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ABSTRACT

By using a regularization method, we study in this paper the global existence and uniqueness property of 
a new variant of non-convex sweeping processes involving maximal monotone operators. The system can 
be considered as a maximal monotone differential inclusion under a control term of normal cone type 
forcing the trajectory to be always contained in the desired moving set. When the set is fixed, one can 
show that the unique solution is right-differentiable everywhere and its right-derivative is right-
continuous. Non-smooth Lyapunov pairs for this system are also analysed.
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1. Introduction

Sweeping processes were proposed and thoroughly studied by Moreau in the seventies [1–4], which
can be written as follows

⎧

⎨

⎩

ẋ(t) ∈ −NC(t)(x(t)) a.e. t ∈ [0,T],

x(0) = x0 ∈ C(0),

whereNC(t)(·) denotes the normal cone operator of the convex setC(t) in the sense of convex analysis
in aHilbert spaceH . Existence and uniqueness of solutions of such systems and their classical variants
(subjected to perturbation forces, prox-regular state dependent set C(t, x), second-order sweeping
processes ...) have been considered by many authors in the literature (see, e.g. [5–10]). In this paper,
we are interested in a variant of sweeping processes associated with maximal monotone operators of
following form

⎧

⎨

⎩

ẋ(t) ∈ −Ax(t) − NC(t)(x(t)) a.e. t ∈ [0,T],

x(0) = x0,
(1)

where A : H ⇒ H is a set-valued maximal monotone operator and NC(t)( · ) denotes the proximal
normal cone operator of the closed, prox-regular set C(t) in Hilbert space H . The system (1) can be
considered as a maximal monotone differential inclusion under control term u(t) ∈ NC(t)( · ) which
guarantees that the trajectory x(t) always belongs to the desired set C(t) for all t ∈ [0,T]. When
C(t) ≡ C is a fixed, closed and convex subset of H , under some qualification conditions, e.g.

C ∩ int(dom A) �= ∅ or int(C) ∩ dom A �= ∅, (2)
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Figure 1. Counter-example for the prox-regular case.

then A( · ) +NC( · ) is a maximal monotone operator [11] and hence the existence and uniqueness of
solutions can be obtained [12]. However, the situation is different when the closed setC is assumed to
be prox-regular instead of being convex. For example, letH = R

2 and define B : R
2 → R

2, (x, y) �→
(y,−x). It is easy to see that B is a single-valued, continuous andmonotone mapping with dom(B) =
R
2. Hence B is maximal monotone. LetA = B+NB whereB = B(0, 1) denotes the closed unit ball in

R
2. Clearly, A is maximal monotone with dom(A) = B. Let C1 = B(0, 1/2) and C2 = B(3/2, 1/2).

The sets C1 and C2 are closed and convex. Thus C = C1 ∪ C2 is prox-regular (see Section 2) and
int(C) ∩ int(dom A) �= ∅. However, it is not difficult to see that the system

⎧

⎨

⎩

ẋ(t) ∈ −Ax(t) − NC(x(t)) a.e. t ∈ [0,T],

x(0) = x0 = (1, 0),
(3)

has no absolutely continuous solutions. Indeed, if the differential inclusion (3) has an absolutely
continuous solution x( · ), then this solution must be a constant function x( · ) ≡ x0. The fact that
0 /∈ A(x0) + NC(x0) constitutes a contradiction (Figure 1).

Consequently, for problem (1) involving prox-regular set C, one needs more than the classical
qualification condition (2) to ensure the existence of solutions. It is natural here to suppose that
C ⊂ int(dom A). If A coincides with the subdifferential of a proper, lower semi-continuous and
convex function ϕ : H → R ∪ {+∞}, i.e. A ≡ ∂ϕ, then the global existence and uniqueness of
solutions are guaranteed. This is a particular case of evolution associated with primer lower nice
function studied in [13]. For general A and C(t), if x0 ∈ C(0) ∩ int(dom A), we can prove the
existence and uniqueness of local solutions (see Proposition 3.5). The global result can be obtained if

rge C :=
⋃

0≤t≤T

C(t) ⊂ int(dom A), (4)

and A0 (the minimal norm operator of A) is linearly bounded on C(t), i.e. ‖A0x‖ ≤ α(t)‖x‖ + β(t)
for all x ∈ dom(A), a.e. t ∈ [0,T] for some α( · ),β( · ) ∈ L2([0,T]; R+) (see Theorems 3.2 and 3.3).

For the particular case when the moving set C( · ) is expanded, i.e. C(s) ⊂ C(t) for all t ≥ s ≥ 0,
and A = ∂ϕ with ϕ : H → R ∪ {+∞} proper, lower semi-continuous and convex function then
the global well-posedness result, Lyapunov stability and some asymptotic behaviours of solutions are
providedwithout the linear growth condition forA0 (see Theorem 3.6). To the best of our knowledge,
there have been no results about Lyapunov stability for general sweeping processes, which is known
to be a hard problem. When C( · ) ≡ C is fixed, one can show that the unique solution x( · ) is
right differentiable everywhere and ẋ+( · ) is right continuous. Then some criteria for non-smooth
Lyapunov pairs for such system are given.
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The paper is organized as follow. We recall some basic notations, definitions and results which
are used throughout the paper in Section 2. In Section 3 the existence and uniqueness of solutions of
(1) are proved. In Section 4, we study some regular properties of solutions when C(t) ≡ C and give
criteria to weakly lower semi-continuous Lyapunov pairs by using proximal analysis. Section 5 ends
the paper and contains some concluding remarks.

2. Notations and preliminaries

Let us begin with some notations used in the paper. Let H be a Hilbert space. Denote by 〈·, ·〉 , ‖ · ‖
the scalar product and the corresponding norm inH . Denote by I the identity operator, byB the unit
ball in H and Br = rB, Br(x) = B(x, r) = x + rB. The distance from a point s to a closed set C is
denoted by d(s,C) or dC(s) and

d(s,C) := inf
x∈C

‖s − x‖.

The Hausdorff distance between two sets C1,C2 is defined by

dH(C1,C2) := max

{

sup
x1∈C1

d(x1,C2), sup
x2∈C2

d(x2,C1)

}

.

Denote by

C0 :=
{

c ∈ C : ‖c‖ = inf
c′∈C

‖c′‖
}

and ‖C‖ := sup
c∈C

‖c‖.

It is known that if C is closed and convex, then C0 contains exactly one element. The set of all points
in C that are nearest to s is denoted by

Proj(C, s) := {x ∈ C : ‖s − x‖ = d(s,C)}.

When Proj(C, s) = {x}, we can write x = proj(C, s) to emphasize the single-valued property. Let
x ∈ Proj(C, s) and t ≥ 0, then the vector t(s−x) is called proximal normal toC at x. The set of all such
vectors is a cone, called proximal normal cone of C at x and denoted by NP(C, x). It is well-known
[14,15] that ξ ∈ NP(C, x) if and only if there exist some σ > 0, δ > 0 such that

〈ξ , y − x〉 ≤ δ‖y − x‖2 for all y ∈ C ∩ Bσ (x).

The regular-Fréchet normal cone NF( · ), the limiting Mordukhovich normal cone NL( · ) and the
Clarke-convexified normal cone NC( · ) are defined, respectively, as follows

NF(C, x) := {ξ ∈ H : ∀δ > 0, ∃σ > 0 s. t. 〈ξ , y − x〉 ≤ δ‖y − x‖ for all y ∈ C ∩ Bσ (x)},

NL(C, x) := {ξ ∈ H : ∃ ξn → ξ weakly and ξn ∈ NP(C, xn), xn → x in C}
= {ξ ∈ H : ∃ ξn → ξ weakly and ξn ∈ NF(C, xn), xn → x in C},

NC(C, x) := coNL(C, x).

If x /∈ C, one has NP(C, x) = NF(C, x) = NL(C, x) = NC(C, x) = ∅ and for all x ∈ C:

NP(C, x) ⊂ NF(C, x) ⊂ NL(C, x) ⊂ NC(C, x).
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If C is prox-regular then these normal cones are coincide. In this case for simplicity, we can write
N(C, x).

Definition 1: The closed set C is called r-prox-regular (r > 0) iff each point s in the r-enlargement
of C

Ur(C) := {w ∈ H : d(w,C) < r},

has a unique nearest point proj(C, s) and the mapping proj(C, ·) is continuous on Ur(C).

Proposition 2.1 [10,16]: Let C be a closed set in H and r > 0. The followings are equivalent

(1) C is r-prox-regular.
(2) For all x ∈ C and ξ ∈ NL(C, x) such that ‖ξ‖ < r, we have

x = proj(C, x + ξ). (5)

(3) For all x ∈ C and ξ ∈ NL(C, x), we have

〈ξ , y − x〉 ≤
‖ξ‖
2r

‖y − x‖2 ∀ y ∈ C.

(4) (Hypo-monotonicity) For all x, x′ ∈ C, ξ ∈ NL(C, x), ξ ′ ∈ NL(C, x′) and ξ , ξ ′ ∈ B we have

〈ξ − ξ ′, x − x′〉 ≥ −
1

r
‖x − x′‖2.

Let us recall the definition of proximal subgradient and asymptotic subgradient of a proper lower
semi-continuous function by using proximal calculus.

Definition 2: Let ϕ : H → R ∪ {+∞} be a proper lower semi-continuous function and x ∈ H at
which ϕ is finite. One say that ξ is a proximal subgradient of ϕ at x, denoted by ξ ∈ ∂Pϕ(x) provided
(ξ ,−1) ∈ NP

epi ϕ(x,ϕ(x)). And ξ is called a singular subgradient of ϕ at x, denoted by ξ ∈ ∂∞ϕ(x)

provided (ξ , 0) ∈ NL
epi ϕ(x,ϕ(x)).

It is known that ξ ∈ ∂∞ϕ(x) if and only if there exist sequences (αk)k∈N ⊂ R+, (xk)k∈N, (ξk)k∈N

such that αk → 0+, xk →ϕ x, ξk ∈ ∂Pϕ(xk) and αkξk → ξ (see, e.g. [17]).
In the following, we summarize some known definitions and results concerning maximal mono-

tone operators. The domain and graph of a set-valued operator A : H ⇒ H are defined, respectively,
by

dom A := {x ∈ H : A(x) �= ∅}, gph A := {(x, y) : x ∈ H , y ∈ A(x)}.

The operatorA is calledmonotone if for all x, y ∈ H , x∗ ∈ A(x), y∗ ∈ A(y), we have 〈x∗ −y∗, x−y〉 ≥
0. In addition, if there is no monotone mapping B such that gph A is contained strictly in gph B,
then A is called maximal monotone. When A is a maximal monotone operator, the minimal norm

operator A0 of A is a single-valued mapping defined by A0 : H → H , x �→
(

A(x)
)0

.

Proposition 2.2 [12]: Let A : H ⇒ H be maximal monotone and let λ > 0. Then

(1) the resolvent of A defined by JAλ := (I + λA)−1 is a non-expansive single-valued map from H
to H.

(2) the Yosida approximation of A defined by Aλ := 1
λ
(I − JAλ ) = (λI + A−1)−1 satisfies

(i) for all x ∈ H, Aλ(x) ∈ A(JAλ x) ,

(ii) Aλ is Lipschitz continuous with constant 1
λ
and maximal monotone.

(iii) If x ∈ dom A, then ‖Aλx‖ ≤ ‖A0x‖, where A0x is the element of Ax of minimal norm.
(3) If xλ → x and (Aλxλ)λ is bounded as λ → 0 then x ∈ dom A. Moreover, if y is a cluster point

of (Aλxλ)λ as λ → 0 then y ∈ A(x).
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Proposition 2.3 [12]: Let A : H ⇒ H be maximal monotone. Then

(1) A is sequentially weak-strong and strong-weak closed.
(2) A is locally bounded in int.dom A), the interior of dom A.

(3) Let T > 0. Define A : L2([0,T];H) ⇒ L2([0,T];H) by

y( · ) ∈ Ax( · ) iff y(t) ∈ Ax(t) a.e. t ∈ [0,T].

Then A is also maximal monotone.

We finish this section with a version of Gronwall’s inequality (see, e.g. Lemma 4.1 in [18]).

Lemma 2.4: Let T > 0 be given and a( ·), b( ·) ∈ L1([0,T]; R)with b(t) ≥ 0 for almost all t ∈ [0,T].
Let the absolutely continuous function w : [0,T] → R+ satisfy

(1 − α)w′(t) ≤ a(t)w(t) + b(t)wα(t), a.e. t ∈ [0,T], (6)

where 0 ≤ α < 1. Then for all t ∈ [0,T], one has

w1−α(t) ≤ w1−α(0)exp

(∫ t

0
a(τ )dτ

)

+
∫ t

0
exp

(∫ t

s
a(τ )dτ

)

b(s)ds. (7)

3. Existence and uniqueness of solutions

In this section, we study the existence and uniqueness of solutions of (1) by using a regularization
approach and some properties of a classical class of perturbed sweeping processes. First, let us make
the following assumptions. Let r > 0 be given.

Assumption 1: For each t ∈ [0,T], the set C(t) is non-empty closed and r-prox-regular.

Assumption 2: Themap t �→ C(t) is absolutely continuous, i.e. there exist a non-decreasing function
v : [0,T] → R+ with v(0) = 0 such that for all 0 ≤ s < t ≤ T , one has

dH
(

C(t),C(s)
)

≤ v(t) − v(s). (8)

Assumption 3: The set-valued mapping A : H ⇒ H is a maximal monotone operator.

One has the following lemma, which is a similar result to Proposition 1 in [6]. We give here a
different proof, where the idea can be used later in the proof of Theorem 3.6.

Lemma 3.1: Assume that Assumptions 1, 2 are satisfied and f : H → H be a Lipschitz continuous
function. Let x( · ) : [0,T] → H be the unique solution of the differential inclusion (see, e.g. [6] for the
existence and uniqueness of solutions)

⎧

⎨

⎩

ẋ(t) ∈ −NC(t)(x(t)) + f (x(t)), a.e. t ∈ [0,T],

x(0) = x0 ∈ C(0).

Then for almost every t ∈ [0,T], one has

‖ẋ(t) − f (x(t))‖ ≤ v̇(t) + ‖f (x(t))‖. (9)

Proof: Fix some t ≥ 0 such that x( · ) is differentiable at t. From the r-prox-regularity of C(t), one
has

〈ẋ(t) − f (x(t)), c − x(t)〉 ≤ β‖c − x(t)‖2 ∀c ∈ C(t), (10)
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where β := ‖ẋ(t)−f (x(t))‖
2r (see Proposition 2.1). Let ε > 0 be small enough. Since x(t+ε) ∈ C(t+ε) ∈

C(t)+(v(t+ε)−v(t))B, there exist cε ∈ C(t) and yε ∈ B such that x(t+ε) = cε+(v(t+ε)−v(t))yε .
Choosing c = cε in (10), one has

〈ẋ(t) − f (x(t)), x(t + ε) − x(t)〉 ≤ (v(t + ε) − v(t))〈ẋ(t) − f (x(t)), yε〉
+ β‖x(t + ε) − (v(t + ε) − v(t))yε − x(t)‖2.

Dividing both sides by ε and let ε → 0, it implies that

〈ẋ(t) − f (x(t)), ẋ(t)〉 ≤ v̇(t)‖ẋ(t) − f (x(t))‖.

Hence

‖ẋ(t) − f (x(t))‖2 ≤ 〈ẋ(t) − f (x(t)), f (x(t))〉 + v̇(t)‖ẋ(t) − f (x(t))‖
≤ ‖ẋ(t) − f (x(t))‖(‖f (x(t))‖ + v̇(t)).

Then the result follows.

We start with a global existence and uniqueness result for problem (1). Let us denote the range of
C( · ) by rge C defined as follows

rge C :=
⋃

t∈[0,T]
C(t). (11)

Theorem 3.2: Let Assumptions 1, 2 and 3 hold. Suppose that

(i) rge C ⊂ dom A;
(i) there exists α( · ),β( · ) ∈ L2([0,T]; R+) s.t. ‖A0(x)‖ ≤ α(t)‖x‖ + β(t) ∀x ∈ C(t), for a.e.

t ∈ [0,T].
Then for each initial condition x0 ∈ C(0), there exists an absolutely continuous solution x(·) of problem
(1) on [0,T].

Proof: For each λ > 0, denote Aλ the Moreau–Yosida approximation of A. Then Aλ : H → H is
1/λ-Lipschitz continuous. We consider the following approximate sweeping process

⎧

⎨

⎩

ẋλ(t) ∈ −Aλxλ(t) − NC(t)(xλ(t)) a.e. t ∈ [0,T],

xλ(0) = x0 ∈ C(0).
(12)

For each λ > 0, the differential inclusion (12) has a unique solution xλ( · ) on [0,T] (see, e.g. [6]). By
Lemma 3.1, we have

‖ẋλ(t) + Aλxλ(t)‖ ≤ ‖Aλxλ(t)‖ + v̇(t). (13)

Note that ‖Aλxλ(t)‖ ≤ ‖A0xλ(t)‖ ≤ α(t)‖xλ(t)‖ + β(t). Hence

‖ẋλ(t)‖ ≤ 2‖Aλxλ(t)‖ + v̇(t) ≤ 2α(t)‖xλ(t)‖ + 2β(t) + v̇(t).

By using Gronwall’s inequality, one obtains that

‖xλ(t)‖ ≤ x0e
a + (2b + v(T))ea := M

where a :=
∫ T
0 α(s)ds, b :=

∫ T
0 β(s)ds. Let

ξ(t) := Mα(t) + β(t).
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Then ξ ∈ L2([0,T]; R+) and

‖ẋλ(t) + Aλxλ(t)‖ ≤ ξ(t) + v̇(t) and ‖Aλxλ(t)‖ ≤ ξ(t) a.e. t ∈ [0,T]. (14)

Given some λ,µ > 0. From the prox-regular property of C(t) and Proposition 2.1, one has for
a.e. t ∈ [0,T]

〈ẋλ(t) + Aλxλ(t) − ẋµ(t) − Aµxµ(t), xλ(t) − xµ(t)〉 ≤
ξ(t) + v̇(t)

r
‖xλ(t) − xµ(t)‖2. (15)

Note that A is a maximal monotone operator and

xλ(t) = Jλxλ(t) + λAλxλ(t) with Aλxλ(t) ∈ A(Jλxλ(t)).

Therefore,

〈Aλxλ(t) − Aµxµ(t), xλ(t) − xµ(t)〉 = 〈Aλxλ(t) − Aµxµ(t), Jλxλ(t)

+λAλxλ(t) − Jµxµ(t) − µAµxµ(t)〉
≥ 〈Aλxλ(t) − Aµxµ(t), λAλxλ(t) − µAµxµ(t)〉

≥ −
1

4
(λ‖Aλxλ(t)‖2 + µ‖Aµxµ(t)‖2)

≥ −
1

4
(λ + µ)ξ 2(t).

From (15), we get

d

dt
‖xλ(t) − xµ(t)‖2 ≤

1

2
(λ + µ)ξ 2(t) +

2(ξ(t) + v̇(t))

r
‖xλ(t) − xµ(t)‖2. (16)

Using Gronwall’s inequality (Lemma 2.4) and noting that xλ(0) = xµ(0) = x0, one has for all
t ∈ [0,T] :

‖xλ(t) − xµ(t)‖2 ≤
1

2
(λ + µ)

∫ t

0
exp

(∫ t

s

2(ξ(τ ) + v̇(τ ))

r
dτ

)

ξ 2(s)ds

≤
1

2
(λ + µ)c22e

2(c1+v(T))/r ,

where
c1 := ‖ξ( · )‖L1([0,T];H) and c2 := ‖ξ( · )‖L2([0,T];H).

Consequently,

‖xλ(t) − xµ(t)‖ ≤
1

√
2
c2e

(c1+v(T))/r
√

(λ + µ) for all t ∈ [0,T]. (17)

Hence (xλ( · ))λ>0 is a Cauchy sequence in C([0,T];H). As a consequence, there exists a function
x( · ) ∈ C([0,T];H) such that xλ → x uniformly on [0,T] as λ → 0 and

‖xλ(t) − x(t)‖ ≤
1

√
2
c2e

(c1+v(T))/r
√

λ. (18)

Using Proposition 2.2 and the fact that ‖Aλxλ(t)‖ ≤ ξ(t) for a.e. t ∈ [0,T], one has x(t) ∈ dom(A)

for a.e. t ∈ [0,T]. Furthermore, x(t) ∈ C(t) because xλ(t) ∈ C(t) for all λ > 0 and C(t) is closed.
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Since ‖ẋλ(t)‖ ≤ 2ξ(t) + v̇(t) for almost all t ∈ [0,T], there exists a sequence λn → 0 such that ẋλn

converges weakly to some v( · ) ∈ L2([0,T];H). Classical arguments permit us to show that ẋ = v
(see, e.g. [12]). On the other hand, we have

‖Aλnxλn(t)‖ ≤ ξ(t) for a.e. t ∈ [0,T].

Hence, there exist a subsequence, still denoted by (Aλnxλn( · ))n, and γ ( · ) ∈ L2([0,T];H) such that
Aλnxλn converges to γ weakly in L2([0,T];H)). Then we obtain

ẋλn + Aλnxλn converges weakly to ẋ + γ in L2([0,T];H).

UsingMazur’s lemma, for each n, there exist an integer T(n) > n and real numbers sk,n ≥ 0 such that
∑T(n)

k=n sk,n = 1 and
∑T(n)

k=n sk,n(ẋλk +Aλkxλk ) converges strongly to ẋ+γ in L2([0,T];H). Extracting
a subsequence, we may suppose that

T(n)
∑

k=n

sk,n(ẋλk (t) + Aλkxλk (t)) → ẋ(t) + γ (t) as n → +∞,

for all t ∈ [0,T] \N for some negligible setN ⊂ [0,T]. Fixed t ∈ [0,T] \N , from the prox-regularity
of C(t), one has

〈ẋλk (t) + Aλkxλk (t), y − xλk (t)〉 ≥ −
ξ(t) + v̇(t)

2r
‖y − xλk (t)‖

2, ∀y ∈ C(t). (19)

Hence,

n(t) :=
T(n)
∑

k=n

sk,n〈ẋλk (t) + Aλkxλk (t), y − xλk (t)〉

≥ −
ξ(t) + v̇(t)

2r

T(n)
∑

k=n

sk,n‖y − xλk (t)‖
2, ∀y ∈ C(t). (20)

Note that since xλn(t) → x(t) as n → +∞, we have

∣

∣

∣

∣

∣

∣

T(n)
∑

k=n

sk,n〈ẋλk (t) + Aλkxλk (t), x(t) − xλk (t)〉

∣

∣

∣

∣

∣

∣

≤ (ξ(t) + v̇(t))

T(n)
∑

k=n

sk,n‖x(t) − xλk (t)‖ → 0.

Thus

n =
T(n)
∑

k=n

sk,n〈ẋλk (t) + Aλkxλk (t), y − x(t)〉

+
T(n)
∑

k=n

sk,n〈ẋλk (t) + Aλkxλk (t), x(t) − xλk (t)〉

→ 〈ẋ(t) + γ (t), y − x(t)〉 as n → +∞.

On the other hand
T(n)
∑

k=n

sk,n‖y − xλk (t)‖
2 → ‖y − x(t)‖2,
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since xλn(t) → x(t) as n → +∞. Passing to the limit as n → +∞ in (20), we get

〈ẋ(t) + γ (t), y − x(t)〉 ≥ −
ξ(t) + v̇(t)

2r
‖y − x(t)‖2, ∀y ∈ C(t).

Therefore

ẋ(t) + γ (t) ∈ −NC(t)(x(t)). (21)

Let us recall that

Aλnxλn(t) ∈ A(Jλnxλn(t)) for a.e. t ∈ [0,T], (22)

and Aλnxλn converges weakly to γ in L2([0,T];H). In addition Jλnxλn converges strongly to x in
L2([0,T];H)) since

‖Jλnxλn(t) − x(t)‖ ≤ ‖Jλnxλn(t) − xλn(t)‖ + ‖xλn(t) − x(t)‖
= λn‖Aλnxλn(t)‖ + ‖xλn(t) − x(t)‖
≤ λnξ(t) + ‖xλn(t) − x(t)‖ → 0 as n → +∞.

Consequently, by using Proposition 2.3, one has

γ (t) ∈ Ax(t) for a.e. t ∈ [0,T]. (23)

From (21) and (23), we deduce that

ẋ(t) ∈ −Ax(t) − NC(t)(x(t)) for a.e. t ∈ [0,T],

which completes the proof of Theorem 3.2.

Under some additional assumptions, we can prove a uniqueness result. The following theorem is in
this sense.

Theorem 3.3: Let Assumptions 1–3 hold and suppose that

rge C ⊂ int(dom A). (24)

Then, for given initial condition x0 ∈ C(0), the problem (1) has at most one solution.

Proof: Let x1( · ), x2( · ) be two solutions of (1) satisfying the initial conditions x1(0) = x2(0) = x0.
Since A is locally bounded on rge C, there exists some ρ > 0 and K > 0 such that A is bounded by K
on B(x0, ρ). Note that x1( · ), x2( · ) are continuous, then there exists some positive constant T ′ < T
such that xi([0,T ′]) ⊂ B(x0, ρ), i = 1, 2. There exist fi( · ) ∈ −Axi( · ) such that for a.e. t ∈ [0,T ′]

ẋi(t) ∈ fi(t) − NC(t)(xi(t)), i = 1, 2.

Using a similar argument as in Lemma 3.1, one has

‖ẋi(t) − fi(t)‖ ≤ ‖fi(t)‖ + v̇(t) ≤ K + v̇(t).

From the monotonicity of A and the prox-regularity of C(t), one obtains

〈ẋ1(t) − ẋ2(t), x1(t) − x2(t)〉 ≤
K + v̇(t)

r
‖x1(t) − x2(t)‖2, a.e. t ∈ [0,T ′].
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Consequently,

d

dt
‖x1(t) − x2(t)‖2 ≤

2(K + v̇(t))

r
‖x1(t) − x2(t)‖2, a.e. t ∈ [0,T ′].

Using Gronwall’s inequality, one has ‖x1(t) − x2(t)‖ ≤ 0 for all t ∈ [0,T ′], or equivalently x1 ≡ x2
on [0,T ′].

Suppose now that there exists t1 ∈ [0,T] such that x1(t1) �= x2(t1). Let

E := {t ∈ [0, t1] : x1(t) �= x2(t)}.

Since t1 ∈ E and E is bounded from below, there exists α := inf E where α ∈ (0, t1] and for all
t ∈ [0,α) : x1(t) = x2(t). By the continuity of x1( · ) and x2( · ), we have x1(α) = x2(α) which
implies thatα < t1.With the same argument as above, there exists someT ′ > 0 such that x1(·) ≡ x2(·)
on [0,α +T ′] . This constitutes a contradiction with the definition of α = inf E. Thus x1( · ) ≡ x2( · )
on [0,T].

Let us provide an example in parabolic variational inequalities.

Example 3.4: Let � be a bounded subset of R
n and H := L2(�), U := H2(�) ∩ H1

0(�). Let be
given ψ ∈ L2(0,T;U),M ∈ L2(0,T; R+) such that ψ( · ) is k-Lipschitz continuous with respect to
the supremum norm. For each t ∈ [0,T], we define

C(t) := C1(t) ∪ C2(t),

where
C1(t) = {v ∈ U : v ≥ ψ(t) a.e. on �; ‖�v‖ ≤ M(t)},

and
C2(t) = {v ∈ U : v ≤ ψ(t) − 1 a.e. on �; ‖�v‖ ≤ M(t)}.

It is easy to see that for each t, the set C(t) is closed, prox-regular (but non-convex) since C1(t),C2(t)
are two disjoint closed, convex sets and ‖v1 − v2‖ ≥

√
m(�) for all v1 ∈ C1(t), v2 ∈ C2(t), where

m(�) is the volume of �. Furthermore, C( · ) is k-Lipschitz continuous since ψ( · ) is k-Lipschitz
continuous. Let be given u0 ∈ C(0). We consider the following parabolic variational inequalities with
a moving obstacle : find u(t) ∈ C(t) such that u(0) = u0 ∈ C(0) and for a.e. t ∈ [0,T], there exists
δt > 0 satisfying

∫

�

u̇(t)
(

v(t)−u(t)
)

dx+
∫

�

∇u(t) ·
(

∇v(t)−∇u(t)
)

dx ≥ −δt‖v(t)−u(t)‖2, ∀v(t) ∈ C(t). (25)

Let us define the operator A : H → H as A := −�, where � is the Laplace operator. Then A is a
self-adjoint maximal monotone operator with dom(A) = U and dom(A) = H (see, e.g. [12,19]). It
is easy to see that

∫

�

Au(t)
(

v(t) − u(t)
)

dx =
∫

�

∇u(t) · ∇
(

v(t) − u(t)
)

dx, ∀u, v ∈ U .

Then the problem (25) can be rewritten as follows

u̇(t) ∈ −Au(t) − NC(t)u(t), (26)

and all the assumptions of Theorem 3.2 are satisfied. Thus, for u0 ∈ C(0), there exists an absolutely
continuous solution u( · ) of (26), or equivalently, of (25). In addition, ifM( · ) is a constant function,
by using Remark 1, one deduces the uniqueness of solutions.
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Remark 1: In Theorem 3.3, we can also relax the condition rge C ⊂ int(domA) by the assumption
that A is locally bounded on rge C, i.e. for all x ∈ rge C, there exists K > 0, ρ > 0 such that A is
bounded by K in B(x0, ρ) ∩ rge C.

The following proposition gives us the local result requiring only x0 ∈ C(0) ∩ int(dom A).

Proposition 3.5: Let Assumptions 1–3 hold. If x0 ∈ C(0) ∩ int(dom A) then problem (1) has a
unique local solution.

Proof: Since x0 ∈ int(dom A), A is locally bounded at x0. Hence there exists some ρ > 0 and K > 0
such that A is bounded by K on B(x0, ρ). Let

T∗ := (v + 2K)−1(ρ/3) > 0, i.e. v(T∗) + 2KT∗ = ρ/3,

and
λ0 :=

ρ

3‖A0x0‖
(if ‖A0x0‖ = 0, we set λ0 := +∞).

Consider the sequence of functions (xλ)0<λ<λ0 where xλ( · ) is the unique solution of the approximate
sweeping process (12). Let

Tλ = sup{τ : ‖xλ(t) − x0‖ ≤ ρ/3, ∀t ∈ [0, τ ]}.

It is clear that Tλ > 0. We will prove that Tλ ≥ T∗ for all λ < λ0. Suppose there exists some λ < λ0
such that Tλ < T∗. From the definition of Tλ, one deduces that

‖xλ(Tλ) − x0‖ = ρ/3. (27)

Note that Aλxλ(t) ∈ A(Jλxλ(t)) and ‖Aλxλ(t)‖ ≤ ‖Aλx0‖ + ‖xλ(t) − x0‖/λ ≤ ‖A0x0‖ + ρ/(3λ) for
all t ∈ [0,Tλ] (since Aλ is 1/λ-Lipschitz continuous). We have

‖Jλxλ(t) − x0‖ ≤ ‖Jλxλ(t) − xλ(t)‖ + ‖xλ(t) − x0‖ ≤ λ‖Aλxλ(t)‖ + ρ/3

≤ λ0‖A0x0‖ + 2ρ/(3) ≤ ρ,

for all t ∈ [0,Tλ]. Hence Jλxλ(t) ∈ B(x0, ρ) and thus ‖Aλxλ(t)‖ ≤ K for all t ∈ [0,Tλ]. From (14),
one has ‖ẋλ(t)‖ ≤ 2K + kC for a.e. t ∈ [0,Tλ]. Therefore,

‖xλ(Tλ) − x0‖ ≤
∫ Tλ

0
‖ẋλ(t)‖dt < 2KT∗ + v(T∗) = ρ/3,

which is a contradiction with (27). In conclusion, the sequence (xλ)0<λ<λ0 satisfies for a.e. t ∈ [0,T∗]
⎧

⎨

⎩

‖xλ(t) − x0‖ ≤ ρ/3, ‖Aλxλ(t)‖ ≤ K ,

‖ẋλ(t) + Aλxλ(t)‖ ≤ K + v̇(t), ‖ẋλ(t)‖ ≤ 2K + v̇(t).
(28)

Similarly to the proof of Theorem 3.2, there exists a solution x( · ) of problem (1) on [0,T∗] such that
‖x(t) − x0‖ ≤ ρ/3 ∀t ∈ [0,T∗].

We prove that it is also the unique solution of (1) on [0,T∗]. Let y( · ) be another solution of (1)
on [0,T∗

1 ] for some positive T∗
1 ≤ T∗. It is sufficient to prove that y( · ) ≡ x( · ) on [0,T∗

1 ]. Note
that A is bounded by K on B(x0, ρ). If ‖y(t) − x0‖ ≤ ρ/3, ∀t ∈ [0,T∗

1 ], then similarly to the
proof of Theorem 3.3, two solutions coincide on [0,T∗

1 ]. If there exists some t ∈ [0,T∗
1 ) such that

‖y(t) − x0‖ > ρ/3 then there exists positive T∗
2 < T∗

1 such that ‖y(t) − x0‖ < ρ/3 for all t ∈ [0,T∗
2 )

and
‖y(T∗

2 ) − x0‖ = ρ/3. (29)
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Therefore, y([0,T∗
2 ]) ⊂ B(x0, ρ) and hence for all t ∈ [0,T∗

2 ], one has ‖ẏ(t)‖ ≤ 2K + v̇(t). We
deduce that

‖y(T∗
2 ) − x0‖ ≤ 2KT∗

2 + v(T∗
2 ) < 2KT∗ + v(T∗) = ρ/3,

which is a contradiction with (29).

Remark 2: If rge C ⊂ int(domA), then for a given initial condition x0 ∈ C(0), one can define
the unique solution on its maximal interval of existence (by Proposition 3.5). The solution can be
extended globally for the particular case whereA = ∂ϕ with ϕ : H → R∪{+∞} a proper lsc, convex
function and C(s) ⊂ C(t) for any t ≥ s ≥ 0, but A0 is not necessarily satisfied the linear growth
condition. In addition, the Lyapunov stability and some asymptotic behaviour of the unique solution
can be obtained.

Theorem 3.6: Let the Assumptions 1, 2 hold. Consider the case A = ∂ϕ where ϕ : H → R ∪ {+∞}
is a proper lsc convex function and C(s) ⊂ C(t) for any t ≥ s ≥ 0. Suppose that C(t) ⊂ int(dom ∂ϕ)

for all t ≥ 0. Then the differential inclusion

⎧

⎨

⎩

ẋ(t) ∈ −∂ϕ(x(t)) − NC(t)(x(t)) a.e. t ∈ [0,+∞),

x(0) = x0 ∈ C(0),
(30)

has a unique global solution x( · ) satisfying

d

dt
ϕ(x(t)) + ‖ẋ(t)‖2 ≤ 0, for a.e. t ≥ 0. (31)

In particular, ϕ is a Lyapunov function of the problem (30). Furthermore if ϕ is bounded from below on

rge(C) thenϕ∞ := lim
t→+∞

ϕ(x(t)) exists and ẋ ∈ L2([0,+∞);H)with
∫ +∞
0 ‖ẋ(s)‖2ds ≤ ϕ(x0)−ϕ∞.

Proof: It is clear that ∂ϕ is amaximalmonotone operator. FromProposition 3.5, there exists a unique
solution of problem (30) defined on its maximal interval of existence [0,Tmax) (0 < Tmax ≤ +∞).
There exists a mapping ξ : [0,Tmax) → H such that ξ(t) ∈ ∂ϕ(x(t)) and ẋ(t) ∈ −ξ(t) − NC(x(t)).
Since ϕ is locally Lipschitz continuous on rge(C) (as ∂ϕ is locally bounded on rge(C)) and x( · ) is
locally absolutely continuous on [0,Tmax), then ϕ ◦ x( · ) is differentiable a.e. on [0,Tmax). Fix some
t ∈ (0,Tmax) at which x( · ) and ϕ ◦ x( · ) are differentiable. By the convexity of ϕ and the fact that
ξ(t) ∈ ∂ϕ(x(t)), we get for every ε > 0 that

⎧

⎨

⎩

ϕ(x(t+ε))−ϕ(x(t))
ε

≥ 〈 x(t+ε)−x(t)
ε

, ξ(t)〉,

ϕ(x(t−ε))−ϕ(x(t))
−ε

≤ 〈 x(t−ε)−x(t)
−ε

, ξ(t)〉.
(32)

By letting ε → 0+, we obtain
d

dt
ϕ(x(t)) = 〈ẋ(t), ξ(t)〉. (33)

On the other hand, we have
ẋ(t) + ξ(t) ∈ −NC(t)(x(t)).

There exists some γ > 0 such that

〈ẋ(t) + ξ(t), x(t) − c〉 ≤ γ ‖c − x(t)‖2 ∀c ∈ C(t). (34)

Taking c = x(t − ε) ∈ C(t − ε) ⊂ C(t) in (34) for some ε > 0. Dividing both sides of the
inequality above by ε and letting ε → 0+, one deduces that

〈ẋ(t) + ξ(t), ẋ(t)〉 ≤ 0. (35)
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From (33) and (35), we imply that

d

dt
ϕ(x(t)) + ‖ẋ(t)‖2 ≤ 0. (36)

We prove now that Tmax = +∞. Suppose that Tmax < +∞. Fix some x ∈ C and let α =
‖∂ϕ0(x)‖,β = ‖ϕ(x) − 〈∂ϕ0(x), x〉‖. For every y ∈ C, we have

ϕ(y) ≥ ϕ(x) + 〈∂ϕ0(x), y − x〉 ≥ −α‖y‖ − β.

By (36), for all 0 ≤ s < t < Tmax , one has

‖x(t) − x(s)‖2 ≤ (t − s)

∫ t

s
‖ẋ(s)‖2ds ≤ (t − s)(ϕ(x(s)) − ϕ(x(t))). (37)

By setting s = 0 in (37), we obtain

‖x(t) − x0‖2 ≤ t(ϕ(x0) − ϕ(x(t))) ≤ Tmax(α‖x(t)‖ + β + ϕ(x0)).

Therefore sup
t∈[0,Tmax)

‖x(t)‖ < +∞ and hence sup
t∈[0,Tmax)

( − ϕ(x(t))) < +∞. From (37), one obtains

that (x(t))t∈[0,Tmax) is a Cauchy sequence inH . Hence xmax := lim
t→Tmax

x(t) exists and xmax ∈ C(Tmax).

Using Proposition 3.5, there exist some δ > 0 and a unique solution of the differential inclusion

⎧

⎨

⎩

ẏ(t) ∈ −∂ϕ(y(t)) − NC(t)(y(t)) a.e. t ∈ [Tmax ,Tmax + δ],

y(Tmax) = xmax ∈ C(Tmax).

(38)

Define z( · ) ≡ x( · ) on [0,Tmax) and z( · ) ≡ y( · ) on [Tmax ,Tmax + δ]. Then z( · ) is the solution of
(30) on [0,Tmax + δ], a contradiction. Hence Tmax = +∞.

As a consequence, ϕ ◦ x( · ) is non-increasing on R+ due to (36). Hence if ϕ is bounded from
below on rge(C) then limt→+∞ ϕ(x(t)) = ϕ∞ exists and from (36), one has ẋ ∈ L2([0,+∞);H)

with
∫ +∞
0 ‖ẋ(s)‖2ds ≤ ϕ(x0) − ϕ∞.

Example 3.7: Consider the non-regular electrical circuit described in Figure 2 of [5]. The evolution
of the current x( · ) through the load resistance R > 0 is governed by

ẋ(t) +
R

L
x(t) ∈ −NC(t)(x(t)) a.e. t ≥ 0, x(0) = x0 with C(t) = [c(t),+∞),

where c(t) is a current source and L > 0 is the inductance of an inductor. If c( · ) : [0,+∞) → R is
non-increasing absolutely continuous then all the assumptions in Theorem 3.6 are satisfied with
ϕ(x) = R

2Lx
2. Then one obtains that the function t �→ |x(t)| is non-increasing and the limit

γ := lim
t→+∞

|x(t)| exists. In addition, one has

∫ +∞

0
‖ẋ(s)‖2ds ≤ |x0| − γ.

Remark 3: In the case where C(t) ≡ C ⊂ int.domA) for all t ≥ 0, it is sufficient to obtain the
existence and uniqueness of solutions of our initial problem (1) if one of the following conditions
holds: A = ∂ϕ or A0 is linearly bounded on C.
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4. Some regular properties of solutions and non-smooth Lyapunov pairs

In this section, in order to study the Lyapunov pairs of problem (1), we restrict ourself to the case
where C( · ) ≡ C does not depend on time. Lyapunov analysis of time dependent case is not an easy
task due to the lack of regularity of the solutions. In addition, we suppose that C ⊂ int.dom A) is
closed, r-prox-regular and either A0 is linearly bounded on C or A = ∂ϕ where ϕ : H → R ∪ {+∞}
be a proper lsc, convex function. From the previous section, for a given x0 ∈ C, the differential
inclusion

⎧

⎨

⎩

ẋ(t) ∈ −Ax(t) − NC(x(t)) a.e. t ∈ [0,+∞),

x(0) = x0 ∈ C,
(39)

has a unique solution x( · ) defined on [0,+∞) which is locally absolutely continuous. We will
show that x( · ) is right-differentiable for all t ≥ 0 and ẋ+( · ) is right-continuous. This result can
be considered as a generalization of [20, Theorem 3.2], when A is a single-valued and Lipschitz
continuous function. In this context, the notion of weakly lower semi-continuous Lyapunov pair for
problem (39) as well as the proximal, asymptotic subgradients play an important role in our analysis.
The following lemmas will be useful.

Lemma 4.1: For all x ∈ C, the set A(x) + NC(x) is closed and convex.

Proof: Clearly, for all x ∈ C, the setsA(x) andNC(x) are closed and convex (and thus weakly closed).
Hence A(x) + NC(x) is convex. Let zn = xn + yn ∈ A(x) + NC(x) such that xn ∈ A(x), yn ∈ NC(x)
and zn → z0 for some z0 ∈ H . Since (xn) is bounded, there exist a subsequence, still denoted
by (xn) and some x0 ∈ H such that xn converges weakly to x0 in H . Since A(x) is weakly closed,
x0 ∈ A(x). On the other hand yn = zn − xn converges weakly to z0 − x0 =: y0 ∈ NC(x). Thus
z0 = x0 + y0 ∈ A(x) + NC(x) and the conclusion follows.

Let x( · ) be the unique solution of (39) satisfying x(0) = x0. Using the Lemma 4.1, one can define

the function v : R+ → H by v(t) :=
(

−Ax(t) −NC(x(t))
)0

and v0 := v(0) =
(

−Ax0 −NC(x0)
)0

.

Lemma 4.2: We have

‖v0‖ ≤ lim inf
t→0+

‖v(t)‖. (40)

Proof: If lim inf t→0+ ‖v(t)‖ = +∞ then the conclusion holds. If lim inf
t→0+

‖v(t)‖ = α < +∞, then

there exists a sequence (tn)n≥1 such that tn → 0+ and lim
n→+∞

‖v(tn)‖ = α. In particular, the sequence

(v(tn))n≥1 is bounded hence there exist a subsequence (v(tnk))k≥1 and ξ ∈ H such that (v(tnk))k≥1

converges weakly to ξ . Recall that

v(tnk) =
(

− Ax(tnk) − NC(x(tnk ))
)0 =

(

f (tnk ) − NC(x(tnk))
)0 ∈ f (tnk ) − NC(x(tnk)),

for some f (tnk ) ∈ −Ax(tnk ).Hence f (tnk)−v(tnk) ∈ N(C; x(tnk )).The sequence
(

f (tnk )
)

k
is bounded

for k large enough since A is locally bounded hence there exist a subsequence, still denoted itself and
some γ ∈ H such that f (tnk) converges weakly to γ inH . Due to the closed-graph property of A, one
must have γ ∈ −Ax0. On the other hand, we can find some β > 0 such that ‖f (tnk ) − v(tnk)‖ ≤ β

for all k ≥ 1. Using the prox-regularity of C, one has

〈f (tnk ) − v(tnk), c − x(tnk )〉 ≤
β

2r
‖c − x(tnk)‖

2 for all c ∈ C, k ≥ 1. (41)

Let k → +∞, we get

〈γ − ξ , c − x0〉 ≤
β

2r
‖c − x0‖2 for all c ∈ C. (42)
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Thus γ − ξ ∈ NC(x0) or equivalently ξ ∈ γ − NC(x0) ∈ −Ax0 − NC(x0). Therefore,

‖v0‖ ≤ ‖ξ‖ ≤ lim inf
k→+∞

‖v(tnk)‖ = lim
n→+∞

‖v(tn)‖ = α, (43)

due to the weak lower semi-continuity of the norm and the conclusion follows.

Lemma 4.3: Let x( · ) be the unique solution of (39) satisfying x(0) = x0. Then one has

lim sup
t→0+

∥

∥

∥

x(t) − x0

t

∥

∥

∥ ≤ ‖v0‖, (44)

where v0 = ( − Ax0 − NC(x0))
0.

Proof: SinceA is locally bounded onC, there exist some ρ > 0 andK > 0 such thatA is bounded byK
onB(x0, ρ).Note that x( ·) is continuous, there exists some positiveT such that x([0,T]) ⊂ B(x0, ρ).

We have
⎧

⎨

⎩

ẋ(t) − f (t) ∈ −NC(x(t)) a.e. t ∈ [0,T],

v0 − f0 ∈ −NC(x0),
(45)

for some f0 ∈ −Ax0, f (t) ∈ −Ax(t) and ‖ẋ(t) − f (t)‖ ≤ ‖f (t)‖ ≤ K for a.e. t ≥ 0. Using the
prox-regularity of C and the monotonicity of A, one has

〈ẋ(t) − v0, x(t) − x0〉 ≤
K

r
‖x(t) − x0‖2, (46)

which implies that

1

2

d

dt
‖x(t) − x0‖2 ≤ ‖v0‖‖x(t) − x0‖ +

K

r
‖x(t) − x0‖2. (47)

Using Gronwall’s inequality (Lemma 2.4), one obtains for all t ∈ [0,T] that

‖x(t) − x0‖ ≤ ‖v0‖
∫ t

0
e
K
r (t−s)ds = ‖v0‖

∫ t

0
e
Ks
r ds. (48)

Hence,

lim sup
t→0+

‖
x(t) − x0

t
‖ ≤ ‖v0‖ lim

t→0+

1

t

∫ t

0
e
Ks
r ds = ‖v0‖.

The proof is completed.

Lemma 4.4: There exist some K > 0,T > 0 such that for a.e. t ∈ [0,T], one has

‖ẋ(t)‖ ≤ ‖v0‖eKt/r . (49)

Proof: There exist some ρ > 0 and K > 0 such that A is bounded by K on B(x0, ρ). Let x( · ), y( · ) be
the unique solution of (39) satisfying initial conditions x(0) = x0, y(0) = x(h), respectively, where h
is small enough such that there exist some positive T and x([0,T]), y([0,T]) ⊂ B(x0, ρ). Similarly as
in Theorem 3.3, with kC = 0, one has

‖x(t) − y(t)‖ ≤ ‖x0 − y0‖eKt/r , for all t ∈ [0,T]. (50)
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Note that y(t) = x(t + h) for all t ≥ 0. From (50), we deduce that

∥

∥

∥

x(t + h) − x(t)

h

∥

∥

∥
≤
∥

∥

∥

x(h) − x(0)

h

∥

∥

∥
eKt/r , for all t ∈ [0,T]. (51)

Fix some t ∈ [0,T] such that ẋ(t) exists. Taking the limsup in both sides of (51) as h → 0+ and using
Lemma 4.3, one gets

‖ẋ(t)‖ ≤ ‖v0‖eKt/r .
Thus (49) follows.

Now we are ready to formulate the regular properties of the differential inclusion (39).

Theorem 4.5: Let x( · ) be the unique solution of problem (39) satisfying x(0) = x0. Then we have

(i) ẋ(t) = v(t) =
(

− Ax(t) − NC

(

x(t)
)

)0
for a.e. t ∈ [0,+∞).

(ii) For all t∗ ∈ [0,+∞), the right derivative ẋ+(t∗) exists and satisfies

ẋ+(t∗) =
(

− Ax(t∗) − NC

(

x(t∗)
)

)0
.

Furthermore ẋ+( · ) is right-continuous on [0,+∞).

Proof: Let E = {t ∈ [0,+∞) : ẋ(t) exists}. It is clear that the Lebesgue measure of [0,+∞) \ E is
zero.

(i) Fix t∗ ∈ E. Let y( ·) be the unique solution of problem (39) with initial condition y(0) = x(t∗).
Then y(t) = x(t + t∗) for all t ≥ 0. Applying Lemma 4.3, we get

lim sup
t→0+

∥

∥

∥

∥

y(t) − y(0)

t

∥

∥

∥

∥

≤
∥

∥

∥

(

−Ay(0) − NC

(

y(0)
))0
∥

∥

∥
, (52)

or equivalently,

lim sup
t→0+

∥

∥

∥

∥

x(t + t∗) − x(t∗)

t

∥

∥

∥

∥

≤
∥

∥

∥

∥

(

− Ax(t∗) − NC

(

x(t∗)
)

)0∥
∥

∥

∥

. (53)

Hence

‖ẋ(t∗)‖ ≤
∥

∥

∥

∥

(

− Ax(t∗) − NC

(

x(t∗)
)

)0∥
∥

∥

∥

. (54)

On the other hand ẋ(t∗) ∈ −Ax(t∗) − NC(x(t∗)), thus ẋ(t∗) =
(

− Ax(t∗) − NC

(

x(t∗)
)

)0
.

(ii) It is sufficient to prove this property for t∗ = 0. Using (i) and Lemma 4.4, there exist some
K > 0,T > 0 such that for all t ∈ [0,T] ∩ E, we have

‖v(t)‖ ≤ ‖v0‖eKt/r , (55)

where v(t) =
(

− Ax(t) − NC(x(t))
)0
. It follows from (55) that

lim sup
t→0+,t∈E

‖v(t)‖ ≤ ‖v0‖. (56)

On the other hand, from Lemma 4.2 we deduce that

‖v0‖ ≤ lim inf
t→0+

‖v(t)‖ ≤ lim inf
t→0+,t∈E

‖v(t)‖. (57)
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From (56) and (57), we obtain

lim
t→0+,t∈E

‖v(t)‖ = ‖v0‖. (58)

Thus for any sequence (tn)n≥1 ⊂ E such that tn → 0+, we have

‖v(tn)‖ → ‖v0‖ as n → +∞. (59)

Then
(

v(tn)
)

n≥1
is bounded and therefore there exist some v∗ ∈ H and a subsequence

(

v(tnk )
)

k≥1
such that v(tnk ) converges weakly to v∗ as k → +∞. Similarly as in Lemma 4.2,

we can prove that v∗ ∈ −Ax0 − NC(x0). On the other hand, thanks to (59), we have

‖v∗‖ ≤ lim inf
k→+∞

‖v(tnk)‖ = lim
n→+∞

‖v(tn)‖ = ‖v0‖. (60)

By the definition of v0, we obtain v∗ = v0 and the set of weak cluster point of
(

v(tn)
)

n≥1
contains only v0. Consequently v(tn) converges weakly to v0. Taking into account (59), one
deduces that v(tn) converges strongly to v0. In conclusion, we get

lim
t→0+,t∈E

v(t) = v0. (61)

Due to the absolute continuity of x( · ) and (i) in Theorem 4.5, for all h > 0, we have

x(h) − x0 =
∫ h

0
ẋ(s)ds =

∫ h

0
v(s)ds, (62)

where v( · ) is locally integrable and satisfying (61). Now we prove that

lim
h→0+

1

h

∫ h

0
v(s)ds = v0. (63)

Let ǫ > 0 be given. From (61), there exists δ > 0 such that for all s ∈ E, s ≤ δ, we have
‖v(s) − v0‖ ≤ ǫ. Hence, for all h ≤ δ, one gets

∥

∥

∥

1

h

∫ h

0
v(s)ds − v0

∥

∥

∥
≤

1

h

∫ h

0
‖v(s) − v0‖ds

=
1

h

∫

[0,h]∩E
‖v(s) − v0‖ds

≤
ǫ

h

∫

[0,h]∩E
ds = ǫ.

Therefore (63) is proved. From (62), the right derivative ẋ+(0) exists and satisfies

ẋ+(0) = v0 =
(

− Ax0 − NC(x0)
)0

. (64)

Then taking the limit in both sides of (51) as h → 0+, we deduce that for all t ≥ 0 :

‖ẋ+(t)‖ ≤ ‖ẋ+(0)‖eKt/r ,

or equivalently,
‖v(t)‖ ≤ ‖v0‖eKt/r .
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Therefore

lim sup
t→0+

‖v(t)‖ ≤ ‖v0‖.

Using (57), we obtain limt→0+ ‖v(t)‖ = ‖v0‖. Similarly as in (61), we can prove that
lim
t→0+

v(t) = v0, which means that ẋ+( · ) is right-continuous at 0. The proof of Theorem

4.5 is completed.

Next, let us consider the non-smooth lower semi-continuous Lyapunov functions for problem (39).
First, we recall the definition of a Lyapunov pair, as in [19]. Denote by

Ŵw(H) := {ϕ : H → R ∪ {+∞}| ϕ is proper and weakly lsc},

and

Ŵ+(H) := {ϕ : H → R+ ∪ {+∞}| ϕ is proper and lsc}.

Definition 3: Let V ∈ Ŵw(H),W ∈ Ŵ+(H) and a ≥ 0.We say that (V ,W) is an a−Lyapunov pair
for problem (39) if for all x0 ∈ C, we have

eatV
(

x(t; x0)
)

+
∫ t

0
W
(

x(τ ; x0)
)

dτ ≤ V(x0) for all t ≥ 0, (65)

where x(t; x0) denotes the unique solution of problem (39) starting at x0. If a = 0, then (V ,W) is
called a Lyapunov pair. In addition, V is called a Lyapunov function ifW = 0.

Wehave the following theoremwhich gives necessary and sufficient conditions of a Lyapunov pair.
Note that, since A is locally bounded on C, we do not need to check for the singular subdifferentials
as in [19].

Theorem 4.6: Let V ∈ Ŵw(H), W ∈ Ŵ+(H), a ≥ 0 and dom V ⊂ C. Then the following assertions
are equivalent:

(i) For all x0 ∈ dom V, we have

eatV
(

x(t; x0)
)

+
∫ t

0
W
(

x(τ ; x0)
)

dτ ≤ V(x0) ∀ t ≥ 0.

(ii) For all x0 ∈ dom V, there exists ρ(x0) > 0 such that

eatV
(

x(t; x0)
)

+
∫ t

0
W
(

x(τ ; x0)
)

dτ ≤ V(x0) ∀ t ∈ [0, ρ(x0)].

(iii) For all y ∈ C, we have

sup
ξ∈∂PV(y)

〈

ξ ,
(

− Ay − NC(y)
)0〉+ aV(y) + W(y) ≤ 0. (66)

(iv) For all y ∈ C, we have

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

sup
ξ∈∂PV(y)

min
y∗∈
(

−Ay−NC(y)
)

∩B(0,‖Ay‖)
〈ξ , y∗〉 + aV(y) + W(y) ≤ 0,

sup
ξ∈∂∞V(y)

min
y∗∈
(

−Ay−NC(y)
)

∩B(0,‖Ay‖)
〈ξ , y∗〉 ≤ 0.

(67)
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Proof: Without loss of generality, suppose thatW is Lipschitz continuous on bounded sets (see [19,
Lemma 3.1] or [14]). The plan of the proof is the following:
(i) ⇔ (ii) and (ii) ⇒ (iii) ⇒ (iv) ⇒ (ii).
(i) ⇔ (ii): see Proposition 3.2 [19];
(ii) ⇒ (iii) : Let y ∈ C, ξ ∈ ∂PV(y). Then y ∈ dom V and (ξ ,−1) ∈ NP

epi V

(

y,V(y)
)

. From (ii), one
infers that

(

x(t; y), e−atV(y) − e−at

∫ t

0
W
(

x(τ ; y)
)

dτ

)

∈ epi V ∀t ∈ [0, ρ(y)].

By the definition of NP
epi V (y,V(y)), there exists β > 0 such that for all t ∈ [0, ρ(y)], one has

〈

(ξ ,−1),
(

x(t; y), e−atV(y) − e−at

∫ t

0
W
(

x(τ ; y)
)

dτ
)

−
(

y,V(y)
)

〉

≤ β

∥

∥

∥

∥

(

x(t; y), e−atV(y) − e−at

∫ t

0
W
(

x(τ ; y)
)

dτ
)

−
(

y,V(y)
)

∥

∥

∥

∥

2

,

which is equivalent to

〈

ξ , x(t; y) − y
〉

− m(t) ≤ β‖x(t; y) − y‖2 + βm2(t), (68)

where

m(t) := (e−at − 1)V(y) − e−at

∫ t

0
W
(

x(τ ; y)
)

dτ.

Dividing both sides of (68) by t > 0, letting t → 0+ and taking into account that ẋ+(0; y) =
(

− Ay − NC(y)
)0
, one obtains

〈

ξ ,
(

− Ay − NC(y)
)0〉+ aV(y) + W(y) ≤ 0.

(iii) ⇒ (iv) : Obviously, one has
(

− Ay − NC(y)
)0 ∈

(

− Ay − NC(y)
)

∩ B(0, ‖Ay‖). Thus, (iii)
implies the first inequality of (iv). It remains to check the second inequality of (iv). Let ξ ∈ ∂∞V(y).
Thanks to [17], as we discussed in Section 2, there exist sequences (αk)k∈N ⊂ R+, (yk)k∈N, (ξk)k∈N

such that αk → 0+, yk →ϕ y, ξk ∈ ∂Pϕ(yk) and αkξk → ξ. For each k, one can find y∗
k ∈

(

− Ay − NC(y)
)

∩ B(0, ‖Ay‖) such that

〈ξk, y∗
k 〉 + aV(yk) + W(yk) ≤ 0. (69)

Since the sequence (y∗
k ) is bounded, one can extract a subsequence, without relabelling, and some

y∗ ∈
(

− Ay − NC(y)
)

∩ B(0, ‖Ay‖) such that y∗
k → y∗ weakly. Multiplying both sides of (69) by αk

and let k → +∞ then one obtains that

〈ξ , y∗〉 ≤ 0,

which implies the second inequality of (iv).
(iv) ⇒ (ii) : Let x0 ∈ dom V . Since A is locally bounded at x0, there exist ε > 0 and K > 0 such that
A is bounded by K > 0 on B(x0, 2ε). On the other hand we can find some T > 0 such that

2‖x(t; x0) − x0‖ +
∣

∣(e−at − 1)V(x0) −
∫ t

0
W
(

x(τ ; x0)
)

dτ
∣

∣ < ε, ∀t ∈ [0,T]. (70)
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In particular, A(x([0,T]; x0)) is bounded by K . Define functions h : [0,T] → R+, γ : [0,T] → R,
zn : [0,T] → H × R and η : [0,T] → R+ as follow

h(t) :=
∫ t

0
W
(

x(τ ; x0)
)

dτ , γ (t) := e−at
(

V(x0) − h(t)
)

,

z(t) :=
(

x(t; x0), γ (t)
)

, η(t) :=
1

2
d2
(

z(t), epi V
)

.

As in [19], η is Lipschitz continuous on every compact interval in (0,T) and for all t ∈ (0,T), one
has

∂Cη(t) = d
(

z(t), epi V
)

∂Cd
(

z( · ), epi V
)

(t) �= ∅,

where ∂C denotes the Clarke subdifferential. We have then an estimation of ∂Cη as in Lemma 4.7. Let
0 < s < t < T . By using Gronwall’s inequality one has

e−Mtη(t) ≤ e−Msη(s), (71)

whereM is defined in Lemma 4.7. Let s → 0 then one has d(z(t), epi V) = 0 which implies that

eatV(x(t; x0)) +
∫ t

0
W(x(τ ; x0))dτ ≤ V(x0).

Since it is true for all t ∈ [0,T], one obtains ii) with ρ(x0) = T .

The following technical lemma is useful for the proof of Theorem 4.6.

Lemma 4.7: There exist M > 0 such that for almost all t ∈ (0,T), one has

∂Cη(t) ⊂ ( − ∞,Mη(t)].

Proof: Let t ∈ (0,T) such that x(·; x0) is differentiable at t. If z(t) ∈ epi V , then ∂Cη(t) = {0} and
the conclusion holds. Otherwise, assume that z(t) /∈ epi V . By using [19, Lemma A.3] and noting

that ‖ẋ(t; x0)‖ =
∥

∥

(

− Ax(t; x0) − NC

(

x(t; x0)
)

)0∥
∥ ≤ K , we obtain

∂Cη(t) ⊂ co

⎡

⎢

⎣

⋃

(u,µ)∈M

〈z(t) −

⎛

⎝

u

µ

⎞

⎠ ,

⎛

⎜

⎝

(

− Ax(t; x0) − NC

(

x(t; x0)
)

)

∩ KB

−aγ (t) − e−atW
(

x(t; x0)
)

⎞

⎟

⎠

⎤

⎥

⎦
, (72)

where M := Proj
(

z(t), epi V
)

∩
(

B(x0, ε) × [γ (t), γ (t) + ε]
)

. Then it is sufficient to prove that for

all (u,µ) ∈ M and ∀x ∈
(

− Ax(t; x0) − NC

(

x(t; x0)
)

)

∩ KB, we have

〈

z(t) −

⎛

⎝

u

µ

⎞

⎠ ,

⎛

⎝

x

−aγ (t) − e−atW
(

x(t; x0)
)

⎞

⎠

〉

≤ Mη(t), (73)

for someM > 0. Since (u,µ) ∈ Proj(z(t), epi V), the vector z(t)−(u,µ) = (x(t; x0)−u, γ (t)−µ) ∈
NP
epi V (u,µ) and u ∈ dom V ⊂ C.We have γ (t)−µ ≤ 0. If γ (t)−µ = 0 then x(t; x0)−u ∈ ∂∞V(u)

and if γ (t)−µ < 0 then x(t;x0)−u
µ−γ (t) ∈ ∂PV(u). From iv), there exists u∗ ∈

(

−Au−NC(u)
)

∩B(0, ‖Au‖)
such that

〈x(t; x0) − u, u∗〉 ≤ (γ (t) − µ)
(

aV(u) + W(u)
)

. (74)

20



Note that u ∈ B(x0, ε), hence ‖u∗‖ ≤ ‖Au‖ ≤ ‖A(B(x0, 2ε))‖ ≤ K . We can write x = xA + xN
and u∗ = u∗

A + u∗
N such that xA ∈ −Ax(t; x0), u∗

A ∈ −Au, xN ∈ −NC(x(t; x0)) and u∗
N ∈ −NC(u).

Therefore ‖xN‖ ≤ ‖x‖ + ‖xA‖ ≤ 2K , ‖u∗
N‖ ≤ ‖u∗‖ + ‖u∗

A‖ ≤ 2K . Let β := 2K
r (recall that C is

r-prox-regular). Thanks to the maximality of A, the prox-regularity of C and (74), one has

〈

x(t; x0) − u, x
〉

= 〈x(t; x0) − u, xA + xN 〉
= 〈x(t; x0) − u, xA − u∗

A + xN − u∗
N 〉 + 〈x(t; x0) − u, u∗〉

≤ β‖x(t; x0) − u‖2 + (γ (t) − µ)
(

aV(u) + W(u)
)

.

Note that we already have γ (t)− µ ≤ 0. If γ (t)− µ < 0 and suppose that V(u) ≤ γ (t). One obtains
a contradiction

d(z(t), epiV) ≤ d
(

z(t), (u, γ (t))
)

< d
(

z(t), (u,µ)
)

= d(z(t), epiV).

Hence if γ (t) − µ < 0, we have V(u) > γ (t). Therefore,

(

µ − γ (t)
)

(γ (t) − V(u)) ≤ 0.

Consequently,

〈

x(t; x0) − u, x
〉

+ a
(

µ − γ (t)
)

γ (t) +
(

µ − γ (t)
)

e−atW
(

x(t; x0)
)

≤ β‖x(t; x0) − u‖2 + (γ (t) − µ)
(

aV(u) + W(u)
)

+ a
(

µ − γ (t)
)

γ (t)

+
(

µ − γ (t)
)

e−atW
(

x(t; x0)
)

≤ β‖x(t; x0) − u‖2 + a
(

µ − γ (t)
)

(γ (t) − V(u)) +
(

µ − γ (t)
)(

W(x(t; x0)) − W(u)
)

≤ β‖x(t; x0) − u‖2 + LW |µ − γ (t)|‖x(t; x0) − u‖ ≤
(

LW

2
+ β

)

η(t),

where LW is the Lipschitz constant of W on the ball B(x0, max{ε,K}). Therefore Lemma 4.7 holds
withM = LW

2 + β.

5. Conclusion

Byusing a regularization technique,we study in this paper the existence and the uniqueness properties
of a new variant of non-convex sweeping processes involving maximal monotone operators. Some
regular properties of the solutions are refined when the moving set is fixed. It is showed that the
unique solution is right-differentiable at any t ≥ 0 and its right-derivative is right-continuous. Non-
smooth Lyapunov pair for such system is also considered by using the proximal and asymptotic
subgradients. The Lyapunov analysis of the sweeping process (1) is an open question and is not an
easy task due to the lack of regularity of the solutions.
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