set and can handle to bootstrap parameter estimates.
Detailed examples are given in food risk assessment, ecotoxicology and insurance contexts.

Keywords: probability distribution fitting, bootstrap, censored data, maximum likelihood,
moment matching, quantile matching, maximum goodness-of-fit, distributions, R.

1. Introduction

Fitting distributions to data is a very common task in statistics and consists in choosing a
probability distribution modeling the random variable, as well as finding parameter estimates
for that distribution. This requires judgment and expertise and generally needs an iterative
process of distribution choice, parameter estimation, and quality of fit assessment. In the R (R
Core Team 2014) package MASS (Venables and Ripley 2010), maximum likelihood estimation
is available via the fitdistr function; other steps of the fitting process can be done using other
R functions (Ricci 2005). In this paper, we present the R package fitdistrplus (Delignette-
Muller, Pouillot, Denis, and Dutang 2015) implementing several methods for fitting univariate
parametric distributions. A first objective in developing this package was to provide R users
with a set of functions dedicated to help this overall process.

The fitdistr function in the MASS package estimates distribution parameters by maxi-
mizing the likelihood function using the optim function. No distinction between parameters
with different roles (e.g., main parameter and nuisance parameter) is made, as this paper
focuses on parameter estimation from a general point-of-view. In some cases, other estima-
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tion methods could be preferred, such as maximum goodness-of-fit estimation (also called
minimum distance estimation), as proposed in the R package actuar with three different
goodness-of-fit distances (Dutang, Goulet, and Pigeon 2008). While developing the fitdistr-
plus package, a second objective was to consider various estimation methods in addition to
maximum likelihood estimation (MLE). Functions were developed to enable moment match-
ing estimation (MME), quantile matching estimation (QME), and maximum goodness-of-fit
estimation (MGE) using eight different distances. Moreover, the fitdistrplus package offers the
possibility to specify a user-supplied function for optimization, useful in cases where classical
optimization techniques, not included in optim, are more adequate.

In applied statistics, it is frequent to have to fit distributions to censored data (Klein and
Moeschberger 2003; Helsel 2005; Busschaert, Geeraerd, Uyttendaele, and VanImpe 2010;
Leha, Beissbarth, and Jung 2011; Commeau, Parent, Delignette-Muller, and Cornu 2012).
The fitdistr function in the MASS package does not enable maximum likelihood estimation
with this type of data. Some packages can be used to work with censored data, especially
survival data (Therneau 2014; Hirano, Clayton, and Upper 1994; Jordan 2005), but those
packages generally focus on specific models, enabling the fit of a restricted set of distribu-
tions. A third objective is thus to provide R users with a function to estimate univariate
distribution parameters from right-, left- and interval-censored data.

Few packages on the Comprehensive R Archive Network (CRAN, http://CRAN.R-project.
org) provide estimation procedures for any user-supplied parametric distribution and support
different types of data. The distrMod package (Kohl and Ruckdeschel 2010) provides an
object-oriented (S4) implementation of probability models and includes distribution fitting
procedures for a given minimization criterion. This criterion is a user-supplied function which
is sufficiently flexible to handle censored data, yet not in a trivial way, see Example M4 of the
distrMod vignette. The fitting functions MLEstimator and MDEstimator return an S4 class
for which a coercion method to class ‘mle’ is provided so that the respective functionalities
(e.g., confint and logLik) from package stats4 are available, too. In fitdistrplus, we chose
to use the standard S3 class system because of its ease of understanding by most R users.
When designing the fitdistrplus package, we did not forget to implement method functions
for the S3 classes. Finally, various other packages provide functions to estimate the mode,
the moments or the L-moments of a distribution, see the reference manuals of the packages
modeest (Poncet 2012), lmomco (Asquith 2014) and Lmoments (Karvanen 2006, 2014).

This paper reviews the various features of fitdistrplus (Delignette-Muller et al. 2015). The
package is available from the Comprehensive R Archive Network (CRAN) at http://CRAN.

R-project.org/package=fitdistrplus. The development version of the package is lo-
cated at R-Forge as one package of the project “Risk Assessment with R” (http://R-Forge.
R-project.org/projects/riskassessment/). The paper is organized as follows: Section 2
presents tools for fitting continuous distributions to classic non-censored data. Section 3 deals
with other estimation methods and other types of data, before Section 4 concludes.

2. Fitting distributions to continuous non-censored data

2.1. Choice of candidate distributions

For illustrating the use of various functions of the fitdistrplus package with continuous non-

http://CRAN.R-project.org
http://CRAN.R-project.org
http://CRAN.R-project.org/package=fitdistrplus
http://CRAN.R-project.org/package=fitdistrplus
http://R-Forge.R-project.org/projects/riskassessment/
http://R-Forge.R-project.org/projects/riskassessment/
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Figure 1: Histogram and CDF plots of an empirical distribution for a continuous variable
(serving size from the groundbeef data set) as provided by the plotdist function.

censored data, we will first use a data set named groundbeef which is included in our package.
This data set contains pointwise values of serving sizes in grams, collected in a French survey,
for ground beef patties consumed by children under 5 years old. It was used in a quantita-
tive risk assessment published by Delignette-Muller, Cornu, and AFSSA-STEC-Study-Group
(2008).

R> library("fitdistrplus")

R> data("groundbeef", package = "fitdistrplus")

R> str(groundbeef)

'data.frame': 254 obs. of 1 variable:

$ serving: num 30 10 20 24 20 24 40 20 50 30 ...

Before fitting one or more distributions to a data set, it is generally necessary to choose
good candidates among a predefined set of distributions. This choice may be guided by
the knowledge of stochastic processes governing the modeled variable, or, in the absence of
knowledge regarding the underlying process, by the observation of its empirical distribution.
To help the user in this choice, we developed functions to plot and characterize the empirical
distribution.

First of all, it is common to start with plots of the empirical distribution function and the his-
togram (or density plot), which can be obtained with the plotdist function of the fitdistrplus
package. This function provides two plots (see Figure 1): the left-hand plot is by default the
histogram on a density scale (or density plot of both, according to values of arguments histo
and demp) and the right-hand plot the empirical cumulative distribution function (CDF).

R> plotdist(groundbeef$serving, histo = TRUE, demp = TRUE)

In addition to empirical plots, descriptive statistics may help to choose candidates to describe
a distribution among a set of parametric distributions. Especially the skewness and kurtosis,
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Figure 2: Skewness-kurtosis plot for a continuous variable (serving size from the groundbeef

data set) as provided by the descdist function.

linked to the third and fourth moments, are useful for this purpose. A non-zero skewness
reveals a lack of symmetry of the empirical distribution, while the kurtosis value quantifies
the weight of tails in comparison to the normal distribution for which the kurtosis equals 3.
The skewness and kurtosis and their corresponding unbiased estimator (Casella and Berger

2002) from a sample (Xi)i
i.i.d.∼ X with observations (xi)i are given by

sk(X) =
E[(X − E(X))3]

VAR(X)
3
2

, ŝk =

√
n(n− 1)

n− 2
× m3

m
3
2
2

, (1)

kr(X) =
E[(X − E(X))4]

VAR(X)2
, k̂r =

n− 1

(n− 2)(n− 3)
((n+ 1)× m4

m2
2

− 3(n− 1)) + 3, (2)

where m2, m3, m4 denote empirical moments defined by mk = 1
n

∑n
i=1(xi − x)k, with xi the

n observations of variable x and x their mean value.

The descdist function provides classical descriptive statistics (minimum, maximum, median,
mean, standard deviation), skewness and kurtosis. By default, unbiased estimations of the
three last statistics are provided. Nevertheless, the argument method can be changed from
"unbiased" (default) to "sample" to obtain them without correction for bias. A skewness-
kurtosis plot such as the one proposed by Cullen and Frey (1999) is provided by the descdist
function for the empirical distribution (see Figure 2 for the groundbeef data set). On this
plot, values for common distributions are displayed in order to help the choice of distributions
to fit to data. For some distributions (normal, uniform, logistic, exponential), there is only
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one possible value for the skewness and the kurtosis. Thus, the distribution is represented by
a single point on the plot. For other distributions, areas of possible values are represented,
consisting in lines (as for the gamma and lognormal distributions), or larger areas (as for the
beta distribution).

Skewness and kurtosis are known not to be robust. In order to take into account the uncer-
tainty of the estimated values of kurtosis and skewness from data, a nonparametric bootstrap
procedure (Efron and Tibshirani 1994) can be performed by using the argument boot. Val-
ues of skewness and kurtosis are computed on bootstrap samples (constructed by random
sampling with replacement from the original data set) and reported on the skewness-kurtosis
plot. Nevertheless, the user needs to know that skewness and kurtosis, like all higher mo-
ments, have a very high variance. This is a problem which cannot be completely solved by the
use of bootstrap. The skewness-kurtosis plot should then be regarded as indicative only. The
properties of the random variable should be considered, notably its expected value and its
range, as a complement to the use of the plotdist and descdist functions. Below is a call
to the descdist function to describe the distribution of the serving size from the groundbeef

data set and to draw the corresponding skewness-kurtosis plot (see Figure 2). Looking at
the results on this example with a positive skewness and a kurtosis not far from 3, the fit of
three common right-skewed distributions could be considered, Weibull, gamma and lognormal
distributions.

R> descdist(groundbeef$serving, boot = 1000)

summary statistics

------

min: 10 max: 200

median: 79

mean: 73.65

estimated sd: 35.88

estimated skewness: 0.7353

estimated kurtosis: 3.551

2.2. Fit of distributions by maximum likelihood estimation

Once selected, one or more parametric distributions f(·|θ) (with parameter θ ∈ Rd) may be
fitted to the data set, one at a time, using the fitdist function. Under the i.i.d. sample
assumption, distribution parameters θ are by default estimated by maximizing the likelihood
function defined as:

L(θ) =

n∏
i=1

f(xi|θ) (3)

with xi the n observations of variable X and f(·|θ) the density function of the parametric
distribution. The other proposed estimation methods are described in Section 3.1.

The fitdist function returns an S3 object of class ‘fitdist’ for which print, summary and
plot functions are provided. The fit of a distribution using fitdist assumes that the cor-
responding d, p, q functions (standing respectively for the density, the distribution and the
quantile functions) are defined. Classical distributions are already defined in that way in the
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stats package, e.g., dnorm, pnorm and qnorm for the normal distribution (see ?Distributions).
Others may be found in various packages (see the CRAN Task View on Probability Distri-
butions; Dutang 2014). Distributions not found in any package must be implemented by the
user as d, p, q functions. In the call to fitdist, a distribution has to be specified via the
argument dist either by the character string corresponding to its common root name used
in the names of d, p, q functions (e.g., "norm" for the normal distribution) or by the density
function itself, from which the root name is extracted (e.g., dnorm for the normal distribution).
Numerical results returned by the fitdist function are (1) the parameter estimates, (2) the
estimated standard errors (computed from the estimate of the Hessian matrix at the maxi-
mum likelihood solution), (3) the loglikelihood, (4) Akaike and Bayesian information criteria
(the so-called AIC and BIC), and (5) the correlation matrix between parameter estimates.
Below is a call to the fitdist function to fit a Weibull distribution to the serving size from
the groundbeef data set.

R> fw <- fitdist(groundbeef$serving, "weibull")

R> summary(fw)

Fitting of the distribution ' weibull ' by maximum likelihood

Parameters :

estimate Std. Error

shape 2.186 0.1046

scale 83.348 2.5269

Loglikelihood: -1255 AIC: 2514 BIC: 2522

Correlation matrix:

shape scale

shape 1.0000 0.3218

scale 0.3218 1.0000

The plot of an object of class ‘fitdist’ provides four classical goodness-of-fit plots (Cullen
and Frey 1999) presented in Figure 3:

� a density plot representing the density function of the fitted distribution along with the
histogram of the empirical distribution,

� a CDF plot of both the empirical distribution and the fitted distribution,

� a Q-Q plot representing the empirical quantiles (y-axis) against the theoretical quantiles
(x-axis)

� a P-P plot representing the empirical distribution function evaluated at each data point
(y-axis) against the fitted distribution function (x-axis).

For CDF, Q-Q and P-P plots, the probability plotting position is defined by default us-
ing Hazen’s rule, with probability points of the empirical distribution calculated as (1:n -

0.5)/n, as recommended by Blom (1959). This plotting position can be easily changed (see
the reference manual for details; Delignette-Muller et al. 2015).

Unlike the generic plot function, the denscomp, cdfcomp, qqcomp and ppcomp functions enable
to draw separately each of these four plots, in order to compare the empirical distribution and
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Figure 3: Four goodness-of-fit plots for various distributions fitted to continuous data
(Weibull, gamma and lognormal distributions fitted to serving sizes from the groundbeef

data set) as provided by functions denscomp, qqcomp, cdfcomp and ppcomp.

multiple parametric distributions fitted on the same data set. These functions must be called
with the first argument corresponding to a list of objects of class ‘fitdist’, and optionally
further arguments to customize the plot (see the reference manual for lists of arguments that
may be specific to each plot; Delignette-Muller et al. 2015). In the following example, we
compare the fit of a Weibull, a lognormal and a gamma distribution to the groundbeef data
set (Figure 3).

R> fg <- fitdist(groundbeef$serving, "gamma")

R> fln <- fitdist(groundbeef$serving, "lnorm")

R> par(mfrow = c(2, 2))

R> plot.legend <- c("Weibull", "lognormal", "gamma")

R> denscomp(list(fw, fln, fg), legendtext = plot.legend)

R> qqcomp(list(fw, fln, fg), legendtext = plot.legend)

R> cdfcomp(list(fw, fln, fg), legendtext = plot.legend)

R> ppcomp(list(fw, fln, fg), legendtext = plot.legend)
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The density plot and the CDF plot may be considered as the basic classical goodness-of-fit
plots. The two other plots are complementary and can be very informative in some cases. The
Q-Q plot emphasizes the lack-of-fit at the distribution tails while the P-P plot emphasizes
the lack-of-fit at the distribution center. In the present example (in Figure 3), none of the
three fitted distributions correctly describes the center of the distribution, but the Weibull
and gamma distributions could be preferred for their better description of the right tail of the
empirical distribution, especially if this tail is important in the use of the fitted distribution,
as it is in the context of food risk assessment.

The data set named endosulfan will now be used to illustrate other features of the fitdis-
trplus package. This data set contains acute toxicity values for the organochlorine pesticide
endosulfan (geometric mean of LC50 or EC50 values in µg.L−1), tested on Australian and
non-Australian laboratory-species (Hose and Van den Brink 2004). In ecotoxicology, a lognor-
mal or a loglogistic distribution is often fitted to such a data set in order to characterize the
species sensitivity distribution (SSD) for a pollutant. A low percentile of the fitted distribu-
tion, generally the 5% percentile, is then calculated and named the hazardous concentration
5% (HC5). It is interpreted as the value of the pollutant concentration protecting 95% of
the species (Posthuma, Suter, and Traas 2010). But the fit of a lognormal or a loglogistic
distribution to the whole endosulfan data set is rather bad (Figure 4), especially due to a
minority of very high values. The two-parameter Pareto distribution and the three-parameter
Burr distribution (which is an extension of both the loglogistic and the Pareto distributions)
have been fitted. Pareto and Burr distributions are provided in the package actuar. So far,
we did not have to define starting values (in the optimization process) as reasonable starting
values are implicitly defined within the fitdist function for most of the distributions defined
in R (see ?fitdist for details). For other distributions like the Pareto and the Burr dis-
tribution, initial values for the distribution parameters have to be supplied in the argument
start, as a named list with initial values for each parameter (as they appear in the d, p,
q functions). Having defined reasonable starting values1, various distributions can be fitted
and graphically compared. In this example, the function cdfcomp can be used to report CDF
values in a logscale so as to emphasize discrepancies on the tail of interest while defining an
HC5 value (Figure 4).

R> data("endosulfan", package = "fitdistrplus")

R> ATV <- endosulfan$ATV

R> fendo.ln <- fitdist(ATV, "lnorm")

R> library("actuar")

R> fendo.ll <- fitdist(ATV, "llogis", start = list(shape = 1, scale = 500))

R> fendo.P <- fitdist(ATV, "pareto", start = list(shape = 1, scale = 500))

R> fendo.B <- fitdist(ATV, "burr", start = list(shape1 = 0.3, shape2 = 1,

+ rate = 1))

R> cdfcomp(list(fendo.ln, fendo.ll, fendo.P, fendo.B), xlogscale = TRUE,

+ ylogscale = TRUE, legendtext = c("lognormal", "loglogistic", "Pareto",

+ "Burr"))

None of the fitted distributions correctly describes the right tail observed in the data set, but

1The plotdist function can plot any parametric distribution with specified parameter values in argument
para. It can thus help to find correct initial values for the distribution parameters in non trivial cases, by
iterative calls if necessary (see the reference manual for examples; Delignette-Muller et al. 2015).
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Figure 4: CDF plot to compare the fit of four distributions to acute toxicity values of various
organisms for the organochlorine pesticide endosulfan (endosulfan data set) as provided by
the cdfcomp function, with CDF values in a logscale to emphasize discrepancies on the left
tail.

as shown in Figure 4, the left-tail seems to be better described by the Burr distribution. Its
use could then be considered to estimate the HC5 value as the 5% quantile of the distribution.
This can be easily done using the quantile generic function defined for an object of class
‘fitdist’. Below is this calculation together with the calculation of the empirical quantile
for comparison.

R> quantile(fendo.B, probs = 0.05)

Estimated quantiles for each specified probability (non-censored data)

p=0.05

estimate 0.2939

R> quantile(ATV, probs = 0.05)

5%

0.2

In addition to the ecotoxicology context, the quantile generic function is also attractive in the
actuarial-financial context. In fact, the value-at-risk VARα is defined as the (1− α)-quantile
of the loss distribution and can be computed with quantile on a ‘fitdist’ object.

The computation of different goodness-of-fit statistics is proposed in the fitdistrplus pack-
age in order to further compare fitted distributions. The purpose of goodness-of-fit statistics
aims at measuring the distance between the fitted parametric distribution and the empir-
ical distribution: e.g., the distance between the fitted cumulative distribution function F
and the empirical distribution function Fn. When fitting continuous distributions, three
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Statistic General formula Computational formula

Kolmogorov-Smirnov sup |Fn(x)− F (x)| max(D+, D−) with
(KS) D+ = max

i=1,...,n

(
i
n − Fi

)
D− = max

i=1,...,n

(
Fi − i−1

n

)
Cramer-von Mises n

∫∞
−∞(Fn(x)− F (x))2dx 1

12n +
n∑
i=1

(
Fi − 2i−1

2n

)2
(CvM)

Anderson-Darling n
∫∞
−∞

(Fn(x)−F (x))2

F (x)(1−F (x)) dx −n− 1
n

n∑
i=1

(2i− 1) log(Fi(1− Fn+1−i))

(AD)

where Fi
4
= F (xi)

Table 1: Goodness-of-fit statistics as defined by D’Agostino and Stephens (1986).

goodness-of-fit statistics are classically considered: Cramer-von Mises, Kolmogorov-Smirnov
and Anderson-Darling statistics (D’Agostino and Stephens 1986). Naming xi the n observa-
tions of a continuous variable X arranged in an ascending order, Table 1 gives the definition
and the empirical estimate of the three considered goodness-of-fit statistics. They can be
computed using the function gofstat as defined by D’Agostino and Stephens (1986).

R> gofstat(list(fendo.ln, fendo.ll, fendo.P, fendo.B),

+ fitnames = c("lnorm", "llogis", "Pareto", "Burr"))

Goodness-of-fit statistics

lnorm llogis Pareto Burr

Kolmogorov-Smirnov statistic 0.1672 0.1196 0.08488 0.06155

Cramer-von Mises statistic 0.6374 0.3827 0.13926 0.06803

Anderson-Darling statistic 3.4721 2.8316 0.89206 0.52393

Goodness-of-fit criteria

lnorm llogis Pareto Burr

Aikake's Information Criterion 1069 1069 1048 1046

Bayesian Information Criterion 1074 1075 1053 1054

Due to giving more weight to distribution tails, the Anderson-Darling statistic is of special
interest when it matters to equally emphasize the tails as well as the main body of a distri-
bution. This is often the case in risk assessment (Cullen and Frey 1999; Vose 2010). For this
reason, this statistic is often used to select the best distribution among those fitted. Never-
theless, this statistic should be used cautiously when comparing fits of various distributions.
Keeping in mind that the weighting of each CDF quadratic difference depends on the para-
metric distribution in its definition (see Table 1), Anderson-Darling statistics computed for
several distributions fitted on the same data set are theoretically difficult to compare. More-
over, such a statistic, as the Cramer-von Mises and Kolmogorov-Smirnov ones, does not take
into account the complexity of the model (i.e., parameter number). It is not a problem when
the compared distributions are characterized by the same number of parameters, but it could
systematically promote the selection of the more complex distributions otherwise. Looking at
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classical penalized criteria based on the loglikelihood (AIC, BIC) seems thus also interesting,
especially to discourage overfitting.

In the previous example, all the goodness-of-fit statistics based on the CDF distance are in
favor of the Burr distribution, the only one characterized by three parameters, while AIC and
BIC values respectively give the preference to the Burr distribution or the Pareto distribution.
The choice between these two distributions seems thus less obvious and could be discussed.
Even if specifically recommended for discrete distributions, the Chi-squared statistic may also
be used for continuous distributions (see Section 3.3 and the reference manual for examples;
Delignette-Muller et al. 2015).

2.3. Uncertainty in parameter estimates

The uncertainty in the parameters of the fitted distribution can be estimated by parametric
or nonparametric bootstraps using the boodist function for non-censored data (Efron and
Tibshirani 1994). This function returns the bootstrapped values of parameters in an S3
class object which can be plotted to visualize the bootstrap region. The medians and the
95 percent confidence intervals of parameters (2.5 and 97.5 percentiles) are printed in the
summary. When smaller than the total number of iterations (due to lack of convergence of
the optimization algorithm for some bootstrapped data sets), the number of iterations for
which the estimation converges is also printed in the summary.

The plot of an object of class ‘bootdist’ consists in a scatter plot or a matrix of scatter plots
of the bootstrapped values of parameters providing a representation of the joint uncertainty
distribution of the fitted parameters. Below is an example of the use of the bootdist function
with the previous fit of the Burr distribution to the endosulfan data set (Figure 5).

R> bendo.B <- bootdist(fendo.B, niter = 1001)

R> summary(bendo.B)

Parametric bootstrap medians and 95% percentile CI

Median 2.5% 97.5%

shape1 0.2008 0.09968 0.3625

shape2 1.5803 1.06174 2.7959

rate 1.4859 0.69571 2.7430

The estimation method converged only for 1000 among 1001 iterations

R> plot(bendo.B)

Bootstrap samples of parameter estimates are useful especially to calculate confidence intervals
on each parameter of the fitted distribution from the marginal distribution of the bootstrapped
values. It is also interesting to look at the joint distribution of the bootstrapped values in a
scatter plot (or a matrix of scatter plots if the number of parameters exceeds two) in order
to understand the potential structural correlation between parameters (see Figure 5).

The use of the whole bootstrap sample is also of interest in the risk assessment field. Its use
enables the characterization of uncertainty in distribution parameters. It can be directly used
within a second-order Monte Carlo simulation framework, especially within the package mc2d
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Figure 5: Bootstrapped values of parameters for a fit of the Burr distribution characterized
by three parameters (example on the endosulfan data set) as provided by the plot of an
object of class ‘bootdist’.

(Pouillot, Delignette-Muller, and Denis 2011). One could refer to Pouillot and Delignette-
Muller (2010) for an introduction to the use of mc2d and fitdistrplus packages in the context
of quantitative risk assessment.

The bootstrap method can also be used to calculate confidence intervals on quantiles of
the fitted distribution. For this purpose, a generic quantile function is provided for class
‘bootdist’. By default, 95% percentile bootstrap confidence intervals of quantiles are pro-
vided. Going back to the previous example from ecotoxicology, this function can be used to
estimate the uncertainty associated to the HC5 estimation, for example from the previously
fitted Burr distribution to the endosulfan data set.

R> quantile(bendo.B, probs = 0.05)

(original) estimated quantiles for each specified probability (non-censored data)

p=0.05

estimate 0.2939

Median of bootstrap estimates

p=0.05

estimate 0.3004

two-sided 95 % CI of each quantile
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p=0.05

2.5 % 0.1785

97.5 % 0.5000

The estimation method converged only for 1000 among 1001 bootstrap

iterations.

3. Advanced topics

3.1. Alternative methods for parameter estimation

This subsection focuses on alternative estimation methods. One of the alternatives for con-
tinuous distributions is the maximum goodness-of-fit estimation method also called minimum
distance estimation method (D’Agostino and Stephens 1986; Dutang et al. 2008). In this
package this method is proposed with eight different distances: the three classical distances
defined in Table 1, or one of the variants of the Anderson-Darling distance proposed by Lu-
ceno (2006) and defined in Table 2. The right-tail Anderson-Darling (AD) gives more weight
to the right-tail, the left-tail AD gives more weight to the left tail. Either of the tails, or both
of them, can receive even larger weights by using second order AD statistics.

To fit a distribution by maximum goodness-of-fit estimation, one needs to fix the argument
method to "mge" in the call to fitdist and to specify the argument gof coding for the
chosen goodness-of-fit distance. This function is intended to be used only with continuous
non-censored data.

Maximum goodness-of-fit estimation may be useful to give more weight to data at one tail
of the distribution. In the previous example from ecotoxicology, we used a non classical

Statistic General formula Computational formula

Right-tail AD
∫∞
−∞

(Fn(x)−F (x))2

1−F (x) dx n
2 − 2

n∑
i=1

Fi − 1
n

n∑
i=1

(2i− 1) ln(Fn+1−i)

(ADR)

Left-tail AD
∫∞
−∞

(Fn(x)−F (x))2

(F (x)) dx −3n
2 + 2

n∑
i=1

Fi − 1
n

n∑
i=1

(2i− 1) ln(Fi)

(ADL)

Right-tail AD ad2r =
∫∞
−∞

(Fn(x)−F (x))2

(1−F (x))2
dx ad2r = 2

n∑
i=1

ln(F i) + 1
n

n∑
i=1

2i−1
Fn+1−i

2nd order (AD2R)

Left-tail AD ad2l =
∫∞
−∞

(Fn(x)−F (x))2

(F (x))2
dx ad2l = 2

n∑
i=1

ln(Fi) + 1
n

n∑
i=1

2i−1
Fi

2nd order (AD2L)

AD 2nd order ad2r + ad2l ad2r + ad2l
(AD2)

where Fi
4
= F (xi); F i

4
= 1− F (xi)

Table 2: Modified Anderson-Darling statistics as defined by Luceno (2006).
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Figure 6: Comparison of a lognormal distribution fitted by MLE and by MGE using two
different goodness-of-fit distances: left-tail Anderson-Darling and left-tail Anderson Darling
of second order (example with the endosulfan data set) as provided by the cdfcomp function,
with CDF values in a logscale to emphasize discrepancies on the left tail.

distribution (the Burr distribution) to correctly fit the empirical distribution especially on its
left tail. In order to correctly estimate the 5% percentile, we could also consider the fit of the
classical lognormal distribution, but minimizing a goodness-of-fit distance giving more weight
to the left tail of the empirical distribution. In what follows, the left tail AD distances of first
or second order are used to fit a lognormal to endosulfan data set (see Figure 6).

R> fendo.ln.ADL <- fitdist(ATV, "lnorm", method = "mge", gof = "ADL")

R> fendo.ln.AD2L <- fitdist(ATV, "lnorm", method = "mge", gof = "AD2L")

R> cdfcomp(list(fendo.ln, fendo.ln.ADL, fendo.ln.AD2L),

+ xlogscale = TRUE, ylogscale = TRUE,

+ main = "Fitting a lognormal distribution", xlegend = "bottomright",

+ legendtext = c("MLE", "Left-tail AD", "Left-tail AD 2nd order"))

Comparing the 5% percentiles (HC5) calculated using these three fits to the one calculated
from the MLE fit of the Burr distribution, we can observe, on this example, that fitting the
lognormal distribution by maximizing left tail Anderson-Darling distances of first or second
order enables to approach the value obtained by fitting the Burr distribution by MLE.

R> (HC5.estimates <- c(empirical = as.numeric(quantile(ATV, probs = 0.05)),

+ Burr = as.numeric(quantile(fendo.B, probs = 0.05)$quantiles),

+ lognormal_MLE = as.numeric(quantile(fendo.ln, probs = 0.05)$quantiles),

+ lognormal_AD2 = as.numeric(quantile(fendo.ln.ADL,

+ probs = 0.05)$quantiles),

+ lognormal_AD2L = as.numeric(quantile(fendo.ln.AD2L,

+ probs = 0.05)$quantiles)))
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empirical Burr lognormal_MLE lognormal_AD2 lognormal_AD2L

0.20000 0.29393 0.07259 0.19591 0.25877

The moment matching estimation (MME) is another method commonly used to fit parametric
distributions (Vose 2010). MME consists in finding the value of the parameter θ that equalizes
the first theoretical raw moments of the parametric distribution to the corresponding empirical
raw moments as in Equation 4:

E(Xk|θ) =
1

n

n∑
i=1

xki , (4)

for k = 1, . . . , d, with d the number of parameters to estimate and xi the n observations of
variable X. For moments of order greater than or equal to 2, it may also be relevant to match
centered moments. Therefore, we match the moments given in Equation 5:

E(X|θ) = x , E
(

(X − E(X))k|θ
)

= mk, for k = 2, . . . , d, (5)

where mk denotes the empirical centered moments. This method can be performed by set-
ting the argument method to "mme" in the call to fitdist. The estimate is computed by
a closed-form formula for the following distributions: normal, lognormal, exponential, Pois-
son, gamma, logistic, negative binomial, geometric, beta and uniform distributions. In this
case, for distributions characterized by one parameter (geometric, Poisson and exponential),
this parameter is simply estimated by matching theoretical and observed means, and for
distributions characterized by two parameters, these parameters are estimated by matching
theoretical and observed means and variances (Vose 2010). For other distributions, the equa-
tion of moments is solved numerically using the optim function by minimizing the sum of
squared differences between observed and theoretical moments (see the fitdistrplus reference
manual for technical details; Delignette-Muller et al. 2015).

A classical data set from the Danish insurance industry published in McNeil (1997) will be used
to illustrate this method. In fitdistrplus, the data set is stored in danishuni for the univariate
version and contains the loss amounts collected at Copenhagen Reinsurance between 1980 and
1990. In actuarial science, it is standard to consider positive heavy-tailed distributions and
have a special focus on the right-tail of the distributions. In this numerical experiment, we
choose classic actuarial distributions for loss modeling: the lognormal distribution and the
Pareto type II distribution (Klugman, Panjer, and Willmot 2009).

The lognormal distribution is fitted to danishuni data set by matching moments implemented
as a closed-form formula. On the left-hand graph of Figure 7, the fitted distribution functions
obtained using the moment matching estimation (MME) and maximum likelihood estimation
(MLE) methods are compared. The MME method provides a more cautious estimation of
the insurance risk as the MME-fitted distribution function (resp. MLE-fitted) underestimates
(overestimates) the empirical distribution function for large values of claim amounts.

R> data("danishuni", package = "fitdistrplus")

R> str(danishuni)

'data.frame': 2167 obs. of 2 variables:

$ Date: Date, format: "1980-01-03" "1980-01-04" ...

$ Loss: num 1.68 2.09 1.73 1.78 4.61 ...



16 fitdistrplus: An R Package for Fitting Distributions

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●

1 2 5 20 50 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fitting a lognormal distribution

data in log scale

C
D

F

lognormal MLE
lognormal MME

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●

1 2 5 20 50 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fitting a Pareto distribution

data in log scale

C
D

F

Pareto MLE
Pareto MME

Figure 7: Comparison between MME and MLE when fitting a lognormal or a Pareto distri-
bution to loss data from the danishuni data set.

R> fdanish.ln.MLE <- fitdist(danishuni$Loss, "lnorm")

R> fdanish.ln.MME <- fitdist(danishuni$Loss, "lnorm", method = "mme",

+ order = 1:2)

R> cdfcomp(list(fdanish.ln.MLE, fdanish.ln.MME), legend = c("lognormal MLE",

+ "lognormal MME"), main = "Fitting a lognormal distribution",

+ xlogscale = TRUE, datapch = 20)

Next, a Pareto distribution, which gives more weight to the right-tail of the distribution, is
fitted. As the lognormal distribution, the Pareto has two parameters, which allows a fair
comparison.

We use the implementation of the actuar package providing raw and centered moments for
that distribution (in addition to d, p, q and r functions; Goulet 2014). Fitting a heavy-tailed
distribution for which the first and the second moments do not exist for certain values of
the shape parameter requires some cautiousness. This is carried out by providing, for the
optimization process, a lower and an upper bound for each parameter. The code below calls
the L-BFGS-B optimization method in optim, since this quasi-Newton method allows for box
constraints2. We choose to match moments defined by Equation 4, and so a function for
computing the empirical raw moment (called memp in our example) is passed to fitdist. For
two-parameter distributions (i.e., d = 2), Equations 4 and 5 are equivalent.

R> library("actuar")

R> fdanish.P.MLE <- fitdist(danishuni$Loss, "pareto",

+ start = c(shape = 10, scale = 10), lower = 2+1e-6, upper = Inf)

R> memp <- function(x, order) sum(x^order)/length(x)

R> fdanish.P.MME <- fitdist(danishuni$Loss, "pareto", method = "mme",

+ order = 1:2, memp = "memp", start = c(shape = 10, scale = 10),

+ lower = c(2+1e-6, 2+1e-6), upper = c(Inf, Inf))

2That is what the B stands for.
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R> cdfcomp(list(fdanish.P.MLE, fdanish.P.MME), legend = c("Pareto MLE",

+ "Pareto MME"), main = "Fitting a Pareto distribution",

+ xlogscale = TRUE, datapch = ".")

R> gofstat(list(fdanish.ln.MLE, fdanish.P.MLE, fdanish.ln.MME,

+ fdanish.P.MME), fitnames = c("lnorm.mle", "Pareto.mle", "lnorm.mme",

+ "Pareto.mme"))

Goodness-of-fit statistics

lnorm.mle Pareto.mle lnorm.mme Pareto.mme

Kolmogorov-Smirnov statistic 0.1375 0.3124 0.4368 0.3638

Cramer-von Mises statistic 14.7911 37.7166 88.9503 53.0783

Anderson-Darling statistic 87.1933 208.3139 416.2567 272.4729

Goodness-of-fit criteria

lnorm.mle Pareto.mle lnorm.mme Pareto.mme

Aikake's Information Criterion 8120 9250 9792 9395

Bayesian Information Criterion 8131 9261 9803 9407

As shown in Figure 7, MME and MLE fits are far less distant (when looking at the right-tail)
for the Pareto distribution than for the lognormal distribution on this data set. Furthermore,
for these two distributions, the MME method better fits the right-tail of the distribution
from a visual point of view. This seems logical since empirical moments are influenced by
large observed values. In the previous traces, we gave the values of goodness-of-fit statistics.
Whatever the statistic considered, the MLE-fitted lognormal always provides the best fit to
the observed data.

Maximum likelihood and moment matching estimations are certainly the most commonly
used methods for fitting distributions (Cullen and Frey 1999). Keeping in mind that these two
methods may produce very different results, the user should be aware of its great sensitivity to
outliers when choosing the moment matching estimation. This may be seen as an advantage
in our example if the objective is to better describe the right tail of the distribution, but it
may be seen as a drawback if the objective is different.

Fitting of a parametric distribution may also be done by matching theoretical quantiles of
the parametric distributions (for specified probabilities) against the empirical quantiles (Tse
2009). The equality of theoretical and empirical quantiles is expressed by Equation 6 below,
which is very similar to Equations 4 and 5:

F−1(pk|θ) = Qn,pk (6)

for k = 1, . . . , d, with d the number of parameters to estimate (dimension of θ if there is
no fixed parameters) and Qn,pk the empirical quantiles calculated from data for specified
probabilities pk.

Quantile matching estimation (QME) is performed by setting the argument method to "qme"

in the call to fitdist and adding an argument probs defining the probabilities for which the
quantile matching is performed. The length of this vector must be equal to the number of
parameters to estimate (as the vector of moment orders for MME). Empirical quantiles are
computed using the quantile function of the stats package using type = 7 by default (see
?quantile and Hyndman and Fan 1996). But the type of quantile can be easily changed by
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Figure 8: Comparison between QME and MLE when fitting a lognormal distribution to loss
data from the danishuni data set.

using the qty argument in the call to the qme function. The quantile matching is carried out
numerically, by minimizing the sum of squared differences between observed and theoretical
quantiles.

R> fdanish.ln.QME1 <- fitdist(danishuni$Loss, "lnorm", method = "qme",

+ probs = c(1/3, 2/3))

R> fdanish.ln.QME2 <- fitdist(danishuni$Loss, "lnorm", method = "qme",

+ probs = c(8/10, 9/10))

R> cdfcomp(list(fdanish.ln.MLE, fdanish.ln.QME1, fdanish.ln.QME2),

+ legend = c("MLE", "QME(1/3, 2/3)", "QME(8/10, 9/10)"),

+ main = "Fitting a lognormal distribution", xlogscale = TRUE,

+ datapch = 20)

Above is an example of fitting a lognormal distribution to the danishuni data set by matching
probabilities (p1 = 1/3, p2 = 2/3) and (p1 = 8/10, p2 = 9/10). As expected, the second QME
fit gives more weight to the right-tail of the distribution. Compared to the maximum likelihood
estimation, the second QME fit best suits the right-tail of the distribution, whereas the first
QME fit best models the body of the distribution. The quantile matching estimation is of
particular interest when we need to focus around particular quantiles, e.g., p = 99.5% in the
Solvency II insurance context or p = 5% for the HC5 estimation in the ecotoxicology context.

3.2. Customization of the optimization algorithm

Each time a numerical minimization is carried out in the fitdistrplus package, the optim func-
tion of the stats package is used by default with the "Nelder-Mead" method for distributions
characterized by more than one parameter and the "BFGS" method for distributions charac-
terized by only one parameter. Sometimes the default algorithm fails to converge. It is then
interesting to change some options of the optim function or to use another optimization func-
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tion than optim to minimize the objective function. The argument optim.method can be used
in the call to fitdist or fitdistcens. It will internally be passed to mledist, mmedist,
mgedist or qmedist, and to optim (see ?optim for details about the different algorithms
available).

Even if no error is raised when computing the optimization, changing the algorithm is of
particular interest to enforce bounds on some parameters. For instance, a volatility parameter
σ is strictly positive σ > 0 and a probability parameter p lies in p ∈ [0, 1]. This is possible by
using arguments lower and/or upper, which – if used – automatically force optim.method =

"L-BFGS-B".

Below are examples of fits of a gamma distribution G(α, λ) to the groundbeef data set
with various algorithms. Note that the conjugate gradient algorithm ("CG") needs far more
iterations to converge (around 2500 iterations) compared to other algorithms (converging in
less than 100 iterations).

R> data("groundbeef", package = "fitdistrplus")

R> fNM <- fitdist(groundbeef$serving, "gamma", optim.method = "Nelder-Mead")

R> fBFGS <- fitdist(groundbeef$serving, "gamma", optim.method = "BFGS")

R> fSANN <- fitdist(groundbeef$serving, "gamma", optim.method = "SANN")

R> fCG <- try(fitdist(groundbeef$serving, "gamma", optim.method = "CG",

+ control = list(maxit = 10000)))

R> if (is(fCG, "try-error"))

+ fCG <- list(estimate = NA)

It is also possible to use another function than optim to minimize the objective function by
specifying the argument custom.optim in the call to fitdist. It may be necessary to cus-
tomize this optimization function to meet the following requirements. (1) the custom.optim

function must have the following arguments: fn for the function to be optimized and par for
the initialized parameters. (2) custom.optim should carry out a minimization and must re-
turn the following components: par for the estimate, convergence for the convergence code,
value = fn(par) and hessian. Below is an example of code written to wrap the genoud

function from the rgenoud package (Mebane, Jr. and Sekhon 2011) in order to respect our
optimization“template”. The rgenoud package implements the genetic (stochastic) algorithm.

R> mygenoud <- function(fn, par, ...) {

+ require("rgenoud")

+ res <- genoud(fn, starting.values = par, ...)

+ standardres <- c(res, convergence = 0)

+ return(standardres)

+ }

The customized optimization function can then be passed as the argument custom.optim

in the call to fitdist or fitdistcens. The following code can for example be used to
fit a gamma distribution to the groundbeef data set. Note that in this example various
arguments are also passed from fitdist to genoud: nvars, Domains, boundary.enforcement,
print.level and hessian. The code below compares all the parameter estimates (α̂, λ̂) by
the different algorithms: shape α and rate λ parameters are relatively similar on this example,
roughly 4.00 and 0.05, respectively.
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R> fgenoud <- mledist(groundbeef$serving, "gamma", custom.optim = mygenoud,

+ nvars = 2, max.generations = 10, Domains = cbind(c(0, 0), c(10, 10)),

+ boundary.enforcement = 1, hessian = TRUE, print.level = 0, P9 = 10)

R> cbind(NM = fNM$estimate, BFGS = fBFGS$estimate, SANN = fSANN$estimate,

+ CG = fCG$estimate, fgenoud = fgenoud$estimate)

NM BFGS SANN CG fgenoud

shape 4.00825 4.22848 3.97131 4.12850 4.00834

rate 0.05442 0.05742 0.05392 0.05606 0.05443

3.3. Fitting distributions to other types of data

Analytical methods often lead to semi-quantitative results which are referred to as censored
data. Observations only known to be under a limit of detection are left-censored data. Ob-
servations only known to be above a limit of quantification are right-censored data. Results
known to lie between two bounds are interval-censored data. These two bounds may corre-
spond to a limit of detection and a limit of quantification, or more generally to uncertainty
bounds around the observation. Right-censored data are also commonly encountered with
survival data (Klein and Moeschberger 2003). A data set may thus contain right-, left-,
or interval-censored data, or may be a mixture of these categories, possibly with different
upper and lower bounds. Censored data are sometimes excluded from the data analysis or
replaced by a fixed value, which in both cases may lead to biased results. A more recom-
mended approach to correctly model such data is based upon maximum likelihood (Klein and
Moeschberger 2003; Helsel 2005).

Censored data may thus contain left-censored, right-censored and interval-censored values,
with several lower and upper bounds. Before their use in package fitdistrplus, such data
must be coded into a dataframe with two columns, respectively named left and right,
describing each observed value as an interval. The left column contains either NA for left
censored observations, the left bound of the interval for interval censored observations, or the
observed value for non-censored observations. The right column contains either NA for right
censored observations, the right bound of the interval for interval censored observations, or the
observed value for non-censored observations. To illustrate the use of package fitdistrplus to
fit distributions to censored continuous data, we will use another data set from ecotoxicology,
included in our package and named salinity. This data set contains acute salinity tolerance
(LC50 values in electrical conductivity, mS.cm−1) of riverine macro-invertebrates taxa from
the southern Murray-Darling Basin in Central Victoria, Australia (Kefford, Fields, Clay, and
Nugegoda 2007).

R> data("salinity", package = "fitdistrplus")

R> str(salinity)

'data.frame': 108 obs. of 2 variables:

$ left : num 20 20 20 20 20 21.5 15 20 23.7 25 ...

$ right: num NA NA NA NA NA 21.5 30 25 23.7 NA ...

Using censored data such as those coded in the salinity data set, the empirical distri-
bution can be plotted using the plotdistcens function. By default, this function uses
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Figure 9: Simple plot of censored raw data (72-hour acute salinity tolerance of riverine macro-
invertebrates from the salinity data set) as ordered points and intervals.

the expectation-maximization approach of Turnbull (1974) to compute the overall empiri-
cal CDF curve with optional confidence intervals, by calls to survfit and the plot method
for ‘survfit’ objects from the survival package (Therneau 2014; Therneau and Grambsch
2000, Figure 10 shows the Turnbull plot of data together with two fitted distributions). A
less rigorous but sometimes more illustrative plot can be obtained by fixing the argument
Turnbull to FALSE in the call to plotdistcens (see Figure 9 for an example and the help
page of Function plotdistcens for details). This plot enables to see the real nature of
censored data, as points and intervals.

R> plotdistcens(salinity, Turnbull = FALSE)

As for non censored data, one or more parametric distributions can be fitted to the censored
data set, one at a time, but using in this case the fitdistcens function. This function
estimates the vector of distribution parameters θ by maximizing the likelihood for censored
data defined as:

L(θ) =
∏NnonC
i=1 f(xi|θ)×

∏NleftC

j=1 F (xupperj |θ)
×
∏NrightC

k=1 (1− F (xlowerk |θ))×
∏NintC
m=1 (F (xupperm |θ)− F (xlowerj |θ))

(7)

with xi the NnonC non-censored observations, xupperj upper values defining the NleftC left-

censored observations, xlowerk lower values defining the NrightC right-censored observations,
[xlowerm ;xupperm ] the intervals defining the NintC interval-censored observations, and F the cu-
mulative distribution function of the parametric distribution (Klein and Moeschberger 2003;
Helsel 2005).
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As fitdist, fitdistcens returns the results of the fit of any parametric distribution to a
data set as an S3 class object that can be easily printed, summarized or plotted. For the
salinity data set, a lognormal distribution or a loglogistic can be fitted as commonly done
in ecotoxicology for such data. As with fitdist, for some distributions (see Delignette-Muller
et al. 2015, for details), it is necessary to specify initial values for the distribution parameters
in the argument start. The plotdistcens function can help to find correct initial values for
the distribution parameters in non trivial cases, by a manual iterative use if necessary.

R> fsal.ln <- fitdistcens(salinity, "lnorm")

R> fsal.ll <- fitdistcens(salinity, "llogis", start = list(shape = 5,

+ scale = 40))

R> summary(fsal.ln)

FITTING OF THE DISTRIBUTION ' lnorm ' BY MAXIMUM LIKELIHOOD ON CENSORED DATA

PARAMETERS

estimate Std. Error

meanlog 3.3854 0.06487

sdlog 0.4961 0.05455

Loglikelihood: -139.1 AIC: 282.1 BIC: 287.5

Correlation matrix:

meanlog sdlog

meanlog 1.0000 0.2938

sdlog 0.2938 1.0000

R> summary(fsal.ll)

FITTING OF THE DISTRIBUTION ' llogis ' BY MAXIMUM LIKELIHOOD ON CENSORED DATA

PARAMETERS

estimate Std. Error

shape 3.421 0.4158

scale 29.930 1.9447

Loglikelihood: -140.1 AIC: 284.1 BIC: 289.5

Correlation matrix:

shape scale

shape 1.0000 -0.2022

scale -0.2022 1.0000

Computations of goodness-of-fit statistics have not yet been developed for fits using censored
data but the quality of fit can be judged using Akaike and Schwarz’s Bayesian information
criteria (AIC and BIC) and the goodness-of-fit CDF plot, respectively provided when summa-
rizing or plotting an object of class ‘fitdistcens’. Function cdfcompcens can also be used
to compare the fit of various distributions to the same censored data set. Its call is similar to
the one of cdfcomp. Below is an example of comparison of the two fitted distributions to the
salinity data set (see Figure 10).

R> cdfcompcens(list(fsal.ln, fsal.ll), legendtext = c("lognormal",

+ "loglogistic"))
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Figure 10: Goodness-of-fit CDF plot for fits of a lognormal and a loglogistic distribution to
censored data: LC50 values from the salinity data set.

Function bootdistcens is the equivalent of bootdist for censored data, except that it only
proposes nonparametric bootstrap. Indeed, it is not obvious to simulate censoring within
a parametric bootstrap resampling procedure. The generic function quantile can also be
applied to an object of class ‘fitdistcens’ or ‘bootdistcens’, as for continuous non-censored
data.

In addition to the fit of distributions to censored or non censored continuous data, our package
can also accommodate discrete variables, such as count numbers, using the functions developed
for continuous non-censored data. These functions will provide somewhat different graphs
and statistics, taking into account the discrete nature of the modeled variable. The discrete
nature of the variable is automatically recognized when a classical distribution is fitted to data
(binomial, negative binomial, geometric, hypergeometric and Poisson distributions) but must
be indicated by fixing argument discrete to TRUE in the call to functions in other cases. The
toxocara data set included in the package corresponds to the observation of such a discrete
variable. Numbers of Toxocara cati parasites present in the digestive tract are reported from
a random sampling of feral cats living on Kerguelen island (Fromont, Morvilliers, Artois, and
Pontier 2001). We will use it to illustrate the case of discrete data.

R> data("toxocara", package = "fitdistrplus")

R> str(toxocara)

'data.frame': 53 obs. of 1 variable:

$ number: int 0 0 0 0 0 0 0 0 0 0 ...
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Figure 11: Plot of the fit of a discrete distribution (Poisson distribution fitted to numbers of
Toxocara cati parasites from the toxocara data set).

The fit of a discrete distribution to discrete data by maximum likelihood estimation requires
the same procedure as for continuous non-censored data. As an example, using the toxocara

data set, Poisson and negative binomial distributions can be easily fitted.

R> (ftoxo.P <- fitdist(toxocara$number, "pois"))

Fitting of the distribution ' pois ' by maximum likelihood

Parameters:

estimate Std. Error

lambda 8.679 0.4047

R> (ftoxo.nb <- fitdist(toxocara$number, "nbinom"))

Fitting of the distribution ' nbinom ' by maximum likelihood

Parameters:

estimate Std. Error

size 0.3971 0.08289

mu 8.6803 1.93501

For discrete distributions, the plot of an object of class ‘fitdist’ simply provides two goodness-
of-fit plots comparing empirical and theoretical distributions in density and in CDF (Fig-
ure 11). Function cdfcomp can also be used to compare several plots to the same data set, as
follows for the previous fits (Figure 12).

R> plot(ftoxo.P)

R> cdfcomp(list(ftoxo.P, ftoxo.nb), legendtext = c("Poisson",

+ "negative binomial"))

When fitting discrete distributions, the Chi-squared statistic is computed by the gofstat

function using cells defined by the argument chisqbreaks or cells automatically defined from
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Figure 12: Comparison of the fits of a negative binomial and a Poisson distribution to numbers
of Toxocara cati parasites from the toxocara data set.

the data in order to reach roughly the same number of observations per cell. This number
is roughly equal to the argument meancount, or slightly greater if there are some ties. The
choice to define cells from the empirical distribution (data), and not from the theoretical
distribution, was made to enable the comparison of Chi-squared values obtained with different
distributions fitted on the same data set. If arguments chisqbreaks and meancount are both
omitted, meancount is fixed in order to obtain roughly (4n)2/5 cells, with n the length of the
data set (Vose 2010). Using this default option the two previous fits are compared as follows,
giving the preference to the negative binomial distribution, from both Chi-squared statistics
and information criteria:

R> gofstat(list(ftoxo.P, ftoxo.nb),

+ fitnames = c("Poisson", "negative binomial"))

Chi-squared statistic: 31257 7.486

Degree of freedom of the Chi-squared distribution: 5 4

Chi-squared p-value: 0 0.1123

the p-value may be wrong with some theoretical counts < 5

Chi-squared table:

obscounts theo Poisson theo negative binomial

<= 0 14 0.009014 15.295

<= 1 8 0.078237 5.809

<= 3 6 1.321767 6.845

<= 4 6 2.131298 2.408

<= 9 6 29.827829 7.835

<= 21 6 19.626224 8.271

> 21 7 0.005631 6.537
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Goodness-of-fit criteria

Poisson negative binomial

Aikake's Information Criterion 1017 322.7

Bayesian Information Criterion 1019 326.6

4. Conclusion

The R package fitdistrplus allows to easily fit distributions. Our main objective while devel-
oping this package was to provide tools for helping R users to fit distributions to data. We
have been encouraged to pursue our work by feedbacks from users of our package in vari-
ous areas as food or environmental risk assessment, epidemiology, ecology, molecular biology,
genomics, bioinformatics, hydraulics, mechanics, financial and actuarial mathematics or op-
erations research. Indeed, this package is already used by a lot of practitioners and academics
for

� simple MLE fits (Jaloustre, Cornu, Morelli, Noel, and Delignette-Muller 2011; Sak and
Haksoz 2011; Koch, Yemshanov, Magarey, and Smith 2012; Marquetoux et al. 2012;
Scholl, Nice, Fordyce, Gompert, and Forister 2012; Suuronen, Kallonen, Eik, Puttonen,
Serimaa, and Herrmann 2012; González-Varo, López-Bao, and Guitián 2012; Mandl,
Monteiro, Vrisekoop, and Germain 2013; Malá 2013; Nadarajah and Bakar 2013; Simó,
Casaña, and Sabaté 2013; Westphal-Fitch and Fitch 2013; Wayland 2013; Viana, San-
tamará, Michot, and Figuerola 2013; Wu 2013a; Stagge and Moglen 2013; Fiorelli et al.
2013; Tikole, Jaravine, Orekhov, and Guentert 2013; Voigt et al. 2014),

� for MLE fits and goodness-of-fit statistics (Tarnczi, Fenyves, and Bcs 2011; Bagaria,
Jaravine, Huang, Montelione, and Güntert 2012; Benavides-Piccione, Fernaud-Espinosa,
Robles, Yuste, and DeFelipe 2012; Breitbach, Böhning-Gaese, Laube, and Schleuning
2012; Pouillot and Delignette-Muller 2010; Vaninsky 2013),

� for MLE fits and bootstrap (Croucher, Harris, Barquist, Parkhill, and Bentley 2012;
Méheust, Cann, Reponen, Wakefield, and Vesper 2012; Orellano, Reynoso, Grassi,
Palmieri, Uez, and Carlino 2012; Tello, Austin, and Telfer 2012; Hoelzer, Pouillot,
Gallagher, Silverman, Kause, and Dennis 2012; Prosser, Hungerford, Erwin, Ottinger,
Takekawa, and Ellis 2013; Zhang, Habib, Kuligowski, and Kim 2013; Rigaux, é, Albert,
and Carlin 2014),

� for MLE fits, bootstrap and goodness-of-fit statistics (Larras, Montuelle, and Bouchez
2013),

� for MME fit (Luangkesorn, Norman, Zhuang, Falbo, and Sysko 2012; Callau Poduje,
Belli, and Haberlandt 2013; Sato et al. 2013),

� for censored MLE and bootstrap (Leha et al. 2011; Pouillot, Hoelzer, Chen, and Dennis
2012; Jongenburger, Reij, Boer, Zwietering, and Gorris 2012; Commeau et al. 2012; De
La Huerta Contreras, Vaquera Huerta, and Arnold 2015),

� for graphic analyzing in Anand, Yeturu, and Chandra (2012),
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� for grouped-data fitting methods (Fu, Steiner, and Costafreda 2012) or

� more generally (Busschaert et al. 2010; Eling 2012; Samuel-Rosa, Dalmolin, and Miguel
2013; Srinivasan, Sorrell, Brooks, Edwards, and McDougle 2013; Meyer, Zhang, Hayakawa,
Imai, and Przeworski 2013; Guillier, Danan, Bergis, Delignette-Muller, Granier, Rudelle,
Beaufort, and Brisabois 2013; Daelman, Membré, Jacxsens, Vermeulen, Devlieghere,
and Uyttendaele 2013; Eik, Luhmus, Tigasson, Listak, Puttonen, and Herrmann 2013;
Wu 2013b; Drake, Chalabi, and Coker 2015).

The fitdistrplus package is complementary with the distrMod package (Kohl and Ruckdeschel
2010). distrMod provides an even more flexible way to estimate distribution parameters
but its use requires a greater initial investment to learn how to manipulate the S4 classes
and methods developed in the distr family packages. Many extensions of the fitdistrplus
package are planned in the future: we target to extend to censored data some methods
for the moment only available for non-censored data, especially concerning goodness-of-fit
evaluation and fitting methods. We will also enlarge the choice of fitting methods for non-
censored data, by proposing new goodness-of-fit distances (e.g., distances based on quantiles)
for maximum goodness-of-fit estimation and new types of moments (e.g., limited expected
values) for moment matching estimation. At last, we will consider the case of multivariate
distribution fitting.
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