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Abstract

This work deals with free transport equations with partly di¤use sto-
chastic boundary operators in slab geometry. Such equations are governed
by stochastic semigroups in L1 spaces: We prove convergence to equilib-

rium at the rate O
�
t
� k
2(k+1)+1

�
(t ! +1) for L1 initial data g in a

suitable subspace of the domain of the generator T where k 2 N depends
on the properties of the boundary operators near the tangential velocities
to the slab. This result is derived from a quanti�ed version of Ingham�s
tauberian theorem by showing that Fg(s) := lim"!0+ (is+ "� T )

�1 g ex-

ists as a Ck function on Rn f0g such that
 dj

dsj
Fg(s)

 � C

jsj2(j+1) near

s = 0 and bounded as jsj ! 1 (0 � j � k) : Various preliminary re-
sults of independent interest are given and some related open problems
are pointed out.

1 Introduction

This paper is devoted to rates of convergence to equilibrium for one-dimensional
free (i.e. collisionless) transport equations with mass-preserving partly di¤use
boundary operators. We provide a general L1 theory relying on a quanti�ed
tauberian theorem [11]. In linear or non-linear kinetic theory, various non-local
(combinations of specular and di¤use) boundary conditions are physically rel-
evant, see e.g. [14][23] and the references therein. Furthermore, general free
transport equations with smooth vector �elds and positive contractive bound-
ary operators are well posed, see e.g. [3][4]. On the other hand, the existence of
an invariant density and the return to this equilibrium state for solutions to free
transport equations has not received much attention; see however [1][5][15][26]
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for the vector �eld v:rx with a Maxwell di¤use boundary operator with con-
stant temperature; in this case, the invariant density is given by a maxwellian
function. The L1 convergence to this maxwellian equilibrium goes back to [5]
while the analysis of rates of convergence was considered more recently in [1][15]
after some numerical investigations in [26]; we will comment below on some re-
sults in [1][15]. We note that collisionless transport semigroups present a lack of
spectral gap which make them akin to collisional linear kinetic equations with
soft potentials. More recently, the authors of [21] provided a convergence the-
ory to equilibrium for a general class of monoenergetic free transport equations
in slab geometry with azymuthal symmetry and abstract boundary operators.
In this abstract model, the existence of invariant density is characterized and
shown for a general class of partly di¤use boundary operators. Our aim here
is to derive a quanti�ed version (with algebraic rates) of this convergence the-
ory from a quanti�ed version of Ingham�s tauberian theorem [11]. We provide a
general theory based on some natural structural conditions on the boundary op-
erators in the vicinity of the tangential velocities to the slab. To keep the ideas
of this work more transparent, we restrict ourselves to monoenergetic models;
(non-monoenergetic free models in slab geometry could be treated similarly, see
Remark 33). Besides the main result on the rates of convergence, our construc-
tion provides us with various new mathematical results of independent interest.
Several open problems are also pointed out.
We note that a special quanti�ed version of Ingham�s theorem for "asymptot-

ically analytic" C0-semigroups (see [11] Corollary 2.12) was already used for the
�rst time in kinetic theory to deal with spatially homogeneous linear Boltzmann
equations with soft potentials where the generators are bounded [18].
Finally, we point out that there exists a substantial literature on rates of

convergence to equilibrium for collisional (linear or non-linear) kinetic equa-
tions relying mostly on entropy methods. In particular, collisional kinetic
equations with soft potentials exhibit algebraic rates of convergence, see e.g.
[6][7][12][18][25] and references therein.
We consider here the monoenergetic free transport equation in slab geometry

with azymuthal symmetry

@f

@t
(t; x; v) + v

@f

@x
(t; x; v) = 0; (x; v) 2 
 (1)

f(0; x; v) = g(x; v) (2)

where

 = (�a; a)� (�1; 1)

(with a > 0). The boundary conditions are

jvj f(t;�a; v) = �1 jvj f(t;�a;�v) + �1K1(j�j f��a(t)) (v > 0); (3)

jvj f(t; a; v) = �2 jvj f(t; a;�v) + �2K2(j�j f+a (t)) (v < 0) (4)

where
�i � 0; �i � 0; �i + �i = 1 (i = 1; 2); (5)
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here f��a(t) (resp. f
+
a (t)) denotes the restriction of f(t;�a; :) (resp. f(t; a; :))

to (�1; 0) (resp. to (0; 1)),

j�j f��a(t) : (�1; 0) 3 v ! jvj f(t;�a; v)

j�j f+a (t) : (0; 1) 3 v ! f(t; a; v)

andKi (i = 1; 2) are stochastic (i.e. positive and norm preserving on the positive
cone) weakly compact operators

K1 : L
1((�1; 0) ; dv)! L1((0; 1) ; dv);

K2 : L
1((0; 1) ; dv)! L1((�1; 0) ; dv):

The weak compactness assumption implies that Ki has a kernel ki(:; :); (i =
1; 2) (see remark in [13], p. 508); it also plays a key role in several places
of this work. Note that the boundary conditions are convex combinations of
specular (deterministic) parts and di¤use (random) ones modeled by Ki (i =
1; 2). We point out that for the physical model in slab geometry with azymuthal
symmetry,

v 2 (�1;+1)

is not a "velocity" but rather the cosine of the angles of the monoenergetic
velocities (of particles moving in the slab) with an oriented axis perpendicular
to the slab. In particular, the tangential velocities to the slab correspond to

v = 0

i.e. to the degeneracy of the vector �eld v @
@x : These tangential velocities turn

out to play a natural and fundamental role in our construction. Finally, we
note that the boundary conditions are local in space, i.e. we have two separated
boundary conditions (one at x = �a and another one at x = a) even if one can
imagine much more complex models including a coupling of the �uxes at �a
and at a.
It is known that the problem (1)(2)(3)(4) is well-posed in L1 (
) in the

sense of semigroup theory and the corresponding C0-semigroup is stochastic
(i.e. norm preserving on the positive cone), [21]. We deal here with the partly
di¤use model

�1 + �2 > 0 (6)

only, i.e. we assume that at least one boundary condition is at least partly
di¤use. It is known that under condition (6) the semigroup admits an invari-
ant density, [21]; (see below for the details). Furthermore, the C0-semigroup
converges strongly to its ergodic projection as time goes to in�nity provided
that

�1�2 > 0;

[21]. The lack of spectral gaps for such collisionless kinetic models means there
are no obvious rates of convergence to equilibrium.
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Our aim here is to give a quanti�ed version of the convergence theory given
in [21]. We provide a systematic functional analytic treatment based on a quan-
ti�ed version of Ingham�s tauberian theorem [11]; see Section 2 below. This
tauberian theorem turns out to be usable in semigroup theory provided that the
restrictions of the resolvent (of the generator) and some of its derivatives to a
suitable subspace extend to iRn f0g and satisfy suitable estimates. We point out
that for the stochastic kinetic semigroups we consider here, 0 always belongs
to the spectrum of the generator; it may happen (e.g. if �1 = 1 or �2 = 1)
that the whole imaginary axis is included in the spectrum of the generator. The
object of this work is to show how to obtain systematically such estimates on
the resolvent provided that one of the boundary conditions is completely di¤use,
i.e.

�1 = 1 or �2 = 1, (7)

under suitable structural conditions to be stated below. (For the obstruction
to the treatment of the general case (6), see Remark 31.) Note that (7) need
not be the completely di¤use model which corresponds to �1 = �2 = 1; for
instance the case of a di¤use boundary condition at x = �a and a specular
boundary condition at x = a is covered by our theory. Even if we do not
treat completely the more general model (6), some of our statements are given
under this general assumption and various mathematical results of independent
interest are provided. The result which has motivated our whole construction
is the following:
If the initial data g belongs to the domain of the generator and ifZ




jg(x; v)j jvj�(k+1) dxdv < +1

then the solution to (1)(2)(3)(4) converges to the equilibrium state in L1 norm
at the rate

O
�
t�

k
2(k+1)+1

�
; (t! +1) (8)

where k 2 N is an integer depending on natural structural properties of the
boundary operators near v = 0 (i.e. near the tangential velocities to the slab).
To our knowledge, this is the �rst systematic quantitative result in collision-

less kinetic theory for L1 initial datum.
Indeed, until now, the sole known quanti�ed L1 results in collisionless kinetic

theory are much better rates obtained for bounded initial datum in balls with
Maxwell di¤use boundary conditions and constant boundary temperature. More
precisely, in dimension 3; the rate of convergence in L1 norm is O(t�1) if the
initial data is radial (in space and in velocity) and is dominated by a maxwellian
function (see [1] Theorem 4.1); this result was improved in ([15] Corollary 2)
where the rate is shown to be O(t�d) in dimension d � 3 for bounded initial
datum; (see [1][15] for additional results which we do not comment on here).
We point out that Maxwell di¤use boundary conditions refer to boundary op-
erators which are (local in space and) rank-one in velocity. Finally, we mention
that quantitative time asymptotics have never been dealt with for partly di¤use
boundary operators.
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Let us give a more precise view on the mathematical construction behind
the rate of convergence (8). Let

W1(
) =

�
f 2 L1(
); v @f

@x
2 L1(
)

�
(v @f@x is understood in the sense of distributions) be endowed with the norm

kfkW1
= kfk+

v @f@x


where

kgk =
Z +a

�a

Z +1

�1
jg(x; v)j dx dv; g 2 L1(
):

According to classical trace theory (see [8][9]), the elements of W1(
) admit a
trace on

f�ag � (�1;+1) and fag � (�1;+1)

belonging to the weighted L1-space

L1 ((�1;+1) ; jvj dv) :

More precisely, the trace operator is surjective, continuous and admits a con-
tinuous lifting operator. For any f 2W1(
), we denote by f

�
�a (resp. f

+
�a) the

restriction of f(�a; :) to (�1; 0) (resp. to (0; 1)), i.e.

f��a : (�1; 0) 3 v ! f(�a; v); f+�a : (0; 1) 3 v ! f(�a; v):

Similarly

f�a : (�1; 0) 3 v ! f(a; v); f+a : (0; 1) 3 v ! f(a; v):

We keep in mind that

f��a; f
�
a 2 L1 ((�1; 0) ; jvj dv) and f+�a; f

+
a 2 L1 ((0;+1) ; jvj dv) :

We de�ne also
h�a (v) = jvj f�a (v); h��a(v) = jvj f��a(v)

and keep in mind that

h��a; h
�
a 2 L1 ((�1; 0) ; dv) and h+�a; h

+
a 2 L1 ((0;+1) ; dv) :

De�ne

O1 = �1R1 + �1K1 : L
1 ((�1; 0) ; dv)! L1 ((0;+1) ; dv)

where
R1 : L

1 ((�1; 0) ; dv)! L1 ((0;+1) ; dv)
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is a specular re�ection operator de�ned by (R1') (v) = '(�v) and

O2 = �2R2 + �2K2 : L
1 ((0;+1) ; dv)! L1 ((�1; 0) ; dv)

where
R2 : L

1 ((0;+1) ; dv)! L1 ((�1; 0) ; dv)

is the re�ection operator de�ned by (R2') (v) = '(�v) while the parameters
�i; �i (i = 1; 2) satisfy the convexity condition (5). The transport operator

TO : D(TO) � L1(
)! L1(
);

indexed by O := (O1; O2); is de�ned by

TOf = �v
@f

@x

on the domain

D(TO) =
�
f 2W1(
); h

+
�a = O1h

�
�a; h

�
a = O2h

+
a

	
:

It is known (see [21]) that TO generates a stochastic (i.e. mass preserving on
the positive cone) C0-semigroup (etTO )t�0 and, for g 2 L1(
);

f := (�� TO)�1g; (Re� > 0)

is given by

f(x; v) =
1

v
e�

�
v (x+a)h+�a +

Z x

�a
e�

�
v (x�y)

1

v
g(y; v) dy (v > 0) (9)

f(x; v) =
1

jvje
� �
jvj (a�x)h�a +

Z a

x

e�
�
jvj (y�x) 1

jvjg(y; v) dy (v < 0) (10)

with

h+�a = (1�G�)�1O1e�
2�a
jvj O2

�Z a

�a
e�

�
v (a�y)g(y; v) dy

�
(11)

+(1�G�)�1O1
�Z a

�a
e�

�
jvj (y+a)g(y; v) dy

�

h�a = O2

�
e�

2�a
jvj h+�a +

Z a

�a
e�

�
v (a�y)g(y; v) dy

�
(12)

and
G�f = O1

�
e�

2�a
jvj O2

�
e�

2�a
jvj f

��
(13)

where the operator "e�
2�a
jvj " refers to the multiplication operator by the function

e�
2�a
jvj : For the sake of simplicity, if no ambiguity may occur, the di¤erent (nat-

ural) L1 norms as well as their corresponding operator norms are denoted by
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the symbol kk : Note that kG�k � e�4aRe� (Re� � 0) and kG0k = 1: Under the
general assumption (6), the essential spectral radii of the stochastic operators

G0 = O1O2 : L
1 ((0;+1) ; dv)! L1 ((0;+1) ; dv)

eG0 = O2O1 : L
1 ((�1; 0) ; dv)! L1 ((�1; 0) ; dv)

are strictly less than 1; in particular, G0 and eG0 admit 1 as an isolated eigenvalue
associated respectively to the eigenfunctions

h0 2 L1+ ((0;+1) ; dv) (14)

and eh0 2 L1+ ((�1; 0) ; dv)
with

O2h0 = eh0 and O1eh0 = h0: (15)

Furthermore, TO admits 0 as eigenvalue (i.e.
�
etTO

�
t�0 has an invariant density)

if and only if Z 1

0

h0(v)

v
dv +

Z 0

�1

eh0(v)
jvj dv <1; (16)

in this case, a space homogeneous invariant density is given by

 0(v) =

(
1
vh0(v) (v > 0)
1
jvj
eh0(v) (v < 0); (17)

see [21] for all these results. We note that (16) requires that the kernels of the
di¤use parts Ki vanish (in an appropriate sense) at v = 0. For example, (16) is
not satis�ed in the purely di¤use case (i.e. �1 = �2 = 1) if

inf
(v;v0)

ki(v; v
0) > 0 (i = 1; 2): (18)

Of course, the object of this paper is meaningful only if
�
etTO

�
t�0 has an invari-

ant density. A su¢ cient condition ensuring (16) is given in Theorem 5 below,
(see also Remark 6). Actually, the present paper is built on much stronger
structural assumptions (see below) so that the existence of the invariant density
is guaranteed.
If
�
etTO

�
t�0 is irreducible (a criterion is given in Theorem 7) then, under

the normalization
R


 0 = 1, the invariant density  0 is unique and the C0-

semigroup
�
etTO

�
t�0 is mean ergodic with ergodic projection

P : g !
�Z




g

�
 0; (19)

i.e.
L1(
) = Ker(TO)�Ran(TO)
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and the mean ergodic convergence

s lim
t!+1

t�1
Z t

0

esTOds = P

(s limt!+1 refers to strong limit) holds where P is the projection on Ker(TO)
along Ran(TO):
The convergence

s lim
t!+1

etTO = P

is proved in [21] under the condition �1�2 > 0 by using a result (from [24])
on partially integral semigroups; (a new approach of this result is considered in
[22]).
We point out that if (16) were not satis�ed then

�
etTO

�
t�0 would be sweeping

with respect to the sets

(�a; a)� [(�1;�") [ (";+1)] (" > 0)

in the sense that the total mass of etTOg concentrates in the vicinity of v = 0
(i.e. around the tangential velocities) as t! +1, i.e.Z �"

�1

Z +a

�a

���etTOg� (x; v)�� dx dv + Z 1

"

Z +a

�a

���etTOg� (x; v)�� dx dv ! 0 (20)

as t ! +1; [21]. Actually, the following alternative holds:
�
etTO

�
t�0 is either

strongly convergent if an invariant density exists or is sweeping in the sense (20)
otherwise; (i.e. a Foguel-like alternative holds, see [16], Theorem 5. 10. 1, p.
130).
Thus, we are concerned here with quantitative time asymptotics of strongly

convergent kinetic models; (the relevant open question for the non-convergent
kinetic models is whether we can quantify their sweeping behaviour (20), see
Remark 32 (ii)). To this end, a key preliminary result is that

r� (Gis) < 1 (s 2 Rn f0g)

(r� refers to spectral radius) and

f� 2 C; Re� > 0g 3 �! (1�G�)�1 2 L(L1(
))

extends continuously (in the strong operator topology) to iRn f0g : Various tech-
nical estimates are given in this paper. We can summarize them in two key
statements. Let k 2 N; k 6= 0; (the integer k comes from the structural assump-
tions).
The �rst statement is: ifZ a

�a

Z 1

�1

jg(x; v)j
jvjk+1

dxdv < +1
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then
f� 2 C; Re� > 0g 3 �! (�� TO)�1g 2 L1(
)

extends continuously to iRn f0g and, with

Fg(s) := lim
�!is
Re�>0

(�� TO)�1g; (21)

the map
Rn f0g 3 s! Fg(s) 2 L1(
)

lies in Ck
�
Rn f0g ; L1(
)

�
with the uniform Ck estimates djdsj Fg(s)

 � C

 
j+1X
p=0

(1�Gis)�1p!
 g

jvjk+1

 (0 � j � k; s 6= 0)

where C > 0 is a constant, see Theorem 20.
The second statement is:

sup
jsj��

(1�Gis)�1 <1; (� > 0)

and there exists a constant C > 0 such that(1�Gis)�1 � C

s2
(for small s 2 Rn f0g);

see Theorem 23.
It follows that

sup
jsj��

 djdsj Fg(s)
 < +1 (� > 0; 0 � j � k)

and there exists a constant C > 0 such that djdsj Fg(s)
 � C

jsj2(j+1)
(0 � j � k) (for small s 2 Rn f0g)

and consequently a quanti�ed version of Ingham�s theorem (see Corollary 3
below) impliesetTOg � �Z




g

�
 0

 = O
�
t�

k
2(k+1)+1

�
; (t! +1) (22)

for any initial data g 2 D(TO) such that
 g

jvjk+1

 < +1; see Theorem 29.

Apart from Theorem 21 and Theorem 23 (which hold under the general
condition �1+�2 > 0), the paper is based upon a set of structural assumptions
(37)(38)(43)(44). A priori, Assumptions (43)(44), which say that

jvj�(k+1)O1 jvjk+1 and jvj�(k+1�p)O2 jvjk+1�p are bounded (0 � p � k) ;
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are checkable. Indeed jvj�j Ri jvjj (i = 1; 2) are always bounded while the
boundedness of jvj�j Ki jvjj (i = 1; 2) is a condition on the kernel ofKi (i = 1; 2)
in the neighborhood of v = 0. On the other hand, (37)(38) are checkable only
if O1 is a kernel operator (or if O2 is a kernel operator); this explains why the
condition "�1 = 1 or �2 = 1" appears in di¤erent statements. We point out
that the need for conditions on the kernels of Ki (i = 1; 2) near the tangential
velocities (i.e. v = 0) is not fortuitous since the existence of an invariant density
already requires a condition in the same spirit, see (16) and (18).
The fact that k

2(k+1)+1 !
1
2 (k !1) shows that if there exists Cj > 0 such

that  djdsj Fg(s)
 � Cj

jsj2(j+1)
(0 < jsj � 1; j 2 N)

(this occurs if the structural assumptions are satis�ed for all k 2 N) then the
quanti�ed version of Ingham�s tauberian theorem provides us with the rate

O

�
1

t
1

2+"

�
; (" > 0) : (23)

It is a priori unclear whether we can reach the limit rate O
�
1p
t

�
or can go

beyond this rate for the kinetic semigroups
�
etTO

�
t�0 (note that much better

rates of convergence occur for bounded initial datum in balls, see [1][15]). We
refer to Remark 31 and Remark 32 for di¤erent open problems suggested by our
construction.
Our paper is organized as follows:
In Section 2, we give a corollary of a quanti�ed version of Ingham�s theorem

[11] which implies the rates of convergenceetT g � Pg = O
�
t�

k
�(k+1)+1

�
; t! +1

for bounded mean ergodic C0-semigroups
�
etT
�
t�0 on a Banach space X with

ergodic projection P (and generator T ) for initial data

g 2 D(T ) \ (Ker(T ) +Ran(T )) (24)

provided that Fg(s) := lim"!0+("+is�T )�1g (s 6= 0) exists, lies in Ck (Rn f0g ;X)
for some k 2 N and satis�es the estimates

sup
jsj�1

F (j)g (s)
 < +1 and

F (j)g (s)
 � C jsj��(j+1) ; (0 � j � k; 0 < jsj � 1):

In Section 3, we give a su¢ cient criterion for the existence of an invariant
density of

�
etTO

�
t�0. A su¢ cient criterion of irreducibility of

�
etTO

�
t�0 is given

in Section 4. The combination of the last two results implies that the C0-
semigroup

�
etTO

�
t�0 is mean ergodic. Because of the importance of (24), a

su¢ cient criterion for a given g 2 L1(
) to belong to the range of TO is given
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in Section 5. Section 6 is devoted to �(TO)\ iR; the boundary spectrum of the
generator; while 0 2 �(TO) is always true, we show that the imaginary axis is
equal to the boundary spectrum at least when �1 = 1 or �2 = 1. In Section 7,
we explain why

Fg(s) := lim
"!0+

("+ is� TO)�1g (s 6= 0)

exists and lies in Ck
�
Rn f0g ;L1(
)

�
if
R


jg(x; v)j jvj�(k+1) dxdv < +1 and

if the boundary �uxes h+�a and h�a given by (11)(12) with � = is (s 6= 0)
are Ck functions of s 2 Rn f0g and their jth derivatives belong to suitable
weighted spaces depending on j (1 � j � k). Such conditions depends heavily
on the existence of (1 � Gis)

�1 (s 6= 0) and its derivatives in s (in suitable
spaces) which are thus the cornerstone of this work. The existence and estimate
of (1 � Gis)

�1 (s 6= 0) are postponed until Section 11. Under the general
condition

�1 + �2 > 0; (25)

we show that r�(jGisj) < 1 (s 6= 0) where jGisj is the linear modulus of Gis (see
[10]). The proof relies on strict comparison of spectral radii of positive operators
in a context of domination [19]. We show also the key estimates

sup
j�j��

(1�G�)�1 < +1 (� > 0; Re� � 0)

(1�G�)�1 = O

 
1

jIm�j2

!
(�! 0; Re� � 0; � 6= 0): (26)

The proof of (26) is quite involved and relies on a second order expansion about
s = 0 (uniformly in " � 0) of a suitable function related to R 3 s ! kG"+isk :
In Section 8, we show by induction the key estimate of the derivatives djdsj (1�Gis)�1


L(L1(dv);L1(jvj�k�1+jdv))

� C

j+1X
l=0

(1�Gis)�1l (1 � j � k)

by exploiting a di¤erential equation satis�ed by Rn f0g 3 s! (1�Gis)�1: It is
at this place that we need that at least one of the boundary conditions must be
completely di¤use. In Section 9, we deduce the estimate on the left �uxdjh+�ad�j


L1(jvj�k�1+pdv)

� C

 
j+1X
l=0

(1�Gis)�1l!
 g

jvjk+1

 (0 � j � k)

and a similar estimate on the right �ux h�a : In Section 10, we sum up the
previous estimates in the statement djdsj Fg(s)

 � C

 
j+1X
l=0

(1�Gis)�1l!
 g

jvjk+1

 (0 � j � k; s 6= 0) :

11



Finally, in Section 12, we deduce the algebraic estimates of (21) on iRn f0g

sup
jsj��

 djdsj Fg(s)
 < +1; (� > 0; 0 � j � k)

 djdsj Fg(s)
 � C

s2(j+1)

 g

jvjk+1

 (0 � j � k; s! 0)

and derive, from the quanti�ed version of Ingham�s theorem, the rate of conver-
gence etTOg � �Z




g

�
 0

 = O
�
t�

k
2(k+1)+1

�
; (t! +1)

for any initial data g 2 D(TO) \ L1(
; dv
jvjk+1 ):

As far as we know, all these functional analytic results on collisionless kinetic
theory appear here for the �rst time. Some open problems suggested by our
construction in slab geometry are pointed out in Remark 31 and Remark 32
below. We note that this work could be extended to non-monoenergetic free
transport equations in slab geometry with more general re�ection operators
Ri (i = 1; 2), see Remark 33. However, its extension to multidimensional-space
geometries is an open problem, see Remark 34. For the sake of simplicity, in
all the paper, we will denote by the same symbol C various positive constants
occuring in our di¤erent proofs and statements.

2 A quanti�ed version of Ingham�s theorem

Let X be a complex Banach space. For any f 2 L1 (R+; X) ; we de�ne its
Laplace transform by

bf(�) = Z +1

0

e��tf(t)dt (Re� > 0):

Let � 2 R: We say that i� is a weakly regular point for bf if there exist " > 0
and h 2 L1((� � "; � + ") ; X) such that

bf(�+ i:)! h(:) in the distributional sense on (� � "; � + ") as �! 0+:

The weak half-line spectrum spw(f) of f is de�ned as the set of all real numbers
� such that i� is not weakly regular for bf . Then spw(f) is a closed subset of R
and there exists F 2 L1loc(Rnspw(f); X) such thatbf(�+ i:)! F (:) in the distributional sense on Rnspw(f) as �! 0+; (27)

see e.g. [2] Lemma 4.9.9, p. 326. We give now a quanti�ed version of the
classical Ingham�s tauberian theorem (see e.g. [2] Theorem 4.9.5, p. 327). This
version is a special case of ([11] Theorem 2.13 (a)).
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Theorem 1 Let X be a complex Banach space and suppose that f belongs to

L1 (R+; X), is Lipschitz continuous and supt�0
R t0 f(s)ds < +1: Suppose

furthermore that spw(f) � f0g and F (given by (27)) lies in Ck (Rn f0g ;X) for
some k 2 N: If supjsj�1

F (j)(s) < +1 (0 � j � k) and ifF (j)(s) � C jsj��(j+1) ; ((0 � j � k; 0 < s � 1)

for some constants C > 0; � � 1 then

kf(t)k = O
�
t�

k
�(k+1)+1

�
; (t! +1) :

Now suppose that
�
etT
�
t�0 is a bounded C0-semigroup with generator T

on X, and that f(t) = etT g (t � 0) for some g 2 X: Then f is a bounded
continuous function. It is Lipschitz continuous if g 2 D(T ) and has uniformly
bounded primitive if g 2 Ran(T ): Recall that the Laplace of f is given by
(Lf) (�) = R(�; T )g for Re� > 0: Hence, by a calculation similar to that in
([11], Eq. (1.2)) we see that f satis�es the assumptions of Theorem 1 provided
that g 2 D(T ) \ Ran(T ) and R(�; T )g extends continuously to a su¢ ciently
smooth function on iRn f0g : Note that, crucially for us, this is possible for
particular initial values g 2 X even if iR � �(T ). We obtain the following
corollary of Theorem 1.

Corollary 2 Let
�
etT
�
t�0 be a bounded C0-semigroup with generator T on a

complex Banach space X and let g 2 D(T ) \ Ran(T ): Suppose that R(�; T )g
(Re� > 0) extends continuously to iRn f0g and that

Fg(s) := lim
"!0+

R(is+ "; T )g

lies in Ck (Rn f0g ;X) for some k 2 N: If supjsj�1
F (j)g (s)

 < +1 (0 � j � k)

and if F (j)g (s)
 � C jsj��(j+1) ; (0 � j � k; 0 < s � 1)

for some constants C > 0; � � 1 thenetT g = O
�
t�

k
�(k+1)+1

�
; (t! +1) :

In this paper, we need the following simple consequence of Corollary 2.

Corollary 3 Let
�
etT
�
t�0 be a bounded mean ergodic C0-semigroup with gen-

erator T on a complex Banach space X with ergodic projection P: Let

g 2 D(T ) \ (Ker(T ) +Ran(T )) :

Suppose that R(�; T )g (Re� > 0) extends continuously to iRn f0g and that

Fg(s) := lim
"!0+

R(is+ "; T )g

13



lies in Ck (Rn f0g ;X) for some k 2 N: If supjsj�1
F (j)g (s)

 < +1 (0 � j � k)

and if F (j)g (s)
 � C jsj��(j+1) ; (0 � j � k; 0 < s � 1)

for some constants C > 0; � � 1 thenetT g � Pg = O
�
t�

k
�(k+1)+1

�
; (t! +1) :

Remark 4 Theorem 1 can be complemented by the statement that if F 2
C1 (Rn f0g ;X) and if there exists a constant C > 0 such thatF (j)(s) � C j! jsj��(j+1)+1 ; (j 2 N; 0 < s � 1)

then kf(t)k = O(
�
ln(t)
t

� 1
�

); (t! +1), (see [11] Theorem 2.13 (b)).

3 On existence of invariant density

We complement a result from [21].

Theorem 5 We assume that either O1 = K1 and both jvj�1K1 and jvj�1K2 jvj
are bounded or O2 = K2 and both jvj�1K2 and jvj�1K1 jvj are bounded. Then
(16) is satis�ed and consequently

�
etTO

�
t�0 has an invariant density.

Proof. Without loss of generality, we may suppose that �1 = 1 and therefore
�1 = 0: We know that G0h0 = h0 and eG0h0 = eh0. Thus

K1 (�2R2 + �2K2)h0 = h0

so
R 1
0
h0(v)
v dv <1: By (15)

eh0 = O2h0 = �2R2h0 + �2K2h0:

By assumption K2h0 2 L1
�

dv
jvj

�
if h0 2 L1

�
dv
jvj

�
: Since L1

�
dv
jvj

�
is invariant

under R2 we have eh0 2 L1 � dv
jvj

�
:

Remark 6 The assumptions in Theorem 5 can be weakened. For instance, we
can replace the boundedness of jvj�1K1 by the assumption that

jvj�1K1R2K1 and jvj�1K1K2K1 are bounded.

Indeed, since [K1 (�2R2 + �2K2)]
2
h0 = h0 then h0 2 L1

�
dv
jvj

�
provided that

jvj�1K1 (�2R2 + �2K2)K1 is bounded.

14



4 On irreducibility of (etTO)t�0
We give two complementary irreducibility criteria.

Theorem 7 We assume that either O1 = K1 or O2 = K2. If

G0 = O1O2 : L
1 ((0;+1) ; dv)! L1 ((0;+1) ; dv)

is irreducible and if O2 is strict positivity preserving in the sense that

h(v) > 0 a.e. =) (O2h) (v) > 0 a.e.

then (etTO )t�0 is irreducible.

Proof. Note that

(1�G�)�1 =
1X
j=0

Gj� (� > 0)

so that for any nonnegative h and h�

h(1�G�)�1h; h�i � hGj�h; h
�i; (j 2 N; � > 0):

Since G0 is irreducible then for any non trivial nonnegative h and h� there exists
an integer j (depending a priori on h and h�) such that hGj0h; h�i > 0: Since

lim
�!0+

hGj�h; h
�i = hGj0h; h�i

then hGj�h; h�i > 0 for � small enough. Since � ! hGj�h; h�i 2 R+ is nonin-
creasing, an analyticity argument shows that

hGj�h; h
�i > 0; (� > 0)

and �nally h(1 � G�)
�1h; h�i > 0 so (1 � G�)

�1h > 0 a.e. Thus (11) gives
h+�a > 0 a.e. for any non trivial nonnegative g and (12) gives h

�
a > 0 a.e. since

O2 is strict positivity preserving. Finally (1� TO)
�1 is positivity improving or

equivalently (etTO )t�0 is irreducible.

Remark 8 Note that G0 is an integral operator with kernel q(v; v0): The irre-
ducibility of G0 amounts toZ

[0;1]nS

�Z
S

q(v; v0)dv0
�
dv > 0

for any measurable S � [0; 1] such that S and [0; 1] nS have positive measure.
In particular, this the case if q(v; v0) > 0 a.e. Note that O2 = �2R2+ �2K2 is
automatically strict positivity preserving if �2 > 0:
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Remark 9 Another irreducibility criterion is a "dual" version of Theorem 7:
Assume that either O1 = K1 or O2 = K2. IfeG0 = O2O1 : L

1 ((�1; 0) ; dv)! L1 ((�1; 0) ; dv)

is irreducible and if O1 is strict positivity preserving then (etTO )t�0 is irreducible.
Indeed, it is easy to see that

h�a =
�
I � eG���1O2 �e��

v 2aO1

�Z a

�a
e�

�
jvj (y+a)g(y; v) dy

�
+

�Z a

�a
e�

�
v (a�y)g(y; v) dy

��
eG� := O2e

��
v 2aO1e

� �
jvj 2a

h+�a = O1h
�
�a = O1

�
e�

�
jvj 2ah�a +

Z a

�a
e�

�
jvj (y+a)g(y; v) dy

�
and then it su¢ ces to exchange the roles of h+�a and h

�
a and to argue as previ-

ously.

5 On the range of TO
According to Corollary 3, the knowledge of the range of the generator is a key
point. To this end, we describe now a useful subspace of the range of TO.

Theorem 10 We assume that either O1 = K1 and both jvj�1K1 and jvj�1K2 jvj
are bounded or O2 = K2 and both jvj�1K2 and jvj�1K1 jvj are bounded. We
assume additionally, in the �rst case, that G0 = O1O2 is irreducible or, in the
second case, that eG0 = O2O1 is irreducible. Let g 2 L1(
): If

1

jvjg 2 L
1(
) (28)

and if Z



g = 0 (29)

then g 2 Ran(TO):

Proof. Note that (etTO )t�0 is a stochastic semigroup so thatZ



TO' = 0; ' 2 D(TO)

and consequently (29) is a necessary condition for g 2 L1(
) to belong to
Ran(TO). We consider the case �1 = 1: Let

g� : (y; v) 2 (�a; a)� (�1; 0)! g(y; v);

g+ : (y; v) 2 (�a; a)� (0;+1)! g(y; v)
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and bg�(v) := Z a

�a
g�(y; v) dy; bg+(v) := Z a

�a
g+(y; v) dy:

Note that by assumption

bg� 2 L1�(�1; 0) ; dvjvj
�
and bg+ 2 L1�(0;+1) ; dvjvj

�
:

By inspection of (9)(10)(11)(12), for solving (��TO)f = g with � = 0; it su¢ ces
that (28) is satis�ed,

O1O2 (bg+) +O1 (bg�) 2 Ran(1�G0); (30)

that h+�a, given by (11), is such that

1

jvjh
+
�a 2 L1 ((0;+1) ; dv) (31)

and that
1

jvjh
�
a :=

1

jvjO2
�
h+�a + bg+� 2 L1 ((�1; 0) ; dv) : (32)

Note that 1 is an isolated algebraically simple eigenvalue of G0 = O1O2 associ-
ated with the eigenfunction h0 (see (14)) so that

Ran(1�G0) is closed in L1 ((0;+1) ; dv) :

By the Fredholm alternative

G0 (bg+) +O1 (bg�) 2 Ran(1�G0)
if and only if G0 (bg+) + O1 (bg�) is orthogonal (for the duality pairing) to the
dual eigenfunction h�0 2 L1 ((0;+1) ; dv) i.e.

hG0 (bg+) +O1 (bg�) ; h�0i = 0
or

hG0 (bg+) ; h�0i+ hO1 (bg�) ; h�0i = 0:
Since

hG0 (bg+) ; h�0i = h bg+; G�0h�0i = h bg+; h�0i
we have

hbg+ +O1 (bg�) ; h�0i = 0:
On the other hand, G0 : L1 ((0;+1) ; dv) ! L1 ((0;+1) ; dv) is integral pre-
serving, i.e. Z 1

0

G0' =

Z 1

0

' 8' 2 L1 ((0;+1) ; dv)

17



so G�01 = 1 and h
�
0 = 1: ThusZ 1

0

bg+ + Z 1

0

O1 (bg�) = 0:
Since O1 is also integral preserving we haveZ 1

0

O1 (bg�) = Z 0

�1
bg�

and �nally (30) amounts to Z 1

0

bg+ + Z 0

�1
bg� = 0

which is nothing but (29). Hence (30) is satis�ed. Note that

L1 ((0;+1) ; dv) = Ker(I �G0)�Ran(1�G0)

and Ran(1�G0) is invariant under G0. It follows that on Ran(1�G0)

(1�G0)�1 = I +G0 (1�G0)�1

so

h+�a = (1�G0)�1 [O1O2 (bg+) +O1 (bg�)]
= O1O2 (bg+) +O1 (bg�) +G0 (1�G0)�1 [O1O2 (bg+) +O1 (bg�)]

shows that h+�a 2 L1
�
(0;+1) ; dv

jvj

�
since 1

jvjO1 is bounded. Note that

1

jvjh
�
a =

1

jvjO2
�
h+�a + bg+�

=
1

jvjR2
�
h+�a + bg+�+ 1

jvjK2

�
h+�a + bg+�

=
1

jvjR2 jvj
 
h+�a
jvj +

bg+
jvj

!
+
1

jvjK2 jvj
 
h+�a
jvj +

bg+
jvj

!
:

Since

h+�a + bg+ 2 L1�(0;+1) ; dvjvj
�

we have, using our assumption,

1

jvjK2 jvj
 
h+�a
jvj +

bg+
jvj

!
2 L1

�
(�1; 0) ; dvjvj

�
:

We always have

1

jvjR2 jvj
 
h+�a
jvj +

bg+
jvj

!
2 L1

�
(�1; 0) ; dvjvj

�
:

This shows (32). The case �2 = 1 can be treated similarly.
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Remark 11 We do not know whether (28) is a necessary condition for g to
belong to Ran(TO):

6 On the boundary spectrum of TO
This section is devoted to the analysis of �(TO)\ iR: Note �rst that the type of
(etTO )t�0 is equal to 0 since (etTO )t�0 is a stochastic semigroup. Thus 0 2 �(TO)
since the type of (etTO )t�0 coincides with the spectral bound of its generator,
see e.g. [20].

Theorem 12 Suppose that O1 = K1 and that jvj�1K1 is bounded (or O2 = K2

and jvj�1K2 is bounded). Then iR � �(TO):

Proof. A simple inspection of (�� TO)�1g shows that it consists of two parts,
the �rst one being

H�g := �fv>0g

Z x

�a
e�

�
v (x�y)

1

v
g(y; v) dy + �fv<0g

Z a

x

e�
�
jvj (y�x) 1

jvjg(y; v) dy

which is nothing but (��T0)�1g where T0 is the classical free transport operator
with the "zero incoming" boundary condition. It is well known (see [17]) that

�(T0) = f� 2 C; Re� � 0g ; (33)

(the proof is given there in L2(
) but is the same in all Lp spaces (p � 1)). Let
us regard this result in a slightly di¤erent way. Indeed, let


+ = (�a; a)� (0; 1) and 
� = (�a; a)� (�1; 0) :

We note that L1(
+) and L1(
�) are invariant under (��T0)�1 (or equivalently
under (etT0)t�0) and therefore T0 splits as T0 = T�0 � T+0 where T�0 are the
generators of the restrictions of (etT0)t�0 to the subpaces L1(
�): Thus

(�� T+0 )�1g+ =
Z x

�a
e�

�
v (x�y)

1

v
g+(y; v) dy

and

(�� T�0 )�1g� =
Z a

x

e�
�
jvj (y�x) 1

jvjg�(y; v) dy

where g� are the restrictions of g to L1(
�): As in [17], we can show that

�(T�0 ) = �(T+0 ) = f� 2 C; Re� � 0g :

In particular
lim
"!0+

("+ is� T+0 )�1 = +1 (s 2 R) (34)

and
lim
"!0+

("+ is� T�0 )�1 = +1 (s 2 R): (35)
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(i) Suppose �rst that �1 = 1 and that jvj�1K1 is bounded. We know that
(�� TO)�1g is given for positive v by

1

v
e�

�
v (x+a)h+�a + (�� T+0 )�1g+

where

h+�a = (1�G�)�1O1
�
e�

2�a
jvj O2

�Z a

�a
e�

�
v (a�y)g(y; v) dy

�
+

�Z a

�a
e�

�
jvj (y+a)g(y; v) dy

��
:

Note that
(1�G�)�1O1 = O1 +G�(1�G�)�1O1

and G� = O1e
� 2�a

jvj O2e
� 2�a

jvj : According to Corollary 25 (1 � G�)
�1 (Re� > 0)

extends continuously to iRn f0g (in the strong operator topology). It follows
that the norm of the operator (depending on � = "+ is; " > 0)

L1(
) 3 g ! 1

v
e�

�
v (x+a)h+�a 2 L1(
+)

remains uniformly bounded when "! 0+ (8s 6= 0): Finally (34) implies that

lim
"!0+

sup
kgk�1

("+ is� TO)�1gL1(
+) = +1 (s 6= 0)

whence is 2 �(TO) (8s 6= 0):
(ii) Suppose now that �2 = 1 and that jvj

�1
K2 is bounded. It is easy to see

that (�� TO)�1g can also be given by

f(x; v) =
1

v
e�

�
v (x+a)h+�a +

Z x

�a
e�

�
v (x�y)

1

v
g(y; v) dy (v > 0)

f(x; v) =
1

jvje
� �
jvj (a�x)h�a +

Z a

x

e�
�
jvj (y�x) 1

jvjg(y; v) dy (v < 0)

where

h�a =
�
I � eG���1O2 �e��

v 2aO1

�Z a

�a
e�

�
jvj (y+a)g(y; v) dy

�
+

�Z a

�a
e�

�
v (a�y)g(y; v) dy

��
eG� := O2e

��
v 2aO1e

� �
jvj 2a

and

h+�a = O1h
�
�a = O1

�
e�

�
jvj 2ah�a +

Z a

�a
e�

�
jvj (y+a)g(y; v) dy

�
:

In particular, (�� TO)�1g is given for negative v by

1

jvje
� �
jvj (a�x)h�a + (�� T�0 )�1g�:
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By noting that �
I � eG���1O2 = O2 + eG�(1� eG�)�1O2;

and using the fact that (1� eG�)�1 (Re� > 0) extends continuously to iRn f0g
in the strong operator topology (see Remark 26), we see as before that (35)
implies

lim
"!0+

sup
kgk�1

("+ is� TO)�1gL1(
�) = +1 (s 6= 0)

and is 2 �(TO) (8s 6= 0):

Remark 13 A priori, it is not clear whether iR � �(TO) for more general
partly di¤use models.

7 The objects to be estimated

Note that H�g = (� � T0)
�1g does not extend to iR for all g because of (33).

On the other hand, we can extend it on a suitable subspace. Indeed, let k 2
N; (k 6= 0): It is easy to see that H�g extends to the whole closed half space
f� 2 C; Re� � 0g with the Ck norm estimates @j@�jH�g

 � (2a)j
 g

jvjj+1

 (0 � j � k; Re� � 0) (36)

provided that
 g

jvjk+1

 < +1: Actually, to estimate (� � TO)
�1g up to the

imaginary axis, the key point is to estimate in Ck norm the boundary terms

1

v
e�

�
v (x+a)h+�a;

1

jvje
� �
jvj (a�x)h�a :

Consider �rst
1

v
e�

�
v (x+a)h+�a:

Note that a priori h+�a 2 L1((0;+1]; dv): Since

@k
�
1
v e
��

v (x+a)h+�a

�
@�k

=
kX
j=0

�
k
j

�
@j

@�j

�
1

v
e�

�
v (x+a)

�
@k�j

@�k�j
�
h+�a

�
=

kX
j=0

�
k
j

��
�x+ a

v

�j
1

v
e�

�
v (x+a)

@k�j

@�k�j
h+�a

our main concern is to estimate the norms 1jvj @k@�k h+�a
 ;
 1

jvj2
@k�1

@�k�1
h+�a

 ; :::;
 1

jvjk
@

@�
h+�a

 ;
 1

jvjk+1
h+�a


in

f� 2 C; Re� � 0; � 6= 0g :
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8 Operator estimates up to the imaginary axis

Since

h+�a = (1�G�)�1O1
�
e�

2�a
jvj O2

�Z a

�a
e�

�
v (a�y)g(y; v) dy

�
+

�Z a

�a
e�

�
jvj (y+a)g(y; v) dy

��
then the key object to deal with is the resolvent (1�G�)�1 where

G� = O1e
� 2�a

jvj O2e
� 2�a

jvj :

Note that G� is de�ned on the closed half space f� 2 C; Re� � 0g and kG�k �
e�4aRe� (Re� � 0): The derivatives of G�

@pG�
@�p

=

pX
j=0

�
p
j

�
O1

@j

@�j

�
e�

2�a
jvj
�
O2

@p�j

@�p�j

�
e�

2�a
jvj
�

= (�2a)p
pX
j=0

�
p
j

�
O1

 
1

jvjj
e�

2�a
jvj

!
O2

 
1

jvjp�j
e�

2�a
jvj

!
(0 � p � k)

are uniformly bounded on f� 2 C; Re� � 0g (for the usual operator norms)
provided that

O1
1

jvjj
O2

1

jvjp�j
are bounded operators (0 � j � p � k). (37)

We need also the additional conditions

G� : L
1((0;+1]; dv)! L1((0;+1];

dv

jvjk+1
)

and
d

d�
G� : L

1((0;+1]; dv)! L1((0;+1];
dv

jvjk
)

or more precisely

1

jvjk+1
O1O2;

1

jvjk
O1

1

jvjO2 and
1

jvjk
O1O2

1

jvj are bounded operators. (38)

Remark 14 If O1 or O2 is weakly compact then at least one of the two is
an integral operator and consequently Assumptions (37)(38) are checkable in
principle.

We will show, under the condition �1 + �2 > 0; that r� (G�) < 1 (Re� �
0, � 6= 0) and (1�G�)�1 extends continuously (in the strong operator topology)
to iRn f0g ; (see Corollary 25). We are ready to give our key estimates of the
derivatives of (1�G�)�1 in terms of

(1�G�)�1 :
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Lemma 15 Suppose that (37)(38) are satis�ed. Then there exists a constant
C > 0 such that for all s 2 R; s 6= 0 djdsj (1�Gis)�1


L(L1(dv);L1(jvj�k�1+jdv))

� C

j+1X
l=0

(1�Gis)�1l (1 � j � k):

Proof. Note that
(1�G�)�1 = I +G�(1�G�)�1 (39)

and
d

d�
(1�G�)�1 = (1�G�)�1G0�(1�G�)�1 (40)

so

d

d�
(1�G�)�1 =

�
I +G�(1�G�)�1

�
G0�
�
I +G�(1�G�)�1

�
= G0�

�
I +G�(1�G�)�1

�
+G�(1�G�)�1G0�

�
I +G�(1�G�)�1

�
and (37)(38) show that

d

d�
(1�G�)�1 : L1((0;+1]; dv)! L1((0;+1];

dv

jvjk
)

and that there exists a constant C > 0 such that dd� (1�G�)�1

L(L1(dv);L1(jvj�kdv))

� C
�
1 +

(1�G�)�1+ (1�G�)�12� :
Let us show by induction that

dj

d�j
(1�G�)�1 : L1((0;+1]; dv)! L1((0;+1];

dv

jvjk+1�j
) (1 � j � k)

and there exists a constant C > 0 such that djd�j (1�G�)�1

L(L1(dv);L1(jvj�k�1+jdv))

� C

 
1 +

j+1X
l=1

(1�G�)�1l! :
(41)

We already know that this statement is true for j = 1: It su¢ ces to show that
if 1 � p < k and that if djd�j (1�G�)�1


L(L1(dv);L1(jvj�k�1+jdv))

� C

 
1 +

j+1X
l=1

(1�G�)�1l! (1 � j � p)

then estimate (41) is true for j = p+ 1: Let

f(�) = (1�G�)�1:

23



According to (40), f(�) satis�es the di¤erential equation

f 0(�) = f(�)G0(�)f(�): (42)

Di¤erentiating (42) p times we get

dp+1

d�p+1
f =

pX
q=0

�
p
q

��
dq

d�q
f

�
dp�q

d�p�q
(G0(�)f(�))

=

pX
q=0

�
p
q

��
dq

d�q
f

� p�qX
m=0

�
p� q
m

��
dp�q�m

d�p�q�m
G0(�)

��
dm

d�m
f

�

=

pX
q=0

�
p
q

��
dq

d�q
f

� p�qX
m=0

�
p� q
m

��
dp�q�m+1

d�p�q�m+1
G(�)

��
dm

d�m
f

�

=

pX
q=0

p�qX
m=0

�
p
q

��
p� q
m

��
dq

d�q
f

��
dp�q�m+1

d�p�q�m+1
G(�)

��
dm

d�m
f

�
:

Note that jvj�k�1+j � jvj�k�1+j
0
(j � j0) shows that

L1(jvj�k�1+j dv) � L1(jvj�k�1+j
0
dv)

and

k'k
L1(jvj�k�1+j0dv) � k'kL1(jvj�k�1+jdv) 8' 2 L1(jvj�k�1+j dv):

Thus  dmd�m f(�)

L(L1(dv))

�
 dmd�m f(�)


L(L1(dv);L1(jvj�k�1+mdv))

and (by assumption) dmd�m f(�)

L(L1(dv);L1(jvj�k�1+mdv))

� C

 
1 +

m+1X
l=1

kf(�)kl
!

(m � p� q)

so  dmd�m f(�)

L(L1(dv))

� C

 
1 +

m+1X
l=1

kf(�)kl
!

(m � p� q):

By (37) the derivatives dp�q�m+1

d�p�q�m+1G(�) are uniformly bounded for the natural
operator norms. Similarly,

dq

d�q
f(�) : L1(dv)! L1(jvj�k�1+q dv) � L1(jvj�k�1+p dv) (q � p)

and  dqd�q f(�)

L(L1(dv);L1(jvj�k�1+pdv))

�
 dqd�q f(�)


L(L1(dv);L1(jvj�k�1+qdv))

24



so (using the assumption) dqd�q f(�)

L(L1(dv);L1(jvj�k�1+pdv))

�
 dqd�q f(�)


L(L1(dv);L1(jvj�k�1+qdv))

� C

 
1 +

q+1X
r=1

kf(�)kr
!

(q � p):

On the other hand 
1 +

m+1X
l=1

kf(�)kl
! 

1 +

q+1X
r=1

kf(�)kr
!
= 1+

m+1X
l=1

kf(�)kl+
q+1X
r=1

kf(�)kr+
m+1X
l=1

q+1X
r=1

kf(�)kl+r :

Since m � p� q we have

l + r � m+ 1 + q + 1 � p+ 2

and there exists C > 0 such that dp+1d�p+1
f


L(L1(dv);L1(jvj�k�1+pdv))

� C

 
1 +

p+2X
l=1

kf(�)kl
!
:

Finally dp+1d�p+1
f


L(L1(dv);L1(jvj�k�1+p+1dv))

�
 dp+1d�p+1

f


L(L1(dv);L1(jvj�k�1+pdv))

� C

0@1 + (p+1)+1X
l=1

kf(�)kl
1A

and hence we are done.

9 Estimates of boundary �uxes

We note that if

O1 : L
1((0;+1];

dv

jvjk+1
)! L1((0;+1];

dv

jvjk+1
) is bounded

i.e. if
1

jvjk+1
O1 jvjk+1 is bounded (43)

then (39) gives

h+�a = (1�G�)�1O1
�
e�

2�a
jvj O2

�Z a

�a
e�

�
v (a�y)g(y; v) dy

�
+

�Z a

�a
e�

�
jvj (y+a)g(y; v) dy

��
= G�(1�G�)�1O1

�
e�

2�a
jvj O2

�Z a

�a
e�

�
v (a�y)g(y; v) dy

�
+

�Z a

�a
e�

�
jvj (y+a)g(y; v) dy

��
+O1e

� 2�a
jvj O2

�Z a

�a
e�

�
v (a�y)g(y; v) dy

�
+O1

�Z a

�a
e�

�
jvj (y+a)g(y; v) dy

�
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and

h+�aL1(jvj�(k+1)dv) � 2

 1

jvjk+1
O1O2

(1�G�)�1 kgk
+

 1

jvjk+1
O1O2

 kgk+
 1

jvjk+1
O1 jvjk+1


 g

jvjk+1

 :
Leibnitz�s rule shows that

dph+�a
d�p is given by

pX
j=0

�
p
j

��
dj

d�j
(1�G�)�1

�
dp�j

d�p�j

�
O1e

� 2�a
jvj O2

Z a

�a
e�

�
v (a�y)g(y; v) dy +O1

Z a

�a
e�

�
jvj (y+a)g(y; v) dy

�
or indeed by

pX
j=0

(�1)p�j
�
p
j

��
dj

d�j
(1�G�)�1

�
�

p�jX
m=0

�
p� j
m

�
(2a)

m
O1

1

jvjm e
� 2�a

jvj O2

Z a

�a
e�

�
v (a�y) (a� y)p�j�m g(y; v)

jvjp�j�m
dy

+

pX
j=0

(�1)p�j
�
p
j

��
dj

d�j
(1�G�)�1

� 
O1

Z a

�a
e�

�
jvj (y+a)(y + a)p�j

g(y; v)

jvjp�j
dy

!
:

Finally, Lemma 15 implies:

Lemma 16 Suppose that (37)(38)(43) are satis�ed. There exists a constant
C > 0 such thatdjh+�ad�j


L1(jvj�k�1+pdv)

� C

 
j+1X
l=0

(1�Gis)�1l!
 g

jvjk+1

 (0 � j � k):

We deal now with h�a .

Proposition 17 Suppose that (37)(38)(43) are satis�ed. If

jvj�(k+1�p)O2 jvjk+1�p is bounded (0 � p � k) (44)

then there exists a constant C > 0 such that

h�a L1(jvj�(k+1)dv) � C

"h+�aL1(jvj�(k+1)dv) +
 g

jvjk+1


#

dph�ad�p


L1(jvj�k�1+pdv)

� C

24 pX
j=0

dp�jh+�ad�p�j


L1(jvj�k�1+p�jdv)

+

 g

jvjk+1


35 (1 � p � k):
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Proof. Note that

h�a = O2

�
e�

2�a
jvj h+�a +

Z a

�a
e�

�
v (a�y)g(y; v) dy

�
or

h�a = O2

"
jvjk+1

 
e�

2�a
jvj

h+�a

jvjk+1
+

Z a

�a
e�

�
v (a�y)

g(y; v)

jvjk+1
dy

!#
shows thath�a L1(jvj�(k+1)dv) � jvj�(k+1)O2 jvjk+1

"h+�aL1(jvj�(k+1)dv) +
 g

jvjk+1


#
:

Leibnitz�s rule gives

dph�a
d�p

=

pX
j=0

�
p
j

�
O2

"�
dj

d�j
(e�

2�a
jvj

�
dp�jh+�a

d�p�j

#

+(�1)pO2
�Z a

�a
e�

�
v (a�y)(a� y)p g(y; v)

vp
dy

�
=

pX
j=0

�
p
j

�
(�2a)jO2

"
1

jvjj
e�

2�a
jvj
dp�jh+�a

d�p�j

#

+(�1)pO2
�Z a

�a
e�

�
v (a�y)(a� y)p g(y; v)

vp
dy

�
or

dph�a
d�p

=

pX
j=0

�
p
j

�
(�2a)jO2

"
jvjk+1�p 1

jvjk+1�p+j
e�

2�a
jvj
dp�jh+�a

d�p�j

#

+(�1)pO2
�
vk+1�p

Z a

�a
e�

�
v (a�y)(a� y)p g(y; v)

vk+1
dy

�
so there exists a constant C 0 > 0 such thatdph�ad�p


L1(jvj�k�1+pdv)

� C 0
jvj�(k+1�p)O2 jvjk+1�p

24 pX
j=0

dp�jh+�ad�p�j


L1(jvj�k�1+p�jdv)

+

 g

jvjk+1


35 :

This ends the proof.
Finally, Proposition 17 and Lemma 16 imply:

Corollary 18 Suppose that (37)(38)(43)(44) are satis�ed. There exists a con-
stant C > 0 such thatdjh�ad�j


L1(jvj�k�1+pdv)

� C

 
j+1X
l=0

(1�Gis)�1l!
 g

jvjk+1

 (0 � j � k):

Remark 19 Note that (43) and (44) are checkable since they are always satis-
�ed by the specular parts of the boundary operators Oi (i = 1; 2) and checkable
for the di¤use parts.
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10 On the resolvent on the imaginary axis

Combining Lemma 15, Lemma 16, Corollary 18, Corollary 25, (36) and using
the limit Fg(s) de�ned by (21) we get:

Theorem 20 Let k 2 N and let (37)(38)(43)(44) be satis�ed. Let

Z :=

(
g 2 L1(
); g

jvjk+1
2 L1(
)

)

be endowed with the norm kgkZ =
 g

jvjk+1

 : For any g 2 Z;
f� 2 C; Re� > 0g 3 �! (�� TO)�1g 2 L1(
)

extends continuously to iRn f0g as a Ck function Fg(:) and there exists a con-
stant C > 0 such that djdsj Fg(s)

 � C

 
j+1X
l=0

(1�Gis)�1l! kgkZ (0 � j � k; s 6= 0) :

11 Existence and estimates of (1�G�)
�1

The preceeding sections show that the existence and estimate of (1�G�)�1 for
� = is (s 6= 0) are the cornerstone of this work. We start with a general result.

Theorem 21 If �1 + �2 > 0 then r�(G�) < 1 (Re� � 0; � 6= 0):

Proof. We have G� = O1e
� 2�a

jvj O2e
� 2�a

jvj and G0 = O1O2: Note that O1O2 is
stochastic so r�(G0) = 1: Accordng to [21], ress(G0) < 1 if �1+�2 > 0 so r�(G0)
is an isolated eigenvalue of G0 with �nite algebraic multiplicity. We know that

kG�k =
O1e� 2�a

jvj O2e
� 2�a

jvj

 � e�4aRe� < 1 if Re� > 0

since
���e� 2�a

jvj

��� � e�2aRe�: Let � = i� (� 2 R): Note that the (operator) modulus
jG�j of G� (see [10]) is such that���O1e� 2�a

jvj O2e
� 2�a

jvj

��� � O1O2 = G0

and ���O1e� 2�a
jvj O2e

� 2�a
jvj

��� 6= G0 (� 6= 0)

so by [19]

r�(
���O1e� 2�a

jvj O2e
� 2�a

jvj

���) < r�(G0) = 1

whence
r�(O1e

� 2�a
jvj O2e

� 2�a
jvj ) < 1 (� 6= 0)

and r�(G�) < 1 (Re� � 0; � 6= 0):
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Remark 22 We can show similarly that r�( eG�) < 1 (Re� � 0; � 6= 0) whereeG� := O2e
��

v 2aO1e
� �
jvj 2a:

We complement now Theorem 21 in di¤erent directions by adding suitable
assumptions.

Theorem 23 Let Ki (i = 1; 2) be compact and let �1 + �2 > 0. Then:
(i) If �1 > 0, �2 > 0 and, for almost all v00; k1(v00; :) 2 L1(�1; 0) then

c� := supj�j�� kG�k < 1 (� > 0) : If the kernels ki(:; :) of Ki (i = 1; 2) are

continuous and K1 jvj�2K2 is bounded then there exists bc > 0 such that
kG�k � 1� bc jIm�j2 (�! 0):

(ii) If �1 > 0, �2 = 0 and, for almost all v00; k1(v00; :) 2 L1(�1; 0) then
c� := supj�j��

G2� < 1 (� > 0). If the kernel k1(:; :) of K1 is continuous and

K1 jvj�2R2K1 is bounded then there exists bc > 0 such thatG2� � 1� bc jIm�j2 (�! 0):

(A similar statement holds if �1 = 0 and �2 > 0):
(iii) In particular, in both cases (i) and (ii) we have

sup
j�j��

(1�G�)�1 < +1 (� > 0) and
(1�G�)�1 = O(jIm�j�2) (�! 0):

Proof. Note that kG�k � e�4aRe� (Re� � 0) so we may restrict ourselves
to the strip f�; 0 � Re� � 1g : Let � = " + is; " 2 [0; 1] : Without loss of
generality, we may restrict ourselves to the case �1 > 0: This case subdivides
into two subcases:

�1 > 0 and �2 > 0 (45)

or
�1 > 0 and �2 = 0: (46)

Consider �rst the case (45).

G� = O1e
� 2�a

jvj O2e
� 2�a

jvj = (�1R1 + �1K1) e
� 2�a

jvj (�2R2 + �2K2) e
� 2�a

jvj

= �1�2K1e
� 2�a

jvj K2e
� 2�a

jvj +H�

where

H� = �1�2R1e
� 2�a

jvj R2e
� 2�a

jvj +�1�2R1e
� 2�a

jvj K2e
� 2�a

jvj +�1�2K1e
� 2�a

jvj R2e
� 2�a

jvj :

We have

kG�k � �1�2

K1e
� 2�a

jvj K2

+ �1�2 + �1�2 + �1�2
= �1�2

K1e
� 2�a

jvj K2

+ (1� �1) (1� �2) + (1� �1)�2 + �1 (1� �2)
= �1�2

K1e
� 2�a

jvj K2

+ 1� �1�2
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so
kG�k � 1� �1�2

�
1�

K1e
� 2�a

jvj K2

� : (47)

Note that K1e
� 2�a

jvj K2 = K1e
� 2isa

jvj bK2 where bK2 has the kernelbk2(v; v0) = e�
2"a
jvj k2(v; v

0) � k2(v; v
0):

We have Z 0

�1
k1(v; v

0)dv = 1;

Z 1

0

bk2(v; v0)dv � Z 1

0

k2(v; v
0)dv = 1:

Since

K1e
� 2isa

jvj bK2f =

Z 0

�1
dvk1(v

00; v)e�
2isa
jvj

Z 1

0

bk2(v; v0)f(v0)dv0 (48)

=

Z 1

0

�Z 0

�1
k1(v

00; v)e�
2isa
jvj bk2(v; v0)dv� f(v0)dv0

then K1e
� 2isa

jvj bK2

 � sup
v02(0;1)

Z 1

0

����Z 0

�1
k1(v

00; v)e�
2isa
jvj bk2(v; v0)dv���� dv00:

We recall (see [27], Thm 1.39, p. 30) that for any complex function h 2 L1(�);����Z hd�

���� = Z jhj d�

if and only if there exists a constant � such that �h = jhj : It follows that����Z 0

�1
k1(v

00; v)e�
2isa
jvj bk2(v; v0) dv���� < Z 0

�1
k1(v

00; v)bk2(v; v0) dv
otherwise there exists a constant � such that

�k1(v
00; v)e�

2isa
jvj bk2(v; v0) = k1(v

00; v)bk2(v; v0)
so �e�

2isa
jvj = 1 and � = e

2isa
jvj is not a constant. Thus, for Re� � 0 and � 6= 0;Z 1

0

����Z 0

�1
k1(v

00; v)e�
2isa
jvj bk2(v; v0) dv���� dv00 <

Z 1

0

�Z 0

�1
k1(v

00; v)bk2(v; v0) dv� dv00
�

Z 1

0

�Z 0

�1
k1(v

00; v)k2(v; v
0) dv

�
dv00 = 1:

Let us show that for any constant c > 0

sup
c�jsj�c�1

sup
"2[0;1]

sup
v0

Z 1

0

����Z 0

�1
k1(v

00; v)e�
2isa
jvj bk2(v; v0) dv���� dv00 < 1: (49)
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Let us argue by contradiction by supposing that this supremum is equal to
1: Note that bk2(v; v0) = e�

2"a
jvj k2(v; v

0) and K2 is weakly compact, i.e.

fk2(:; v0); v0 2 (0; 1)g

is a relatively weakly compact subset of the unit sphere of L1(�1; 0) (at this
stage we do not need the compactness of K2). There exist "j ! ", v0j ! !,
sj ! s 2

�
c; c�1

�
and g 2 L1(�1; 0) such that

k2(:; v
0
j)! g weakly in L1(�1; 0): (50)

and Z 1

0

����Z 0

�1
k1(v

00; v)e�
2isja

jvj e�
2"ja

jvj k2(v; v
0
j) dv

���� dv00
! sup

c�jsj�c�1
sup
"2[0;1]

sup
v0

Z 1

0

����Z 0

�1
k1(v

00; v)e�
2isa
jvj bk2(v; v0) dv���� dv00 = 1:

Since the sequence
�
k2(:; v

0
j)
	
j
is equiintegrable and since, for almost all v00;

k1(v
00; :) 2 L1(�1; 0) we haveZ 0

�

k1(v
00; v)e�

2isja

jvj e�
2"ja

jvj k2(v; v
0
j) dv ! 0 (� ! 0�)

uniformly in j and (50) impliesZ 0

�1
k1(v

00; v)e�
2isja

jvj e�
2"ja

jvj k2(v; v
0
j) dv !

Z 0

�1
k1(v

00; v)e�
2isa
jvj e�

2"a
jvj g(v) dv

����Z 0

�1
k1(v

00; v)e�
2isja

jvj e�
2"ja

jvj k2(v; v
0
j) dv

����! ����Z 0

�1
k1(v

00; v)e�
2isa
jvj e�

2"a
jvj g(v) dv

����
and similarlyZ 0

�1
k1(v

00; v)e�
2"ja

jvj k2(v; v
0
j) dv !

Z 0

�1
k1(v

00; v)e�
2"a
jvj g(v) dv:

SinceZ 1

0

����Z 0

�1
k1(v

00; v)e�
2isja

jvj e�
2"ja

jvj k2(v; v
0
j) dv

���� dv00 � Z 1

0

�Z 0

�1
k1(v

00; v)e�
2"ja

jvj k2(v; v
0
j) dv

�
dv00 � 1

then �Z 0

�1

�Z 1

0

k1(v
00; v)dv00

�
e�

2"ja

jvj k2(v; v
0
j) dv

�
! 1:

This last limit shows that "j ! 0 andZ 0

�1

�Z 1

0

k1(v
00; v)dv00

�
g(v) dv = 1
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or indeed Z 1

0

�Z 0

�1
k1(v

00; v)g(v) dv

�
dv00 = 1:

HenceZ 1

0

����Z 0

�1
k1(v

00; v)e�
2isa
jvj g(v) dv

���� dv00 = Z 1

0

�Z 0

�1
k1(v

00; v)g(v) dv

�
dv00 = 1

and the inequality����Z 0

�1
k1(v

00; v)e�
2isa
jvj g(v) dv

���� � Z 0

�1
k1(v

00; v)g(v) dv

implies the equality����Z 0

�1
k1(v

00; v)e�
2isa
jvj g(v) dv

���� = Z 0

�1
k1(v

00; v)g(v) dv

which is not possible since s 6= 0. This ends the proof of (49). Hence

sup
c�jsj�c�1

sup
"2[0;1]

K1e
� 2isa

jvj bK2

 < 1
and (47) gives

sup
c�jsj�c�1

sup
"2[0;1]

kG"+isk < 1: (51)

We haveK1e
� 2isa

jvj bK2

 � sup
v02(0;1)

Z 1

0

����Z 0

�1
k1(v

00; v)e�
2isa
jvj e�

2"a
jvj k2(v; v

0)dv

���� dv00:
Let us show that limjsj!1

K1e
� 2isa

jvj bK2

 = 0 uniformly in " 2 [0; 1]. By weak
compactness of Ki (i = 1; 2) (and an equiintegrability argument) it su¢ ces to
show that for any � > 0

lim
jsj!1

sup
v02(0;1)

Z 1

�

�����
Z ��

�1
k1(v

00; v)e�
2isa
jvj e�

2"a
jvj k2(v; v

0)dv

����� dv00 = 0 (52)

uniformly in " 2 [0; 1] : IfK2 is compact then fk2(:; v0); v0 2 (0; 1)g is a relatively
compact subset of L1(�1; 0) and consequently, for almost all v00 2 (0; 1) ;n

k1(v
00; :)e�

2"a
j:j k2(:; v

0); v0 2 (0; 1) ; " 2 [0; 1]
o

is a relatively compact subset of L1(�1;��): A Riemann-Lebesgue argument
gives

lim
jsj!1

Z ��

�1
k1(v

00; v)e�
2isa
jvj e�

2"a
jvj k2(v; v

0)dv = 0
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uniformly in v0 2 (0; 1) and " 2 [0; 1] : Finally, (52) holds by the dominated
convergence theorem. Hence

c� := sup
j�j��

kG�k < 1; (� > 0)

and
sup
j�j��

(1�G�)�1 � (1� c�)�1; (� > 0) :
Let us analyze the function

R 3 s! sup
v02(0;1)

Z 1

0

����Z 0

�1
k1(v

00; v)e�
2isa
jvj bk2(v; v0) dv���� dv00

(depending on " 2 [0; 1]) in the vicinity of s = 0: Consider �rst����Z 0

�1
k1(v

00; v)e�
2isa
jvj bk2(v; v0) dv����

=

s�Z 0

�1
k1(v00; v) cos(

2sa

jvj )
bk2(v; v0) dv�2 + �Z 0

�1
k1(v00; v) sin(

2sa

jvj )
bk2(v; v0) dv�2

and let

u"(s; v
0; v00) :=

�Z 0

�1
k1(v

00; v) cos(
2sa

jvj )
bk2(v; v0) dv�2+�Z 0

�1
k1(v

00; v) sin(
2sa

jvj )
bk2(v; v0) dv�2

(" comes from bk2(v; v0) = e�
2"a
jvj k2(v; v

0)). We may write u"(s) or u(s) for
simplicity. We note that

u"(0; v
0; v00) =

�Z 0

�1
k1(v

00; v)bk2(v; v0) dv�2 � �Z 0

�1
k1(v

00; v)k2(v; v
0) dv

�2
= u0(0; v

0; v00):

We have

@u

@s
= �4a

�Z 0

�1
k1(v

00; v) cos(
2sa

jvj )
bk2(v; v0) dv�Z 0

�1

k1(v
00; v)

jvj sin(
2sa

jvj )
bk2(v; v0) dv

+4a

�Z 0

�1
k1(v

00; v) sin(
2sa

jvj )
bk2(v; v0) dv��Z 0

�1

k1(v
00; v)

jvj cos(
2sa

jvj )
bk2(v; v0) dv�

so @u
@s (0; v

0; v00) = 0: We have����Z 0

�1
k1(v

00; v)e�
2isa
jvj bk2(v; v0) dv���� =pu(�; v0; v00)

so
@

@s

�p
u(s; v0; v00)

�
=

@u
@s

2
p
u(s; v0; v00)
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is such that
@

@s

�p
u(s; v0; v00)

�
s=0

= 0

and

@2

@s2

�p
u(s; v0; v00)

�
=

1

2

@2u
@s2
p
u� (

@u
@s )

2

2
p
u

u

=
1

2

2@
2u
@s2 u�

�
@u
@s

�2
2
p
uu

so
@2

@s2

�p
u(s; v0; v00)

�
�=0

=
1

2

@2u
@s2 (0; v

0; v00)p
u(0; v0; v00)

:

On the other hand�
@2u

@s2

�
s=0

= �8a2
�Z 0

�1
k1(v

00; v)bk2(v; v0) dv� Z 0

�1

k1(v
00; v)

jvj2
bk2(v; v0) dv!

+8a2
�Z 0

�1

k1(v
00; v)

jvj
bk2(v; v0) dv��Z 0

�1

k1(v
00; v)

jvj
bk2(v; v0) dv�

so � 1
8a2

�
@2u
@s2

�
s=0

is given by

�Z 0

�1
k1(v

00; v)bk2(v; v0) dv� Z 0

�1

k1(v
00; v)

jvj2
bk2(v; v0) dv!��Z 0

�1

k1(v
00; v)

jvj
bk2(v; v0) dv�2 :

Since we have strict inequality in the Cauchy-Schwarz inequality which is to say�Z 0

�1

k1(v
00; v)

jvj
bk2(v; v0) dv�2 < �Z 0

�1
k1(v

00; v)bk2(v; v0) dv� Z 0

�1

k1(v
00; v)

jvj2
bk2(v; v0) dv!

we see that

c"(v
0; v00) :=

�Z 0

�1
k1(v

00; v)bk2(v; v0) dv� Z 0

�1

k1(v
00; v)

jvj2
bk2(v; v0) dv!��Z 0

�1

k1(v
00; v)

jvj
bk2(v; v0) dv�2 > 0

and is continuous for smooth (say continuous) functions k1 and k2 (" comes
again from bk2(v; v0) = e�

2"a
jvj k2(v; v

0)). Now

p
u(s; v0; v00) =

p
u(0; v0; v00) +

s2

2

@2

@s2

�p
u(�; v0; v00)

�
where � 2 (0; s) or � 2 (s; 0) according as s > 0 or s < 0: Write it as

p
u(0; v0; v00)�

p
u(s; v0; v00) =

s2

2

�
� @2

@s2

�p
u(�; v0; v00)

��
:
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For smooth (say continuous) functions k1 and k2

� @2

@s2

�p
u(s; v0; v00)

�
! � @2

@s2

�p
u(s; v0; v00)

�
s=0

= �1
2

@2u
@s2 (0; v

0; v00)p
u(0; v0; v00)

(as s! 0) uniformly in (v0; v00) and " 2 [0; 1] : On the other hand

� 1

8a2

�
@2u

@s2
(0; v0; v00)

�
= c"(v

0; v00)

so

�1
2

@2u
@s2 (0; v

0; v00)p
u(0; v0; v00)

= bc"(v0; v00) := 4a2c"(v
0; v00)p

u"(0; v0; v00)
:

is (say) continuous and bounded away from zero uniformly in " 2 [0; 1]. Hence

p
u"(0; v0; v00)�

p
u"(s; v0; v00) �

s2

2

bc"(v0; v00)
2

for s small enough. Let

b� := inf
"2[0;1]

inf
v02(0;1)

Z 1

0

bc"(v0; v00)
2

dv00 > 0:

Thus,Z 0

�1
k1(v

00; v)bk2(v; v0) dv�����Z 0

�1
k1(v

00; v)e�
2isa
jvj bk2(v; v0) dv���� � s2

2

bc"(v0; v00)
2

(" 2 [0; 1])

for s small enough. ThusZ 1

0

dv00
Z 0

�1
k1(v

00; v)bk2(v; v0) dv�Z 1

0

dv00
����Z 0

�1
k1(v

00; v)e�
2isa
jvj bk2(v; v0) dv���� � s2

2

Z 1

0

bc"(v0; v00)
2

dv00

and

1�
Z 1

0

dv00
����Z 0

�1
k1(v

00; v)e�
2isa
jvj bk2(v; v0) dv���� � s2

2

Z 1

0

bc"(v0; v00)
2

dv00

so that taking the in�mum in v0 2 (0; 1) and " 2 [0; 1] on both sides

1� sup
"2[0;1]

sup
v02(0;1)

Z 1

0

dv00
����Z 0

�1
k1(v

00; v)e�
2isa
jvj bk2(v; v0) dv����

� s2

2
inf

"2[0;1]
inf

v02(0;1)

Z 1

0

bc"(v0; v00)
2

dv00 � s2

2
b�

i.e.

1� sup
"2[0;1]

K1e
� 2�a

jvj K2

 � s2

2
b�:
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Hence

sup
"2[0;1]

kG"+isk � 1� �1�2

 
1� sup

"2[0;1]

K1e
� 2�a

jvj K2

! � 1� �1�2 s22 b�
This ends the proof in the case (45).
Consider now the case (46). In this case �2 = 0 and �2 = 1 so

G� = (�1R1 + �1K1) e
� 2�a

jvj R2e
� 2�a

jvj

= �1R1e
� 2�a

jvj R2e
� 2�a

jvj + �1K1e
� 2�a

jvj R2e
� 2�a

jvj :

It follows that

G2� =
�
�1R1e

� 2�a
jvj R2e

� 2�a
jvj + �1K1e

� 2�a
jvj R2e

� 2�a
jvj
�2

=
�
�1R1e

� 2�a
jvj R2e

� 2�a
jvj
��

�1R1e
� 2�a

jvj R2e
� 2�a

jvj
�

+
�
�1K1e

� 2�a
jvj R2e

� 2�a
jvj
��

�1K1e
� 2�a

jvj R2e
� 2�a

jvj
�

+
�
�1R1e

� 2�a
jvj R2e

� 2�a
jvj
��

�1K1e
� 2�a

jvj R2e
� 2�a

jvj
�

+
�
�1K1e

� 2�a
jvj R2e

� 2�a
jvj
��

�1R1e
� 2�a

jvj R2e
� 2�a

jvj
�

= �21K1e
� 2�a

jvj R2e
� 2�a

jvj K1e
� 2�a

jvj R2e
� 2�a

jvj +H�

where

H� = �21R1e
� 2�a

jvj R2e
� 2�a

jvj R1e
� 2�a

jvj R2e
� 2�a

jvj

+�1�1R1e
� 2�a

jvj R2e
� 2�a

jvj K1e
� 2�a

jvj R2e
� 2�a

jvj

+�1�1K1e
� 2�a

jvj R2e
� 2�a

jvj R1e
� 2�a

jvj R2e
� 2�a

jvj :

Hence G2� � �21

K1e
� 2�a

jvj R2e
� 2�a

jvj K1

+ (1� �1)2 + 2 (1� �1)�1
= �21

K1e
� 2�a

jvj R2e
� 2�a

jvj K1

+ [1� �1 + �1]2 � �21
= 1� �21

�
1�

K1e
� 2�a

jvj R2e
� 2�a

jvj K1

� :
It is easy to see that

K1e
� 2�a

jvj R2e
� 2�a

jvj K1f =

Z 0

�1
k1(v

00; v)

�
e�

4isa
jvj

Z 0

�1
e�

4"a
jvj k1(�v; v0)f(v0)dv0

�
dv

so that K1e
� 2�a

jvj R2e
� 2�a

jvj K1 has the same structure as the operator K1e
� 2�a

jvj K2

considered previously (see (48)). In particular, arguing as previously, one sees
that for any 0 < c < c0

sup
c�jsj�c�1

sup
"2[0;1]

K1e
� 2�a

jvj R2e
� 2�a

jvj K1

 < 1
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so
sup

c�jsj�c�1
sup
"2[0;1]

G2"+is < 1 (53)

and
lim

jsj!1

K1e
� 2�a

jvj R2e
� 2�a

jvj K1

 = 0
uniformly in " 2 [0; 1]. Finally, as previously, c� := supj�j��

G2� < 1 (� > 0)
and there exists bc > 0 such thatG2� � 1� bc jIm�j2 (�! 0):

Since r�(G�) < 1 for Re� � 0 and � 6= 0 (see Theorem 21) then for � 6= 0

(1�G�)�1 =

1X
j=0

Gj� =

1X
j=0

G2j� +

1X
j=0

G2j+1� =

1X
j=0

G2j� +G�

1X
j=0

G2j�

=
�
1�G2�

��1
+G�

�
1�G2�

��1
and (1�G�)�1 � 1

1� kG2�k
+

kG�k
1� kG2�k

� 2

1� kG2�k
:

Finally supj�j��
(1�G�)�1 � 2

1�c� and(1�G�)�1 � 2

1� kG2�k
� 2bc�1 jIm�j�2 (�! 0):

Remark 24 (i) We have also a similar statement with eG� := O2e
��

v 2aO1e
� �
jvj 2a

instead of G�:
(ii) The compactness assumption on Ki (i = 1; 2) (which is used in the study

of the norm of kG�k or
G2� as jsj ! 1 only) could be avoided by analyzing

G2� in the case (i) and G
3
� in the case (ii) (and using Dunford-Pettis arguments).

Such a proof is however too cumbersome to be presented. Note that Ki (i = 1; 2)
are compact if the kernels ki(:; :) of Ki (i = 1; 2) are continuous.

Corollary 25 Let �1 + �2 > 0: We assume that for almost all v00 2 (0; 1);
k1(v

00; :) 2 L1(�1; 0) (and for almost all v00 2 (�1; 0); k2(v00; :) 2 L1((0; 1))).
Then

f� 2 C; Re� > 0g 3 �! (1�G�)�1

extends continuously (in the strong operator topology) to iRn f0g :

Proof. Let b� = ibs (bs 6= 0) and �l = "l + isl ! b� (l ! 1): By the part of
Theorem 23 which does not rely on the compactness of Ki (i = 1; 2) (see (51)
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and (53)) there exists c < 1 such that
G2�l � c 8l and then we can pass to

the limit in

(1�G�l)
�1
f = (I +G�l)

�
1�G2�l

��1
f = (I +G�l)

1X
j=0

�
G2�l

�j
f

as "l ! 0+ and sl ! bs to show that (1�G�l)�1 f ! �
1�Gb���1 f (l !1):

Remark 26 We have also a similar statement with
�
1� eG���1 instead of

(1�G�)�1 :

Remark 27 In Theorem 23, the continuity assumption on the kernels k1 and
k2 could probably be replaced by a piecewise continuity assumption; we have not
tried to elaborate on this point here.

12 Rates of convergence to equilibrium

We give �rst algebraic estimates of the resolvent on the imaginary axis.

Theorem 28 We assume that O1 = K1 or O2 = K2: Let the kernels ki(:; :) of
Ki (i = 1; 2) be continuous. Let k 2 N and let (37)(38)(43)(44) be satis�ed.
Then, for any g 2 Z;

f� 2 C; Re� > 0g 3 �! (�� TO)�1g 2 L1(
)

extends continuously to iRn f0g as a Ck fucntion

Rn f0g 3 s! Fg(s) 2 L1(
)

such that

sup
jsj�1

 djdsj Fg(s)
 < +1 (0 � j � k) (54)

and there exists a constant C > 0 such that djdsj Fg(s)
 � C

s2(j+1)
kgkZ (0 � j � k; 0 < jsj � 1): (55)

Proof. By Theorem 20 djdsj Fg(s)
 � C 0

 
j+1X
l=0

(1�Gis)�1l! kgkZ (0 � j � k; s 6= 0):

The fact that s !
(1�Gis)�1 is uniformly bounded outside any neighbor-

hood of 0 shows (54). It su¢ ces to prove (55) for small s: By using Theorem
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23

p+1X
l=0

(1�Gis)�1l �
p+1X
l=0

�
C

s2

�l
=
1�

�
C
s2

�p+2
1� C

s2

=

�
C
s2

�p+2 � 1
C
s2 � 1

=
(C)

p+2 s2

s2(p+2)
� s2

C � s2 = O

 
1

jsj2(p+1)

!
(s! 0):

This ends the proof.
We are now ready to prove the main result of this paper.

Theorem 29 We assume that O1 = K1 or O2 = K2: Let the kernels ki(:; :) of
Ki (i = 1; 2) be continuous and let

�
etTO

�
t�0 be irreducible. Let k 2 N and let

(37)(38)(43)(44) be satis�ed. If

g 2 D(TO) and
Z



jg(x; v)j jvj�(k+1) dxdv < +1

then etTOg � �Z



g

�
 0

 = O
�
t�

k
2(k+1)+1

�
; (t! +1):

Proof. The ergodic projection of
�
etTO

�
t�0 is given by Pg =

�R


g
�
 0 where

 0 is given by (17) and is normalized in L
1(
): ThenZ




(g � Pg) =
Z



g �
Z



Pg =

Z



g �
�Z




g

��Z



 0

�
= 0:

Furthermore
1

jvj (g � Pg) =
1

jvjg �
�Z




g

�
1

jvj 0 2 L
1(
)

because of (16). The assumptions in Theorem 10 are satis�ed so g � Pg 2
Ran(TO): Since g � Pg 2 D(TO) then Theorem 28 and Corollary 3 end the
proof.

Remark 30 A su¢ cient criterion of irreducibility of
�
etTO

�
t�0 is given in The-

orem 7. The continuity of the kernels ki(:; :) (i = 1; 2) could probably be relaxed,
see Remark 27.

Remark 31 A priori, the rates of convergence given in this paper depend on
the condition �1 = 1 or �2 = 1: Two kinds of assumptions appear in this work:
The "kernel" assumptions (37) (38) which can be checked only if �1 = 1 or
�2 = 1 (see Remark 14) and the "non-kernel" assumptions (43)(44) which are
satis�ed even by the re�ections conditions (see Remark 19). (Note that Theorem
21 and Theorem 23 hold under the very general condition �1 + �2 > 0:) The
extension of the theory to the general case �1 + �2 > 0 (or at least to the case
�1�2 > 0) should depend on a weakening of the "kernel" assumptions which are
used essentially in the proof of the key Lemma 15.
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Remark 32 Three additional open problems are worth mentioning.
(i) We have seen that the quanti�ed Ingham�s theorem provides us with the

rate of convergence O
�

1

t
1

2+"

�
for any " > 0 if the structural assumptions are

satis�ed for all k 2 N; see (23). Whether one can reach the limit rate O
�
1p
t

�
(or can go beyond this rate) in the context of kinetic theory is an open problem.
Note also that if there exists a constant C > 0 such that djdsj Fg(s)

 � C j! jsj�2(j+1)+1 ( j 2 N; 0 < jsj � 1) (56)

then another quanti�ed version of Ingham�s theorem (see Remark 4) gives the

rate O(
q

ln(t)
t ): However, in practice, the veri�cation of (56) seems to be out of

reach.
(ii) A completely open problem is to quantify the sweeping phenomenon (20)

in case of lack of invariant densities.
(iii) We know (see Theorem 12) that the imaginary axis is the boundary

spectrum of the generator if �1 = 1 or �2 = 1: The extension of this result to
more general partly di¤use models is an open problem.

Remark 33 This work could be extended to non-monoenergetic free models in
slab geometry

@f

@t
(t; x; v; �) + �v

@f

@x
(t; x; v; �) = 0; (x; v; �) 2 


where 
 = (�a; a) � (�1; 1) � (0;+1) with stochastic partly di¤use boundary
conditions

jvj f(t;�a; v; �) = �1 jvj f(t;�a;�v; �)+�1
Z +1

0

d�0
Z 0

�1
k1(v; v

0; �; �0)f(t;�a; v0; �0)dv0

for v 2 (0; 1) and

jvj f(t; a; v; �) = �1 jvj f(t; a;�v; �)+�1
Z +1

0

d�0
Z 1

0

k2(v; v
0; �; �0)f(t; a; v0; �0)dv0

for v 2 (�1; 0) under the convexity condition (5). Indeed, the approach taken
in [21] could be extended to this model and the arguments of the present paper
could be adapted accordingly. We have not tried to elaborate on this point here.
The specular re�ection R1 : L

1 ((�1; 0) ; dv) ! L1 ((0;+1) ; dv) de�ned
by (R1') (v) = '(�v) could also be replaced by a more general deterministic
boundary operator of the form (R1') (v) = '(�(v)) where � : (0;+1) ! (�1; 0)
is a smooth measure-preserving function. A similar remark applies to R2:

Remark 34 We are con�dent that our formalism could extend to multidimen-
sional (in space) geometries with partly di¤use boundary operators. However,
such an extension is not straightforward at all and faces serious additional prob-
lems we hope to be able to deal with in the near future.

40



References

[1] K. Aoki and F. Golse. On the speed of approach to equilibrium for a colli-
sionless gas. Kinetic and Related Models, 4 (1) (2011) 87�107.

[2] W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander. Vector-valued
Laplace transforms and Cauchy problems. Birkhauser, Basel, second edi-
tion, 2011.

[3] L. Arlotti, J. Banasiak and B. Lods. A New Approach to Transport Equa-
tions Associated to a Regular Field: Trace Results and Well-posedness.
Mediterr. J. Math. 6 (2009), 367�402.

[4] L. Arlotti, J. Banasiak and B. Lods. On General Transport Equations with
Abstract Boundary Conditions. The Case of Divergence Free Force Field.
Mediterr. J. Math. 8 (2011), 1�35.

[5] L. Arkeryd and A. Nouri, Boltzmann asymptotics with di¤use re�ection
boundary conditions, Monatsh. Math. 123 (1997) 285�298.

[6] J. A. Canizo, A. Einav and B. Lods. On the rate of convergence to equilib-
rium for the linear Bolzmann equation with soft potentials, 2017. HAL Id:
hal-01516774.

[7] E. A. Carlen, M. C. Carvalho and Xuguang Lu. On strong convergence to
equilibrium for the Boltzmann equation with soft potentials. J. Stat. Phys,
135 (2009) 681-736.

[8] M. Cessenat, Théorèmes de trace Lp pour des espaces de fonctions de la
neutronique, C. R. Acad. Sci, Paris, Ser I, 299 (1984) 831�834.

[9] M. Cessenat, Théorèmes de trace pour les espaces de fonctions de la neu-
tronique, C. R. Acad. Sci, Paris, Ser I, 300 (1985) 89�92.

[10] R. V. Chacon and U. Krengel. Linear modulus of a linear operator. Proc.
Amer. Math. Soc, 15 (4) (1964) 553-559.

[11] R. Chill and D. Seifert. Quanti�ed versions of Ingham�s theorem. Bull.
Lond. Math. Soc, 48(3) (2016) 519-532.

[12] L. Desvillettes and C. Mouhot. Large time behavior of the a priori bounds
for the solutions to the spatially homogeneous Boltzmann equations with
soft potentials. Asymptot. Anal, 54 (3-4) (2007) 235�245.

[13] N. Dunford and J. Schwartz, Linear Operators, Part I, Wiley Classics Li-
brary, 1988.

[14] Y. Guo, Decay and continuity of the Boltzmann equation in bounded do-
mains, Arch. Rational Mech. Anal., 197 (2010) 713�809.

41



[15] H. W. Kuo, T. P. Liu and L. C. Tsai. Free molecular �ow with boundary
e¤ect. Comm. Math. Phys, 318 (2013) 375-409.

[16] A. Lasota and M. C. Mackey. Chaos, Fractals and Noise. Stochastic Aspects
of Dynamics. Springer-Verlag, 1995.

[17] J. Lehner and M. Wing. On the spectrum of an unsymmetric operator
arising in the transport theory of neutrons. Comm. Pure. Appl. Math, 8
(1955) 217-234.

[18] B. Lods and M. Mokhtar-Kharroubi. Convergence to equilibrium for linear
spatially homogeneous Boltzmann equation with hard and soft potentials:
a semigroup approach in L1 spaces. To appear in Math. Meth. Appl. Sci,
(2017). DOI: 10.1002/mma.4473

[19] I. Marek. Frobenius Theory of Positive Operators: Comparison Theorems
and Applications. Siam J. Appl. Math, 19(3) (1970) 607-628.

[20] R. Nagel (Ed). One-Parameter Semigroups of Positive Operators. Lecture
Notes in Mathematics 1184, 1986.

[21] M. Mokhtar-Kharroubi and R. Rudnicki. On asymptotic stability and
sweeping of collisionless kinetic equations. Acta. Appl. Math, 147 (2017)
19-38.

[22] M. Mokhtar-Kharroubi. A new approach of asymptotic stability of colli-
sionless kinetic equations in slab geometry. Work in preparation.

[23] R. Petterson. On weak and strong convergence to equilibrium for solutions
to the linear Boltzmann equation. J. Stat. Phys, 72 (1/2) (1993) 355-380.

[24] R. Rudnicki. Stochastic operators and semigroups and their applications in
physics and biology. In: J. Banasiak, J., M. Mokhtar-Kharroubi, M. (eds.)
Evolutionary Equations with Applications in Natural Sciences. LNM, vol.
2126, pp. 255�318. Springer, Heidelberg (2015).

[25] G. Toscani and C. Villani. On the trend to equilibrium for some dissipative
systems with slowly increasing a priori bounds. J. Statist. Phys, 98 (5-6)
(2000) 1279�1309.

[26] T. Tsuji, K. Aoki and F. Golse. Relaxation of a free-molecular gas to equi-
librium caused by interaction with vessel wall. J. Stat. Phys, 140 (2010)
518-543.

[27] W. Rudin. Analyse réelle et complexe. Masson, 1978.

42


	Introduction
	A quantified version of Ingham's theorem
	On existence of invariant density
	On irreducibility of (etTO)t0
	On the range of TO
	On the boundary spectrum of TO
	The objects to be estimated
	Operator estimates up to the imaginary axis
	Estimates of boundary fluxes
	On the resolvent on the imaginary axis
	Existence and estimates of (1-G0=x"0115)-1
	Rates of convergence to equilibrium

