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In this article, we propose a survey of the Simultaneous Localization And Mapping field when considering the recent evolution of autonomous driving. The growing interest regarding self-driving cars has given new directions to localization and mapping techniques. In this survey, we give an overview of the different branches of SLAM before going into the details of specific trends that are of interest when considered with autonomous applications in mind. We first present the limits of classical approaches for autonomous driving and discuss the criteria that are essential for this kind of application. We then review the methods where the identified challenges are tackled. We mostly focus on approaches building and reusing long-term maps in various conditions (weather, season, etc.). We also go through the emerging domain of multi-vehicle SLAM and its link with self-driving cars. We survey the different paradigms of that field (centralized and distributed) and the existing solutions. Finally, we conclude by giving an overview of the various largescale experiments that have been carried out until now and discuss the remaining challenges and future orientations.

I. INTRODUCTION

S IMULTANEOUS Localization And Mapping (SLAM) has been a hugely popular topic among the mobile robotics community for more than 25 years now. The success of this field is tightly bound to the fact that "solving" the SLAM problem, that is localizing a robot thanks to a map of the surroundings built incrementally, has numerous applications ranging from spatial exploration to autonomous driving. The recent spotlight put on intelligent vehicles has pushed further the research effort with the contribution of car manufacturers.

One could think of GNSS (Global Navigation Satellite System) as a solution to this localization problem but it has quickly been showed that it was not sufficient by itself. Even though accuracy limits of classical GNSS solutions are lifted when perfectly positioned base stations are used (Real-Time Kinematic GNSS), availability remains an issue. Satellite signals are affected by atmospheric conditions that are difficult to predict. Moreover, the infrastructure can block the direct reception of signals and generate multipath interference or non-line-of-sight reception which has disastrous consequences on the provided localization. This kind of signal degradation is difficult to detect and usually causes a loss of integrity from which recovering can be tricky. These problems are more common in dense urban areas where tall buildings can mask satellites. On open roads, GNSS's usually perform better.

Another classic approach to localization is to take advantage of the road infrastructure (road markings or roadway detection) in order to guide a vehicle in a lane. Advanced Driver-Assistance Systems (ADAS) are already integrating lane marking detection in commercialized cars. While this kind of approach mostly constrains the lateral position of a vehicle, it is sufficient for environments where the roadway is easily identifiable such as highways for instance. On the other hand, more complex environments (urban mostly, with intersections, curved roads, etc.) do not always provide enough road information to localize a vehicle. Moreover, the position accuracy needed along the longitudinal axis is more important than in straight, highway-like environments. Anyhow, redundancy is needed in order to build a safe system and ensure a consistent behavior on the road. As such, different localization means should be considered.

In a general manner, localizing a vehicle, be it in a global or a local frame, is an essential functionality to perform any other perception or planification tasks. Predicting the evolution of other obstacles on the road and choosing which maneuver is the most appropriate require to know exactly where the ego-vehicle is located and how it will evolve in the coming seconds. The SLAM framework gives an answer to this problematic while still being general enough to allow the use of any sensor or estimation technique that suits the prerequisite of estimating both the localization of the vehicle and the map at the same time. The map is of prime interest when autonomous driving is considered as a whole as it offers a first level of perception that is needed in order to make appropriate decisions.

The SLAM problem is considered as one of the keys towards truly autonomous robots, and as such is an essential aspect of self-driving cars. However, many issues are still preventing the use of SLAM algorithms with vehicles that should be able to drive for hundreds of kilometers in very different conditions. This last statement encompasses the two main problems arising when dealing with SLAM for autonomous vehicles: localization tends to drift over time and maps are not necessarily viable in every driving condition. The former problem is well-known in the SLAM community. The local and incremental positioning estimation that is given by SLAM algorithms tends to diverge from the true trajectory as the traveled distance increases. Without prior knowledge or absolute information, it thus becomes almost impossible to ensure a proper localization for several kilometers. This leads to the second problem, namely having maps that are sufficient for the localization task no matter the conditions. The mapping aspect has gained a lot of attention lately with the objective of providing the necessary information to locate a vehicle in different seasons, weathers or traffic conditions. Many solutions have been envisaged to solve these two problems like building a map with a careful selection of distinctive information with the objective of reusing it later or taking advantage of new communication systems in order to share and enhance the maps built by other road users for instance.

SLAM is a broad field and involves many topics ranging from sensor extraction to state estimation. In this article, we propose a survey focusing on the current trends in the SLAM community regarding the emergence of the autonomous vehicle market. To be clear, throughout this paper, we will refer to SLAM as approaches that are composed of at least an odometry and a mapping module in order to cover all the techniques that are of interest for autonomous driving. We will first give a general introduction to SLAM by reviewing the most commonly used estimation techniques, discuss the different existing benchmarks and data sets and point to the relevant surveys covering aspects that are not reviewed in this article. This will be the object of Section II. Then, Section III will concern the limits of classical methods for autonomous driving and more especially the impact of the drift. The problem will first be stated and we will then focus on the solutions proposed to avoid or correct this drift and on the general reliability of the exploited information. We will end this section by discussing the criteria that should be respected for a SLAM approach to be viable for autonomous driving. Section IV will concern the techniques that tackle some of the challenges of SLAM for autonomous cars, namely building and exploiting long-term maps. A survey of the methods that take advantage of previous knowledge, coming from the SLAM algorithm itself or from another resource (Geographic Information Systems for instance), will be proposed as it is a key aspect to achieve true autonomy for self-driving cars. Section V will give an overview of multi-vehicle SLAM systems. This field offers a solution to both the problems mentioned earlier: constraining drift and enhancing maps. The different design choices of such applications will be exposed and motivated with the related state of the art. Finally, Section VI will expose the large-scale experiments that have been carried out so far with relation to the localization means used. It will serve as a basis to discuss the future orientations and the remaining challenges in Section VII.

II. THE SLAM PROBLEM

Initiated by Smith and Cheeseman [1] in 1986, the SLAM topic got popular during the 1990s with many structuring works like [START_REF] Leonard | Simultaneous Map Building and Localization for an Autonomous Mobile Robot[END_REF] or [START_REF] Dellaert | Monte Carlo Localization for Mobile Robots[END_REF]. Through the years, new methods have appeared using different sensors (camera, laser, radar, etc.), creating new data representations and consequently new types of maps. Similarly, various estimation techniques have emerged inside the SLAM field. A quick panorama has been made 10 years ago in [START_REF] Bailey | Simultaneous Localization and Mapping (SLAM): Part II[END_REF] and [START_REF] Durrant-Whyte | Simultaneous Localization and Mapping: Part I[END_REF]. Readers looking for an initiation to the global SLAM problem can also refer to [START_REF] Thrun | Probabilistic Robotics[END_REF] and [START_REF] Stachniss | Springer Handbook of Robotics[END_REF] for a comprehensive introduction to the topic and to [START_REF] Cadena | Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age[END_REF] for an extensive up-to-date review of the current challenges in SLAM.

SLAM methods require a wide panel of algorithms to ensure the robustness of the provided localization. As such, sensor data extraction, primitive search [START_REF] Schmid | Evaluation of Interest Point Detectors[END_REF], data association [START_REF] Civera | 1-Point RANSAC for EKF Filtering. Application to Real-Time Structure from Motion and Visual Odometry[END_REF] or map storage and updates [START_REF] Mouragnon | Real Time Localization and 3D Reconstruction[END_REF] are part of the topics which concern SLAM as well. However, in this literature review, we will first focus on the main estimation methods that exist before going through the current trends in the autonomous vehicle application field.

The SLAM problem is usually formalized in a probabilistic fashion. The whole objective is to be able to estimate at the same time the state of the vehicle and the map being built. The vehicle state can be defined differently depending on the application: 2D position and orientation, 6D pose, speed, acceleration, etc. We denote x k the vehicle pose estimation at the time k and m the map of the environment. To estimate these variables, it is possible to take advantage of what we call control inputs u k and which represent an estimation of the motion between k -1 and k. They usually come from wheel encoders or any sensor able to give a first idea of the displacement. The particularity of SLAM approaches is to take into consideration measurements coming from sensor readings and denoted z k . They help to build and improve the map and indirectly, to estimate the vehicle pose.

The SLAM problem can be formulated in two ways. In the first one, the goal is to estimate the whole trajectory of the vehicle and the map given all the control inputs and all the measurements. A graphical representation can be seen in Figure 1. This problem, known as full SLAM, computes the joint posterior over all the poses and the map based on the entirety of sensor data: The full SLAM problem can be difficult to handle in real time as the complexity of the problem grows with respect to the number of variables considered. The idea of online SLAM is to estimate the current position of the vehicle, usually based on the last sensor information. A graphical representation is shown in Figure 2. The incremental nature of the problem can be obtained using Bayes' rule: The estimation techniques can be separated into two main categories: filter-based approaches and optimization-based methods. The former corresponds to iterative processes that are thus suited to online SLAM and the latter regroups methods performing batch treatments and, as such, are usually applied to solve the full SLAM problem even if this trend has changed during the last ten years.

bel(x k , m) = p(x k , m | z 0:k , u 0:k ) ∝ p(z k | x k , m) x k-1 p(x k | x k-1 , u k )bel(x k-1 , m)dx k-1 (2)

A. Filter-based SLAM

Filter-based methods derive from Bayesian filtering and work as two-step iterative processes. In the first step, a prediction of the vehicle and the map states is made using an evolution model and the control inputs u k . In the second step, the current observation, z k , coming from sensor data, is matched against the map in order to provide a correction of the previously predicted state. The model that put in relation the observation with the map is called an observation model. These two steps iterate and so incrementally integrate sensor data to estimate the vehicle pose and the map.

1) Extended Kalman Filter: The first branch of the filterbased methods concerns derivatives of the Kalman Filter (KF) [START_REF] Kalman | A New Approach to Linear Filtering and Prediction Problems[END_REF]. KFs assume that data are affected by Gaussian noises which is not necessarily true in our case. At its basic form, KFs are designed to handle linear systems and while they have great convergence properties [START_REF] Dissanayake | An Experimental and Theoretical Investigation into Simultaneous Localization and Map Building[END_REF] [START_REF]A Solution to the Simultaneous Localization and Map Building (SLAM) Problem[END_REF], they are rarely used for SLAM. On the other hand, the Extended Kalman Filter (EKF) [START_REF] Kalman | New Results in Linear Filtering and Prediction Theory[END_REF] is a common tool in non-linear filtering and as such in SLAM. The EKF adds a linearization step for non-linear models. The linearization is performed around the current estimate by a first order Taylor expansion. The optimality of the EKF has been demonstrated as long as the linearization is made around the true value of the state vector. In practice, it is the value to estimate and is thus not available. This can cause consistency issues: the true value can be outside of the estimated uncertainty [START_REF] Julier | A Counter Example to the Theory of Simultaneous Localization and Map Building[END_REF] [START_REF] Bar-Shalom | Estimation with Applications to Tracking and Navigation[END_REF].

However, estimates are most of the time sufficiently close to the truth to allow the use of the EKF. Sensors like laser scanners for instance, that provide a range information, are particularly adapted [START_REF] Guivant | Autonomous Navigation and Map Building Using Laser Range Sensors in Outdoor Applications[END_REF] [START_REF] Guivant | Optimization of the Simultaneous Localization and Map Building Algorithm for Real-Time Implementation[END_REF]. Sonars were among the first EKF SLAM approaches for underwater applications [START_REF] Leonard | A Computationally Efficient Method for Large-Scale Concurrent Mapping and Localization[END_REF] [START_REF] Newman | Pure Range-Only Sub-Sea SLAM[END_REF]. Both sensors have been combined in an EKF SLAM approach in [START_REF] Newman | Explore and Return: Experimental Validation of Real-Time Concurrent Mapping and Localization[END_REF]. A coupling of vision and laser has also been proposed in [START_REF] Newman | Outdoor SLAM Using Visual Appearance and Laser Ranging[END_REF]. Monocular approaches have also largely been studied. In [START_REF] Davison | Real-Time Simultaneous Localisation and Mapping with a Single Camera[END_REF], the landmarks composing the map are inserted in the EKF only when sufficiently accurate. In [START_REF] Montiel | Unified Inverse Depth Parametrization for Monocular SLAM[END_REF], a specific landmark parametrization is proposed. In [START_REF] Bresson | Real Time Monocular SLAM with Low Memory Requirements[END_REF], the authors studied the impact of the Kalman gain on an update in order to constrain linearization errors.

The continuously growing map size makes the EKF unable to support large-scale SLAM as the update time depends, in a quadratic way, on the size of the state vector. To overcome this issue, the notion of submaps has been created. Each time a map becomes too large (various criteria can be used to decide so), a new blank map replaces the old one. A higher-level map keeps track of the links between the submaps not to lose information. Among the first submap-based approaches, we can cite [START_REF] Williams | An Efficient Approach to the Simultaneous Localisation and Mapping Problem[END_REF] with the Constrained Relative Submap Filter where submaps are decorrelated from one another but where loop closure (drift correction based on the recognition of a previously visited place) is difficult to perform. The constant-time SLAM [START_REF] Leonard | Consistent, Convergent and Constant-Time SLAM[END_REF] and the Network Coupled Features Maps [START_REF] Bailey | Mobile Robot Localisation and Mapping in Extensive Outdoor Environments[END_REF] work in a similar fashion except that landmarks common between submaps are kept to ease the change from one to another but these methods ignore correlated data. The Atlas framework [START_REF] Bosse | An Atlas Framework for Scalable Mapping[END_REF] takes advantage of a graph structure where nodes are submaps and vertices the transformation between two submaps. Loop closures can only be applied offline. Estrada et al. solve this problem by maintaining two high-level maps [START_REF] Estrada | Hierarchical SLAM: realtime accurate mapping of large environments[END_REF] but still use landmarks in multiple submaps. Conditionally independent submaps were proposed in [START_REF] Piniés | Large Scale SLAM Building Conditionally Independent Local Maps: Application to Monocular Vision[END_REF] as a solution to this issue. The idea is to marginalize the information that is not common to two submaps in order to make them independent given the common part. A different approach is chosen in [START_REF] Paz | Divide and Conquer: EKF SLAM in O(n)[END_REF]. A divide and conquer method is proposed to join the local maps created so as to recover an exact global map. New criteria to decide when to create submaps have also been proposed like the number of simultaneously observable landmarks in [START_REF] Blanco | Subjective Local Maps for Hybrid Metric-Topological SLAM[END_REF] or the correlation between landmarks in [START_REF] Chli | Automatically and Efficiently Inferring the Hierarchical Structure of Visual Maps[END_REF]. An alternative to submaps, the Compressed EKF SLAM, has been presented in [START_REF] Guivant | Optimization of the Simultaneous Localization and Map Building Algorithm for Real-Time Implementation[END_REF]. In this work, the state vector is divided into an active (and updated) part and another one which is compressed into a light auxiliary coefficient matrix.

2) Unscented Kalman Filter: To compensate the weaknesses of the EKF with highly non-linear systems, Julier et al. introduced the Unscented Kalman Filter (UKF) [START_REF] Julier | New Extension of the Kalman Filter to Nonlinear Systems[END_REF] which avoids the computation of the Jacobians. The idea is to sample particles, called sigma points, which are pondered around the expected value thanks to a likelihood function. These sigma points are then passed to the non-linear function and the estimate is recomputed. The major drawback of this method is its computational time. Most of the works using the UKF took place at the beginning of the 2000s [START_REF] Wan | The Unscented Kalman Filter for Nonlinear Estimation[END_REF] [START_REF] Julier | Unscented Filtering and Nonlinear Estimation[END_REF]. A real-time application to a monocular context has been demonstrated in [START_REF] Checklov | Real-Time and Robust Monocular SLAM using Predictive Multi-Resolution Descriptors[END_REF].

3) Information Filter: Another variant of the Kalman Filter is the Information Filter (IF) [START_REF] Maybeck | Stochastic Models, Estimation and Control[END_REF] which is the inverse form of the Kalman Filter. Its particularity is to define the information matrix as the inverse of the covariance matrix. One main advantage is that the update step becomes additive and is not dependent on the order in which the observations are integrated [START_REF] Liu | Results for Outdoor-SLAM Using Sparse Extended Information Filters[END_REF]. It is also possible to make the information matrix sparser by breaking the weak links between data [START_REF] Thrun | Simultaneous Localization and Mapping with Sparse Extended Information Filters[END_REF] which ensures a near constant-time update [START_REF] Eustice | Sparse Extended Information Filters: Insights Into Sparsification[END_REF]. The IF is not as popular as the EKF in mono-vehicle SLAM despite some applications in [START_REF] Mahon | Efficient View-Based SLAM Using Visual Loop Closures[END_REF][45] [START_REF] Gutmann | A Constant-Time Algorithm for Vector Field SLAM Using an Exactly Sparse Extended Information Filter[END_REF] because it is necessary to convert every measure in its inverse form which can be costly. However, the IF has been more exploited for multi-vehicle SLAM (see Section V).

4) Particle Filter: The second major branch in filtering SLAM algorithms is based on Particle Filters (PF). Their principle is the following: the state is sampled with a set of particles according to its probability density. Then, as with every filter, a prediction of the displacement of each particle is accomplished and an update, depending on the observation, is performed. In the update phase, particles are weighted according to their likelihood regarding the measures. The most likely particles are kept, the others are eliminated and new ones are generated [START_REF] Dellaert | Monte Carlo Localization for Mobile Robots[END_REF]. The direct application of this method to the SLAM is difficult to tract because it requires a set of particles per landmark. Variations of PFs have then appeared, like the Distributed Particle approaches DP-SLAM [START_REF] Eliazar | DP-SLAM: Fast, robust simultaneous localization and mapping without predetermined landmarks[END_REF] and DP-SLAM 2.0 [START_REF]DP-SLAM 2.0[END_REF] which proposed to use a minimal ancestry tree as a data storage structure. It enables fast updates by guiding the PF while reducing the number of iterations of the latter. However, the most famous PF algorithm is FastSLAM [START_REF] Montemerlo | FastSLAM: A Factored Solution to the Simultaneous Localization And Mapping Problem[END_REF] which has been greatly influenced by previous works [START_REF] Murphy | Bayesian Map Learning in Dynamic Environments[END_REF][51] on the subject. Each landmark is estimated with an EKF and particles are only used for the trajectory. FastSLAM has been applied in real-time in [START_REF] Eade | Scalable Monocular SLAM[END_REF]. The major advantage of PFs is that they do not require a Gaussian noise assumption and can accommodate with any distribution. Nevertheless, PFs also suffer from long-term inconsistency [START_REF] Bailey | Consistency of the FastSLAM Algorithm[END_REF]. In [START_REF] Mohan | Mapping Large Scale Environments by Combining Particle Filter and Information Filter[END_REF], this problem was tackled by combining FastSLAM to an IF but the result is computationally heavy. In [START_REF] Hahnel | An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements[END_REF], FastSLAM was applied to laser data where the matching gives an odometry measure which is then used to weight particles in the resampling phase. Still regarding FastSLAM, its Bayesian foundations were extended to the Transferable Belief Model framework (TBM) in [START_REF] Reineking | Evidential FastSLAM for Grid Mapping[END_REF] thus allowing the representation of conflict in the employed grid map.

Filter-based approaches tend to now rely on 3D points when it comes to vision sensors [START_REF] Davison | Real-Time Simultaneous Localisation and Mapping with a Single Camera[END_REF] and 2D occupancy grids with laser data. The latter, introduced in [START_REF] Moravec | Sensor Fusion in Certainty Grids for Mobile Robots[END_REF] and [START_REF] Elfes | Using Occupancy Grids for Mobile Robot Perception and Navigation[END_REF], are particularly suited to SLAM as the discretization of the space due to the grid itself allows for a finite number of position candidates to test during the update step. Landmark uncertainties are represented by the occupancy probability of the cell which makes updates on map parts possible. During the update step, the classical approach is to maximize the similarity between the measurement and the map like in [START_REF] Alsayed | PML-SLAM: a solution for localization in large-scale urban environments[END_REF] in the Bayes formalism or in [START_REF] Trehard | Credibilist Simultaneous Localization and Mapping with a LIDAR[END_REF] in the TBM context. Not mentioned yet, the use of RADARs for SLAM has been demonstrated with filter-based approaches in [START_REF] Rouveure | Radar-based SLAM without odometric sensor[END_REF][62] [START_REF] Jose | An Augmented State SLAM formulation for Multiple Line-of-Sight Features with Millimetre Wave RADAR[END_REF]. However, their use remains limited in large-scale experiments due to the noisy nature of the signal. They are usually employed for obstacle detection.

B. Optimization-based SLAM

Optimization-oriented SLAM approaches generally consist of two subsystems, as in filter-based SLAM. The first one identifies the constraints of the problem based on sensor data by finding a correspondence between new observations and the map. The second subsystem computes or refines the vehicle pose (and past poses) and the map given the constraints so as to have a coherent whole. As for filters, we can divide these methods into two main branches: bundle adjustment and graph SLAM.

1) Bundle Adjustment: Bundle adjustment is a vision technique that jointly optimizes a 3D structure and the camera parameters (pose). Most of the early works focused on 3D reconstruction [START_REF] Triggs | Bundle Adjustment -A Modern Synthesis[END_REF] but it has since then been applied to SLAM. The main idea is to optimize, usually using the Levenberg-Marquardt algorithm [START_REF] Press | Levenberg-Marquardt Method[END_REF], an objective function. The latter minimizes the reprojection error (distance between observations in the image and reprojected past features) giving the best camera and landmark positions. However, the core bundle adjustment algorithm can be computationally heavy as it considers all the variables at once to optimize over.

Since then, many approaches have been proposed to perform local optimizations. In [START_REF] Shum | Efficient Bundle Adjustment with Virtual Key Frames: A Hierarchical Approach to Multi-frame Structure from Motion[END_REF][67], a hierarchical method working on smaller chunks is presented. The partial 3D models obtained are then merged in a hierarchical fashion. To reduce the complexity, two virtual key frames are chosen or created among all the frames to represent a given portion. This lessens the number of variables to optimize. A similar method has been applied to autonomous driving in [START_REF] Royer | Localization in Urban Environments: Monocular Vision Compared to a Differential GPS Sensor[END_REF] with accurate localization results but an offline map building.

In [START_REF] Steedly | Propagation of Innovative Information in Non-Linear Least-Squres Structure from Motion[END_REF], an incremental method optimizing only over the new information is proposed. In the worst case, it is equivalent to a full bundle adjustment. In [START_REF] Zhang | Incremental Motion Estimation through Modified Bundle Adjustment[END_REF], the authors use a sliding window over key frames triplets to locally minimize the reprojection errors. Points common between two views are considered in the optimization phase. The principle of a triplet of images is common in the bundle adjustment community. As with every optimization technique, bundle adjustment works well when a good rough estimate is given. In that sense it is important to filter outliers. Nistér et al. [START_REF] Nistér | Visual Odometry for Ground Vehicle Applications[END_REF] proposed a selection method based on a preemptive RANSAC [START_REF] Fischler | Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[END_REF]. Even though it allows for a real-time application (13 Hz), results are less accurate than in [START_REF] Royer | Localization in Urban Environments: Monocular Vision Compared to a Differential GPS Sensor[END_REF]. A local bundle adjustment has been proposed in [START_REF] Mouragnon | Real Time Localization and 3D Reconstruction[END_REF]. The objective is to locally optimize the last n camera positions based on the 2D reprojections of the points in the last N frames (N ≥ n). These parameters can be tuned to obtain a real-time approach with good results. An integration of inertial measures has been proposed in [START_REF] Michot | Bi-Objective Bundle Adjustment With Application to Multi-Sensor SLAM[END_REF]. A bi-objective function (vision and inertial objective functions) is weighed with coefficients set thanks to a machine learning approach.

Another alternative is to optimize only a set of frames in order to solve loop closing problems. This is the idea presented in [START_REF] Konolige | FrameSLAM: from Bundle Adjustment to RealReal Visual Mapping[END_REF] where the authors keep skeleton frames and marginalize out most of the features and frames in the process. This method is very close to graph SLAM techniques.

2) Graph SLAM: The graphical representation of Bayesian SLAM (see Figure 2) is particularly well adapted to a resolution via optimization methods. An example, coming from [START_REF] Thrun | Simultaneous Localization And Mapping[END_REF], is shown in Figure 3. Based on this graphical representation, a matrix describing the relationships between landmarks and vehicle poses can easily be built and used in an optimization framework. Fig. 3: Transition graph and associated constraints [START_REF] Thrun | Simultaneous Localization And Mapping[END_REF] Many localization problems can be modeled using a graph representation and solved by finding the minimum of a cost function that follows this form:

F (x, m) = ij e ij (x, m) T Ω ij e ij (x, m) (3) 
where x is the vector containing the different vehicle poses, m is the map, e ij is the error function which computes the distance between the prediction and the observation and Ω ij is the associated information matrix.

The optimal values x * and m * can be obtained through optimization:

(x * , m * ) = argmin x,m F (x, m) (4) 
The minimization of the, in general, non-linear function F (x, m) is usually simplified by a local approximation using popular methods such as Gauss-Newton, Levenberg-Marquardt, Gauss-Seidel relaxation or gradient descent. These methods can either work by optimizing the whole trajectory or with small displacement increments for a real-time use. Similarly to filtering approaches, the success of the minimization depends on the initialization.

The TORO algorithm [START_REF] Grisetti | Efficient Estimation of Accurate Maximum Likelihood Maps in 3D[END_REF] applies a stochastic gradient descent variant with a novel node parametrization in the graph. This parametrization takes the form of a tree structure that defines and updates local regions at each iteration. A different idea is to consider not a Euclidean space but a manifold. It is the basis of the algorithm HOG-MAN [START_REF] Grisetti | Hierarchical Optimization on Manifolds for Online 2D and 3D Mapping[END_REF] where a hierarchical optimization on the manifold is proposed. The lowest level represents the original data while the highest levels capture the structural information of the environment. In g 2 o [78], a similar representation is adopted. g 2 o uses the structure of the Hessian matrix to reduce the complexity of the system to optimize. COP-SLAM [START_REF] Dubbelman | Closed-form Online Pose-chain SLAM[END_REF] optimizes a pose graph. The latter considers the displacement and the associated uncertainty to build a chain of poses. In a different approach, TreeMap [START_REF] Frese | Closing a Million-Landmarks Loop[END_REF] exploits a tree structure for the map and makes topological groups of landmarks so as to make the information matrix sparser and so quicken the processing (O (log n) for n landmarks). Even though not exploiting a graph structure, iSAM (incremental Smoothing And Mapping) [START_REF] Kaess | iSAM: Incremental Smoothing and Mapping[END_REF][82] simplifies the information matrix to speed up the underlying optimization. Here, the objective is the QR factorization of this sparse information matrix.

The comparison of filter-based techniques and optimization approaches for a SLAM application is difficult as they are usually considered in different scopes. This comparison effort has been proposed in [START_REF] Strasdat | Real-time Monocular SLAM: Why Filter?[END_REF] and then extended in [START_REF]Visual SLAM: Why Filter?[END_REF] for monocular approaches. The outcome is that optimization tends to give better results than filters which are more subject to linearization issues. However, the authors conclude that "filter-based SLAM frameworks might be beneficial if a small processing budget is available, but that BA optimization is superior elsewhere that with limited resources" [START_REF] Strasdat | Real-time Monocular SLAM: Why Filter?[END_REF].

C. Relevant surveys and existing data sets

As SLAM is a central topic of both mobile robotics and now autonomous driving, it continues to draw the attention of many researchers. In this section, we direct the readers towards recent survey articles that cover aspects not treated here. We also describe the different existing data sets that serve to benchmark current approaches.

As mentioned before, a good introduction to the field is given in [START_REF] Bailey | Simultaneous Localization and Mapping (SLAM): Part II[END_REF] and [START_REF] Durrant-Whyte | Simultaneous Localization and Mapping: Part I[END_REF] with an overview of the different aspects involved by SLAM. In [START_REF] Aulinas | The SLAM problem: a survey[END_REF], a brief survey of the most common filter-based estimation techniques is given with a list of the pros and cons of each main paradigm. An interesting take on the SLAM is offered by Dissanayake et al. in [START_REF] Dissanayake | A Review of Recent Developments in Simultaneous Localization and Mapping[END_REF], and extended in [START_REF] Huang | A critique of current developments in simultaneous localization and mapping[END_REF], where the observability of SLAM, its convergence properties, its consistency as well as its computational efficiency are discussed. In [START_REF] Stachniss | Springer Handbook of Robotics[END_REF], three estimation techniques are reviewed: EKF-SLAM, PF-SLAM and graphbased SLAM. Recent SLAM works that use vision are also reviewed. A specific focus is given to indoor SLAM and RGB-D cameras. There is a strong interest of the community towards vision-based SLAM due to the cost of the sensor and its information richness. Some of the works are reviewed in [START_REF] Chen | Recent advances in simultaneous localization and map-building using computer vision[END_REF]. In [START_REF] Scaramuzza | Visual Odometry: Part I: The First 30 Years and Fundamentals[END_REF] and [START_REF] Fraundorfer | Visual Odometry: Part II: Matching, RobuRobust, Optimization, and Applications[END_REF], the authors cover the topic of Visual Odometry (VO) where the focus is on the localization (and the trajectory) and not on the map. Visual SLAM is also at the heart of [START_REF] Fuentes-Pacheco | Visual simultaneous localization and mapping: a survey[END_REF] where feature selection, matching and map representation are addressed. Recently, Ros et al.,[START_REF] Ros | Visual SLAM for Driverless Cars: A Brief Survey[END_REF], present the challenges of Visual SLAM for driverless cars: building long-life maps, how to share maps between vehicles and the necessity to work on high-level features to ease recognition. A very complete survey on visual place recognition has also been published lately [START_REF] Lowry | Visual Place Recognition: A Survey[END_REF]. The authors go through the different modules that are essential in this field: image processing (descriptors, etc.), maps (representation) and the estimation part called belief generation. While this survey will also explore place recognition as it is an important aspect of SLAM, we will focus on its application to autonomous vehicle and on the maturity of existing approaches. Already mentioned before is the considerable work of Cadena et al. in [START_REF] Cadena | Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age[END_REF] where the SLAM topic is reviewed as a whole. Some aspects, not necessarily applicable yet in autonomous driving, will not be covered here (active SLAM, for instance). Once again, we will insist on the key topics with regards to selfdriving cars and the experimental results of current stateof-the-art approaches. Finally, in [START_REF] Saeedi | Multiple-robot Simultaneous Localization and Mapping -A Review[END_REF], the authors review multiple-robot SLAM approaches with a description of the underlying mathematical formulation. In our dedicated section, we will complete this survey with cloud-based approaches and also give some insights about the current results in this field and the expected future directions in autonomous driving.

A strong effort has been made lately to provide data sets which can serve to benchmark the different SLAM algorithms. The Rawseeds project was among the first to propose a benchmarking tool [START_REF] Bonarini | RAWSEEDS: Robotics Advancement through Web-publishing of Sensorial and Elaborated Extensive Data Sets[END_REF] with outdoor and indoor data sets with ground truth. In a similar fashion, the New College data set [START_REF] Smith | The New College Vision and Laser Data Set[END_REF] is a 2.2 km trajectory in outdoor environment with cameras and lasers. The most famous is the KITTI database [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF] with various data sets acquired from a car in urban and peri-urban environments. Its popularity is linked to the variety of the data sets (the vehicle is equipped with stereo cameras and a 3D laser scanner) as well as to the evaluation possibility offered by the website. It is the main tool to evaluate the positioning accuracy (translation and rotation errors) of SLAM algorithms at the moment. Table I offers a summary of the different available data sets based on the comparison table proposed by [START_REF] Blanco-Claraco | The Malaga Urban Dataset: High-rate Stereo and Lidars in a realistic urban scenario[END_REF].

We will now present the limits of SLAM approaches with regard to autonomous driving by analyzing the top-ranked methods on KITTI and then discuss how these limits can be mitigated.

III. LIMITS OF CLASSICAL APPROACHES FOR

AUTONOMOUS DRIVING

A. Problem identification

The KITTI database provides an interesting vector to evaluate the current state of odometry/SLAM algorithms for autonomous driving as the furnished data sets were carried out with an equipped vehicle mostly on urban and peri-urban roads, where these kinds of approaches are expected to be the most efficient. The top-ranked localization method on KITTI's odometry data set is V-LOAM [START_REF] Zhang | Visual-lidar Odometry and Mapping: Lowdrift, Robust, and Fast[END_REF] which combines visual odometry for motion estimation with a slower 3D laser odometry. The 3D laser is used to create a depth map of the visual features and also to extract geometric feature points (edge points and planar points) that are matched with the previous 3D scan. The obtained transformation serves for the initialization of an ICP matching with the map. This approach is able to reach a 0.68 % translation error and a 0.0016 deg.m -1 rotation error on the KITTI benchmark. The best stereo approach on KITTI is a visual odometry named SOFT [START_REF] Cvišić | Stereo odometry based on careful feature selection and tracking[END_REF]. This algorithm is based on a careful feature selection and tracking. Corner-like features are extracted in both images. Correspondences are sought through SAD (Sum of Absolute Differences) over small windows. These features must be matched in two consecutive images to be viable. A Normalized Cross Correlation (NCC) test is performed to remove the last outliers. The frame-to-frame motion is estimated separately for rotation and translation with different algorithms. A similar focus is chosen in [START_REF] Buczko | How to distinguish inliers from outliers in visual odometry for high-speed automotive applications[END_REF]. An outlier removal scheme, based on an analysis of landmark reprojection errors, serves to define a criterion to reject outliers. Another interesting approach is described in [START_REF] Persson | Robust stereo visual odometry from monocular techniques[END_REF]. The authors use state-of-the-art monocular techniques but applied to a stereo system. This again implies a strong focus on inliers identification and tracking. The performance of these visual methods reaches around 1 % for the translation error and a rotation error below 0.003 deg.m -1 .

These four approaches are among the better ranked on KITTI. Even though the results are impressive, the drift that affects them makes their use over long distances impossible. For example, a 1 % translation drift alone (without rotation error) implies that after 100 meters, the vehicle is one meter away from its real, absolute localization. Ways to constrain, correct or avoid this long-term drift must thus be taken into consideration. The large-scale environments involved by autonomous driving are an important concern as a decimetric accuracy must be maintained during several kilometers (a twenty-centimeter accuracy is often recommended [START_REF] Ziegler | Making Bertha DriveAn Autonomous Journey on a Historic Route[END_REF]). It is thus of vital importance to find a solution, be it under the form of absolute constraints or by studying how the drift occurs and can be modeled.

It clearly appears that the non-linearity of the models used in SLAM algorithms (vehicle models and observation models), which is for the major part induced by rotations (see Figure 4 for an example), has a strong impact on the divergence of a localization. However, it is important to mention that convergence properties have been demonstrated in a linear case [START_REF]A Solution to the Simultaneous Localization and Map Building (SLAM) Problem[END_REF] for SLAM, the use of Kalman Filters in this field being a good example.

Regarding filtering methods, the divergence problem of the EKF SLAM has been stated numerous times. In [START_REF] Bar-Shalom | Estimation with Applications to Tracking and Navigation[END_REF], the authors show that the filter tends to give biased estimates when the linearization is performed far from the true value. It means that the uncertainty associated to the state (vehicle or map) is too small: the estimate is said to be inconsistent, the true value being out of the estimated uncertainty. The localization drifts progressively, the filter calculating a biased vehicle pose and map [START_REF] Huang | Convergence and Consistency Analysis for Extended Kalman Filter Based SLAM[END_REF]. Non-linear models are not the only source of drift. Julier et al. in [START_REF] Julier | A Counter Example to the Theory of Simultaneous Localization and Map Building[END_REF] add that the ignored correlation between data also provokes the divergence. Kalman Filters produce optimistic results, which means that they consider that a piece of data coming from a sensor is entirely new and so temporally Fig. 4: Impact of an angular drift. In green, the ground truth of trajectory is picture. Below, example of an angular drift (orange arrow) occurring at different times on the estimation of the position. decorrelated from the rest (white noise assumption) which is not the case and so contributes to the inconsistency.

The problems raised in this last paragraph also apply to optimization methods when they work in a local environment, which is a necessary condition for real-time estimation. The previously cited optimization-SLAM works also clearly show the importance of the rotation in that drift. It has been observed by multiple authors [START_REF] Bailey | Consistency of the EKF-SLAM Algorithm[END_REF]. It has also been shown experimentally in [START_REF] Frese | A Discussion of Simultaneous Localization and Mapping[END_REF] and [START_REF] Bresson | A General Consistent Decentralized SLAM Solution[END_REF]. In [START_REF] Huang | How far is SLAM from a linear least squares problem?[END_REF], the authors show that the 2D formulation of the SLAM problem is not convex and as such has local minima in which the optimization can be trapped. However, without including the rotation error, the problem is close to a quadratic function and thus becomes convex.

Many practical causes also affect the behavior of SLAM algorithms. For instance, the presence of dynamic obstacles when a static world assumption is a prerequisite is a factor. A low number of landmarks or the absence of sufficiently salient features in the scene can also induce wrong associations and so a divergence of the system. Of course, the accuracy of the models used with regard to noisy real sensor data is another factor that can have a strong impact on the integrity of the computed localization. Most of the works directly addressing this inconsistency problem tend to find ways to locally avoid or reduce the drift.

B. Avoiding or reducing the impact of drift

The first possibility to avoid, or at least reduce, the divergence is to divide the map in submaps [START_REF] Estrada | Hierarchical SLAM: realtime accurate mapping of large environments[END_REF]. These approaches, presented before, break the global map in submaps where each one has its own reference frame. By doing so, the drift can be avoided at a local level by allowing only short trajectories per submap. The size of a submap must thus be calibrated and becomes a compromise between reducing the drift and dealing with the induced information loss. However, even with an appropriate size (see [START_REF] Chli | Automatically and Efficiently Inferring the Hierarchical Structure of Visual Maps[END_REF] for instance), there is no guarantee that the localization consistency will be preserved. Indeed, each measure contributes to make the system inconsistent and this phenomenon can occur even with a few pieces of data. Moreover, even if the divergence is avoided in the submaps, it is not the case in the global map that keeps track of how the submaps are connected. It is thus more of a local solution to the problem.

In a similar fashion, robot-centered approaches greatly reduce the divergence [START_REF] Castellanos | Limits to the Consistency of EKF-Based SLAM[END_REF]. Instead of having a fixed world frame, the estimates are always given with relation to the vehicle position. Inconsistency problems are less frequent because they do not accumulate like it is usually the case. The estimation in this frame allows for a better consistency than in classical EKF SLAM [START_REF] Castellanos | Robocentric Map Joining: Improving the Consistency of EKF-SLAM[END_REF]. Nevertheless, as with submaps, the divergence is not entirely resolved as landmarks can diverge with only several measures. A few SLAM approaches have used a robot-centered frame with success [START_REF] Civera | 1-Point RANSAC for EKF-Based Structure from Motion[END_REF] [START_REF] Williams | On Combining Visual SLAM and Visual Odometry[END_REF]. Landmarks are forgotten as soon as they are not visible which relates these methods to visual odometry and is as such totally appropriate.

Other practical causes can create drift and inconsistency such as the presence of mobile obstacles when a static world is expected. This problem has been tackled in SLAMMOT (Mobile Object Tracking) or SLAM-DATMO (Detection And Tracking of Moving Objects) approaches [START_REF] Vu | Vehicle perception: Localization, mapping with detection, classification and tracking of moving objects[END_REF][120] [START_REF] Wang | Online simultaneous localization and mapping with detection and tracking of moving objects: Theory and results from a ground vehicle in crowded urban areas[END_REF]. The idea is to take advantage of the map building process to directly detect and track obstacles by analyzing observations which are not coherent with the vehicle displacement. Alternatively, credibilist approaches [START_REF] Trehard | Credibilist Simultaneous Localization and Mapping with a LIDAR[END_REF], which represent ambiguous information, can indirectly deal with dynamic obstacles. They do not detect or track these obstacles but instead treat them as conflicts which allows the algorithm to affect a very low weight to these observations when estimating the vehicle displacement.

More generally, the quality and number of selected landmarks in the SLAM process have a clear impact on how the system behaves. Ambiguities can cause matching errors and so the inconsistency of the produced estimates. Related to this problematic, Fault Detection and Isolation (FDI) systems propose to exploit information redundancy to measure the coherence of different sources (sensors, models, etc.) and detect errors or failures of one of the sources. By doing so, it becomes possible to know if the system is in a situation prone to errors and so reject spurious measures to avoid drift. In [START_REF] Roumeliotis | Sensor fault detection and identification in a mobile robot[END_REF], the authors propose to analyze the residuals of a bank of Kalman Filters using thresholds to determine if one filter is diverging. A similar approach is described in [START_REF] Goel | Fault detection and identification in a mobile robot using multiple model estimation and neural network[END_REF] but the decision part is given to a Neural Network. Sundvall and Jensfelt, in [START_REF] Sundvall | Fault detection for mobile robots using redundant positioning systems[END_REF], add a coherence measure between different estimations. In [START_REF] Morales | Vehicle localization in outdoor woodland environments with sensor fault detection[END_REF], Fault Detection is applied to GPS using the Normalized Innovation Squared (NIS) test. Neural Networks are used in [START_REF] Jabbari | Application of computational intelligence for sensor fault detection and isolation[END_REF] to detect sensor failures by making measure predictions using approximators. In [START_REF] Engel | Direct Sparse Odometry[END_REF], the authors propose a visual odometry where photometric camera calibration is taken into account in the minimization step in order to reduce the drift induced by effects like lens attenuation, gamma correction, etc. The quality of the observations is increased compared to simpler camera model.

An aspect that has often been considered to counter drift in SLAM algorithms is the use and fusion of multiple sources. Conversely to the previously described FDI methods, the idea is not to reject spurious measurements but for various sensors to compensate each other. According to Luo et al. [START_REF] Luo | Multisensor fusion and integration: approaches, applications, and future research directions[END_REF], three levels of information fusion can be identified: low-level with raw data, mid-level with features and highlevel with objects. In [START_REF] Castellanos | Multisensor fusion for simultaneous localization and map building[END_REF], the authors propose to couple laser with camera data. The fusion is done at a landmark level (laser estimation followed by camera refinement). In [START_REF] Wei | Camera/laser/GPS fusion method for vehicle positioning under extended NIS-based sensor validation[END_REF], camera, laser and GPS are fused based on information coherency. Already discussed before, the method described in [START_REF] Zhang | Visual-lidar Odometry and Mapping: Lowdrift, Robust, and Fast[END_REF] combines vision and 3D laser data to produce a lowdrift algorithm. However, even if coupling information can benefit the accuracy and consistency of an algorithm, it does not ensure that it will not drift. It only partially corrects the drift induced by one sensor.

Even if these methods have been proven to reduce or partially avoid the drift, it does not allow for a drift-free estimation during long periods of time. Correcting the drift in a reliable manner involves that constraints about where a vehicle is with relation to a previously known, local or absolute, reference should be regularly taken into account.

C. Evaluation criteria for SLAM in autonomous driving

While the previously described approaches can be successfully applied for autonomous indoor mobile robots with a dedicated exploration scheme, it is not sufficient for the largescale environments of the autonomous driving setting. It means that it is necessary to rely on previous knowledge (absolute or local information) or to be able to improve the built map over time until it is accurate enough (loop closing, for instance). As such, the mapping aspect is central in self-driving vehicles and raises important challenges about how to build or use compact, relevant, reliable and evolutive maps.

We have identified 6 criteria that we think must be fulfilled by a SLAM approach to be viable for autonomous driving. They are described below:

• Accuracy: refers to how accurate the vehicle localization is, be it in world coordinates or with relation to an existing map. Ideally, the accuracy should be below a threshold (usually around 20 centimeters [START_REF] Ziegler | Making Bertha DriveAn Autonomous Journey on a Historic Route[END_REF]) at all times. Of course, in straight lines, the longitudinal localization can be less accurate without major consequences. • Scalability: refers to the capacity of the vehicle to handle large-scale autonomous driving. The SLAM algorithm should be able to work in constant time and with a constant memory usage. It implies the use of a map manager to load data when needed. The second aspect is that the map built and/or used has to be light (or stored on a distant server and retrieved on the fly) so as for the approach to be easily generalizable over long distances. • Availability: refers to the immediate possibility for a SLAM algorithm to provide an adequate localization that could be used right away for autonomous driving if sufficiently accurate. In other words, no first passage of the algorithm is needed to build a map of the environment and it implies that the approach is able to leverage existing map resources (or integrate absolute information more generally). This criterion is particularly important not to restrain where a self-driving vehicle can operate (a world-wide mapping process is costly and requires dedicated means). • Recovery: refers to the ability to localize the vehicle inside a large-scale map. Initially, the vehicle does not know where it is and a dedicated process is, most of the time, needed to have a rough idea of its position in a map.

It is also a way to recover from a failure (kidnapped robot problem). • Updatability: refers to the identification of permanent changes between the map and the current observation. It also includes the update policy that is needed to integrate these lasting changes and not the temporary ones. Longterm autonomous driving requires the automation of map updates.

• Dynamicity: refers to how the SLAM approach is able to handle dynamic environments and changes. This includes dynamic obstacles that can distort the localization estimation. It also integrates weather conditions that can vary as well as seasonal changes (trees losing leaves, etc.). One of the challenges of long-term SLAM is to find sufficiently discriminative features or methods in order to be robust against those changes. We will now go through existing methods for both single and multi-vehicle SLAM and compare them with regard to the previously defined criteria so as to have a panorama on the maturity of SLAM approaches for autonomous driving.

IV. SINGLE-VEHICLE SLAM

All the challenges that appear from the criteria detailed above point at the necessity to build better maps and so at environment representation and recognition both at a metric and topological level. To cover this broad topic, we divide the works in three categories which reflect how the SLAM community usually considers their contributions. The first one concerns loop closure (recognizing a previously mapped place) which is an essential part of SLAM as it allows correcting maps and making them coherent. An interesting aspect is that these algorithms are usually applicable to relocalize a vehicle inside its environment and so provide an answer to the recovery criterion. The second category deals with the localization inside a previously built map. As previously discussed, it is a direct way to constrain the drift. Theoretically, every SLAM approach could be reusing its map but we will focus here on the articles that explicitly do so and on those which address the long-term challenges of reusing maps. A third part focuses on localization approaches that leverage existing data so as to avoid the first passage of a specifically equipped vehicle. For each part of this section, we will provide a synthesis of the discussed approaches, how they respond to the previously established criteria and briefly discuss the remaining challenges.

A. Relocalization and loop closure

Recognizing a previously mapped place, and thus reducing the drift induced by SLAM algorithms, is considered as an essential part of SLAM. The main difficulty comes from the fact that the estimation process is inconsistent and cannot be trusted to find those loops. It means that, most of the time, this problem is solved by a dedicated algorithm that runs at all times, independently from the estimation process. This dedicated algorithm is also often used to relocalize the vehicle inside a previously built map (kidnapped robot problem) which is of prime interest when considering autonomous vehicles.

Most of the approaches use cameras to find loops because of the richness of the visual information. Williams et al. [START_REF] Williams | A comparison of loop closing techniques in monocular SLAM[END_REF] have identified 3 categories in which these algorithms can be separated:

• Image-to-image methods [START_REF] Eade | Unified Loop Closing and Recovery for Real Time Monocular SLAM[END_REF] • Map-to-map methods [START_REF] Clemente | Mapping Large Loops with a Single Hand-Held Camera[END_REF] • Image-to-map methods [START_REF] Williams | An image-to-map Loop Closing Method for Monocular SLAM[END_REF] 1) Image-to-image methods: In image-to-image methods, the loop detection takes place in the sensor space. Bag-ofwords approaches based on visual clues [START_REF] Eade | Unified Loop Closing and Recovery for Real Time Monocular SLAM[END_REF] [START_REF] Sivic | Efficient Visual Search of Videos Cast as Text Retrieval[END_REF] belong to this category. The idea is to build a dictionary where each word represents similar descriptors. SIFT [START_REF] Lowe | Distinctive Image Features from Scale-Invariant Keypoints[END_REF] is often used to find descriptors and compare them due to its good robustness to scale, rotation or viewpoint changes in images. Many visual descriptors can be considered in a redundant fashion (SURF, CenSurE, etc.) so as to have the largest database possible and a representative dictionary. Once the latter is built, it can be used to check if some images can be described with the same words and thus be qualified as representing the same place.

Algorithms like FAB-MAP (Fast Appearance Based Map) [START_REF] Cummins | FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance[END_REF] (and its extension FAB-MAP 2.0 [START_REF] Cummins | Appearance-only SLAM at large scale with FAB-MAP 2.0[END_REF]) and PIRF-Nav (Position Invariant Robust Feature Navigation) [START_REF] Kawewong | Online and Incremental Appearance-Based SLAM in Highly Dynamic Environments[END_REF] are two examples of SLAM solutions based on landmark appearance for loop closures. In the first one, information having a strong dependency is extracted so as to avoid false recognitions which often affect loop closing algorithms. The approach has been evaluated on a 1000-km outdoor data set and shows that, using a dictionary built offline, the algorithm can provide proper topological loop closures and make maps more coherent (the gain in accuracy is not evaluated). In [START_REF] Kawewong | Online and Incremental Appearance-Based SLAM in Highly Dynamic Environments[END_REF], the objective is the same but features allowing to be robust against dynamic changes are favored (PIRF). A major difference with FAB-MAP is that the whole process is online and incremental. However, it does not scale well (quadratic complexity for image retrieval) and as thus has not been applied to vehicles contrary to FAB-MAP.

Still to reduce the number of false positives, SeqSLAM [START_REF] Milford | SeqSLAM: Visual Route-Based Navigation for Sunny Summer Days and Stormy Winter Nights[END_REF] proposes to be less discriminative on single images but to analyze over sequences in order to ensure a proper matching. Results on a 22 and 8-km data sets demonstrate the ability of SeqSLAM to handle day/night matching in real time (even though the computing time scales linearly with the size of the data set) with different weather conditions under which FAB-MAP is unable to properly operate. SeqSLAM is demonstrated as a pure place recognition approach and does not apply loop closure to correct previous measurements even though it is possible. SeqSLAM has even been extended to integrate motion estimation between matching by using a graph structure representing the potential roads and a particle filter to maintain the consistency of the positioning [START_REF] Pepperell | Routed roads: Probabilistic vision-based place recognition for changing conditions, split street and varied viewpoints[END_REF]. This approach, SMART PF, shows better results than SeqSLAM. Another interesting approach is shown in [START_REF] Naseer | Robust Visual Robot Localization Across Seasons Using Network Flows[END_REF] where the algorithm is tested to find loop closures across different seasons. To do so, the problem is also solved by using image sequences. A flow network is built (a directed graph with start and end-of-traversal nodes) and is used to formulate the image matching as a minimum cost flow problem. On the proposed data set (summer/winter matching), the approach outperforms SeqSLAM. It requires a few seconds to process each image. An evolution of this method has been presented in [START_REF] Naseer | Robust Visual SLAM Across Seasons[END_REF]. The authors replaced the HOG features used to represent images with a global image feature map from a Deep Convolutional Neural Networks. They are able to obtain better performances. The found loops are taken into account in a graph-based approach (g 2 o [START_REF] Kummerle | g2o: A General Framework for Graph Optimization[END_REF]) with odometry constraints without giving insights about the reached accuracy. The approach runs on a GPU and is thus faster than the previous implementation (real time with a data set of 48,000 images) even though its speed still depends on the data set size.

2) Map-to-map methods: Map-to-map methods are solely based on information contained in the map. It is the case of the GCBB algorithm (Geometric Constraint Branch and Bound) proposed in [START_REF] Neira | Linear time vehicle relocation in SLAM[END_REF]. The principle is to define geometric constraints between landmark pairs in the map and the current observation. An association tree is established so to as to find the most likely association hypothesis that respects the geometric organization of the landmarks in the map. It has been applied successfully in [START_REF] Clemente | Mapping Large Loops with a Single Hand-Held Camera[END_REF] with a hierarchical approach in outdoor experiments even if the accuracy of the resulting map is not measured.

Li et al., in [START_REF] Li | A new method for occupancy grid maps merging: Application to multi-vehicle cooperative local mapping and moving object detection in outdoor environment[END_REF] and [START_REF]Multi-vehicle cooperative localization using indirect vehicle-tovehicle relative pose estimation[END_REF], proposed to merge occupancy grids by using a genetic algorithm to find the best alignment possible. A low-cost GPS is used to constrain the search space to smaller regions. Similarly to the previous example, the consistency of the map is drastically improved but its accuracy is not measured. In the case that the drift can be approximately estimated, the JCBB algorithm (Joint Compatibility Branch and Bound) [START_REF] Neira | Data Association in Stochastic Mapping Using the Joint Compatibility Test[END_REF] selects compatible landmarks according to their uncertainty.

Map-to-map methods are difficult to apply without any hint of where to look for loops as maps are either too sparse to be sufficiently distinctive (monocular SLAM for instance) or too complex for a complete exploration in real-time. In such cases, the use of a GPS, like in [START_REF]Multi-vehicle cooperative localization using indirect vehicle-tovehicle relative pose estimation[END_REF], makes sense as it allows the system to considerably reduce the exploration space.

3) Image-to-map methods: The last category, called imageto-map (or more generally sensor-to-map), extracts information from the sensor space and compares it directly with the map. The approach described in [START_REF] Williams | An image-to-map Loop Closing Method for Monocular SLAM[END_REF] is based on classifiers trained on the detected landmarks. The loop closing stage uses these classifiers on the image to check if there is a match. Then, a RANSAC algorithm takes the corresponding 3D positions to compute the new pose of the vehicle. Results with a single camera show that the map becomes coherent in an outdoor scenario.

Another possibility to close the loop or relocalize a vehicle is to use hierarchical techniques to speed up the processing. A low-resolution map first serves to identify a rough positioning of the vehicle which is then refined as the map resolution increases. These methods are particularly suited to occupancy grids and have been applied successfully to automated vehicles with laser sensors in [START_REF] Xie | A Real-Time Robust Global Localization for Autonomous Mobile Robots in Large Environments[END_REF]. In this example, a coarse-to-fine approach is used to relocalize the vehicle inside a map and not to perform loop closure. Experiments show that the method works well but that the size of the map is a crucial aspect.

4) Discussion: We have focused on how loop closure is applied in SLAM algorithms. The recent years have seen a clear focus on how to deal with seasonal or weather changes and we refer our readers to this survey [START_REF] Lowry | Visual Place Recognition: A Survey[END_REF] for a detailed view of this field, independently of loop closure.

Even it may seem like image-to-image methods are favored, recent approaches tend to couple different methods to ensure that a place has been properly recognized. As an example, an application of FAB-MAP with a visual odometry can be found in [START_REF] Newman | Navigating, Recognising and Describing Urban Spaces With Vision and Laser[END_REF]. The authors rely on dense stereo mapping and use FAB-MAP to indicate loop closures. Their metric integration is done within a graph formulation and is calculated using the Iterative Closest Point (ICP) algorithm [START_REF] Besl | Method for registration of 3-D shapes[END_REF] between the observation and the previously built map. Even if the accuracy is not directly measured, the built map indicates a consistent mapping. In [START_REF] Mcdonald | 6-DOF Multi-session Visual SLAM using Anchor Nodes[END_REF], a bag-of-words method is first employed to generate candidates that are then checked using Conditional Random Fields (CRF) in which a constraint ensures a geometric consistency between the landmarks. The whole approach is applied in a visual SLAM framework. In Table II, we give a brief overview of the principal methods that have been described here with relation to the autonomous driving problematic.

Based on the established criteria, we can see that these approaches propose a solution to the recovery problem. However, loop closure was initially seen as a way to correct drift. While it produces more coherent maps, the articles cited here do not clearly expose the gain in accuracy. In [START_REF] Martinelli | Some Results on SLAM and the Closing the Loop Problem[END_REF], the authors explain that closing the loop can counter the drift inside the loop but that the result will always be overconfident. Another approach was proposed in [START_REF] Cole | Using Laser Range Data for 3D SLAM in Outdoor Environments[END_REF] where errors are redistributed in a probabilistic fashion around the past trajectory when a loop is identified. It avoids the previously mentioned overconfidence problem but does not guarantee the consistency of the localization.

It also explains why the community does not necessarily focus on improving the accuracy but on addressing difficult conditions and building consistent maps. Even if the results are impressive, especially with seasonal changes and sunny/rain conditions, the approaches cited here, when considered for autonomous driving, can be seen as a better GPS but within a given zone. As such, it gives two main challenges for the future: can these approaches be generalized by using already available information (maps, images, etc.) to avoid the zone restriction? Can these methods be extended and integrated into SLAM frameworks to give very resilient approaches that could be viable for autonomous driving?

B. Localization in a previously built map

The localization of a vehicle in a previously built map is tightly linked to the methods presented in the previous section about loop closing and relocalization. Indeed, the first necessary action is to globally identify where the vehicle is located in the map. Once this first step is accomplished, more classical data association algorithms can be used. If countering the drift is not entirely possible with loop closure, constraining the localization inside a given map is a viable solution for autonomous driving. However, building a map that scales well, that can be updated or that can work whatever the conditions is not a trivial task. We will go through existing methods that have showed that reusing a map is possible without or with a dedicated map building process.

1) Identical method between first mapping and on-the-fly localization: The logical extension of any SLAM algorithm is to reuse a built map in order to constrain the localization. While it still requires a first passage, the map can be used right away and does not necessitate a dedicated offline processing. Nevertheless, not all methods have demonstrated that they are viable under such circumstances as it involves continuously building or enriching maps.

Map management is widely covered by all the approaches that involve submaps, which allows SLAM algorithms to work with a near-constant time and memory consumption [START_REF] Leonard | Consistent, Convergent and Constant-Time SLAM[END_REF]. However, reusing the maps is not necessarily considered in these methods. In [START_REF] Alsayed | PML-SLAM: a solution for localization in large-scale urban environments[END_REF], PML-SLAM is proposed to tackle these problems (map loading and unloading between RAM and hard drive based on the vehicle position, etc.) using laser scanners and occupancy grids. This approach has been proven to be viable for autonomous driving in [START_REF] Bresson | A Cooperative Fusion Architecture for Robust Localization: Application to Autonomous Driving[END_REF] in certain areas. The map can also be continuously updated but no dedicated process handles it, meaning that temporary changes will also be integrated.

In [START_REF] Johannsson | Temporally scalable visual SLAM using a reduced pose graph[END_REF], the authors describe a long-term mapping process where new measurements improve the map. The approach is based on vision and inertial sensors and uses a pose graph representation to integrate new data. Scalability over known areas is achieved thanks to the reduction of the pose graph. No control is made on whether or not an update corresponds to a permanent change. Already mentioned before, the work of McDonald et al. in [START_REF] Mcdonald | 6-DOF Multi-session Visual SLAM using Anchor Nodes[END_REF] uses anchor nodes to link together pose graphs acquired during different sessions. This way, the produced visual SLAM maps can all be taken into account.

Similarly to [START_REF] Johannsson | Temporally scalable visual SLAM using a reduced pose graph[END_REF], all maps are integrated without distinction. The authors of [START_REF] Féraud | Communicating Vehicles in Convoy and Monocular Vision-based Localization[END_REF] propose a monocular approach that uses a low number of landmarks and their visual patches to characterize them. Landmarks are reprojected in the image and matched thanks to their patches with Normalized Cross-Correlation [START_REF] Lewis | Fast Normalized Cross-Correlation[END_REF]. Even if this approach is very resource-light, no dedicated mechanism is able to handle map portions that are no longer needed. The use of a memory of images is quite common [START_REF] Menegatti | Image-based memory for robot navigation using properties of omnidirectional images[END_REF][158] [START_REF] Jogan | Robust localization using panoramic view-based recognition[END_REF]. The principle is to compare the current image with a reference database stored in memory, which can be costly and a limiting factor for a map. Data association can also be a problem in such cases. In [START_REF] Vysotka | Lazy Data Association for Image Sequences Matching Under Substantial Appearance Change[END_REF], the authors propose data association graphs as a way to model and solve this problem.

Building maps that are able to evolve and follow permanent changes is a challenge that has mainly been tackled in indoor environments. The Dynamic Pose Graph [START_REF] Walcott-Bryant | Dynamic Pose Graph SLAM: Long-term Mapping in Low Dynamic Environments[END_REF] maintains two maps: an active and a dynamic map. The laser scan points are labeled in order to identify mobile obstacles and then both maps can be updated accordingly. The pose graph representation allows the system to remove inactive nodes and keep a more tractable representation. In [START_REF] Konolige | Towards lifelong visual maps[END_REF], a visual odometry approach is coupled with a place recognition mechanism in order to stitch maps acquired at different times. Old views are deleted when they are not longer relevant allowing the system to maintain an up-to-date map even though temporary changes are integrated as well.

A 3-month outdoor experiment is proposed in [START_REF] Churchill | Practice makes perfect? managing and leveraging visual experiences for lifelong navigation[END_REF] in which the authors introduce the concept of plastic maps as a way to integrate visual experiences over time. The idea is that the visual odometry tries to relate to a past experience. If none exists, a new one is created. Experiences can be partial along the trajectory in order to only store changes on dedicated portions and not on the whole map. The authors show through experiments that the number of required experiences tends to be bounded over time. The main advantage of this concept is that it allows the detection of sudden and long-term changes in an unified method. Gathering all the needed experiences requires many traversals of a same road which can only be done at a world level with probe cars.

2) Dedicated map-building process: The increasing capacity of computers, coupled with the fact that a first traversal is needed for autonomous driving with SLAM, has led researchers to focus on how to build the best maps possible for online exploitation.

Place recognition approaches, most of the time, fall also in this category as they require a previous passage to build specific databases that are then exploited. In [START_REF] Linegar | Made to Measure: Bespoke Landmarks for 24-Hour, All-Weather Localisation with a Camera[END_REF], one SVM per feature is trained across several images. The robustness is ensured by discarding the detectors not accurate or unique enough across the neighboring images. These classifiers and their temporal connection can be seen as the map. The authors demonstrate a great reduction in localization failures but do not directly assess the accuracy of the method. The PoseNet algorithm, in [START_REF] Kendall | PoseNet: A convolutional network for real-time 6-DOF camera relocalization[END_REF], trains a Convolutional Network to associate images to the corresponding position and orientation. The CNN is then applied to locate an image in real-time. These approaches do localize the vehicle inside a map but do not ensure continuity in the localization service as with more classical methods.

Many approaches have also chosen to improve maps over time. In [START_REF] Muhlfellner | Summary Maps for Lifelong Visual Localization[END_REF], the authors consider that, in the future, maps will be coming from centralizing collect services. As such, they propose a system where maps, constructed using vision by optimizing over 2D-3D associations, serve to feed a database. An offline process takes all these information to produce summary maps where all the meaningful data are contained (most seen landmarks). The localization accuracy is under 30 cm in various conditions. The problem of the scalability of such an approach is mentioned but not addressed. In [START_REF] Grimmett | Integrating Metric and Semantic Maps for Vision-Only Automated Parking[END_REF], the authors consider an initial metric and semantic map and propose an unsupervised method to make them evolve through time in a parking context. The metric map uses a pose graph relaxation algorithm in order to take into account multiple passages. The semantic part is updated thanks to machine learning techniques. Multiple timescales are maintained in [START_REF] Biber | Experimental analysis of sample-based maps for long-term SLAM[END_REF] in order to choose the one that best fits the current observation. A first run is performed to obtain an initial map. After that, local maps are maintained online with a short-term memory while an offline update allows the system to build more consistent global maps. Indoor experiments show that the map slowly adapts to long-term changes.

A different approach is proposed in [START_REF] Comport | An asymmetric real-time dense visual localisation and mapping system[END_REF] and [START_REF] Meilland | Dense visual mapping of large scale environments for real-time localisation[END_REF] where spherical images (intensity, depth, saliency and sampling spheres) are built from several images. The main advantage of a sphere is to cover a given area and not only one position. An online registration method based on monocular inputs serves to localize the vehicle. In [START_REF] Furgale | Visual Teach and Repeat for Long-Range Rover Autonomy[END_REF], a two-step process is proposed. During the first phase (teach), a database is built using SURF keypoints and submapping techniques. Then, the repeat phase localizes the robot according to the constructed map in order for it to follow the same path as previously. Similarly, in [START_REF] Royer | Monocular vision for mobile robot localization and autonomous navigation[END_REF], a visual database is first built offline using a hierarchical bundle adjustment method. Then, in real-time, the vehicle localizes itself inside the map. Both approaches do not allow the system to modify the map once built. In [START_REF] Royer | Monocular vision for mobile robot localization and autonomous navigation[END_REF] the results show an impressive accuracy (around 2 centimeters with the exact same path). However, the map remains quite heavy (around 100 Mb for a kilometer). Still related to vision, in [START_REF] Lategahn | City GPS using Stereo Vision[END_REF], a geo-referenced visual map approach is proposed. The map is first built offline using SURF features and GPS constraints within a graph-based optimization framework. Online, the GPS is not used and only the map and stereovision are employed. The map memory is one of the problem cited by the authors (500,000 landmarks for 1 km) for an average accuracy of 30 centimeters.

A topometric localization is presented in [START_REF] Badino | Real-Time Topometric Localization[END_REF]. During a first passage, a GPS is coupled with vision and range sensors to create a database of compact features (a descriptor per image and a range and standard deviation value between each image). A Bayesian filter is then used for online localization. Extensive experiments (over 4 months) have been carried out to show the resilience of the features to various conditions. The average localization error is around 1 meter. Still in a multisensor context, Maximally Stable Extremal Regions (MSER) [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF] are extracted from both images and laser grid maps [START_REF] Deusch | Multi-Sensor Self-Localization based on Maximally Stable Extremal Regions[END_REF]. Coupled with a GPS-RTK, they serve to establish a database during a first passage. A particle filter then keeps track of the vehicle pose online. 2574 landmarks are required for 7 km for an average error below 50 centimeters. Finally, an interesting approach, first proposed in [START_REF] Levinson | Map-Based Precision Vehicle Localization in Urban Environments[END_REF] then extended in [START_REF] Levinson | Robust Vehicle Localization in Urban Environments Using Probabilistic Maps[END_REF], focuses on building high-quality road surface maps using a 3D laser. A calibration method for reflectivity values is proposed and maps are then computed using a graph approach with inertial and GPS constraints. A histogram filter is used for the online localization inside the map. Results have been demonstrated in autonomous driving for more than 6 kilometers with an accuracy of less than 10 centimeters. A map manager ensures a constant-memory usage. 10 MB are required for 1.6 km. The authors indicate that the reliance on the built map could have inappropriate consequences in complicated weather settings. Instead of a laser-built map, Napier and Newman, in [START_REF] Napier | Generation and exploitation of local orthographic imagery for road vehicle localisation[END_REF], construct orthographic images of the road surface from a visual odometry approach. During the online localization phase, a synthetic image, based on the predicted pose, is generated and compared with the map using mutual information so as to refine the localization. The approach does not work in real time at the moment and its accuracy has not been directly assessed.

3) Discussion: An overview of the main approaches discussed in this section and how they fill our autonomous driving criteria is exposed in Table III.

We can see that almost all approaches propose a recovery system (except [START_REF] Lategahn | City GPS using Stereo Vision[END_REF] where it is not mentioned) which makes sense with regard to the localization in a previously built map. Vision alone, to be sufficient, requires dense representations or a high number of landmarks. It is also worth noting that experimental conditions are not the same between all these approaches and as such one method could not be able to reach a proper accuracy in a different setting. Building longterm maps remain a difficult task and it is not always clear if always updating the map is the good strategy. We also notice that this kind of methods has the disadvantage not to limit the size of the maps (even if this effect is limited) which can be problematic in the long run. Many approaches do not propose a specific mechanism to store partial maps as the scope of the experiments do not necessarily requires it. However, the information density needed for most approaches makes a world-wide deployment difficult to envisage at the moment. Direct availability of maps is the main problem but it is worth noting that [START_REF] Muhlfellner | Summary Maps for Lifelong Visual Localization[END_REF] mentions probe cars (multiple sensorequipped vehicles) as a future way to reduce this problem. This will be further discussed in Section V.

From this short analysis, it appears that the problem of building life-long maps that can take into account permanent changes as well as seasons and weather in a bounded manner remains a challenge. Regarding accuracy, even though some impressive results are shown, it is difficult to predict how one map representation will work in a different environment. As there is no clear way to evaluate this, more tests in various conditions are needed. The final, bigger problem is how can the creation of these maps be generalized at a world level? At the moment, it is not clear if it will happen as world-wide raw sensor data may never be available.

C. Localization in existing maps

Even without world-wide raw sensor data, there exists many different sources already furnishing large-scale information. In the prospect of facilitating the deployment of autonomous vehicles, many researchers have proposed approaches to leverage these geographic information sources. In this part, we will first focus on new map (or potentially new) formats and their applications as it could drive how information are collected in the near future. Then, we will discuss localization methods that already integrate existing widely available data to build prior maps.

1) Building and using future maps: In the recent years, researchers have proposed custom map formats in order to respond to the need of a prior knowledge for autonomous driving. Some have considered the practical challenges of building world-wide maps in an automatic way.

In [START_REF] Betaille | Creating enhanced maps for lanelevel vehicle navigation[END_REF], the authors propose a custom format, Emap (enhanced map), usable for a lane-level localization. Lanes are represented as a series of straight lines, circles or clothoids based on GNSS and dead reckoning measurements. This map format has been utilized in [START_REF] Toledo-Moreo | Lane-level integrity provision for navigation and map matching with GNSS, dead reckoning, and enhanced maps[END_REF] in a 30-minute experiment where lane accuracy was achieved (error below 1 meter most of the time). An extension of the Route Network Definition File format (RNDF), initially specified by DARPA, is discussed in [START_REF] Czerwionka | Optimized route network graph as map reference for autonomous cars operating on German autobahn[END_REF]. This new format, RNDFGraph, overcomes some of the limitations of the original definition by including lane relationships and lane change information. This is made possible by using a graph representation. Splines are also generated based on waypoints in order to ensure a smooth trajectory. This format has been used in German highways for path planning but not directly for localization purposes. Accurate lane-level map generation is also the objective pursued in [START_REF] Joshi | Generation of accurate lane-level maps from coarse prior maps and lidar[END_REF]. Here, the authors combine line-segment features extracted from a 3D laser and a graph SLAM approach with an OpenStreet Map map. A particle filter is used to obtain a lane estimation that is then integrated inside the map. The authors show that they are able to reach an average accuracy of 5 cm. The map utilization inside a localization algorithm is not proposed in the article. Still regarding automatic lanelevel map generation, Guo et al. in [START_REF] Guo | Automatic lanelevel map generation for advanced driver assistance systems using low-cost sensors[END_REF] (and extended in [START_REF] Guo | A Low-Cost Solution for Automatic Lane-Level Map Generation Using Conventional In-Car Sensors[END_REF]) propose a low-cost approach based on an OSM map, an INS, a GPS and orthographic images generated from a camera. The idea is that such a system could be used by probe cars and could generalize the map-building process. First, the INS and GNSS measurements are optimized together to obtain the vehicle localization. A second optimization using visual odometry is performed. The image is then aligned according to local map segment extracted from OSM. The lanes are finally extracted from the orthographic image. Still centered on a path planning use, lanelets have been proposed in [START_REF] Bender | Lanelets: Efficient map representation for autonomous driving[END_REF]. The format is proposed with tools to manually create maps from satellite views. This map representation has been used in [START_REF] Ziegler | Making Bertha DriveAn Autonomous Journey on a Historic Route[END_REF] but dedicated maps for localization were built as well. Finally, in [START_REF] Schreiber | LaneLoc: Lane Marking based Localization using Highly Accurate Maps[END_REF], a system based on a high precision GNSS, a 3D laser and a cameras pointing downwards is proposed to build maps. Bird eye view images are generated and localized according to the GNSS. Lane markings and curbs are then extracted from them and are manually reviewed. A localization application, LaneLoc, is proposed where the map is reprojected in the images (no laser is used in the localization phase) using the estimated vehicle position. It eases the subsequent extraction of the lane markings and of the curbs. The localization is able to reach the map accuracy (around 10 centimeters) most of the time.

All the previously cited methods bring geometric information to, for now, topologic-only maps. As such, approaches making use of this kind of prior information might be viable in the near future. A map-aided localization is proposed in [START_REF] Miller | Map-aided localization in sparse global positioning system environments using vision and particle filtering[END_REF] that takes advantage of prior knowledge about lanes and stop lines. A vision system that detects these lanes and compares them with the map is implemented inside a particle filter that also integrates IMU and GPS measurements. This light system is able to reach a 50-cm accuracy. In [START_REF] Lee | A constrained SLAM approach to robust and accurate localisation of autonomous ground vehicles[END_REF], the authors use only road segments and integrate them inside FastSLAM. The idea of this road constrained approach is to limit the lateral deviation as well as angular errors by matching them with the expected value computed from the map. The latter is built using a Differential GPS. A lane-accuracy is reached with an average error of 1.4 m. Similarly, an accurate digital map of the lane markings is built and used in [START_REF] Tao | Mapping and localization using GPS, lane markings and proprioceptive sensors[END_REF]. Fused with GPS and proprioceptive information, the lane detection allows the localization to be constrained to 10 centimeters along the lateral axis. However, longitudinally, the error is around 1 meter. In general, lane approaches are difficult to apply in more complex settings like intersections and roundabouts where the accuracy is an important concern.

Instead of lanes, the authors of [START_REF] Delobel | Robust localization using a top-down approach with several LIDAR sensors[END_REF] use a map containing the walls of the surroundings. A Bayesian network decides the most appropriate wall to detect using a laser scanner in order to reach a defined accuracy objective in a top-down manner. A 20-cm accuracy is attained using a precise map of the walls composing the scene. A previously-built pole database serves as a reference map in [START_REF] Brenner | Vehicle Localization Using Landmarks Obtained by a LIDAR Mobile Mapping System[END_REF]. The accuracy depends on the frequency of the poles but is on average around 1 meter. In [START_REF] Spangenberg | Pole-based localization for autonomous vehicles in urban scenarios[END_REF], the authors exploit the entire pole-like infrastructure. A map is first built using stereovision and a high-precision DGPS/INS combination. During the localization phase, stereo matching with the map, along with odometry and GPS are all integrated inside a particle filter. The accuracy is not directly measured but the authors claim a lateral accuracy of around 20 centimeters.

2) Leveraging current map resources: An impressive amount of data has already been gathered around the world (topological maps, panoramas, etc.) and can be used to create specific maps that do not require a prior passage of a specific vehicle. However, leveraging the available resources at hand to produce high-quality maps is not easy.

A few approaches are starting to use Google Street View images (see Figure 5) or equivalent. In [START_REF] Majdik | MAV Urban Localization from Google Street View Data[END_REF], an aerial vehicle takes advantage of Street Views to localize itself. Artificial views are created to overcome the difference in viewpoints and are then compared using the Approximate Nearest Neighbors on extracted features. The objective is to resolve the place recognition problem in urban environment with an aerial vehicle. In [START_REF] Zamir | Accurate image localization based on google maps street view[END_REF], SIFT descriptors are extracted from Street View images and indexed in tree structures which are then browsed with a nearest-neighbor algorithm from the descriptors of the current image. A vote across the candidates is then accomplished to choose the closest image. This work has been extended in [START_REF] Vaca-Castano | City scale geo-spatial trajectory estimation of a moving camera[END_REF] with a Bayesian tracking filter in order to ensure the continuity of the localization. Even though the filter allows for a smoother trajectory, sudden jumps around the position still occur. This city-scale localization has an accuracy that ranges from more than 1 meter to 12 meters. In [START_REF] Yu | Monocular Urban Localization using Street View[END_REF], visual bag-of-words methods are employed to build two dictionaries from Street View images using SIFT and MSER (Maximally Stable Extremal Regions) detectors so as to have both local and regional feature descriptors. Based on these, the closest Street View from a real image can be recovered. The relationships between physically close panoramas serve to speed up the matching process. For all these approaches, the difficult task is to find sufficiently discriminating features to increase the matching ratio as explained in [START_REF] Schindler | City-scale location recognition[END_REF]. As such, these methods share strong relationships with the new descriptors that have emerged for the urban context [START_REF] Baatz | Leveraging 3D city models for rotation invariant place-of-interest recognition[END_REF] [START_REF] Yeh | Searching the web with mobile images for location recognition[END_REF] [START_REF] Fritz | Building detection from mobile imagery using informative SIFT descriptors[END_REF]. Another way to improve the results is to process sequences that can then be matched against the topology of the environment as proposed in [START_REF] Torii | Visual localization by linear combination of image descriptors[END_REF]. A better performance is obtained by considering visual words from a query image across multiple images than just one. The authors formulate the problem as a regression on an image graph. The approach is only evaluated by matching Street Views together and according to the capacity of the algorithm to retrieve the right image. The mentioned approaches solve the place recognition problem inside Street Views. However, they do not manage to achieve a sufficient accuracy for autonomous driving. This issue is more difficult due to the sparse nature of the Street View panoramas. In [START_REF] Yu | Improving Robustness of Monocular Urban Localization using Augmented Street View[END_REF], the authors propose to create synthetic views to improve the continuity of the matching and thus of the localization. The depth associated to Street Views is used in a 3D-to-2D matching that is injected inside an optimization framework to minimize the reprojection error. They are able to obtain an accuracy of approximately 60 cm at best. In [START_REF] Zhang | Image based localization in urban environments[END_REF], the pose estimation is performed by comparing features from the current image with the best Street Views (highest number of matching with the query image). Proper correspondences are identified by evaluating the residual of the corresponding transformation over all the matches. The pose is then estimated between the best two reference views. The accuracy of the system oscillates between less than 2 meters to 16 meters. A method with two separated modules is described in [START_REF] Agarwal | Metric Localization using Google Street View[END_REF]. In the first one, a visual odometry algorithm is applied from feature points tracked for short periods of time. In the second one, the transformation linking these points to Street View panoramas is computed so as to obtain a global localization with an accuracy below 1.5 m. In an original approach, the authors of [START_REF] Radwan | Do you see the Bakery? Leveraging Geo-Referenced Texts for Global Localization in Public Maps[END_REF] propose a text-based geo-localization method that extracts textual contents with a camera from available shop signs. It is then compared with an annotated map built from Street View panoramas in order to estimate the pose of the camera for an average error of around 10 meters.

Other than Street View imagery, in [START_REF] Qu | Vehicle localization using mono-camera and geo-referenced traffic signs[END_REF], the authors show that it is possible to consider traffic signs as geo-referenced landmarks coming from existing maps. 3D models of these traffic signs are matched in images and the position of the vehicle is optimized inside a Bundle Adjustment approach. Results are below 0.5 m most of the time but depend on the number of traffic signs. However, the database that is used need to be quite precise and is built by a mobile mapping system. With a more traditional traffic sign database, the authors of [START_REF] Welzel | Improving Urban Vehicle Localization with Traffic Sign Recognition[END_REF] are able to reach a 5-meter accuracy by combining vision, GPS and an INS inside a Bayes filter. The structure of the road graph can also serve to roughly localize a vehicle as proposed in [START_REF] Merriaux | Fast and robust vehicle positioning on graph-based representation of drivable maps[END_REF]. In this paper, a particle filter, only fed by odometric information, progressively converges toward the true location of the vehicle by matching the trajectory followed against the map. The result is an average error of 5.8 m in a large network. The authors of [START_REF] Pink | Visual features for vehicle localization and ego-motion estimation[END_REF] combine a visual odometry system along with features (lane markings) extracted from satellite imagery. The aerial images are pre-processed offline using a SVM and a clustering algorithm to identify road markings. The latter are then used online to constrain the localization. The accuracy of the system is not measured but the authors show that they are able to align satellite image features with the current image.

3) Discussion: We provide a synthesis of the main approaches covered here in Table IV with relation to the established criteria.

The current state of localization methods based on existing maps show that they are not yet viable for autonomous driving. The accuracy is not sufficient or requires more precise maps that the ones currently available. An interesting observation is that even the algorithms that utilize more precise lane maps (built manually) do not reach the critical accuracy (around 20 cm [START_REF] Ziegler | Making Bertha DriveAn Autonomous Journey on a Historic Route[END_REF]) for automated driving. Of course, things could evolve in the near future depending on the information available in the upcoming high-precision maps. Nevertheless, leveraging current databases is an evolving trend that can be an interesting prospect. However, even if scalability can theoretically be achieved with these methods, it will require dedicated pre-processing algorithms to transform data in the right format (for instance, creating bag of words according to zones). All of the methods depicted in Table IV are able to recover their pose inside the map, most the time using a standard GNSS which might prove to be more difficult in dense urban environments.

The main challenge for the localization methods presented in this part is how to improve the accuracy by building more relevant, accurate maps. One solution might come naturally with new world-wide sources (new maps, etc.). A key aspect remains the information density of the sources. Street Views, even though interesting, are, for now, too physically spaced to be viable alone. This is why generating synthetic data might be a possible answer. Authors tend to focus on a specific kind of data and finding a framework and an estimation method that take advantage of all the available resources at once might be an interesting prospect. Knowing in advance what will be the map elements that must be sought should also be considered in order for a vehicle to evaluate beforehand, without having directly experienced it, if, with regard to its capacity, a sufficient accuracy can be reached for autonomous driving. The approaches mentioned in this Section do not consider the update of these shared resources. While it is not a trivial task to update inaccurate maps with an approximate vehicle position, it would clearly contribute to progressively improve these maps until they are viable for autonomous driving.

V. MULTI-VEHICLE SLAM

The complexity of creating or exploiting maps for localization purposes at a world scale indicates that cooperation between vehicles might be needed in order to improve existing maps or ease the large-scale collection of data for appropriate map construction. However, doing so is not trivial as the collaboration of several vehicles has an impact on how to design an effective approach. One important initial distinction concerns how the cooperation is handled. Two systems exist: the centralized approaches and the decentralized ones. In the first case, communications are all directed towards one entity that agglomerates and fuses all data before sending the result back to the vehicles. Decentralized systems assume that each vehicle is capable of building its own decentralized map while communicating with the other vehicles of the fleet. It means that information flows must be controlled to avoid bandwidth explosions and estimation problems which typically happen in such cases (double counting a measurement, for instance). It is worth noting that this field is still fairly recent and concerns mostly mobile robotics for now. We will discuss both systems (centralized and decentralized) and how they can be applied to autonomous driving.

A. Centralized SLAM

Centralized SLAM may seem like a natural extension of single-vehicle SLAM algorithms where parts of the computation are offloaded to a distant server. However, there are many ways to share the SLAM task in a centralized approach depending on the objective. The main distinction that can be made is whether or not the centralized part should be running in real-time or in an offline manner.

1) Online centralized SLAM: This organization makes the extension of SLAM algorithms quite immediate. One of the first works on the subject was presented by Fenwick et al. in [START_REF] Fenwick | Cooperative Concurrent Mapping and Localization[END_REF]. An Extended Kalman filter is utilized to integrate the state vectors (pose and landmarks) of all the vehicles. The paper covers more the theoretical aspects and only shows simulation results. In [START_REF] Tao | Cooperative Simultaneous Localization and Mapping for Multi-robot: Approach & Experimental Validation[END_REF], submaps are built individually by robots using cylindrical object features detected by a laser scanner. All these submaps are fused in a centralized fashion from a nearby server. The relative locations of the robots must be known. The approach is demonstrated with a very simple experiment with two robots. The work presented in [START_REF] Gil | Multi-robot visual SLAM using a Rao-Blackwellized particle filter[END_REF] was the first, to our knowledge, to propose a multi-robot visual SLAM. Observations and visual descriptors are sent to a central agent which builds a map shared among all the robots. The initial positions of the vehicles must be approximately known so as to localize everyone in this common map. The estimation of the different trajectories within this unique map is performed by a Rao-Blackwellized particle filter. The approach has only been tested in simulation and the results show that the processing power needed to compute a proper map and the localization of the vehicles is not enough to meet real-time constraints.

A recent trend has moved this processing from one vehicle or close entity to the cloud in order to take advantage of the available processing power. One well-known example can be found in [START_REF] Riazuelo | C2TAM: A Cloud framework for cooperative tracking and mapping[END_REF]. In this article, the authors expose a cloud framework, C 2 TAM, which shares the workload between a cloud server and the robot. All the demanding tasks are moved to the cloud and only the part where a high frequency is required is executed on the robot. The proposed application performs all the mapping aspects of a RGB-D SLAM on a distant computer and only the tracking of the pose is done locally. Even if the approach is proposed as a cloud framework, the experiments use a desktop computer with a wireless connection. They demonstrate the ability of the system to perform cooperative update on the map as well as online map merging.

In [START_REF] Arumugam | DAvinCi: A Cloud Computing Framework for Service Robots[END_REF], the DAvinCi architecture is presented. Its objective is to offload all the computations on a cloud system. The software architecture enables heterogeneous agents to share and upload common data on the cloud. A grid-based FastSLAM has been adapted to fit the needs of this cloud approach. Each particle responsible for the pose estimation can be run on separated nodes. The experiments demonstrate a faster execution time for a single-vehicle FastSLAM but the authors do not consider the delays or latencies induced by these outsourced computations on a real-time approach. Rapyuta [START_REF] Mohanarajah | Rapyuta: A Cloud Robotics Platform[END_REF] is another framework designed for cloud robotics. Its use is demonstrated with a RGB-D odometry. Different settings are evaluated: a complete offloading of the computation to the cloud, a combination where only the mapping process is offloaded and a collaborative mapping by two robots. Keyframes, sent to the cloud, are compressed in order to reduce the needed bandwidth. In their experiments, the Amazon cloud service was used. The complete offloading of information requires too much bandwidth despite the compression. However, hybrid approaches, were only a part of the computations is done on the cloud, are viable. The authors do not, however, discuss the impact of the delay on the map building in these experiments. Cloud-based robotics applications are fairly new and have a great potential to, at least, reduce the computational requirements inside autonomous vehicles in the future. Interested readers can refer to [START_REF] Doriya | A Review on Cloud Robotics Based Frameworks to Solve Simultaneous Localization and Mapping (SLAM) Problem[END_REF] for a short survey of this recent practice and to [START_REF] Kehoe | A Survey of Research on Cloud Robotics and Automation[END_REF] for a more general review of cloud approaches in robotics.

2) Offline centralized SLAM: The delays and latencies involved by cloud computations can prevent the use of the previously cited methods in autonomous cars. However, with the aim of easing the creation of world-wide maps, offline computations of data gathered during the day by fleet of vehicles can be a way to build consistent large-scale maps.

Offline computation of SLAM data can be seen as a natural extension of multisession SLAM algorithms. Multisession SLAM is the possibility for a SLAM algorithm to take into account several passages in overlapping areas and so to extend the map initially built. The identification of common grounds between two maps usually involves place recognition algorithms that loop closing constraints to compute more coherent maps. Approaches proposing multisession mapping are based on a graph representation which has the advantage to be flexible when it comes to adding new constraints and nodes to optimize. We refer the readers to the description of the following works in Section IV which could be utilized by several vehicles in a cloud computation: [START_REF] Newman | Navigating, Recognising and Describing Urban Spaces With Vision and Laser[END_REF] [START_REF] Biber | Experimental analysis of sample-based maps for long-term SLAM[END_REF]. While these approaches are only applied to a single-vehicle, the extension to a fleet is straightforward. In [START_REF] Muhlfellner | Summary Maps for Lifelong Visual Localization[END_REF], the authors mention that the objective in the long-term is the deployment of such a system in probe cars that would gather data and fuse them in the cloud to then provide maps as a service. The main difficulties are the necessity to divide maps by sectors in order to be still optimizable in a reasonable time and to limit how maps can grow to avoid having intractable environment representation. The first problem has already been addressed in single-vehicle SLAM with submapping techniques and the second is still an open challenge. Finally, a practical problem is to have common representations within a set of probe cars to be able to build and exploit the same map.
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The resources involved to roll out such an application make it more an industrial challenge than a research problem. This is the objective of the map creator HERE which intends to build HAD (Highly Automated Driving) maps by collecting data from probe cars. The data serve to feed different maps, which are computed offline in the cloud, for specific services. A noticeable research effort can be found in [START_REF] Waibel | RoboEarth[END_REF] where a cloud service is proposed in which data can be collected, stored and shared. Most of the previously cited cloud-based approaches are connected to this service and it could be a way to experiment large-scale multi-vehicle offline map building in the future.

B. Decentralized SLAM

The increasing connectivity capacities of the autonomous vehicle with the infrastructure (Vehicle To Infrastructure, V2I) and other cars (Vehicle To Vehicle, V2V) bring the question of how localization methods can take advantage of them.

One major aspect, as with other multi-vehicle approaches, is the possibility to map new areas in a quicker way. The main difference with centralized methods is that data can directly be exchanged between vehicles without the need of a dedicated infrastructure. Vehicles could benefit from a direct communication to quickly update maps in case of sudden changes or to anticipate dynamic conditions (pre-load a map adapted to rain conditions, for instance).

However, fully decentralized SLAM is difficult to achieve as there are many new constraints that must be taken into account. As such, the closest current applications concern mobile robotics and not directly autonomous vehicles. We will thus focus on them in this section before discussing how they could be integrated inside autonomous driving applications. Interest readers can refer to [START_REF] Saeedi | Multiple-robot Simultaneous Localization and Mapping -A Review[END_REF] for a complete overview of this field.

The first works on that matter come from the data fusion community where a task was split between several CPUs to speed up the computations. For instance, the multi-vehicle localization algorithm proposed by Nettleton et al. in [START_REF] Nettleton | Decentralised SLAM with Low-Bandwidth Communication for Teams of Vehicles[END_REF] is derived from the advances in decentralized data fusion presented in [START_REF] Nettleton | A Robust Architecture for Decentralised Data Fusion[END_REF] and [START_REF] Durrant-Whyte | A Beginner's Guide to Decentralised Data Fusion[END_REF]. We will focus here on the main design difficulties of such methods: data incest, data association and communication issues before discussing the main experimental results.

1) Data incest: One common difficulty between the applications sharing information is data incest which is responsible for inconsistency by double-counting data in the estimation process. Decentralized SLAM (or decentralized localization as a whole) is particularly prone to this phenomenon as observations and maps are shared, relayed and fused by vehicles [START_REF] Mclaughlin | Data Incest Removal in Survivable Estimation Fusion Architecture[END_REF] [START_REF] Hua | Decentralised Solutions to the Cooperative Multi-Platform Navigation Problem[END_REF]. The data incest phenomenon in a SLAM context is illustrated in Figure 6. In this example, the red vehicle receives from the blue one a fused state already integrating its own map. As it does not know it, it will fuse this landmark within its map and thus double-count its own landmark and become overconfident (inconsistent). Keeping a track of what is exchanged is a possibility with a few vehicles but does not scale well with a large fleet.

To solve this problem in a SLAM context, Nettleton et al. in [START_REF] Nettleton | Decentralised SLAM with Low-Bandwidth Communication for Teams of Vehicles[END_REF] proposed a dedicated network architecture to avoid double-counting. Only point-to-point communications are allowed thus forcing information to go through several nodes before reaching its target. In [START_REF] Williams | Towards Multi-Vehicle Simultaneous Localisation and Mapping[END_REF], an approach where submaps are only exchanged when closed is exposed. A topological global map puts all the submaps in a common frame. The main constraint comes from the fact that submaps cannot be updated and are only sent once on the network. The work of Vidal-Calleja et al. in [START_REF] Vidal-Calleja | Large Scale Multiple Robot Visual Mapping with Heterogeneous Landmarks in Semi-structured Terrain[END_REF] also proposes an extension of submap SLAM, and more specifically of the hierarchical approach introduced in [START_REF] Estrada | Hierarchical SLAM: realtime accurate mapping of large environments[END_REF]. Only the topological map is exchanged inside the fleet and a global metric map cannot be recovered on the fly. In [START_REF] Cunningham | DDF-SAM: Fully Distributed SLAM using Constrained Factor Graphs[END_REF], a multi-robot graphbased SLAM is introduced. The map of each vehicle is compressed and sent to the neighbors. A data cache filters out already received information. Similarly, in [START_REF] Aragues | Dynamic Consensus for Merging Visual Maps under Limited Communications[END_REF] and [START_REF] Aragues | Consistent Data Association in Multi-Robot Systems with Limited Communications[END_REF], a consensus is sought between neighbors so as to find the best map possible that avoids double-counting information. In [113], each vehicle state (pose and map) is stored separately from the others. Each vehicle can obtain a global map by fusing all the received states with its own. In [START_REF] Li | Cooperative multi-vehicle localization using split covariance intersection filter[END_REF], the Split Covariance Intersection Filter (SCIF), initiated by Julier et al. in [START_REF] Julier | General Decentralized Data Fusion with Covariance Intersection[END_REF], is applied to a multi-vehicle context. This filter is based on Covariance Intersection so as to produce consistent estimates even with unknown correlations between data.

2) Data association: Data association in a multi-vehicle context can be extremely complicated as the relative positions between the vehicles are not necessarily known and the information that can be communicated is limited by the bandwidth. Some approaches have chosen to consider that the initial distance between the vehicles is known beforehand [START_REF] Burgard | Coordinated Multi-Robot Exploration[END_REF] [START_REF] Nettleton | Decentralised SLAM with Low-Bandwidth Communication for Teams of Vehicles[END_REF]. Another possibility, introduced in [START_REF] Zhou | Multi-robot SLAM with Unknown Initial Correspondence: The Robot Rendezvous Case[END_REF], is to define a rendezvous towards which vehicles will converge to observe themselves directly.

Among the data association algorithms specifically designed for a multi-vehicle application, we can cite [START_REF] Thrun | Multi-Robot SLAM With Sparse Extended Information Filters[END_REF] in which each landmark is characterized by measures (distance and angle) to other close landmarks. Similar configurations of landmarks are then sought in maps from different vehicles. In [START_REF] Cunningham | Large Scale Experimental Design for Decentralized SLAM[END_REF], landmarks are grouped by 3 and a Delaunay triangulation is applied to obtain a unique map. The perimeters and areas of these triangles are given to a RANSAC algorithm in order to find the best correspondence between two map pieces coming from two different vehicles. In [START_REF] Indelman | Multi-Robot Pose Graph Localization and Data Association from Unknown Initial Relative Poses via Expectation Maximization[END_REF], the authors analyze the distribution of potential multi-vehicle correspondences. Inliers are assumed to produce the same transformation between two vehicles conversely to outliers. A clustering algorithm is used to find initial candidates that can then be further analyzed with more classical methods. The works of Li et al. [144][145] solve the initial alignment of the maps from different vehicles using a low-cost GPS and a genetic algorithm in the restrained search space

3) Communication issues: The bandwidth needs are often neglected in decentralized SLAM. For instance, in [START_REF] Williams | Towards Multi-Vehicle Simultaneous Localisation and Mapping[END_REF], submaps are directly sent. In [START_REF] Pfingsthorn | A Scalable Hybrid Multi-Robot SLAM Method for Highly Detailed Maps[END_REF], graphs (nodes comprise raw data) are exchanged, which is only suitable for small vehicle fleets. In [START_REF] Chang | Multi-Robot SLAM with Topological/Metric Maps[END_REF], the authors propose to exchange maps only when vehicles can detect each other, which means that big amount of data will be sent punctually. Methods communicating only topological maps, like in [START_REF] Vidal-Calleja | Large Scale Multiple Robot Visual Mapping with Heterogeneous Landmarks in Semi-structured Terrain[END_REF] and [START_REF] Cunningham | DDF-SAM: Fully Distributed SLAM using Constrained Factor Graphs[END_REF], avoid this problem by providing very light maps.

The exchange strategy should also be able to cope with potential losses and delays. When not considered, a temporary saturation or failure can lead to information definitively lost [START_REF] Pfingsthorn | A Scalable Hybrid Multi-Robot SLAM Method for Highly Detailed Maps[END_REF] [START_REF] Williams | Towards Multi-Vehicle Simultaneous Localisation and Mapping[END_REF]. The algorithms built around interactions with neighbors are usually capable of identifying and asking for missing data [START_REF] Cunningham | DDF-SAM: Fully Distributed SLAM using Constrained Factor Graphs[END_REF]. Another possibility, described in [START_REF] Martin | Just-in-time Cooperative Simultaneous Localization and Mapping[END_REF], is the Lazy Belief Propagation which integrates observations in a Particle Filter that does not depend on the temporal order in which data are added to the filter. Thus, missing or late information can still be integrated later without a problem. However, it is necessary to be able to identify missing values. More generally, all the approaches based on the inverse form of the Kalman Filter, namely the Information Filter, handle delay natively. Indeed, the update becomes additive and does not depend on any temporal order. It has become a common choice in the multi-vehicle community [START_REF] Thrun | Multi-Robot SLAM With Sparse Extended Information Filters[END_REF][240] [START_REF] Deaves | Multiple Robot System for Decentralized SLAM Investigations[END_REF].

4) Experimental results:

The experiments carried out in the previously cited articles give a clear visibility on the potential deployment of such methods for autonomous driving. Indeed, most methods are only demonstrated in simulated experiments [220][225][227][235][239] [START_REF] Diosdado | Decentralised Simultaneous Localisation and Mapping for AUVs[END_REF]. The main reason is that addressing all the issues mentioned in this section in order to conduct real data experiments can be difficult as they are not all directly connected to the estimation problem. Some approaches have been demonstrated indoor in real time [START_REF] Lee | Multi-Robot SLAM Using Ceiling Vision[END_REF] [START_REF] Zhou | Multi-robot SLAM with Unknown Initial Correspondence: The Robot Rendezvous Case[END_REF]. In [START_REF] Vidal-Calleja | Large Scale Multiple Robot Visual Mapping with Heterogeneous Landmarks in Semi-structured Terrain[END_REF], the authors demonstrate an air/ground cooperation in outdoor environment. The map is built in a cooperative fashion with vision landmarks. The accuracy has not been measured. In [START_REF] Bresson | A General Consistent Decentralized SLAM Solution[END_REF], outdoor experiments with two or three vehicles are performed. The method relies on the exchange of visual landmarks. The accuracy oscillates between 50 cm and a few meters depending on the capacity of the vehicle to identify common landmarks. Finally, in [START_REF]Multi-vehicle cooperative localization using indirect vehicle-tovehicle relative pose estimation[END_REF], 2 vehicles equipped with laser merge their maps together in an outdoor experiment. The method is able to reach a 3-meter error on average. This short survey of recent results shows that we are still far from generalizing the use of decentralized SLAM for autonomous driving. However, the communication means themselves continue to improve and bandwidth limitations might be less of a problem in the coming years. Still, large-scale demonstrations of the capabilities of decentralized SLAM are yet to be proven and applying the previously described approaches to autonomous driving is one of the upcoming challenges of SLAM.

C. Discussion

This overview of multi-robot SLAM approaches has showed that the maturity of such methods for autonomous driving differs vastly depending on the way data are handled (in a centralized or decentralized fashion). Online centralized SLAM systems have been demonstrated on small-scale experiments with either a classic computer that serves as a hub to collect observations or with cloud processing. The extension from mobile robots to driverless cars raises the question of the bandwidth capacity that will be available in tomorrow's cars but most importantly of the availability of an Internet connection in the vehicle. Completely offloading critical processing onto the cloud will probably not be safe enough. However, delegating the task of updating maps gathered from several vehicles in a reasonable amount of time is an interesting prospect. Real-time updates for map portions that might have changed could help driverless cars to adapt in a quicker way. Moreover, environmental conditions that have a low dynamicity could be alerted beforehand in order for the vehicle to anticipate by choosing more adapted features, etc. To attain this goal, large-scale experiments, involving a realistic number of vehicles, are necessary. It also means that a major prospect remains the design of software architectures able to cope with data flows and to properly segment updates. One key element to make online cloud-based methods viable is the choice of a map representation able to integrate all incoming information.

In that sense, fully decentralized methods share similar goals. The main difference comes from the fact that, by receiving the information from nearby cars, the ego-vehicle can select which information to integrate in its map. An interesting challenge thus becomes to establish criteria in order to evaluate the information gain that can bring maps coming from different vehicles with relation to the goal of the egovehicle (destination, energetic constraints, etc.). However, all the practical implications of decentralized methods are the first challenge to tackle. Contrary to cloud approaches, where processing power is less of a limit, the tractability of the final solution will also be an important factor to consider. Largescale experiments are also an important milestone to reach in order to clearly exhibit the benefits of decentralized SLAM for autonomous vehicles.

Offline centralized methods might be the most mature for autonomous driving mainly because this challenge is very close to multisession SLAM. While future HAD maps may not provide all the needed information to reliably localize a vehicle in various conditions, probe cars might be a way to quickly gather enough data to build such maps. It is also an interesting perspective regarding the capacity of vehicles to detect long-term changes. Indeed, the agglomeration of different viewpoints on a situation should ease this process. Being able to limit the growth of these maps remains a blocking point. Finally, a considerable challenge is to build sufficiently robust software architectures to integrate and process all these data. The cost of such an infrastructure directs large-scale experiments with such methods towards industrial companies rather than small research teams.

VI. LARGE-SCALE EXPERIMENTS FOR AUTONOMOUS

VEHICLES

During the recent years, the scope of the experiments used to validate localization algorithms has broadened with the availability of large-scale data sets. Moreover, many research teams now have a dedicated platform to test, during many kilometers, their algorithms. In this section, we give an overview of the large-scale experiments that have involved fully autonomous vehicles. We will, of course, focus on the localization algorithms and the context in which they have been used.

The first large-scale experiments took place at the beginning of the 90's and were mostly on highways [243][244]. In both approaches, localization was performed using lane detection with vision sensors to laterally position the vehicle on the road. Lane detection algorithms have been the default localization system in autonomous driving demonstration for a long time as it is totally appropriate in a highway context. The DARPA Grand Challenge [START_REF] Seetharaman | Unmanned Vehicles Come of Age: The DARPA Grand Challenge[END_REF] with its 244-km race across the desert changed things with a new setting. In [START_REF] Cremean | Alice: An Information-Rich Autonomous Vehicle for High-Speed Desert Navigation[END_REF], a GPS is coupled with elevation maps built using laser scanners and a roadfinding algorithm in order to avoid cliffs, rocks and the like. A similar approach is chosen by the winner of the challenge [START_REF] Thrun | Stanley: The Robot that Won the DARPA Grand Challenge[END_REF]. The GPS is coupled with an IMU and an algorithm to detect the road. In [START_REF] Urmson | A Robust Approach to High-Speed Navigation for Unrehearsed Desert Terrain[END_REF], a terrain reconstruction with lasers was also used. In mostly empty territories, the use of a GPS alone was sufficient for navigation. Obstacles and the difficult terrain added the necessity to build maps that can provide a safe corridor in which vehicles could evolve.

The DARPA Urban Challenge that followed focused on urban environments with a 97-km autonomy test in a city-like traffic [START_REF] Buehler | The DARPA Urban Challenge: Autonomous Vehicles in City Traffic[END_REF]. It has to be noted that the environment was still sufficiently open for a Differential GPS to operate properly. The reliance on maps was more important this time. The Route Network Definition File (RNDF) format was specially designed for this challenge in order to furnish the topology and geometry of the road. Junior, the vehicle proposed by Stanford [START_REF] Montemerlo | Junior: The Stanford Entry in the Urban Challenge[END_REF], used a GPS and the RNDF map to position the vehicle. The accuracy was improved with a laser system performing lane and curb detection. In [START_REF] Rauskolb | Caroline: An Autonomously Driving Vehicle for Urban Environments[END_REF], a visual lane detection algorithm combined with the RNDF was responsible for the vehicle localization. The authors pointed out the difficulty to have a reliable localization with a vision-only system because of environmental conditions like shadows, etc. The winner of this challenge [START_REF] Urmson | Autonomous Driving in Urban Environments: Boss and the Urban Challenge[END_REF] combined a GPS along with an IMU and the RNDF map. Localization was improved with a laser-based lane detection. The authors mention the necessity of prior road models for an efficient localization. Semantic information is also referred to as an important point in order to disambiguate situations.

Another interesting challenge conducted in 2011 is the Grand Cooperative Driving Challenge (GCDC) [START_REF] Ploeg | Introduction to the Special Issue on the 2011 Grand Cooperative Driving Challenge[END_REF]. The idea was to evaluate how collaboration in platooning can help to reduce congestion. The winner of the GCDC challenge in 2011 [START_REF] Geiger | Team AnnieWAYs entry to the Grand Cooperative Driving Challenge 2011[END_REF] used a previously built map in which received positions of the other fleet members were matched and coupled with on-board radar detection. This showed that sharing simple localization information can still benefit autonomous driving by agreeing on speed or anticipating maneuvers.

A very large-scale experiment has been conducted by the VisLab team [START_REF] Bertozzi | VIAC: an Out of Ordinary Experiment[END_REF] with a 13,000-km trip from Italy to China. Technical details about the embedded technologies can be found in [START_REF] Broggi | Extensive Tests of Autonomous Driving Technologies[END_REF]. The localization was performed using a lane keeping algorithm (stereo and monocular) and a leader following system. A laser terrain mapping algorithm was also implemented for off-road driving but not used in this experiment. The leader following is an interesting possibility for autonomous driving if vehicles agree on their destination (or at least, a part of the trip). It still implies that one vehicle should be able to have a full localization system. For instance, cars with less expensive sensors could use platooning-like formations.

Automatic guidance of a vehicle was demonstrated in [START_REF] Saust | Autonomous Vehicle Guidance on Braunschweigs Inner Ring Road within the Stadtpilot Project[END_REF] for the Stadpilot project. This work can be seen as an update of the results of the Urban Challenge [START_REF] Buehler | The DARPA Urban Challenge: Autonomous Vehicles in City Traffic[END_REF]. During a 15km experiment on open roads, a combination of DGPS, IMU and lane keeping algorithm was used. Prior digital maps were also employed. Based on their experience in DARPA, the authors clearly indicate that GPS and IMU are not sufficient for autonomous driving in urban environments. An evolution of [START_REF] Bertozzi | VIAC: an Out of Ordinary Experiment[END_REF] was presented in [START_REF] Broggi | PROUDPublic ROad Urban Driverless test: Architecture and Results[END_REF]. In a 13-km experiment in different environments and real traffic, VisLab demonstrated the possibility of using lane or leader following based on vision, IMU and DGPS. An interesting aspect is that a map of the environment was used to trigger the appropriate perception module.

The V-Charge project aims at providing automated valet parking with close-to-market sensors. In [START_REF] Muehlfellner | Evaluation of Fisheye-Camera Based Visual Multi-Session Localization in a Real-World Scenario[END_REF], the authors evaluate their localization approach in a real-world scenario. First, the map is built using SURF keypoints extraction from fisheye cameras. Loop closures are defined manually and the map is optimized using global Bundle Adjustment. Localization is then performed against the known map still using SURF features. The algorithm is evaluated 0, 1 and 2 months after the map creation with a sufficient accuracy. However, the authors state that map update is needed over long periods of time to reflect changes. Another open question raised here but not addressed is the map portability between different vehicles. Still in the V-Charge project, [START_REF] Furgale | Toward automated driving in cities using close-to-market sensors: An overview of the V-Charge Project[END_REF] completed this system with height maps built from stereovision. A semantic map and a road graph were also needed to identify parking places and how to navigate between them.

Large-scale outdoor experiments with mobile robots have also been carried out in real-world environments. In [START_REF] Kummerle | Autonomous Robot Navigation in Highly Populated Pedestrian Zones[END_REF], a robot traveled 20 km in crowded streets. The map was built beforehand with a graph-based laser SLAM. The on-thefly localization was based on a particle filter and a GPS for initialization. The system was able to perform reinitialization when lost. The authors indicate that mobile obstacles masking the map were a source of localization losses. In [START_REF] Morales | Autonomous robot navigation in outdoor pedestrian walkways[END_REF], a robot traveled several times at different periods of the year a 1-km road. The map was built beforehand as well and the localization was based on road boundaries detected by laser and integrated inside an EKF. One of the problems cited by the authors is the recovery when the robot is lost and the GPS is not available. Also appearance changes, like leaves on the ground, proved to be difficult to handle. In [START_REF] Trulls | Autonomous Navigation for Mobile Service Robots in Urban Pedestrian Environments[END_REF], a 6-km experiment in pedestrian walkways is discussed. A 3D laser map of edges was built beforehand with 2D lasers. The localization system compared the map with the current observation to weight the particles of a particle filter. An important difficulty faced by the authors is the presence of glass windows that disturbed the localization system based on laser. They conclude by saying that 2D lasers are not sufficient for this kind of experiments.

Shuttle demonstrations in cities are also becoming more frequent as the mapping is confined to a dedicated area. In [START_REF] Royer | Lessons learned after more than 1000 km in an autonomous shuttle guided by vision[END_REF], the authors discuss the lessons learned after 1,500 km of a vision-guided shuttle in a private site. The experiments took place over 3 months and the localization was performed using a hierarchical Bundle Adjustment method over a previously built map. This approach could be used with either a front or a back camera. The main difficulties were the lightning conditions despite the use of front and back cameras. The dynamic range of vision sensors was not sufficient to handle day-time changes that were qualified by the authors as having a greater impact on the localization than the 3-month gap. The CityMobil2 project has cumulated 26,000 km in various cities for several months [START_REF] Project | Citymobil2 experience and recommendations[END_REF]. The localization differed depending on the experiments but was based on pre-built maps with laser or vision and GPS. The weather and the general reliability of the software had a significant impact on the results.

Already discussed before, Levinson et al. showed an update of the Stanford's vehicle from the Urban Challenge in [START_REF] Levinson | Towards Fully Autonomous Driving: Systems and Algorithms[END_REF]. Ground maps were generated using precise GPS, IMU and a 64-layer 3D laser from multiple passages in an offline manner. The localization inside this map was then performed in realtime with a 2D histogram filter for a 10-cm accuracy on many kilometers. The approach of Ulm University is exposed in [START_REF] Kunz | Autonomous Driving at Ulm University: A Modular, Robust, and Sensor-Independent Fusion Approach[END_REF]. A map, composed of MSER features coming from vision and of a laser grid, is built beforehand and georeferenced using a RTK-GPS. This map representation is light and allowed for a 10-cm accuracy on average during the 5-km test. Using both sensors for localization improved the results but the need of a highly-precise built-in-advance map is seen as a problem by the authors. BMW, in [START_REF] Aeberhard | Experience, Results and Lessons Learned from Automated Driving on Germanys Highways[END_REF], gives an interesting overview of their experience with autonomous driving over thousands of kilometers on public roads (highways). Their approach relies on lane marking using vision and laser, as well as odometry and a DGPS. Road boundaries were also detected using laser and radar. A high-precision map is needed for a proper localization. Their map integrates semantic and geometric information (lane models, connectivity, etc.) as well as localization data (lane marking and road boundary positions) with different layers. The difficulties presented by the authors were the necessity to remap from time to time the environment for a proper online exploitation. This process should be automated according to the authors. Large-scale maps are also a concern and they should be broken down in submaps. The standardization of these maps is also an important aspect that needs to be addressed to be able to use probe cars and crowd-source the required information for digital maps.

Daimler experimented with their autonomous vehicle over 103 km in mixed environments (urban, highways, etc.) with close-to-market sensors [START_REF] Ziegler | Making Bertha DriveAn Autonomous Journey on a Historic Route[END_REF]. Their system is a combination of vision, radar and accurate digital maps. The localization fuses lane detection with feature-based localization for a 20cm accuracy on average. All the lanes and features were acquired during a first passage and fused in a UKF. Among the topics of importance cited by the authors, the scalability of the maps is crucial. Two other major aspects that need to be addressed for a commercial use are the reliance on an upto-date digital map as well as its accuracy. For the authors, the sensor setup should be improved in order to be less dependent of the map.

Among the industrial works in autonomous driving, Waymo (formerly Google Car project) was a pioneer. The project started following the DARPA Urban Challenge on the foundation of the winner [START_REF] Urmson | Autonomous Driving in Urban Environments: Boss and the Urban Challenge[END_REF]. While the algorithms are not specifically known, the localization relies on dedicated 3D maps built beforehand and corrected by hand. The capacity of Google makes that solution viable and more than 40,000 km per week are said to be driven by Waymo. Even with these impressive results, the disengagements reports published each year [269] [270] indicate that drivers must occasionally take back the wheel due to software failures and in a more frequent manner in urban environments. Conversely to Google, Tesla's strategy is to collect data from their own vehicles in order to improve the capabilities of their vehicles [START_REF] Coast | Tesla maps and the exploding future of map data[END_REF]. This method offers, by definition, less control on the quality of the produced outputs. Anyway the role of this philosophy on the localization is not known.

VII. DISCUSSION AND CONCLUSION

In this survey, we have focused on the individual challenges that should be considered depending on the approach chosen. To conclude this paper, we will now discuss how some more general aspects could have an impact on the localization of autonomous vehicles.

During the 23rd ITS World Congress, a localization competition was proposed. Based on low-resolution voxel maps of above-the-ground objects and lanes furnished by HERE, participants were asked to propose an accurate localization algorithm. The competition ended with no winner as the targeted accuracy was not reached. It is not yet clear if HAD maps, that are going to be available in the coming years, will provide a strong enough prior knowledge for localization algorithms. Depending on the outcome, the community will surely adapt what kind of prior knowledge is used in SLAM. These maps are also intended to be used as part of the Local Dynamic Map (LDM) that gathers static and dynamic information to which SLAM could contribute. As such, standardization is needed [272].

An aspect that is not often discussed is sensor placement. It can have a tremendous impact on the performance of a localization system. For instance, a laser on the car roof is going to have a clear view on the infrastructure and avoid most of the mobile obstacles while one in the undercarriage might be affected by masked information. Similarly, the minimal set of sensors necessary for localization is not clearly defined yet (even if lasers and cameras seem to be favored). Such a definition should be made conjointly with the map representation that is going to serve as prior knowledge. Of course, this aspect is also tightly linked to the cost of those sensors. An interesting perspective in that sense is multi-modality where a map could be built by an expensive 3D laser but then exploited by a simple camera as proposed in [START_REF] Wolcott | Visual Localization within LIDAR Maps for Automated Urban Driving[END_REF]. Another interesting challenge is to build flexible architectures in which a decision system can choose what are the sensors, detectors or maps to favor depending on the context.

Context by itself is an important part of autonomous driving and its understanding would help place recognition algorithms or could even be directly integrated to make SLAM more robust. For now, most of the works carried out have concerned indoor localization. They have been initiated by Chatila et al. in [START_REF] Chatila | Position referencing and consistent world modeling for mobile robots[END_REF] where semantic (object) maps are used for highlevel decision-making. SLAM methods have since then been frequently considered for semantic map building. In [START_REF] Nüchter | 3D mapping with semantic knowledge[END_REF] and [START_REF] Nüchter | Towards semantic maps for mobile robots[END_REF], the authors take advantage of a 3D laser to identify the ceiling, the floor and objects. In [START_REF] Zender | Conceptual spatial representations for indoor mobile robots[END_REF], a conceptual space representation is proposed based on three different maps: metric (from a SLAM system), navigation (free space) and topological (connections between door-separated areas). The conceptual map allows the robot to have a semantic representation for rooms and objects that helps the interactions with users. In [START_REF] Civera | Towards Semantic SLAM using a Monocular Camera[END_REF], the authors integrate well known objects inside a monocular SLAM. A similar approach is followed in SLAM++ [START_REF] Salas-Moreno | SLAM++: Simultaneous Localisation and Mapping at the Level of Objects[END_REF] where objects are detected and optimized in a common localization framework. In these last two works, context and relations between objects are not directly used to reason upon. In that sense, semantic SLAM in outdoor environments is still a challenge that needs to be tackled.

However, semantic mapping from images alone is a field that has grown lately [START_REF] Bernuy | Semantic Mapping of Large-Scale Outdoor Scenes for Autonomous Off-Road Driving[END_REF] [START_REF] Badrinarayanan | SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[END_REF]. Deep Convolutional Neural Networks have largely contributed to this trend and methods like SegNet [START_REF] Badrinarayanan | SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[END_REF] show impressive results. Their application in localization methods remains an open challenge but a direct use would be to remove moving, or temporally static, obstacles that can disturb the proper behavior of a SLAM algorithm. More generally, CNNs could change how place recognition is performed by using feature maps coming from these networks as in [START_REF] Naseer | Robust Visual SLAM Across Seasons[END_REF]. The impact and the use of CNNs for localization in autonomous driving will surely evolve in the coming years. A recent example like [START_REF] Bojarski | End to End Learning for Self-Driving Cars[END_REF] shows that localization might not even be needed. In this paper, Nvidia demonstrates the possibility to directly learn the steering angle that should be applied from camera clues. Nevertheless, the scalability of such methods has yet to be demonstrated.

In the recent years, experiments have broadened their scope and autonomous driving for several kilometers and over long periods of time is more common. Shuttle experiments are also starting in various cities. Even though, in that case, SLAM approaches can use a previously built map without scalability issues, it is a good way to test them over long periods of time and confront them to the environment variability. In most roadmaps [START_REF] Ertrac | Automated driving roadmap[END_REF], the automation of transit systems is actually foreseen at a shorter term than other vehicles as it has the advantage to restrain the covered area.

Finally, the safety of localization algorithms is an important issue to consider. Multiple sources should be envisaged and strategies to safely switch among them must be designed. Taking into account the failures and their impacts on the localization system could help in creating degraded localization modes that ensure that a vehicle can reach a stopping spot safely.
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  front: up to 100 m/rear: up to 30 m): 180 • /0.25 • @18 Hz Front: color 320 × 240@29.95 fps Indoor: 0.89 km 2 horizontal towards the ground (front/rear: up to 4 m): 240 • /0.36 • @10 Hz Omni.: b/w 640 × the ground (front: up to 80 m):180 • /0.25 • @18 Hz Mono.: color 752× 480@22.8 fps 1 3D 64-layer (up to 120 m):360 • /0.09 • /0.4 • @10 Hz The Marulan data sets [102] 2010 1 horizontal (front: up to 80 m): 180 • front: up to 80 m): 180 • /0.25 • @18 Hz 2 horizontal towards the ground (front: up to 80 m): 180 • sides: up to 30 m): 270 • /0.25 • @40 Hz 1 horizontal towards the ground (front: up to 30 m): 270 • /0.25 • @40 HzTABLE I: Summary of existing open data sets (GT stands for ground truth) based on [98]. Laser information includes field-of-view/horizontal resolution/vertical resolution. Ticks indicate the presence of a sensor. Crosses indicate its absence.

Fig. 5 :

 5 Fig. 5: Available information from Google: panorama, depth map and road topology (each circle indicates a panorama/depth map).

  (a) The red landmark is mapped by the red vehicle and is then sent to the blue one. (b) The blue landmark is mapped by the blue vehicle. The red landmark is the one previously received. (c) The green landmark is the fusion between the blue and red ones by the blue vehicle and sent to the red one. (d) The grey triangle is the true pose of the red vehicle (and similarly for the landmark). Dotted ellipses are the true uncertainties. Plain ones are those estimated after the fusion of the green landmark with the red one (data incest).

Fig. 6 :

 6 Fig. 6: Data incest in a SLAM context. Triangles represent vehicles and diamonds, landmarks. Ellipses are the corresponding uncertainties.

TABLE II :

 II Relocalization and loop closure methods regarding autonomous driving criteria. Tick: criterion satisfied. Cross: criterion not satisfied.

TABLE III :

 III Localization in a previously built map methods regarding autonomous driving criteria. Tick: criterion satisfied. Cross: criterion not satisfied.

TABLE IV :

 IV Localization in existing maps (or potential future maps) methods regarding autonomous driving criteria. Tick: criterion satisfied. Cross: criterion not satisfied.