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By using a regularization method, we study in this paper the global existence and uniqueness property of a new variant of non-convex sweeping processes involving maximal monotone operators. The system can be considered as a maximal monotone differential inclusion under a control term of normal cone type forcing the trajectory to be always contained in the desired moving set. When the set is fixed, one can show that the unique solution is right-differentiable everywhere and its right-derivative is rightcontinuous. Non-smooth Lyapunov pairs for this system are also analysed.

Introduction

Sweeping processes were proposed and thoroughly studied by Moreau in the seventies [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF][START_REF] Moreau | Sur l'evolution d'un système élastoplastique[END_REF][START_REF] Moreau | Rafle par un convexe variable I. Sém Anal Convexe Montpellier[END_REF][START_REF] Moreau | Rafle par un convexe variable II. Sém Anal Convexe Montpellier[END_REF], which can be written as follows ⎧ ⎨ ⎩ ẋ(t) ∈-N C(t) (x(t)) a.e. t ∈[0, T],

x(0) = x 0 ∈ C(0),

where N C(t) (•) denotes the normal cone operator of the convex set C(t) in the sense of convex analysis in a Hilbert space H. Existence and uniqueness of solutions of such systems and their classical variants (subjected to perturbation forces, prox-regular state dependent set C(t, x), second-order sweeping processes ...) have been considered by many authors in the literature (see, e.g. [START_REF] Adly | Convex Sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF][START_REF] Edmond | Relaxation of an optimal control problem involving a perturbed sweeping process[END_REF][START_REF] Kunze | An introduction to Moreau's sweeping process[END_REF][START_REF] Mazade | Regularization of differential variational inequalities with locally prox regular sets[END_REF][START_REF] Thibault | Sweeping process with regular and nonregular sets[END_REF][START_REF] Thibault | Regularization of nonconvex sweeping process in Hilbert space[END_REF]). In this paper, we are interested in a variant of sweeping processes associated with maximal monotone operators of following form ⎧ ⎨ ⎩ ẋ(t) ∈-Ax(t) -N C(t) (x(t)) a.e. t ∈[0, T],

x(0) = x 0 ,

where A : H ⇒ H is a set-valued maximal monotone operator and N C(t) ( • ) denotes the proximal normal cone operator of the closed, prox-regular set C(t) in Hilbert space H. The system (1)canbe considered as a maximal monotone differential inclusion under control term u(t) ∈ N C(t) ( • ) which guarantees that the trajectory x(t) always belongs to the desired set C(t) for all t ∈[ 0, T].W h e n C(t) ≡ C is a fixed, closed and convex subset of H, under some qualification conditions, e.g. then A( • ) + N C ( • ) is a maximal monotone operator [START_REF] Rockafellar | On the maximality of the sum of nonlinear monotone operators[END_REF] and hence the existence and uniqueness of solutions can be obtained [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]. However, the situation is different when the closed set C is assumed to be prox-regular instead of being convex. For example, let H = R 2 and define B : R 2 → R 2 , (x, y) → (y, -x).ItiseasytoseethatB is a single-valued, continuous and monotone mapping with dom(B) = R 2 .HenceB is maximal monotone. Let A = B + N B where B = B(0, 1) denotes the closed unit ball in R 2 . Clearly, A is maximal monotone with dom(A) = B.LetC 1 = B(0, 1/2) and C 2 = B(3/2, 1/2). The sets C 1 and C 2 are closed and convex. Thus C = C 1 ∪ C 2 is prox-regular (see Section 2)and int(C) ∩ int(dom A) =∅. However, it is not difficult to see that the system

C ∩ int(dom A) =∅ or int(C) ∩ dom A =∅, ( 2 ) 
⎧ ⎨ ⎩ ẋ(t) ∈-Ax(t) -N C (x(t)) a.e. t ∈[0, T],
x(0) = x 0 = (1, 0),

has no absolutely continuous solutions. Indeed, if the differential inclusion (3) has an absolutely continuous solution x( • ), then this solution must be a constant function x( • ) ≡ x 0 . The fact that 0 / ∈ A(x 0 ) + N C (x 0 ) constitutes a contradiction (Figure 1). Consequently, for problem (1) involving prox-regular set C, one needs more than the classical qualification condition [START_REF] Moreau | Sur l'evolution d'un système élastoplastique[END_REF] to ensure the existence of solutions. It is natural here to suppose that C ⊂ int(dom A).I fA coincides with the subdifferential of a proper, lower semi-continuous and convex function ϕ : H → R ∪{+∞},i . e .A ≡ ∂ϕ, then the global existence and uniqueness of solutions are guaranteed. This is a particular case of evolution associated with primer lower nice function studied in [START_REF] Marcellin | Evolution problems associated with primal lower nice functions[END_REF]. For general A and C(t),i fx 0 ∈ C(0) ∩ int(dom A), we can prove the existence and uniqueness of local solutions (see Proposition 3.5). The global result can be obtained if rge C := 0≤t≤T C(t) ⊂ int(dom A), [START_REF] Moreau | Rafle par un convexe variable II. Sém Anal Convexe Montpellier[END_REF] and A 0 (the minimal norm operator of A) is linearly bounded on C(t),i.e. A 0 x ≤α(t) x +β(t) for all x ∈ dom(A),a.e.t ∈[0, T] for some α( • ), β( • ) ∈ L 2 ([0, T]; R + ) (see Theorems 3.2 and 3.3).

For the particular case when the moving set C( • ) is expanded, i.e. C(s) ⊂ C(t) for all t ≥ s ≥ 0, and A = ∂ϕ with ϕ : H → R ∪{+∞}proper, lower semi-continuous and convex function then the global well-posedness result, Lyapunov stability and some asymptotic behaviours of solutions are provided without the linear growth condition for A 0 (see Theorem 3.6). To the best of our knowledge, there have been no results about Lyapunov stability for general sweeping processes, which is known to be a hard problem. When C( • ) ≡ C is fixed, one can show that the unique solution x( • ) is right differentiable everywhere and ẋ+ ( • ) is right continuous. Then some criteria for non-smooth Lyapunov pairs for such system are given.

The paper is organized as follow. We recall some basic notations, definitions and results which are used throughout the paper in Section 2. In Section 3 the existence and uniqueness of solutions of (1) are proved. In Section 4, we study some regular properties of solutions when C(t) ≡ C and give criteria to weakly lower semi-continuous Lyapunov pairs by using proximal analysis. Section 5 ends the paper and contains some concluding remarks.

Notations and preliminaries

Let us begin with some notations used in the paper. Let H be a The Hausdorff distance between two sets C 1 , C 2 is defined by

d H (C 1 , C 2 ) := max sup x 1 ∈C 1 d(x 1 , C 2 ),s u p x 2 ∈C 2 d(x 2 , C 1 ) .
Denote by

C 0 := c ∈ C : c = inf c ′ ∈C c ′ and C :=sup c∈C c .
It is known that if C is closed and convex, then C 0 contains exactly one element. The set of all points in C that are nearest to s is denoted by

Proj(C, s) := {x ∈ C : s -x =d(s, C)}.
When Proj(C, s) ={ x}, we can write x = proj(C, s) to emphasize the single-valued property. Let x ∈ Proj(C, s) and t ≥ 0, then the vector t(s-x) is called proximal normal to C at x. The set of all such vectors is a cone, called proximal normal cone of C at x and denoted by N P (C, x). It is well-known [START_REF] Clarke | Nonsmooth analysis and control theory[END_REF][START_REF] Rockafellar | Variational analysis[END_REF]thatξ ∈ N P (C, x) if and only if there exist some σ > 0, δ > 0suchthat ξ , yx ≤δ yx 2 for all y ∈ C ∩ B σ (x).

The regular-Fréchet normal cone N F ( • ), the limiting Mordukhovich normal cone N L ( • ) and the Clarke-convexified normal cone N C ( • ) are defined, respectively, as follows

N F (C, x) := {ξ ∈ H :∀δ > 0, ∃σ > 0 s. t. ξ , y -x ≤δ y -x for all y ∈ C ∩ B σ (x)}, N L (C, x) := {ξ ∈ H :∃ξ n → ξ weakly and ξ n ∈ N P (C, x n ), x n → x in C} ={ ξ ∈ H :∃ξ n → ξ weakly and ξ n ∈ N F (C, x n ), x n → x in C}, N C (C, x) := coN L (C, x). If x / ∈ C,onehasN P (C, x) = N F (C, x) = N L (C, x) = N C (C, x) =∅and for all x ∈ C: N P (C, x) ⊂ N F (C, x) ⊂ N L (C, x) ⊂ N C (C, x).
If C is prox-regular then these normal cones are coincide. In this case for simplicity, we can write N(C, x). (2) For all x ∈ Candξ ∈ N L (C, x) such that ξ <r,wehave

x = proj(C, x + ξ). (5) 
(3) For all x ∈ Candξ ∈ N L (C, x),wehave

ξ , y -x ≤ ξ 2r y -x 2 ∀ y ∈ C. ( 4 
) (Hypo-monotonicity) For all x, x ′ ∈ C, ξ ∈ N L (C, x), ξ ′ ∈ N L (C, x ′ ) and ξ , ξ ′ ∈ B we have ξ -ξ ′ , x -x ′ ≥- 1 r x -x ′ 2 .
Let us recall the definition of proximal subgradient and asymptotic subgradient of a proper lower semi-continuous function by using proximal calculus. Definition 2: Let ϕ : H → R ∪{+∞}be a proper lower semi-continuous function and x ∈ H at which ϕ is finite. One say that ξ is a proximal subgradient of ϕ at x, denoted by ξ ∈ ∂ P ϕ(x) provided (ξ , -1) ∈ N P epi ϕ (x, ϕ(x)).Andξ is called a singular subgradient of ϕ at x, denoted by ξ ∈ ∂ ∞ ϕ(x) provided (ξ ,0) ∈ N L epi ϕ (x, ϕ(x)). It is known that ξ ∈ ∂ ∞ ϕ(x) if and only if there exist sequences [START_REF] Mordukhovich | Variational analysis and generalized differentiation I[END_REF]).

(α k ) k∈N ⊂ R + , (x k ) k∈N , (ξ k ) k∈N such that α k → 0 + , x k → ϕ x, ξ k ∈ ∂ P ϕ(x k ) and α k ξ k → ξ (see, e.g.
In the following, we summarize some known definitions and results concerning maximal monotone operators. The domain and graph of a set-valued operator A : H ⇒ H are defined, respectively, by dom

A := {x ∈ H : A(x) =∅}, gph A := {(x, y) : x ∈ H, y ∈ A(x)}.
The operator A is called monotone if for all x, y ∈ H, x * ∈ A(x), y * ∈ A(y), we have x * -y * , xy ≥ 0. In addition, if there is no monotone mapping B such that gph A is contained strictly in gph B, then A is called maximal monotone.WhenA is a maximal monotone operator, the minimal norm operator A 0 of A is a single-valued mapping defined by

A 0 : H → H, x → A(x) 0 .

Proposition 2.2 [12]:

Let A : H ⇒ H be maximal monotone and let λ > 0.Then (1) the resolvent of A defined by J A λ := (I + λA) -1 is a non-expansive single-valued map from H to H.

(2) the Yosida approximation of A defined by A λ := 1 λ (I -J A λ ) = (λI + A -1 ) -1 satisfies (i) for all x ∈ H, A λ (x) ∈ A(J A λ x) , (ii) A λ is Lipschitz continuous with constant 1 λ and maximal monotone. (iii) If x ∈ dom A, then A λ x ≤ A 0 x , where A 0 x is the element of Ax of minimal norm.

(3) If x λ → xand(A λ x λ ) λ is bounded as λ → 0 then x ∈ dom A. Moreover, if y is a cluster point of (A λ x λ ) λ as λ → 0 then y ∈ A(x).

Proposition 2.3 [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]: Let A : H ⇒ H be maximal monotone. Then

(1) A is sequentially weak-strong and strong-weak closed.

(2) A is locally bounded in int.dom A), the interior of dom A.

(

) Let T > 0. Define A : L 2 ([0, T]; H) ⇒ L 2 ([0, T]; H) by y( • ) ∈ Ax( • ) iff y(t) ∈ Ax(t) a.e. t ∈[0, T]. 3 
Then A is also maximal monotone.

We finish this section with a version of Gronwall's inequality (see, e.g. Lemma 4.1 in [START_REF] Showalter | Monotone operators in Banach spaces and nonlinear partial differential equations[END_REF]). Lemma 2.4: Let T > 0 be given and a(•

), b(• ) ∈ L 1 ([0, T]; R) with b(t) ≥ 0 for almost all t ∈[0, T].
Let the absolutely continuous function w :[0, T]→R + satisfy

(1 -α)w ′ (t) ≤ a(t)w(t) + b(t)w α (t), a.e. t ∈[0, T],( 6 
)
where 0 ≤ α < 1.Thenforallt ∈[0, T],onehas w 1-α (t) ≤ w 1-α (0)exp t 0 a(τ )dτ + t 0 exp t s a(τ )dτ b(s)ds. (7) 

Existence and uniqueness of solutions

In this section, we study the existence and uniqueness of solutions of (1) by using a regularization approach and some properties of a classical class of perturbed sweeping processes. First, let us make the following assumptions. Let r>0begiven. Assumption 1: For each t ∈[0, T],thesetC(t) is non-empty closed and r-prox-regular. Assumption 2: The map t → C(t) is absolutely continuous, i.e. there exist a non-decreasing function v :[0, T]→R + with v(0) = 0 such that for all 0 ≤ s<t≤ T, one has

d H C(t), C(s) ≤ v(t) -v(s). (8) 
Assumption 3: The set-valued mapping A : H ⇒ H is a maximal monotone operator.

One has the following lemma, which is a similar result to Proposition 1 in [START_REF] Edmond | Relaxation of an optimal control problem involving a perturbed sweeping process[END_REF]. We give here a different proof, where the idea can be used later in the proof of Theorem 3.6. Lemma 3.1: Assume that Assumptions 1, 2 are satisfied and f : H → H be a Lipschitz continuous function. Let x( • ) :[0, T]→H be the unique solution of the differential inclusion (see, e.g. [START_REF] Edmond | Relaxation of an optimal control problem involving a perturbed sweeping process[END_REF]forthe existence and uniqueness of solutions)

⎧ ⎨ ⎩ ẋ(t) ∈-N C(t) (x(t)) + f (x(t)), a.e. t ∈[0, T], x(0) = x 0 ∈ C(0).
Then for almost every t ∈[0, T], one has

ẋ(t) -f (x(t)) ≤v(t) + f (x(t)) . (9) 
Proof:

Fix some t ≥ 0suchthatx( • ) is differentiable at t.Fromther-prox-regularity of C(t),one has 
ẋ(t) -f (x(t)), c -x(t) ≤β c -x(t) 2 ∀c ∈ C(t), (10) 
where

β := ẋ(t)-f (x(t)) 2r 
(see Proposition 2.1). Let ε > 0 be small enough. Since

x(t +ε) ∈ C(t +ε) ∈ C(t)+(v(t +ε)-v(t))B, there exist c ε ∈ C(t) and y ε ∈ B such that x(t +ε) = c ε +(v(t +ε)-v(t))y ε . Choosing c = c ε in (10), one has ẋ(t) -f (x(t)), x(t + ε) -x(t) ≤(v(t + ε) -v(t)) ẋ(t) -f (x(t)), y ε + β x(t + ε) -(v(t + ε) -v(t))y ε -x(t) 2 .
Dividing both sides by ε and let ε → 0, it implies that

ẋ(t) -f (x(t)), ẋ(t) ≤v(t) ẋ(t) -f (x(t)) . Hence ẋ(t) -f (x(t)) 2 ≤ ẋ(t) -f (x(t)), f (x(t)) +v(t) ẋ(t) -f (x(t)) ≤ ẋ(t) -f (x(t)) ( f (x(t)) +v(t)).
Then the result follows.

We start with a global existence and uniqueness result for problem [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF]. Let us denote the range of C( • ) by rge C defined as follows rge

C := t∈[0,T] C(t). (11) 
Theorem 3.2: Let Assumptions 1, 2 and 3 hold. Suppose that

(i) rge C ⊂ dom A; (i) there exists α( • ), β( • ) ∈ L 2 ([0, T]; R + ) s.t. A 0 (x) ≤α(t) x +β(t) ∀x ∈ C(t),fora.e. t ∈[0, T].
Then for each initial condition x 0 ∈ C(0), there exists an absolutely continuous solution x(•) of problem (1) on [0, T].

Proof: For each λ > 0, denote A λ the Moreau-Yosida approximation of A.ThenA λ : H → H is 1/λ-Lipschitz continuous. We consider the following approximate sweeping process

⎧ ⎨ ⎩ ẋλ (t) ∈-A λ x λ (t) -N C(t) (x λ (t)) a.e. t ∈[0, T], x λ (0) = x 0 ∈ C(0). (12) 
For each λ > 0, the differential inclusion ( 12) has a unique solution x λ ( • ) on [0, T] (see, e.g. [START_REF] Edmond | Relaxation of an optimal control problem involving a perturbed sweeping process[END_REF]). By Lemma 3.1, we have

ẋλ (t) + A λ x λ (t) ≤ A λ x λ (t) +v(t). ( 13 
) Note that A λ x λ (t) ≤ A 0 x λ (t) ≤α(t) x λ (t) +β(t).Hence ẋλ (t) ≤2 A λ x λ (t) +v(t) ≤ 2α(t) x λ (t) +2β(t) +v(t).
By using Gronwall's inequality, one obtains that

x λ (t) ≤x 0 e a + (2b + v(T))e a := M where a := T 0 α(s)ds, b := T 0 β(s)ds.Let ξ(t) := Mα(t) + β(t).
Then ξ ∈ L 2 ([0, T]; R + ) and

ẋλ (t) + A λ x λ (t) ≤ξ(t) +v(t) and A λ x λ (t) ≤ξ(t) a.e. t ∈[0, T]. (14) 
Given some λ, µ > 0. From the prox-regular property of C(t) and Proposition 2.1,o n eh a sf o r a.e. t ∈[0, T]

ẋλ (t) + A λ x λ (t) -ẋ µ (t) -A µ x µ (t), x λ (t) -x µ (t) ≤ ξ(t) +v(t) r x λ (t) -x µ (t) 2 . ( 15 
)
Note that A is a maximal monotone operator and

x λ (t) = J λ x λ (t) + λA λ x λ (t) with A λ x λ (t) ∈ A(J λ x λ (t)).
Therefore,

A λ x λ (t) -A µ x µ (t), x λ (t) -x µ (t) = A λ x λ (t) -A µ x µ (t), J λ x λ (t) +λA λ x λ (t) -J µ x µ (t) -µA µ x µ (t) ≥ A λ x λ (t) -A µ x µ (t), λA λ x λ (t) -µA µ x µ (t) ≥- 1 4 (λ A λ x λ (t) 2 + µ A µ x µ (t) 2 ) ≥- 1 4 (λ + µ)ξ 2 (t).
From ( 15), we get

d dt x λ (t) -x µ (t) 2 ≤ 1 2 (λ + µ)ξ 2 (t) + 2(ξ(t) +v(t)) r x λ (t) -x µ (t) 2 . ( 16 
)
Using Gronwall's inequality (Lemma 2.4) and noting that x λ (0) = x µ (0) = x 0 , one has for all t ∈[0, T]:

x λ (t) -x µ (t) 2 ≤ 1 2 (λ + µ) t 0 exp t s 2(ξ(τ ) +v(τ )) r dτ ξ 2 (s)ds ≤ 1 2 (λ + µ)c 2 2 e 2(c 1 +v(T))/r ,
where

c 1 := ξ( • ) L 1 ([0,T];H) and c 2 := ξ( • ) L 2 ([0,T];H) .
Consequently,

x λ (t) -x µ (t) ≤ 1 √ 2 c 2 e (c 1 +v(T))/r (λ + µ) for all t ∈[0, T]. (17) 
Hence (x λ ( • )) λ>0 is a Cauchy sequence in C([0, T]; H). As a consequence, there exists a function

x( • ) ∈ C([0, T]; H) such that x λ → x uniformly on [0, T] as λ → 0and x λ (t) -x(t) ≤ 1 √ 2 c 2 e (c 1 +v(T))/r √ λ. (18) 
Using Proposition 2.2 and the fact that

A λ x λ (t) ≤ξ(t) for a.e. t ∈[ 0, T],onehasx(t) ∈ dom(A) for a.e. t ∈[ 0, T]. Furthermore, x(t) ∈ C(t) because x λ (t) ∈ C(t) for all λ > 0andC(t) is closed.
Since ẋλ (t) ≤2ξ(t) +v(t) for almost all t ∈[ 0, T], there exists a sequence λ n → 0suchthatẋ λ n converges weakly to some v( • ) ∈ L 2 ([0, T]; H). Classical arguments permit us to show that ẋ = v (see, e.g. [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]). On the other hand, we have

A λ n x λ n (t) ≤ξ(t) for a.e. t ∈[0, T].
Hence, there exist a subsequence, still denoted by

(A λ n x λ n ( • )) n ,andγ(• ) ∈ L 2 ([0, T]; H) such that A λ n x λ n converges to γ weakly in L 2 ([0, T]; H)).Thenweobtain ẋλ n + A λ n x λ n converges weakly to ẋ + γ in L 2 ([0, T]; H).
Using Mazur's lemma, for each n, there exist an integer T(n) >nand real numbers s k,n ≥ 0suchthat

T(n) k=n s k,n = 1and T(n) k=n s k,n (ẋ λ k + A λ k x λ k ) converges strongly to ẋ + γ in L 2 ([0, T]; H).
Extracting a subsequence, we may suppose that

T(n) k=n s k,n (ẋ λ k (t) + A λ k x λ k (t)) →ẋ(t) + γ(t) as n →+∞, for all t ∈[0, T]\N for some negligible set N ⊂[0, T]. Fixed t ∈[0, T]\N, from the prox-regularity of C(t),onehas ẋλ k (t) + A λ k x λ k (t), y -x λ k (t) ≥- ξ(t) +v(t) 2r y -x λ k (t) 2 , ∀y ∈ C(t). (19) 
Hence,

n (t) := T(n) k=n s k,n ẋλ k (t) + A λ k x λ k (t), y -x λ k (t) ≥- ξ(t) +v(t) 2r 
T(n) k=n s k,n y -x λ k (t) 2 , ∀y ∈ C(t). (20) 
Note that since x λ n (t) → x(t) as n →+∞, we have

T(n) k=n s k,n ẋλ k (t) + A λ k x λ k (t), x(t) -x λ k (t) ≤ (ξ(t) +v(t)) T(n) k=n s k,n x(t) -x λ k (t) →0. Thus n = T(n) k=n s k,n ẋλ k (t) + A λ k x λ k (t), y -x(t) + T(n) k=n s k,n ẋλ k (t) + A λ k x λ k (t), x(t) -x λ k (t)
→ ẋ(t) + γ(t), yx(t) as n →+∞.

On the other hand

T(n) k=n s k,n y -x λ k (t) 2 → y -x(t) 2 ,
since x λ n (t) → x(t) as n →+∞. Passing to the limit as n →+∞in (20), we get

ẋ(t) + γ(t), y -x(t) ≥- ξ(t) +v(t) 2r y -x(t) 2 , ∀y ∈ C(t).
Therefore

ẋ(t) + γ(t) ∈-N C(t) (x(t)). (21) 
Let us recall that

A λ n x λ n (t) ∈ A(J λ n x λ n (t)) for a.e. t ∈[0, T], (22) 
and A λ n x λ n converges weakly to γ in L 2 ([0, T]; H). In addition

J λ n x λ n converges strongly to x in L 2 ([0, T]; H)) since J λ n x λ n (t) -x(t) ≤ J λ n x λ n (t) -x λ n (t) + x λ n (t) -x(t) = λ n A λ n x λ n (t) + x λ n (t) -x(t) ≤ λ n ξ(t) + x λ n (t) -x(t) →0a sn →+∞.
Consequently, by using Proposition 2.3,onehas

γ(t) ∈ Ax(t) for a.e. t ∈[0, T]. (23) 
From ( 21)and( 23), we deduce that

ẋ(t) ∈-Ax(t) -N C(t) (x(t)) for a.e. t ∈[0, T],
which completes the proof of Theorem 3.2.

Under some additional assumptions, we can prove a uniqueness result. The following theorem is in this sense. Theorem 3.3: Let Assumptions 1-3 hold and suppose that

rge C ⊂ int(dom A). (24) 
Then, for given initial condition x 0 ∈ C(0), the problem (1) has at most one solution.

Proof: Let x 1 ( • ), x 2 ( • ) be two solutions of (1) satisfying the initial conditions x 1 (0) = x 2 (0) = x 0 .
Since A is locally bounded on rge C, there exists some ρ > 0andK>0suchthatA is bounded by K on B(x 0 , ρ). Note that x 1 ( • ), x 2 ( • ) are continuous, then there exists some positive constant

T ′ <T such that x i ([0, T ′ ]) ⊂ B(x 0 , ρ), i = 1, 2. There exist f i ( • ) ∈-Ax i ( • ) such that for a.e. t ∈[0, T ′ ] ẋi (t) ∈ f i (t) -N C(t) (x i (t)), i = 1, 2.
Using a similar argument as in Lemma 3.1,onehas

ẋi (t) -f i (t) ≤ f i (t) +v(t) ≤ K +v(t).
From the monotonicity of A and the prox-regularity of C(t), one obtains

ẋ1 (t) -ẋ 2 (t), x 1 (t) -x 2 (t) ≤ K +v(t) r x 1 (t) -x 2 (t) 2 ,a . e . t ∈[0, T ′ ].
Consequently,

d dt x 1 (t) -x 2 (t) 2 ≤ 2(K +v(t)) r x 1 (t) -x 2 (t) 2 ,a . e . t ∈[0, T ′ ].
Using Gronwall's inequality, one has x 1 (t) -x 2 (t) ≤0 for all t ∈[ 0, T ′ ], or equivalently

x 1 ≡ x 2 on [0, T ′ ].
Suppose now that there exists t 1 ∈[0, T] such that x 1 (t 1 ) = x 2 (t 1 ).Let

E := {t ∈[0, t 1 ]:x 1 (t) = x 2 (t)}.
Since t 1 ∈ E and E is bounded from below, there exists α := inf E where α ∈ (0, t 1 ] and for all t ∈[ 0, α) :

x 1 (t) = x 2 (t)
. By the continuity of x 1 ( • ) and x 2 ( • ), we have x 1 (α) = x 2 (α) which implies that α <t 1 . With the same argument as above, there exists some

T ′ > 0suchthatx 1 (•) ≡ x 2 (•) on [0, α + T ′ ]
. This constitutes a contradiction with the definition of α = inf E.Thusx

1 ( • ) ≡ x 2 ( • ) on [0, T].
Let us provide an example in parabolic variational inequalities. Example 3.4: Let be a bounded subset of R n and 

H := L 2 ( ), U := H 2 ( ) ∩ H 1 0 ( ).Letbe given ψ ∈ L 2 (0, T; U), M ∈ L 2 (0, T; R + ) such that ψ( • ) is k-Lipschitz continuous with respect to the supremum norm. For each t ∈[0, T], we define C(t) := C 1 (t) ∪ C 2 (t), where C 1 (t) ={v ∈ U : v ≥ ψ(t)
-v 2 ≥ √ m( ) for all v 1 ∈ C 1 (t), v 2 ∈ C 2 (t)
,where m( ) is the volume of . Furthermore, C( • ) is k-Lipschitz continuous since ψ( • ) is k-Lipschitz continuous. Let be given u 0 ∈ C(0). We consider the following parabolic variational inequalities with a moving obstacle : find u(t) ∈ C(t) such that u(0) = u 0 ∈ C(0) and for a.e. t ∈[ 0, T], there exists δ t > 0 satisfying

u(t) v(t) -u(t) dx + ∇u(t) • ∇v(t) -∇u(t) dx ≥-δ t v(t) -u(t) 2 , ∀v(t) ∈ C(t). (25)
Let us define the operator A : H → H as A := -,where is the Laplace operator. Then A is a self-adjoint maximal monotone operator with dom(A) = U and dom(A) = H (see, e.g. [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF][START_REF] Adly | Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions[END_REF]). It is easy to see that

Au(t) v(t) -u(t) dx = ∇u(t) •∇ v(t) -u(t) dx, ∀u, v ∈ U.
Then the problem (25) can be rewritten as follows

u(t) ∈-Au(t) -N C(t) u(t), (26) 
and all the assumptions of Theorem 3.2 are satisfied. Thus, for u 0 ∈ C(0), there exists an absolutely continuous solution u( • ) of (26), or equivalently, of (25). In addition, if M( • ) is a constant function, by using Remark 1, one deduces the uniqueness of solutions. Proof: Since x 0 ∈ int(dom A), A is locally bounded at x 0 . Hence there exists some ρ > 0andK>0 such that A is bounded by K on B(x 0 , ρ). Let

T * := (v + 2K) -1 (ρ/3) > 0, i.e. v(T * ) + 2KT * = ρ/3,
and λ 0 := ρ 3 A 0 x 0 (if A 0 x 0 =0, we set λ 0 := +∞).
Consider the sequence of functions (x λ ) 0<λ<λ 0 where x λ ( • ) is the unique solution of the approximate sweeping process [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]. Let

T λ = sup{τ : x λ (t) -x 0 ≤ρ/3, ∀t ∈[0, τ ]}.
It is clear that T λ > 0. We will prove that T λ ≥ T * for all λ < λ 0 . Suppose there exists some λ < λ 0 such that T λ <T * . From the definition of T λ , one deduces that

x λ (T λ ) -x 0 =ρ/3. (27) 
Note that A λ x λ (t) ∈ A(J λ x λ (t)) and A λ x λ (t) ≤ A λ x 0 + x λ (t) -x 0 /λ ≤ A 0 x 0 +ρ/(3λ) for all t ∈[0, T λ ] (since A λ is 1/λ-Lipschitz continuous). We have

J λ x λ (t) -x 0 ≤ J λ x λ (t) -x λ (t) + x λ (t) -x 0 ≤λ A λ x λ (t) +ρ/3 ≤ λ 0 A 0 x 0 +2ρ/(3) ≤ ρ,
for all t ∈[ 0, T λ ].HenceJ λ x λ (t) ∈ B(x 0 , ρ) and thus A λ x λ (t) ≤K for all t ∈[ 0, T λ ].From( 14), one has ẋλ (t) ≤2K + k C for a.e. t ∈[0, T λ ]. Therefore,

x λ (T λ ) -x 0 ≤ T λ 0 ẋλ (t) dt<2KT * + v(T * ) = ρ/3,
which is a contradiction with (27). In conclusion, the sequence (x λ ) 0<λ<λ 0 satisfies for a.e. t ∈[0, T * ]

⎧ ⎨ ⎩ x λ (t) -x 0 ≤ρ/3, A λ x λ (t) ≤K, ẋλ (t) + A λ x λ (t) ≤K +v(t), ẋλ (t) ≤2K +v(t). (28) 
Similarly to the proof of Theorem 3.2, there exists a solution x( • ) of problem (1)on[0, T * ] such that x(t) -x 0 ≤ρ/3 ∀t ∈[0, T * ].

We prove that it is also the unique solution of (1)on[0, T * ].Lety( • ) be another solution of (1) on [0, T * 1 ] for some positive T * 1 ≤ T * . It is sufficient to prove that y( 

• ) ≡ x( • ) on [0, T * 1 ].Note that A is bounded by K on B(x 0 , ρ). If y(t) -x 0 ≤ρ/3, ∀t ∈[ 0, T * 1 ],
) -x 0 ≤2KT * 2 + v(T * 2 ) < 2KT * + v(T * ) = ρ/3
, which is a contradiction with (29).

Remark 2: If rge C ⊂ int(domA), then for a given initial condition x 0 ∈ C(0), one can define the unique solution on its maximal interval of existence (by Proposition 3.5). The solution can be extended globally for the particular case where A = ∂ϕ with ϕ : H → R ∪{+∞}a proper lsc, convex function and C(s) ⊂ C(t) for any t ≥ s ≥ 0, but A 0 is not necessarily satisfied the linear growth condition. In addition, the Lyapunov stability and some asymptotic behaviour of the unique solution canbeobtained. Theorem 3.6: Let the Assumptions 1, 2 hold. Consider the case A = ∂ϕ where ϕ : H → R ∪{+∞} is a proper lsc convex function and C(s) ⊂ C(t) for any t ≥ s ≥ 0. Suppose that C(t) ⊂ int(dom ∂ϕ) for all t ≥ 0. Then the differential inclusion

⎧ ⎨ ⎩ ẋ(t) ∈-∂ϕ(x(t)) -N C(t) (x(t)) a.e. t ∈[0, +∞), x(0) = x 0 ∈ C(0), (30) 
has a unique global solution x( • ) satisfying

d dt ϕ(x(t)) + ẋ(t) 2 ≤ 0, for a.e. t ≥ 0. (31) 
In particular, ϕ is a Lyapunov function of the problem (30). Furthermore if ϕ is bounded from below on rge(C) then ϕ ∞ := lim t→+∞ ϕ(x(t)) exists and ẋ ∈ L 2 ([0, +∞); H) with

+∞ 0 ẋ(s) 2 ds ≤ ϕ(x 0 )-ϕ ∞ .
Proof: It is clear that ∂ϕ is a maximal monotone operator. From Proposition 3.5, there exists a unique solution of problem (30) defined on its maximal interval of existence [0, T max )(0 <T max ≤+ ∞ ).

There exists a mapping ξ :[0, T max ) → H such that ξ(t) ∈ ∂ϕ(x(t)) and ẋ(t) ∈-ξ(t) -N C (x(t)).

Since ϕ is locally Lipschitz continuous on rge(C) (as ∂ϕ is locally bounded on rge(C))andx( • ) is locally absolutely continuous on [0, T max ),thenϕ • x( • ) is differentiable a.e. on [0, T max ). Fix some t ∈ (0, T max ) at which x( • ) and ϕ • x( • ) are differentiable. By the convexity of ϕ and the fact that ξ(t) ∈ ∂ϕ(x(t)), we get for every ε > 0that

⎧ ⎨ ⎩ ϕ(x(t+ε))-ϕ(x(t)) ε ≥ x(t+ε)-x(t) ε , ξ(t) , ϕ(x(t-ε))-ϕ(x(t)) -ε ≤ x(t-ε)-x(t) -ε
, ξ(t) .

(32)

By letting ε → 0 + , we obtain d dt ϕ(x(t)) = ẋ(t), ξ(t) . ( 33 
)
On the other hand, we have ẋ(t) + ξ(t) ∈-N C(t) (x(t)). There exists some γ > 0suchthat 34) for some ε > 0. Dividing both sides of the inequality above by ε and letting ε → 0 + , one deduces that

ẋ(t) + ξ(t), x(t) -c ≤γ c -x(t) 2 ∀c ∈ C(t). ( 34 
) Taking c = x(t -ε) ∈ C(t -ε) ⊂ C(t) in (
ẋ(t) + ξ(t), ẋ(t) ≤0. ( 35 
)
From ( 33)and( 35), we imply that

d dt ϕ(x(t)) + ẋ(t) 2 ≤ 0. ( 36 
)
We prove now that T max =+ ∞ . Suppose that T max < +∞. Fix some x ∈ C and let α = ∂ϕ 0 (x) , β = ϕ(x) -∂ϕ 0 (x), x . For every y ∈ C, we have ϕ(y) ≥ ϕ(x) + ∂ϕ 0 (x), yx ≥-α y -β.

By (36), for all 0 ≤ s<t<T max ,onehas

x(t) -x(s) 2 ≤ (t -s) t s ẋ(s) 2 ds ≤ (t -s)(ϕ(x(s)) -ϕ(x(t))). ( 37 
)
By setting s = 0in(37), we obtain

x(t) -x 0 2 ≤ t(ϕ(x 0 ) -ϕ(x(t))) ≤ T max (α x(t) +β + ϕ(x 0 )).
Therefore sup

t∈[0,T max )
x(t) < +∞ and hence sup

t∈[0,T max ) ( -ϕ(x(t))) < +∞. From (37), one obtains that (x(t)) t∈[0,T max ) is a Cauchy sequence in H.Hencex max := lim t→T max
x(t) exists and x max ∈ C(T max ).

Using Proposition 3.5, there exist some δ > 0 and a unique solution of the differential inclusion As a consequence, ϕ • x( • ) is non-increasing on R + due to (36). Hence if ϕ is bounded from below on rge(C) then lim t→+∞ ϕ(x(t)) = ϕ ∞ exists and from (36), one has ẋ ∈ L 2 ([0, +∞); H) with

⎧ ⎨ ⎩ ẏ(t) ∈-∂ϕ(y(t)) -N C(t) (y(t)) a.e. t ∈[T max , T max + δ], y(T max ) = x max ∈ C(T max ). (38 
+∞ 0 ẋ(s) 2 ds ≤ ϕ(x 0 ) -ϕ ∞ .
Example 3.7: Consider the non-regular electrical circuit described in Figure 2 of [START_REF] Adly | Convex Sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF]. The evolution of the current x( • ) through the load resistance R>0 is governed by

ẋ(t) + R L x(t) ∈-N C(t) (x(t)) a.e. t ≥ 0, x(0) = x 0 with C(t) =[c(t), +∞),
where c(t) is a current source and L>0 is the inductance of an inductor. If c( • ) :[ 0, +∞) → R is non-increasing absolutely continuous then all the assumptions in Theorem 3.6 are satisfied with ϕ(x) = R 2L x 2 . Then one obtains that the function t →| x(t)| is non-increasing and the limit γ := lim 

Remark 3:

In the case where C(t) ≡ C ⊂ int.domA) for all t ≥ 0, it is sufficient to obtain the existence and uniqueness of solutions of our initial problem (1) if one of the following conditions holds: A = ∂ϕ or A 0 is linearly bounded on C.

Some regular properties of solutions and non-smooth Lyapunov pairs

In this section, in order to study the Lyapunov pairs of problem (1), we restrict ourself to the case where C( • ) ≡ C does not depend on time. Lyapunov analysis of time dependent case is not an easy task due to the lack of regularity of the solutions. In addition, we suppose that C ⊂ int.dom A) is closed, r-prox-regular and either A 0 is linearly bounded on C or A = ∂ϕ where ϕ : H → R ∪{+∞} be a proper lsc, convex function. From the previous section, for a given

x 0 ∈ C, the differential inclusion ⎧ ⎨ ⎩ ẋ(t) ∈-Ax(t) -N C (x(t)) a.e. t ∈[0, +∞), x(0) = x 0 ∈ C, (39) 
has a unique solution x( • ) defined on [0, +∞) which is locally absolutely continuous. We will show that x( • ) is right-differentiable for all t ≥ 0andẋ + ( • ) is right-continuous. This result can be considered as a generalization of [20, Theorem 3.2], when A is a single-valued and Lipschitz continuous function. In this context, the notion of weakly lower semi-continuous Lyapunov pair for problem (39) as well as the proximal, asymptotic subgradients play an important role in our analysis.

The following lemmas will be useful. Lemma 4.1: For all x ∈ C, the set A(x) + N C (x) is closed and convex.

Proof: Clearly, for all x ∈ C,thesetsA(x) and N C (x) are closed and convex (and thus weakly closed).

Hence

A(x) + N C (x) is convex. Let z n = x n + y n ∈ A(x) + N C (x) such that x n ∈ A(x), y n ∈ N C (x)
and z n → z 0 for some z 0 ∈ H. Since (x n ) is bounded, there exist a subsequence, still denoted by (x n ) and some x 0 ∈ H such that x n converges weakly to x 0 in H. Since A(x) is weakly closed, x 0 ∈ A(x). On the other hand y n = z n -x n converges weakly to z 0 -x 0 =:

y 0 ∈ N C (x).T h u s z 0 = x 0 + y 0 ∈ A(x) + N C (x)
and the conclusion follows.

Let x( • ) be the unique solution of (39) satisfying x(0) = x 0 .UsingtheLemma4.1, one can define the function v : R + → H by v(t) := -Ax(t) -N C (x(t))

0 and v 0 := v(0) = -Ax 0 -N C (x 0 ) 0 .

Lemma 4.2:

We have

v 0 ≤lim inf t→0 + v(t) . (40) 
Proof:

If lim inf t→0 + v(t) =+ ∞then the conclusion holds. If lim inf t→0 + v(t) =α < +∞,then
there exists a sequence (t n ) n≥1 such that t n → 0 + and lim n→+∞ v(t n ) =α. In particular, the sequence

(v(t n )) n≥1 is bounded hence there exist a subsequence (v(t n k )) k≥1 and ξ ∈ H such that (v(t n k )) k≥1 converges weakly to ξ . Recall that v(t n k ) = -Ax(t n k ) -N C (x(t n k )) 0 = f (t n k ) -N C (x(t n k )) 0 ∈ f (t n k ) -N C (x(t n k )), for some f (t n k ) ∈-Ax(t n k ). Hence f (t n k )-v(t n k ) ∈ N(C; x(t n k )).
The sequence f (t n k ) k is bounded for k large enough since A is locally bounded hence there exist a subsequence, still denoted itself and some γ ∈ H such that f (t n k ) converges weakly to γ in H. Due to the closed-graph property of A,one must have γ ∈-Ax 0 . On the other hand, we can find some

β > 0suchthat f (t n k ) -v(t n k ) ≤β for all k ≥ 1. Using the prox-regularity of C,onehas f (t n k ) -v(t n k ), c -x(t n k ) ≤ β 2r c -x(t n k ) 2 for all c ∈ C, k ≥ 1. ( 41 
) Let k →+∞,weget γ -ξ , c -x 0 ≤ β 2r c -x 0 2 for all c ∈ C. ( 42 
) Thus γ -ξ ∈ N C (x 0 ) or equivalently ξ ∈ γ -N C (x 0 ) ∈-Ax 0 -N C (x 0 ). Therefore, v 0 ≤ ξ ≤lim inf k→+∞ v(t n k ) = lim n→+∞ v(t n ) =α, (43) 
due to the weak lower semi-continuity of the norm and the conclusion follows.

Lemma 4.3: Let x( • ) be the unique solution of (39) satisfying x(0) = x 0 . Then one has

lim sup t→0 + x(t) -x 0 t ≤ v 0 ,( 4 4 
)

where v 0 = ( -Ax 0 -N C (x 0 )) 0 .
Proof: Since A is locally bounded on C, there exist some ρ > 0andK>0suchthatA is bounded by K on B(x 0 , ρ). Note that x( • ) is continuous, there exists some positive T such that x([0, T]) ⊂ B(x 0 , ρ).

We have

⎧ ⎨ ⎩ ẋ(t) -f (t) ∈-N C (x(t)) a.e. t ∈[0, T], v 0 -f 0 ∈-N C (x 0 ), (45) 
for some f 0 ∈-Ax 0 , f (t) ∈-Ax(t) and ẋ(t) -f (t) ≤ f (t) ≤K for a.e. t ≥ 0. Using the prox-regularity of C and the monotonicity of A,onehas

ẋ(t) -v 0 , x(t) -x 0 ≤ K r x(t) -x 0 2 , (46) 
which implies that

1 2 d dt x(t) -x 0 2 ≤ v 0 x(t) -x 0 + K r x(t) -x 0 2 . ( 47 
)
Using Gronwall's inequality (Lemma 2.4), one obtains for all t ∈[0, T] that

x(t) -x 0 ≤ v 0 t 0 e K r (t-s) ds = v 0 t 0 e Ks r ds. (48) 
Hence, lim sup

t→0 + x(t) -x 0 t ≤ v 0 lim t→0 + 1 t t 0 e Ks r ds = v 0 .
The proof is completed.

Lemma 4.4:

There exist some K > 0, T>0 such that for a.e. t ∈[0, T], one has

ẋ(t) ≤ v 0 e Kt/r . ( 49 
)
Proof: There exist some ρ > 0andK>0suchthatA is bounded by K on B(x 0 , ρ). Let x( • ), y( • ) be the unique solution of (39) satisfying initial conditions x(0) = x 0 , y(0) = x(h), respectively, where h is small enough such that there exist some positive T and x([0, T]), y([0, T]) ⊂ B(x 0 , ρ). Similarly as in Theorem 3.3, with k C = 0, one has

x(t) -y(t) ≤ x 0 -y 0 e Kt/r , for all t ∈[0, T]. (50) 
Note that y(t) = x(t + h) for all t ≥ 0. From (50), we deduce that

x(t + h) -x(t) h ≤ x(h) -x(0) h e Kt/r , for all t ∈[0, T]. (51) 
Fix some t ∈[0, T] such that ẋ(t) exists. Taking the limsup in both sides of (51)ash → 0 + and using Lemma 4.3,onegets ẋ(t) ≤ v 0 e Kt/r . Thus (49) follows.

Now we are ready to formulate the regular properties of the differential inclusion (39). Theorem 4.5: Let x( • ) be the unique solution of problem (39) satisfying x(0) = x 0 .Thenwehave

(i) ẋ(t) = v(t) = -Ax(t) -N C x(t) 0 for a.e. t ∈[0, +∞).
(ii) For all t * ∈[0, +∞), the right derivative ẋ+ (t * ) exists and satisfies

ẋ+ (t * ) = -Ax(t * ) -N C x(t * ) 0 . Furthermore ẋ+ ( • ) is right-continuous on [0, +∞). Proof: Let E ={ t ∈[ 0, +∞) :ẋ(t) exists}. It is clear that the Lebesgue measure of [0, +∞) \ E is zero.
(i) Fix t * ∈ E.Lety(•) be the unique solution of problem (39) with initial condition y(0) = x(t * ).

Then y(t) = x(t + t * ) for all t ≥ 0. Applying Lemma 4.3,weget lim sup

t→0 + y(t) -y(0) t ≤ -Ay(0) -N C y(0) 0 , (52) 
or equivalently, lim sup

t→0 + x(t + t * ) -x(t * ) t ≤ -Ax(t * ) -N C x(t * ) 0 . (53) 
Hence

ẋ(t * ) ≤ -Ax(t * ) -N C x(t * ) 0 . (54) 
On the other hand

ẋ(t * ) ∈-Ax(t * ) -N C (x(t * )),thusẋ(t * ) = -Ax(t * ) -N C x(t * ) 0 .
(ii) It is sufficient to prove this property for t * = 0. Using (i) and Lemma 4.4, there exist some K>0, T>0 such that for all t ∈[0, T]∩E, we have

v(t) ≤ v 0 e Kt/r , ( 55 
)
where v(t) = -Ax(t) -N C (x(t)) 0 . It follows from (55)that lim sup

t→0 + ,t∈E v(t) ≤ v 0 . (56) 
On the other hand, from Lemma 4.2 we deduce that

v 0 ≤lim inf t→0 + v(t) ≤ lim inf t→0 + ,t∈E v(t) . (57) 
From ( 56)and(57), we obtain lim

t→0 + ,t∈E v(t) = v 0 . (58) 
Thus for any sequence (t n ) n≥1 ⊂ E such that t n → 0 + , we have

v(t n ) → v 0 as n →+∞. (59) 
Then v(t n ) n≥1 is bounded and therefore there exist some v * ∈ H and a subsequence v(t n k ) k≥1 such that v(t n k ) converges weakly to v * as k →+ ∞ . Similarly as in Lemma 4.2, we can prove that v * ∈-Ax 0 -N C (x 0 ). On the other hand, thanks to (59), we have

v * ≤lim inf k→+∞ v(t n k ) = lim n→+∞ v(t n ) = v 0 . ( 60 
)
By the definition of v 0 , we obtain v * = v 0 and the set of weak cluster point of v(t n ) n≥1 contains only v 0 . Consequently v(t n ) converges weakly to v 0 . Taking into account (59), one deduces that v(t n ) converges strongly to v 0 . In conclusion, we get lim

t→0 + ,t∈E v(t) = v 0 . (61) 
Due to the absolute continuity of x( • ) and (i) in Theorem 4.5, for all h>0, we have

x(h) -x 0 = h 0 ẋ(s)ds = h 0 v(s)ds, (62) 
where v( • ) is locally integrable and satisfying (61). Now we prove that lim

h→0 + 1 h h 0 v(s)ds = v 0 . (63) 
Let ǫ > 0 be given. From (61), there exists δ > 0 such that for all s ∈ E, s ≤ δ, we have v(s) -v 0 ≤ǫ. Hence, for all h ≤ δ,onegets

1 h h 0 v(s)ds -v 0 ≤ 1 h h 0 v(s) -v 0 ds = 1 h [0,h]∩E v(s) -v 0 ds ≤ ǫ h [0,h]∩E ds = ǫ.
Therefore (63) is proved. From (62), the right derivative ẋ+ (0) exists and satisfies

ẋ+ (0) = v 0 = -Ax 0 -N C (x 0 ) 0 . ( 64 
)
Then taking the limit in both sides of (51)ash → 0 + , we deduce that for all t ≥ 0 : 

ẋ+ (t) ≤ ẋ+ (0) e Kt/
) + t 0 W x(τ ; x 0 ) dτ ≤ V (x 0 ) for all t ≥ 0, (65) 
where x(t; x 0 ) denotes the unique solution of problem (39) starting at x 0 . If a = 0, then (V , W) is called a Lyapunov pair. In addition, V is called a Lyapunov function if W = 0. We have the following theorem which gives necessary and sufficient conditions of a Lyapunov pair. Note that, since A is locally bounded on C, we do not need to check for the singular subdifferentials as in [START_REF] Adly | Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions[END_REF]. Theorem 4.6: Let V ∈ Ŵ w (H),W ∈ Ŵ + (H),a≥ 0 and dom V ⊂ C. Then the following assertions are equivalent:

(i) For all x 0 ∈ dom V , we have e at V x(t; x 0 )

+ t 0 W x(τ ; x 0 ) dτ ≤ V (x 0 ) ∀ t ≥ 0.
(ii) For all x 0 ∈ dom V , there exists ρ(x 0 ) > 0 such that e at V x(t; x 0 )

+ t 0 W x(τ ; x 0 ) dτ ≤ V (x 0 ) ∀ t ∈[0, ρ(x 0 )].
(iii) For all y ∈ C, we have

sup ξ ∈∂ P V (y) ξ , -Ay -N C (y) 0 + aV (y) + W(y) ≤ 0. (66) 
(iv) For all y ∈ C, we have

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ sup ξ ∈∂ P V (y) min y * ∈ -Ay-N C (y) ∩B(0, Ay ) ξ , y * +aV (y) + W(y) ≤ 0, sup ξ ∈∂ ∞ V (y) min y * ∈ -Ay-N C (y) ∩B(0, Ay ) ξ , y * ≤0. (67) 
In particular, A(x([0, T]; x 0 )) is bounded by K. Define functions h :[ 0, T]→R + , γ :[ 0, T]→R, z n :[0, T]→H × R and η :[0, T]→R + as follow

h(t) := t 0 W x(τ ; x 0 ) dτ , γ(t) := e -at V (x 0 ) -h(t) , z(t) := x(t; x 0 ), γ(t) , η(t) := 1 2 d 2 z(t),epi V .
As in [START_REF] Adly | Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions[END_REF], η is Lipschitz continuous on every compact interval in (0, T) and for all t ∈ (0, T), one has

∂ C η(t) = d z(t),epi V ∂ C d z( • ),epi V (t) =∅,
where ∂ C denotes the Clarke subdifferential. We have then an estimation of ∂ C η as in Lemma 4.7.Let 0 <s<t<T. By using Gronwall's inequality one has e -Mt η(t) ≤ e -Ms η(s),

where M is defined in Lemma 4.7.Lets → 0 then one has d(z(t),epi V ) = 0 which implies that e at V (x(t; x 0 )) + t 0 W(x(τ ; x 0 ))dτ ≤ V (x 0 ).

Since it is true for all t ∈[0, T], one obtains ii) with ρ(x 0 ) = T.

The following technical lemma is useful for the proof of Theorem 4.6. Lemma 4.7: There exist M > 0 such that for almost all t ∈ (0, T),onehas ∂ C η(t) ⊂ ( -∞, Mη(t)].

Proof: Let t ∈ (0, T) such that x(•; x 0 ) is differentiable at t.Ifz(t) ∈ epi V ,then∂ C η(t) ={ 0} and the conclusion holds. Otherwise, assume that z(t)/ ∈ epi V .Byusing [START_REF] Adly | Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions[END_REF]Lemma A.3] 

for some M>0. Since (u, µ) ∈ Proj(z(t),epi V ), the vector z(t)-(u, µ) = (x(t; x 0 )-u, γ(t)-µ) ∈ N P epi V (u, µ) and u ∈ dom V ⊂ C. We have γ(t)-µ ≤ 0. If γ(t)-µ = 0thenx(t; x 0 )-u ∈ ∂ ∞ V (u) and if γ(t)-µ < 0then x(t;x 0 )-u µ-γ(t) ∈ ∂ P V (u).Fromiv), there exists u * ∈ -Au-N C (u) ∩B(0, Au ) such that x(t; x 0 ) -u, u * ≤(γ (t)µ) aV (u) + W(u) .

(74)

Note that u ∈ B(x 0 , ε),h e n c e u * ≤ Au ≤ A(B(x 0 ,2ε)) ≤K. We can write x = x A + x N and u * = u * A + u * N such that x A ∈-Ax(t; x 0 ), u * A ∈-Au, x N ∈-N C (x(t; x 0 )) and u * N ∈-N C (u). Therefore x N ≤ x + x A ≤2K, u * N ≤ u * + u * A ≤2K. Let β := 2K r (recall that C is r-prox-regular). Thanks to the maximality of A, the prox-regularity of C and (74), one has x(t; x 0 ) -u, x = x(t; x 0 ) -u, x A + x N = x(t; x 0 ) -u, x A -u * A + x N -u * N + x(t; x 0 ) -u, u * ≤ β x(t; x 0 ) -u 2 + (γ (t)µ) aV (u) + W(u) .

Note that we already have γ(t)µ ≤ 0. If γ(t)µ < 0 and suppose that V (u) ≤ γ(t). One obtains a contradiction d(z(t),epiV ) ≤ d z(t), (u, γ(t)) <d z(t), (u, µ) = d(z(t),epiV ).

Hence if γ(t)µ < 0, we have V (u) > γ(t). Therefore, µγ(t) (γ (t) -V (u)) ≤ 0. Consequently, x(t; x 0 ) -u, x + a µγ(t) γ(t) + µγ(t) e -at W x(t; x 0 ) ≤ β x(t; x 0 ) -u 2 + (γ (t)µ) aV (u) + W(u) + a µγ(t) γ(t) + µγ(t) e -at W x(t; x 0 ) ≤ β x(t; x 0 ) -u 2 + a µγ(t) (γ (t) -V (u)) + µγ(t) W(x(t; x 0 )) -W(u) ≤ β x(t; x 0 ) -u 2 + L W |µγ(t)| x(t; x 0 ) -u ≤ L W 2 + β η(t),

where L W is the Lipschitz constant of W on the ball B(x 0 ,max{ε, K}). Therefore Lemma 4.7 holds with M = L W 2 + β.

Conclusion

By using a regularization technique, we study in this paper the existence and the uniqueness properties of a new variant of non-convex sweeping processes involving maximal monotone operators. Some regular properties of the solutions are refined when the moving set is fixed. It is showed that the unique solution is right-differentiable at any t ≥ 0 and its right-derivative is right-continuous. Nonsmooth Lyapunov pair for such system is also considered by using the proximal and asymptotic subgradients. The Lyapunov analysis of the sweeping process ( 1) is an open question and is not an easy task due to the lack of regularity of the solutions.
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Figure 1 .

 1 Figure 1. Counter-example for the prox-regular case.

  Hilbert space. Denote by •, • , • the scalar product and the corresponding norm in H.DenotebyI the identity operator, by B the unit ball in H and B r = rB, B r (x) = B(x, r) = x + rB. The distance from a point s to a closed set C is denoted by d(s, C) or d C (s) and d(s, C) := inf x∈C sx .

Definition 1 :

 1 The closed set C is called r-prox-regular (r>0) iff each point s in the r-enlargement of C U r (C) := {w ∈ H : d(w, C) <r}, has a unique nearest point proj(C, s) and the mapping proj(C, •) is continuous on U r (C). Proposition 2.1 [10,16]: Let C be a closed set in H and r > 0. The followings are equivalent (1) C is r-prox-regular.

Remark 1 : 3 . 5 :

 135 In Theorem 3.3, we can also relax the condition rge C ⊂ int(domA) by the assumption that A is locally bounded on rge C, i.e. for all x ∈ rge C, there exists K>0, ρ > 0s u c ht h a tA is bounded by K in B(x 0 , ρ) ∩ rge C.The following proposition gives us the local result requiring only x 0 ∈ C(0) ∩ int(dom A). Proposition Let Assumptions 1-3 hold. If x 0 ∈ C(0) ∩ int(dom A) then problem (1)h a sa unique local solution.

)

  Define z( • ) ≡ x( • ) on [0, T max ) and z( • ) ≡ y( • ) on [T max , T max + δ].Thenz( • ) is the solution of (30)on[0, T max + δ], a contradiction. Hence T max =+∞.

  t→+∞ |x(t)| exists. In addition, one has +∞ 0 ẋ(s) 2 ds ≤|x 0 |-γ.

-

  and noting that ẋ(t;x 0 ) = -Ax(t; x 0 ) -N C x(t; x 0 ) 0 ≤ K, we obtain ∂ C η(t) ⊂ co Ax(t; x 0 ) -N C x(t; x 0 ) ∩ KB -aγ(t) -e -at W x(t; x 0 ) Proj z(t),epi V ∩ B(x 0 , ε) ×[γ(t), γ(t) + ε] .Then it is sufficient to prove that for all (u, µ) ∈ M and ∀x ∈ -Ax(t; x 0 ) -N C x(t; x 0 ) ∩ KB, we have z(t)t) -e -at W x(t; x 0 ) ⎞ ⎠ ≤ Mη(t),

  Using (57), we obtain lim t→0 + v(t) = v 0 . Similarly as in (61), we can prove that lim t→0 + v(t) = v 0 , which means that ẋ+ ( • ) is right-continuous at 0. The proof of Theorem 4.5 is completed.Next, let us consider the non-smooth lower semi-continuous Lyapunov functions for problem (39). First, we recall the definition of a Lyapunov pair, as in[START_REF] Adly | Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions[END_REF]. Denote by Ŵ w (H) := {ϕ : H → R ∪{+∞}|ϕ is proper and weakly lsc}, and Ŵ + (H) := {ϕ : H → R + ∪{+∞}|ϕ is proper and lsc}.

	Therefore	
	lim sup t→0 +	v(t) ≤ v 0 .

r , or equivalently, v(t) ≤ v 0 e Kt/r .

Definition 3: Let V ∈ Ŵ w (H), W ∈ Ŵ + (H)

and a ≥ 0. We say that (V , W) is an a-Lyapunov pair for problem (39) if for all x 0 ∈ C, we have e at V x(t; x 0

Proof: Without loss of generality, suppose that W is Lipschitz continuous on bounded sets (see [START_REF] Adly | Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions[END_REF]Lemma 3.1] or [START_REF] Clarke | Nonsmooth analysis and control theory[END_REF]). The plan of the proof is the following: (i) ⇔ (ii) and (ii) ⇒ (iii) ⇒ (iv) ⇒ (ii). (i) ⇔ (ii): see Proposition 3.2 [START_REF] Adly | Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions[END_REF]; (ii) ⇒ (iii) : Let y ∈ C, ξ ∈ ∂ P V (y).Theny ∈ dom V and (ξ , -1) ∈ N P epi V y, V (y) . From (ii),one infers that x(t; y), e -at V (y) -e -at

By the definition of N P epi V (y, V (y)), there exists β > 0 such that for all t ∈[0, ρ(y)],onehas

which is equivalent to

where

Dividing both sides of (68)b yt>0, letting t → 0 + and taking into account that ẋ+ (0; y) = -Ay -N C (y) 0 , one obtains ξ , -Ay -N C (y) 0 + aV (y) + W(y) ≤ 0.

(iii) ⇒ (iv) : Obviously, one has -Ay -N C (y) 0 ∈ -Ay -N C (y) ∩ B(0, Ay ). Thus, (iii) implies the first inequality of (iv). It remains to check the second inequality of (iv). Let ξ ∈ ∂ ∞ V (y).

Thanks to [START_REF] Mordukhovich | Variational analysis and generalized differentiation I[END_REF], as we discussed in Section 2, there exist sequences

Since the sequence (y * k ) is bounded, one can extract a subsequence, without relabelling, and some y * ∈ -Ay -N C (y) ∩ B(0, Ay ) such that y * k → y * weakly. Multiplying both sides of (69)byα k and let k →+∞then one obtains that ξ , y * ≤0, which implies the second inequality of (iv). (iv) ⇒ (ii) : Let x 0 ∈ dom V . Since A is locally bounded at x 0 , there exist ε > 0andK>0suchthat A is bounded by K>0onB(x 0 ,2ε).OntheotherhandwecanfindsomeT>0suchthat 2 x(t; x 0 ) -x 0 + (e -at -1)V (x 0 ) - (70)