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Krylov-Subspace-Based Order Reduction Methods Applied to Generate Compact-
Electro-Thermal Models for MEMS

 

  ABSTRACT

 

The high power dissipation density in today’s miniature
electronic/mechanical systems makes on-chip thermal man-
agement crucial. In order to achieve quick-to-evaluate, yet
accurate electro-thermal models, needed for the thermal
management of microsystems, model order reduction is nec-
essary. In this paper, we use Krylov-subspace methods for
the order reduction of a electro-thermal MEMS model, illus-
trated by a novel type of micropropulsion device.
Comparison between different moment-matching algo-
rithms including a new two-sided Arnoldi algorithm, is per-
formed.
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1 INTRODUCTION

 

Modeling of thermo-electric processes becomes increas-
ingly important for a variety of applications, including
power transistors, thick-film circuits, prediction of electro-
static discharge, hotplate sensors, oxide-confined vertical-
cavity lasers, and so on. Therefore, it is necessary to develop
a electro-thermal model which computes the dependence
between power dissipation and temperature distribution over
the device. Moreover, such a heat transfer analysis needs to
be done quickly in response to every design alteration. The
model must also provide good accuracy in order to return
precise temperature values. 

The main problem of electro-thermal modeling is that
ordinary differential equation (ODE) systems resulting from
finite element, finite difference or some other spatial discret-
ization method can easily reach an order of 100 000 or
more. Even with the increasing speed of modern computers
it is not possible to perform effective system-level simula-
tion without simplification or model reduction.

Conventionally, the reduction of thermo-electric models
for micro-electronic and MEMS devices is performed

through a lumped-element decomposition of the model fol-
lowed by parameter fitting [1]. Such a non-automatic
approach requires the designer to choose the corect reduced
model structure without strict guidelines, and to perform a
time-consuming parametrization including one or more sim-
ulations of the full-scale model. Moreover, sufficient accu-
racy is provided only for a limited parametric domain. 

In order to achieve both efficiency and accuracy in ther-
mal management of microsystems, we propose a different,
automatic order reduction approach, suitable for linear elec-
tro-thermal models, and based on Krylov-subspace meth-
ods. In adittion to the Arnoldi [2] and Lanczos [3] algorithm
reported previously, we introduce a new method called 

 

two-
sided Arnoldi

 

 to find two basis necessary for projection and
calculating the reduced order model. All three algorithms
were tested and compared with regard to their computa-
tional complexity, accuracy of approximation,

 

 

 

numerical
stability, preservation of the stability and passivity of the
original system, invariance properties and approximation of
the complete output. 

As a MEMS test case a new class of high energy actua-
tor, which integrates solid fuel with three silicon microma-
chined wafers [4], was used. This microthruster is ignited by
passing an electric current through a polysilicon resistor
embedded in the membrane, as shown in Fig. 1. 
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Fig. 1 Microthruster Structure.



 

The present work considers the initial heating phase of
the fuel, right up to the onset of ignition, described through
the following equations:

 (1)

where  is the thermal conductivity,  is the specific heat
capacity,  is the mass density,  is the temperature distri-
bution,  is the heat generation,  is the spartially varying
electric current density vector and  is the specific electric
conductivity.

We use a two dimensional axi-symmetric model, which
after the finite element (FE) based spatial discretization of
the governing equations (1) (assuming that the heat genera-
tion  is uniformly distributed within the heating area)
results in a linear system of about 1000 ordinary differential
equations (ODEs) of the form:

(2)

where  are the 

 

global heat conductivity
and heat capacity matrix,  are the tempera-
ture (state), the load and the output vector respectively and

 is the dimension of the system.

 

 

 

The electric current 
through the heater with electric resistivity  is the input to

 

the system.The equation (2) represent a Single-Input-Single-
Output (SISO) system. The present work also considers a
special case when  is an identity matrix, that is, ,
which we call a Single-Input-

 

Complete

 

 Output (SICO) sys-
tem.

 

2 MODEL ORDER REDUCTION

 

Most of the practical work in model reduction of large
linear dynamic systems has been tied with moment match-
ing of the transfer function via Krylov subspaces by means
of either the Arnoldi or Lanczos process. They define a pro-
jection from the high dimensional space of the original
model (2) to a lower dimensional space and thereby define
the reduced order model. By applying the transformation

 where  and 

 

r < n

 

, to system (2) and
then multiplying the state equation by transpose of some
matrix , a model with reduced order 

 

r

 

 can be
found:

(3)

The reduced system matrices and load vector are computed
by:

(4)

The key question is: how to find 

 

V

 

 and 

 

W

 

?

Let us rewrite the system (2) as:

(5)

with  and . As already
mentioned, the basic idea behind the Krylov-subspace-based
algorithms is to write down the transfer function of (5) in the
frequency domain using a Taylor series in the Laplace vari-
able 

 

s

 

 around :

(6)

where  is called the i

 

th

 

 moment, and then
to find a much lower order system (of the same form as (5))
whose transfer function  has the same moments as

 up to some degree. Due to the numerical instability
of (6), the moments are not computed explicitly. Instead, a
Krylov subspace (of the dimension 

 

r

 

) defined as:

 (7)

is used. The vectors that span the subspace are called the
basic vectors.

 

2.1 Arnoldi Algorithm

 

In case of Arnoldi algorithm . This algorithm
generates a set of orthonormal vectors (with length one and
orthogonal to each other) which simultaneously represent a
basis for the given Krylov-subspace (7). They are saved as
columns of the matrix 

 

V

 

. This means that . The
algorithm further generates an upper Hessenberg matrix
( ) , related to the sys-
tem matrix 

 

A

 

 as follows:

(8)

The matrix 

 

H

 

A

 

 can be considered as an orthogonal projec-
tion of the matrix 

 

A

 

 onto the Krylov-subspace (7), and it is
equal to the system matrix of the reduced system 

 

A

 

r

 

.. It can
be proved that the first  moments of  and 
match [5].

 

2.2 Lanczos

 

 

 

algorithm

 

For the Lanczos algorithm . The columns of the
matrix V form a basis (but not an orthonormal one) of the
Krylov-subspace (7), which is also called an input Krylov-
subspace. The columns of the matrix W form a non-
orthonormal basis of the output Krylov-subspace defined as:

(9)
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where A* is the conjugate transpose of the matrix A. The
basis V and W of the subspaces (7) and (9) are biorthogonal,
which means that . The algorithm generates fur-
ther a tridiagonal matrix TL related to the original system
matrix as:

(10)

The matrix TL can be considered as an oblique projection of
the matrix A onto the input Krylov-subspace (7), and it is
equal the system matrix of the reduced system Ar. In this
case the first  moments of  and  match
[5].

2.3 Two-Sided Arnoldi Algorithm

The two-sided Arnoldi algorithm computes matrix V as
an orthonormal basis for the input Krylov-subspace (7), and
matrix W as an orthonormal basis for the output Krylov-sub-
space (9), by twice using the one-sided Arnoldi algorithm
(section 2.1). This means that  and .
The reduced system is computed as in (3), and the first 
moments of  and  match as in the Lanczos
algorithm. Moreover, the transfer function of the reduced
model gained from the two-sided Arnoldi method equals the
one gained from the Lanczos algorithm [5]. Further details
can be found in [6].

3 RESULTS

In Fig. 2 a relative error between the full and the 5th
order reduced model, using both the one-sided Arnoldi and
two-sided Arnoldi algorithm, is shown. The results for Lanc-
zos algorithm are identical as for two-sided Arnoldi.

For the microthruster model, the simple SISO setup for
both the one-sided and the two-sided Arnoldi algorithm was
sufficient to approximate not only a single output response
but also the transient thermal response in all the finite ele-
ment nodes of the microthruster (SICO setup). Fig. 3 shows

the mean relative difference for all the nodes between the
full-scale and the reduced different order models. Hence it
was possible, after the simulation of the reduced model, to
recover the full solution (for all the 1071 nodes) by applying
the projection . 

In Table 1 the maximal relative error for a single output
node (node 1 in Fig 1) e1 and a maximal mean square rela-
tive differences for approximating the complete output e2
for different orders of the reduced model are given. The
results for the Lanczos algorithm are identical as for the
two-sided Arnoldi. 

4 DISCUSSION AND CONCLUSION

Accuracy of approximation: As mentioned in chapter
2, the one-sided Arnoldi algorithm matches only r moments
of  and , whereas the two-sided Arnoldi
and Lanczos algorithm match 2r moments. Hence, the two-
sided Arnoldi and Lanczos algorithm are optimal in a sense
that they match as many moments as there are free coeffi-
cients in the reduced order transfer function (r poles and r
zeroes). This provides a unique reduced order model, i. e.,
invariance regarding the representation and the realization of
the original system, but does not guarantee the preservation

Fig. 2 Relative error between the full and the 5th order re-
duced model for a single node (node 1 in Fig 1).

W
T

V⋅ I=

W
T

A V⋅ ⋅ TL=

2r Gr s( ){ } G s( ){ }

V
T

V⋅ I= W
T

W⋅ I=
2r

Gr s( ){ } G s( ){ }

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
time in s

-8

-6

-4

-2

0

er
ro

r
in

%

One-sided Arnoldi

Two-sided Arnoldi

Fig. 3 Mean square relative difference (MSRD) for all the
nodes during the initial 0.05s, for a two-sided Arnoldi reduc-
tion from order 1071 to 20, 10 and 5.

Method order e1[%] e2[%]

One-sided 
Arnoldi

20 0.964576 0.339707

10 0.937031 1.44194

5 7.99637 3.01407

Two-sided 
Arnoldi

20 0.0087617 1.30918

10 1.67593 1.33582

5 5.00608 4.03799

Table 1: Results for one-sided and two-sided Arnoldi
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of stability and passivity. In many applications it is better to
trade some of the „optimality“ of two-sided methods to gain
guaranteed stable and passive reduced order models, for
example by using the one-sided Arnoldi reduction algo-
rithm.

Preservation of the stability and passivity of the orig-
inal system: In circuit simulation, reduced-order modeling
is mostly applied to large passive linear subcircuits (such as
RLC networks), and preservation of passivity is crucial for
the stability of the simulation of the whole circuit. Unfortu-
nately, the reduced models gained by two-sided Arnoldi and
Lanczos algorithm are not passive and stable in general [3].
In the microthruster example, the reduced model of order 9
is unstable. It has been shown that the coordinate trans-
formed one-sided Arnoldi algorithm on the other side, can
generate guaranteed stable reduced-order models [7]. 

Computational complexity: One disadvantage of the
Arnoldi method is that each new Arnoldi vector (new col-
umn of matrix V) should be orthogonal to all previously gen-
erated vectors. This means that the computational cost for
orthogonalisation over the r steps of algorithm grows as
O(2r2n) with the dimensions n of the full space and r of the
Krylov-subspace. Additionally r steps of the Arnoldi proce-
dure require r matrix-vector products at the cost of 2rNz(A),
where Nz(A) is a number of nonzero elements of A
(Nz(A)=n2 for a dense matrix). Thus, on average the compu-
tational costs for (one-sided) Arnoldi algorithm grows as
O(2r2n + 2rNz(A)) . For the two-sided Arnoldi algorithm the
costs are double. The Lanczos algorithm has smallest com-
putational costs for orthogonalisation. In each step it is nec-
essary to deal with just two previously generated vectors
(matrix TL is tridiagonal), which makes the orthogonalisa-
tion costs over the r steps of the algorithm grow only as
O(16rn). Together with matrix-vector products, the Lanczos
algorithm´s costs are of O(16rn+4rNz(A)). Hence, for large
r ´the Lanczos algorithm is the fastest of three. However, it
is numerically less stable than both the Arnoldi and the two-
sided Arnoldi process.

Numerical stability: Because of rounding errors in all
three algorithms, the column vectors of basis V and W for
the Krylov-subspaces (7) and (9) may become non-orthogo-
nal. How quickly this happens depends on the chosen
dimension r of the Krylov-subspaces. For the one- and two-
sided Arnoldi algorithm each new vector should be orthogo-
nal to all previously generated vectors so that the rounding
errors accumulate slower than by Lanczos algorithm, where
each new vector is orthogonalised only with respect to the
last two generated vectors. 

Invariance properties: Changing the representation
(multiplying the state equation with some matrix) or the
realization (change of state vector) of the original system
does not change the input-output behavior of the reduced
order models generated by two-sided methods [5]. In case of

one-sided Arnoldi algorithm these invariance properties are
not given, due to matching only r moments which is half of
the number of unknowns in . 

Approximation of the complete output: In general the
two-sided Arnoldi and Lanczos algorithms produce
reduced-order models which are „optimized“ for particular
output(s). This is due to their taking into account the output
vector c by using a basis W of the output Krylov-subspace
(9). It means that, even if in the case of the microthruster
model two-sided Arnoldi properly describe the complete
state vector (see e2 in Table 1), in general this may not work.
The one-sided Arnoldi algorithm on the other hand, doesn´t
take into account the output vector at all, so we can expect
the approximation of the complete output also in the general
case. 

Conclusion: Our results show that, for moderate values
of r the two-sided Arnoldi is definitely better than Lanczos
algorithm. Stability and passivity properties of two-sided
methods however, need to be further researched. Mean-
while, we consider the one-sided Arnoldi algorithm as an
acceptable tool for compacting linear electro-thermal mod-
els. 
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