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Simultaneous Localization And Mapping: A Survey
of Current Trends in Autonomous Driving

Guillaume Bresson, Zayed Alsayed, Li Yu and Sébastien Glaser

Abstract—In this article, we propose a survey of the Simul-
taneous Localization And Mapping field when considering the
recent evolution of autonomous driving. The growing interest re-
garding self-driving cars has given new directions to localization
and mapping techniques. In this survey, we give an overview of
the different branches of SLAM before going into the details
of specific trends that are of interest when considered with
autonomous applications in mind. We first present the limits
of classical approaches for autonomous driving and discuss the
criteria that are essential for this kind of application. We then
review the methods where the identified challenges are tackled.
We mostly focus on approaches building and reusing long-term
maps in various conditions (weather, season, etc.). We also go
through the emerging domain of multi-vehicle SLAM and its
link with self-driving cars. We survey the different paradigms of
that field (centralized and distributed) and the existing solutions.
Finally, we conclude by giving an overview of the various large-
scale experiments that have been carried out until now and
discuss the remaining challenges and future orientations.

Index Terms—SLAM, localization, mapping, autonomous ve-
hicle, drift, place recognition, multi-vehicle, survey.

I. INTRODUCTION

S IMULTANEOUS Localization And Mapping (SLAM) has
been a hugely popular topic among the mobile robotics

community for more than 25 years now. The success of this
field is tightly bound to the fact that “solving” the SLAM
problem, that is localizing a robot thanks to a map of the
surroundings built incrementally, has numerous applications
ranging from spatial exploration to autonomous driving. The
recent spotlight put on intelligent vehicles has pushed further
the research effort with the contribution of car manufacturers.

One could think of GNSS (Global Navigation Satellite
System) as a solution to this localization problem but it
has quickly been showed that it was not sufficient by itself.
Even though accuracy limits of classical GNSS solutions are
lifted when perfectly positioned base stations are used (Real-
Time Kinematic GNSS), availability remains an issue. Satellite
signals are affected by atmospheric conditions that are difficult
to predict. Moreover, the infrastructure can block the direct
reception of signals and generate multipath interference or
non-line-of-sight reception which has disastrous consequences
on the provided localization. This kind of signal degradation
is difficult to detect and usually causes a loss of integrity
from which recovering can be tricky. These problems are more
common in dense urban areas where tall buildings can mask
satellites. On open roads, GNSS’s usually perform better.
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Rocquencourt. Li Yu is also with Mines ParisTech. Sébastien Glaser is also
with IFSTTAR.

Another classic approach to localization is to take advan-
tage of the road infrastructure (road markings or roadway
detection) in order to guide a vehicle in a lane. Advanced
Driver-Assistance Systems (ADAS) are already integrating
lane marking detection in commercialized cars. While this kind
of approach mostly constrains the lateral position of a vehicle,
it is sufficient for environments where the roadway is easily
identifiable such as highways for instance. On the other hand,
more complex environments (urban mostly, with intersections,
curved roads, etc.) do not always provide enough road infor-
mation to localize a vehicle. Moreover, the position accuracy
needed along the longitudinal axis is more important than in
straight, highway-like environments. Anyhow, redundancy is
needed in order to build a safe system and ensure a consistent
behavior on the road. As such, different localization means
should be considered.

In a general manner, localizing a vehicle, be it in a global
or a local frame, is an essential functionality to perform
any other perception or planification tasks. Predicting the
evolution of other obstacles on the road and choosing which
maneuver is the most appropriate require to know exactly
where the ego-vehicle is located and how it will evolve in
the coming seconds. The SLAM framework gives an answer
to this problematic while still being general enough to allow
the use of any sensor or estimation technique that suits the
prerequisite of estimating both the localization of the vehicle
and the map at the same time. The map is of prime interest
when autonomous driving is considered as a whole as it offers
a first level of perception that is needed in order to make
appropriate decisions.

The SLAM problem is considered as one of the keys
towards truly autonomous robots, and as such is an essen-
tial aspect of self-driving cars. However, many issues are
still preventing the use of SLAM algorithms with vehicles
that should be able to drive for hundreds of kilometers in
very different conditions. This last statement encompasses the
two main problems arising when dealing with SLAM for
autonomous vehicles: localization tends to drift over time and
maps are not necessarily viable in every driving condition.
The former problem is well-known in the SLAM community.
The local and incremental positioning estimation that is given
by SLAM algorithms tends to diverge from the true trajectory
as the traveled distance increases. Without prior knowledge
or absolute information, it thus becomes almost impossible to
ensure a proper localization for several kilometers. This leads
to the second problem, namely having maps that are sufficient
for the localization task no matter the conditions. The mapping
aspect has gained a lot of attention lately with the objective
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of providing the necessary information to locate a vehicle
in different seasons, weathers or traffic conditions. Many
solutions have been envisaged to solve these two problems
like building a map with a careful selection of distinctive
information with the objective of reusing it later or taking
advantage of new communication systems in order to share
and enhance the maps built by other road users for instance.

SLAM is a broad field and involves many topics ranging
from sensor extraction to state estimation. In this article, we
propose a survey focusing on the current trends in the SLAM
community regarding the emergence of the autonomous vehi-
cle market. To be clear, throughout this paper, we will refer
to SLAM as approaches that are composed of at least an
odometry and a mapping module in order to cover all the
techniques that are of interest for autonomous driving. We
will first give a general introduction to SLAM by reviewing
the most commonly used estimation techniques, discuss the
different existing benchmarks and data sets and point to the
relevant surveys covering aspects that are not reviewed in this
article. This will be the object of Section II. Then, Section III
will concern the limits of classical methods for autonomous
driving and more especially the impact of the drift. The
problem will first be stated and we will then focus on the
solutions proposed to avoid or correct this drift and on the
general reliability of the exploited information. We will end
this section by discussing the criteria that should be respected
for a SLAM approach to be viable for autonomous driving.
Section IV will concern the techniques that tackle some of the
challenges of SLAM for autonomous cars, namely building
and exploiting long-term maps. A survey of the methods
that take advantage of previous knowledge, coming from the
SLAM algorithm itself or from another resource (Geographic
Information Systems for instance), will be proposed as it is
a key aspect to achieve true autonomy for self-driving cars.
Section V will give an overview of multi-vehicle SLAM
systems. This field offers a solution to both the problems
mentioned earlier: constraining drift and enhancing maps. The
different design choices of such applications will be exposed
and motivated with the related state of the art. Finally, Section
VI will expose the large-scale experiments that have been
carried out so far with relation to the localization means used.
It will serve as a basis to discuss the future orientations and
the remaining challenges in Section VII.

II. THE SLAM PROBLEM

Initiated by Smith and Cheeseman [1] in 1986, the SLAM
topic got popular during the 1990s with many structuring
works like [2] or [3]. Through the years, new methods
have appeared using different sensors (camera, laser, radar,
etc.), creating new data representations and consequently new
types of maps. Similarly, various estimation techniques have
emerged inside the SLAM field. A quick panorama has been
made 10 years ago in [4] and [5]. Readers looking for an
initiation to the global SLAM problem can also refer to [6]
and [7] for a comprehensive introduction to the topic and to
[8] for an extensive up-to-date review of the current challenges
in SLAM.

SLAM methods require a wide panel of algorithms to
ensure the robustness of the provided localization. As such,
sensor data extraction, primitive search [9], data association
[10] or map storage and updates [11] are part of the topics
which concern SLAM as well. However, in this literature
review, we will first focus on the main estimation methods
that exist before going through the current trends in the
autonomous vehicle application field.

The SLAM problem is usually formalized in a probabilistic
fashion. The whole objective is to be able to estimate at the
same time the state of the vehicle and the map being built.
The vehicle state can be defined differently depending on
the application: 2D position and orientation, 6D pose, speed,
acceleration, etc. We denote xk the vehicle pose estimation at
the time k and m the map of the environment. To estimate
these variables, it is possible to take advantage of what we
call control inputs uk and which represent an estimation of
the motion between k − 1 and k. They usually come from
wheel encoders or any sensor able to give a first idea of the
displacement. The particularity of SLAM approaches is to take
into consideration measurements coming from sensor readings
and denoted zk. They help to build and improve the map and
indirectly, to estimate the vehicle pose.

The SLAM problem can be formulated in two ways. In
the first one, the goal is to estimate the whole trajectory of
the vehicle and the map given all the control inputs and all
the measurements. A graphical representation can be seen in
Figure 1. This problem, known as full SLAM, computes the
joint posterior over all the poses and the map based on the
entirety of sensor data:

bel(x0:k,m) = p(x0:k,m | z0:k,u0:k) (1)

Fig. 1: Graphical representation of the full SLAM problem

The full SLAM problem can be difficult to handle in real
time as the complexity of the problem grows with respect to
the number of variables considered. The idea of online SLAM
is to estimate the current position of the vehicle, usually based
on the last sensor information. A graphical representation is
shown in Figure 2. The incremental nature of the problem can
be obtained using Bayes’ rule:
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bel(xk,m) = p(xk,m | z0:k,u0:k)

∝ p(zk | xk,m)∫
xk−1

p(xk | xk−1,uk)bel(xk−1,m)dxk−1

(2)

Fig. 2: Graphical representation of the online SLAM problem
at time k + 2

The estimation techniques can be separated into two main
categories: filter-based approaches and optimization-based
methods. The former corresponds to iterative processes that are
thus suited to online SLAM and the latter regroups methods
performing batch treatments and, as such, are usually applied
to solve the full SLAM problem even if this trend has changed
during the last ten years.

A. Filter-based SLAM

Filter-based methods derive from Bayesian filtering and
work as two-step iterative processes. In the first step, a
prediction of the vehicle and the map states is made using
an evolution model and the control inputs uk. In the second
step, the current observation, zk, coming from sensor data, is
matched against the map in order to provide a correction of
the previously predicted state. The model that put in relation
the observation with the map is called an observation model.
These two steps iterate and so incrementally integrate sensor
data to estimate the vehicle pose and the map.

1) Extended Kalman Filter: The first branch of the filter-
based methods concerns derivatives of the Kalman Filter (KF)
[12]. KFs assume that data are affected by Gaussian noises
which is not necessarily true in our case. At its basic form,
KFs are designed to handle linear systems and while they
have great convergence properties [13][14], they are rarely
used for SLAM. On the other hand, the Extended Kalman
Filter (EKF) [15] is a common tool in non-linear filtering
and as such in SLAM. The EKF adds a linearization step
for non-linear models. The linearization is performed around
the current estimate by a first order Taylor expansion. The
optimality of the EKF has been demonstrated as long as the
linearization is made around the true value of the state vector.
In practice, it is the value to estimate and is thus not available.

This can cause consistency issues: the true value can be outside
of the estimated uncertainty [16][17].

However, estimates are most of the time sufficiently close
to the truth to allow the use of the EKF. Sensors like laser
scanners for instance, that provide a range information, are
particularly adapted [18][19]. Sonars were among the first EKF
SLAM approaches for underwater applications [20][21]. Both
sensors have been combined in an EKF SLAM approach in
[22]. A coupling of vision and laser has also been proposed
in [23]. Monocular approaches have also largely been studied.
In [24], the landmarks composing the map are inserted in
the EKF only when sufficiently accurate. In [25], a specific
landmark parametrization is proposed. In [26], the authors
studied the impact of the Kalman gain on an update in order
to constrain linearization errors.

The continuously growing map size makes the EKF unable
to support large-scale SLAM as the update time depends, in a
quadratic way, on the size of the state vector. To overcome this
issue, the notion of submaps has been created. Each time a map
becomes too large (various criteria can be used to decide so), a
new blank map replaces the old one. A higher-level map keeps
track of the links between the submaps not to lose information.
Among the first submap-based approaches, we can cite [27]
with the Constrained Relative Submap Filter where submaps
are decorrelated from one another but where loop closure (drift
correction based on the recognition of a previously visited
place) is difficult to perform. The constant-time SLAM [28]
and the Network Coupled Features Maps [29] work in a similar
fashion except that landmarks common between submaps
are kept to ease the change from one to another but these
methods ignore correlated data. The Atlas framework [30]
takes advantage of a graph structure where nodes are submaps
and vertices the transformation between two submaps. Loop
closures can only be applied offline. Estrada et al. solve this
problem by maintaining two high-level maps [31] but still
use landmarks in multiple submaps. Conditionally independent
submaps were proposed in [32] as a solution to this issue. The
idea is to marginalize the information that is not common
to two submaps in order to make them independent given
the common part. A different approach is chosen in [33]. A
divide and conquer method is proposed to join the local maps
created so as to recover an exact global map. New criteria to
decide when to create submaps have also been proposed like
the number of simultaneously observable landmarks in [34] or
the correlation between landmarks in [35]. An alternative to
submaps, the Compressed EKF SLAM, has been presented in
[19]. In this work, the state vector is divided into an active
(and updated) part and another one which is compressed into
a light auxiliary coefficient matrix.

2) Unscented Kalman Filter: To compensate the weak-
nesses of the EKF with highly non-linear systems, Julier et
al. introduced the Unscented Kalman Filter (UKF) [36] which
avoids the computation of the Jacobians. The idea is to sample
particles, called sigma points, which are pondered around the
expected value thanks to a likelihood function. These sigma
points are then passed to the non-linear function and the
estimate is recomputed. The major drawback of this method
is its computational time. Most of the works using the UKF
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took place at the beginning of the 2000s [37][38]. A real-time
application to a monocular context has been demonstrated in
[39].

3) Information Filter: Another variant of the Kalman Filter
is the Information Filter (IF) [40] which is the inverse form of
the Kalman Filter. Its particularity is to define the information
matrix as the inverse of the covariance matrix. One main
advantage is that the update step becomes additive and is not
dependent on the order in which the observations are integrated
[41]. It is also possible to make the information matrix sparser
by breaking the weak links between data [42] which ensures
a near constant-time update [43]. The IF is not as popular as
the EKF in mono-vehicle SLAM despite some applications in
[44][45][46] because it is necessary to convert every measure
in its inverse form which can be costly. However, the IF has
been more exploited for multi-vehicle SLAM (see Section V).

4) Particle Filter: The second major branch in filtering
SLAM algorithms is based on Particle Filters (PF). Their
principle is the following: the state is sampled with a set of
particles according to its probability density. Then, as with
every filter, a prediction of the displacement of each particle
is accomplished and an update, depending on the observation,
is performed. In the update phase, particles are weighted
according to their likelihood regarding the measures. The most
likely particles are kept, the others are eliminated and new ones
are generated [3]. The direct application of this method to the
SLAM is difficult to tract because it requires a set of particles
per landmark. Variations of PFs have then appeared, like
the Distributed Particle approaches DP-SLAM [47] and DP-
SLAM 2.0 [48] which proposed to use a minimal ancestry tree
as a data storage structure. It enables fast updates by guiding
the PF while reducing the number of iterations of the latter.
However, the most famous PF algorithm is FastSLAM [49]
which has been greatly influenced by previous works [50][51]
on the subject. Each landmark is estimated with an EKF and
particles are only used for the trajectory. FastSLAM has been
applied in real-time in [52]. The major advantage of PFs is
that they do not require a Gaussian noise assumption and
can accommodate with any distribution. Nevertheless, PFs also
suffer from long-term inconsistency [53]. In [54], this problem
was tackled by combining FastSLAM to an IF but the result
is computationally heavy. In [55], FastSLAM was applied to
laser data where the matching gives an odometry measure
which is then used to weight particles in the resampling
phase. Still regarding FastSLAM, its Bayesian foundations
were extended to the Transferable Belief Model framework
(TBM) in [56] thus allowing the representation of conflict in
the employed grid map.

Filter-based approaches tend to now rely on 3D points
when it comes to vision sensors [24] and 2D occupancy
grids with laser data. The latter, introduced in [57] and [58],
are particularly suited to SLAM as the discretization of the
space due to the grid itself allows for a finite number of
position candidates to test during the update step. Landmark
uncertainties are represented by the occupancy probability of
the cell which makes updates on map parts possible. During
the update step, the classical approach is to maximize the simi-
larity between the measurement and the map like in [59] in the

Bayes formalism or in [60] in the TBM context. Not mentioned
yet, the use of RADARs for SLAM has been demonstrated
with filter-based approaches in [61][62][63]. However, their
use remains limited in large-scale experiments due to the noisy
nature of the signal. They are usually employed for obstacle
detection.

B. Optimization-based SLAM

Optimization-oriented SLAM approaches generally consist
of two subsystems, as in filter-based SLAM. The first one
identifies the constraints of the problem based on sensor data
by finding a correspondence between new observations and the
map. The second subsystem computes or refines the vehicle
pose (and past poses) and the map given the constraints so as
to have a coherent whole. As for filters, we can divide these
methods into two main branches: bundle adjustment and graph
SLAM.

1) Bundle Adjustment: Bundle adjustment is a vision tech-
nique that jointly optimizes a 3D structure and the camera
parameters (pose). Most of the early works focused on 3D
reconstruction [64] but it has since then been applied to
SLAM. The main idea is to optimize, usually using the
Levenberg-Marquardt algorithm [65], an objective function.
The latter minimizes the reprojection error (distance between
observations in the image and reprojected past features) giving
the best camera and landmark positions. However, the core
bundle adjustment algorithm can be computationally heavy as
it considers all the variables at once to optimize over.

Since then, many approaches have been proposed to per-
form local optimizations. In [66][67], a hierarchical method
working on smaller chunks is presented. The partial 3D models
obtained are then merged in a hierarchical fashion. To reduce
the complexity, two virtual key frames are chosen or created
among all the frames to represent a given portion. This lessens
the number of variables to optimize. A similar method has
been applied to autonomous driving in [68] with accurate
localization results but an offline map building.

In [69], an incremental method optimizing only over the
new information is proposed. In the worst case, it is equivalent
to a full bundle adjustment. In [70], the authors use a sliding
window over key frames triplets to locally minimize the
reprojection errors. Points common between two views are
considered in the optimization phase. The principle of a triplet
of images is common in the bundle adjustment community. As
with every optimization technique, bundle adjustment works
well when a good rough estimate is given. In that sense it
is important to filter outliers. Nistér et al. [71] proposed a
selection method based on a preemptive RANSAC [72]. Even
though it allows for a real-time application (13 Hz), results are
less accurate than in [68]. A local bundle adjustment has been
proposed in [11]. The objective is to locally optimize the last n
camera positions based on the 2D reprojections of the points in
the last N frames (N ≥ n). These parameters can be tuned to
obtain a real-time approach with good results. An integration
of inertial measures has been proposed in [73]. A bi-objective
function (vision and inertial objective functions) is weighed
with coefficients set thanks to a machine learning approach.
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Another alternative is to optimize only a set of frames in order
to solve loop closing problems. This is the idea presented in
[74] where the authors keep skeleton frames and marginalize
out most of the features and frames in the process. This method
is very close to graph SLAM techniques.

2) Graph SLAM: The graphical representation of Bayesian
SLAM (see Figure 2) is particularly well adapted to a resolu-
tion via optimization methods. An example, coming from [75],
is shown in Figure 3. Based on this graphical representation,
a matrix describing the relationships between landmarks and
vehicle poses can easily be built and used in an optimization
framework.

Fig. 3: Transition graph and associated constraints [75]

Many localization problems can be modeled using a graph
representation and solved by finding the minimum of a cost
function that follows this form:

F (x,m) =
∑
ij

eij(x,m)TΩijeij(x,m) (3)

where x is the vector containing the different vehicle poses,
m is the map, eij is the error function which computes the
distance between the prediction and the observation and Ωij

is the associated information matrix.
The optimal values x∗ and m∗ can be obtained through

optimization:

(x∗,m∗) = argmin
x,m

F (x,m) (4)

The minimization of the, in general, non-linear func-
tion F (x,m) is usually simplified by a local approximation
using popular methods such as Gauss-Newton, Levenberg-
Marquardt, Gauss-Seidel relaxation or gradient descent. These
methods can either work by optimizing the whole trajectory or
with small displacement increments for a real-time use. Sim-
ilarly to filtering approaches, the success of the minimization
depends on the initialization.

The TORO algorithm [76] applies a stochastic gradient
descent variant with a novel node parametrization in the graph.

This parametrization takes the form of a tree structure that
defines and updates local regions at each iteration. A different
idea is to consider not a Euclidean space but a manifold.
It is the basis of the algorithm HOG-MAN [77] where a
hierarchical optimization on the manifold is proposed. The
lowest level represents the original data while the highest
levels capture the structural information of the environment.
In g2o [78], a similar representation is adopted. g2o uses the
structure of the Hessian matrix to reduce the complexity of
the system to optimize. COP-SLAM [79] optimizes a pose
graph. The latter considers the displacement and the associated
uncertainty to build a chain of poses. In a different approach,
TreeMap [80] exploits a tree structure for the map and makes
topological groups of landmarks so as to make the information
matrix sparser and so quicken the processing (O (log n) for
n landmarks). Even though not exploiting a graph structure,
iSAM (incremental Smoothing And Mapping) [81][82] sim-
plifies the information matrix to speed up the underlying
optimization. Here, the objective is the QR factorization of
this sparse information matrix.

The comparison of filter-based techniques and optimization
approaches for a SLAM application is difficult as they are
usually considered in different scopes. This comparison effort
has been proposed in [83] and then extended in [84] for
monocular approaches. The outcome is that optimization tends
to give better results than filters which are more subject
to linearization issues. However, the authors conclude that
“filter-based SLAM frameworks might be beneficial if a small
processing budget is available, but that BA optimization is
superior elsewhere that with limited resources” [83].

C. Relevant surveys and existing data sets

As SLAM is a central topic of both mobile robotics and
now autonomous driving, it continues to draw the attention
of many researchers. In this section, we direct the readers
towards recent survey articles that cover aspects not treated
here. We also describe the different existing data sets that serve
to benchmark current approaches.

As mentioned before, a good introduction to the field
is given in [4] and [5] with an overview of the different
aspects involved by SLAM. In [85], a brief survey of the most
common filter-based estimation techniques is given with a list
of the pros and cons of each main paradigm. An interesting
take on the SLAM is offered by Dissanayake et al. in [86],
and extended in [87], where the observability of SLAM, its
convergence properties, its consistency as well as its com-
putational efficiency are discussed. In [7], three estimation
techniques are reviewed: EKF-SLAM, PF-SLAM and graph-
based SLAM. Recent SLAM works that use vision are also
reviewed. A specific focus is given to indoor SLAM and
RGB-D cameras. There is a strong interest of the community
towards vision-based SLAM due to the cost of the sensor and
its information richness. Some of the works are reviewed in
[88]. In [89] and [90], the authors cover the topic of Visual
Odometry (VO) where the focus is on the localization (and
the trajectory) and not on the map. Visual SLAM is also
at the heart of [91] where feature selection, matching and
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map representation are addressed. Recently, Ros et al., in
[92], present the challenges of Visual SLAM for driverless
cars: building long-life maps, how to share maps between
vehicles and the necessity to work on high-level features to
ease recognition. A very complete survey on visual place
recognition has also been published lately [93]. The authors
go through the different modules that are essential in this field:
image processing (descriptors, etc.), maps (representation) and
the estimation part called belief generation. While this survey
will also explore place recognition as it is an important aspect
of SLAM, we will focus on its application to autonomous
vehicle and on the maturity of existing approaches. Already
mentioned before is the considerable work of Cadena et al.
in [8] where the SLAM topic is reviewed as a whole. Some
aspects, not necessarily applicable yet in autonomous driving,
will not be covered here (active SLAM, for instance). Once
again, we will insist on the key topics with regards to self-
driving cars and the experimental results of current state-
of-the-art approaches. Finally, in [94], the authors review
multiple-robot SLAM approaches with a description of the
underlying mathematical formulation. In our dedicated section,
we will complete this survey with cloud-based approaches and
also give some insights about the current results in this field
and the expected future directions in autonomous driving.

A strong effort has been made lately to provide data sets
which can serve to benchmark the different SLAM algorithms.
The Rawseeds project was among the first to propose a
benchmarking tool [95] with outdoor and indoor data sets
with ground truth. In a similar fashion, the New College data
set [96] is a 2.2 km trajectory in outdoor environment with
cameras and lasers. The most famous is the KITTI database
[97] with various data sets acquired from a car in urban and
peri-urban environments. Its popularity is linked to the variety
of the data sets (the vehicle is equipped with stereo cameras
and a 3D laser scanner) as well as to the evaluation possibility
offered by the website. It is the main tool to evaluate the
positioning accuracy (translation and rotation errors) of SLAM
algorithms at the moment. Table I offers a summary of the
different available data sets based on the comparison table
proposed by [98].

We will now present the limits of SLAM approaches with
regard to autonomous driving by analyzing the top-ranked
methods on KITTI and then discuss how these limits can be
mitigated.

III. LIMITS OF CLASSICAL APPROACHES FOR
AUTONOMOUS DRIVING

A. Problem identification

The KITTI database provides an interesting vector to
evaluate the current state of odometry/SLAM algorithms for
autonomous driving as the furnished data sets were carried
out with an equipped vehicle mostly on urban and peri-urban
roads, where these kinds of approaches are expected to be
the most efficient. The top-ranked localization method on
KITTI’s odometry data set is V-LOAM [105] which combines
visual odometry for motion estimation with a slower 3D laser
odometry. The 3D laser is used to create a depth map of the
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TABLE I: Summary of existing open data sets (GT stands for ground truth) based on
[98]. Laser information includes field-of-view/horizontal resolution/vertical resolution.
Ticks indicate the presence of a sensor. Crosses indicate its absence.
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visual features and also to extract geometric feature points
(edge points and planar points) that are matched with the
previous 3D scan. The obtained transformation serves for the
initialization of an ICP matching with the map. This approach
is able to reach a 0.68 % translation error and a 0.0016
deg.m−1 rotation error on the KITTI benchmark. The best
stereo approach on KITTI is a visual odometry named SOFT
[106]. This algorithm is based on a careful feature selection
and tracking. Corner-like features are extracted in both images.
Correspondences are sought through SAD (Sum of Absolute
Differences) over small windows. These features must be
matched in two consecutive images to be viable. A Normalized
Cross Correlation (NCC) test is performed to remove the last
outliers. The frame-to-frame motion is estimated separately for
rotation and translation with different algorithms. A similar
focus is chosen in [107]. An outlier removal scheme, based
on an analysis of landmark reprojection errors, serves to define
a criterion to reject outliers. Another interesting approach is
described in [108]. The authors use state-of-the-art monocular
techniques but applied to a stereo system. This again implies
a strong focus on inliers identification and tracking. The
performance of these visual methods reaches around 1 % for
the translation error and a rotation error below 0.003 deg.m−1.

These four approaches are among the better ranked on
KITTI. Even though the results are impressive, the drift that
affects them makes their use over long distances impossible.
For example, a 1 % translation drift alone (without rotation
error) implies that after 100 meters, the vehicle is one meter
away from its real, absolute localization. Ways to constrain,
correct or avoid this long-term drift must thus be taken
into consideration. The large-scale environments involved by
autonomous driving are an important concern as a decimetric
accuracy must be maintained during several kilometers (a
twenty-centimeter accuracy is often recommended [109]). It is
thus of vital importance to find a solution, be it under the form
of absolute constraints or by studying how the drift occurs and
can be modeled.

It clearly appears that the non-linearity of the models used
in SLAM algorithms (vehicle models and observation models),
which is for the major part induced by rotations (see Figure
4 for an example), has a strong impact on the divergence
of a localization. However, it is important to mention that
convergence properties have been demonstrated in a linear case
[14] for SLAM, the use of Kalman Filters in this field being
a good example.

Regarding filtering methods, the divergence problem of the
EKF SLAM has been stated numerous times. In [17], the
authors show that the filter tends to give biased estimates when
the linearization is performed far from the true value. It means
that the uncertainty associated to the state (vehicle or map) is
too small: the estimate is said to be inconsistent, the true value
being out of the estimated uncertainty. The localization drifts
progressively, the filter calculating a biased vehicle pose and
map [110]. Non-linear models are not the only source of drift.
Julier et al. in [16] add that the ignored correlation between
data also provokes the divergence. Kalman Filters produce
optimistic results, which means that they consider that a piece
of data coming from a sensor is entirely new and so temporally

Fig. 4: Impact of an angular drift. In green, the ground truth
of trajectory is picture. Below, example of an angular drift
(orange arrow) occurring at different times on the estimation
of the position.

decorrelated from the rest (white noise assumption) which is
not the case and so contributes to the inconsistency.

The problems raised in this last paragraph also apply to
optimization methods when they work in a local environment,
which is a necessary condition for real-time estimation. The
previously cited optimization-SLAM works also clearly show
the importance of the rotation in that drift. It has been
observed by multiple authors [111]. It has also been shown
experimentally in [112] and [113]. In [114], the authors show
that the 2D formulation of the SLAM problem is not convex
and as such has local minima in which the optimization can
be trapped. However, without including the rotation error, the
problem is close to a quadratic function and thus becomes
convex.

Many practical causes also affect the behavior of SLAM
algorithms. For instance, the presence of dynamic obstacles
when a static world assumption is a prerequisite is a factor. A
low number of landmarks or the absence of sufficiently salient
features in the scene can also induce wrong associations and
so a divergence of the system. Of course, the accuracy of the
models used with regard to noisy real sensor data is another
factor that can have a strong impact on the integrity of the
computed localization. Most of the works directly addressing
this inconsistency problem tend to find ways to locally avoid
or reduce the drift.

B. Avoiding or reducing the impact of drift

The first possibility to avoid, or at least reduce, the diver-
gence is to divide the map in submaps [31]. These approaches,
presented before, break the global map in submaps where each
one has its own reference frame. By doing so, the drift can
be avoided at a local level by allowing only short trajectories
per submap. The size of a submap must thus be calibrated and
becomes a compromise between reducing the drift and dealing
with the induced information loss. However, even with an
appropriate size (see [35] for instance), there is no guarantee
that the localization consistency will be preserved. Indeed,
each measure contributes to make the system inconsistent and
this phenomenon can occur even with a few pieces of data.
Moreover, even if the divergence is avoided in the submaps,
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it is not the case in the global map that keeps track of how
the submaps are connected. It is thus more of a local solution
to the problem.

In a similar fashion, robot-centered approaches greatly
reduce the divergence [115]. Instead of having a fixed world
frame, the estimates are always given with relation to the
vehicle position. Inconsistency problems are less frequent
because they do not accumulate like it is usually the case. The
estimation in this frame allows for a better consistency than in
classical EKF SLAM [116]. Nevertheless, as with submaps,
the divergence is not entirely resolved as landmarks can
diverge with only several measures. A few SLAM approaches
have used a robot-centered frame with success [117][118].
Landmarks are forgotten as soon as they are not visible which
relates these methods to visual odometry and is as such totally
appropriate.

Other practical causes can create drift and inconsistency
such as the presence of mobile obstacles when a static world
is expected. This problem has been tackled in SLAMMOT
(Mobile Object Tracking) or SLAM-DATMO (Detection And
Tracking of Moving Objects) approaches [119][120][121]. The
idea is to take advantage of the map building process to
directly detect and track obstacles by analyzing observations
which are not coherent with the vehicle displacement. Alterna-
tively, credibilist approaches [60], which represent ambiguous
information, can indirectly deal with dynamic obstacles. They
do not detect or track these obstacles but instead treat them
as conflicts which allows the algorithm to affect a very low
weight to these observations when estimating the vehicle
displacement.

More generally, the quality and number of selected land-
marks in the SLAM process have a clear impact on how the
system behaves. Ambiguities can cause matching errors and
so the inconsistency of the produced estimates. Related to
this problematic, Fault Detection and Isolation (FDI) systems
propose to exploit information redundancy to measure the co-
herence of different sources (sensors, models, etc.) and detect
errors or failures of one of the sources. By doing so, it becomes
possible to know if the system is in a situation prone to errors
and so reject spurious measures to avoid drift. In [122], the
authors propose to analyze the residuals of a bank of Kalman
Filters using thresholds to determine if one filter is diverging.
A similar approach is described in [123] but the decision part
is given to a Neural Network. Sundvall and Jensfelt, in [124],
add a coherence measure between different estimations. In
[125], Fault Detection is applied to GPS using the Normalized
Innovation Squared (NIS) test. Neural Networks are used in
[126] to detect sensor failures by making measure predictions
using approximators. In [127], the authors propose a visual
odometry where photometric camera calibration is taken into
account in the minimization step in order to reduce the drift
induced by effects like lens attenuation, gamma correction,
etc. The quality of the observations is increased compared to
simpler camera model.

An aspect that has often been considered to counter drift in
SLAM algorithms is the use and fusion of multiple sources.
Conversely to the previously described FDI methods, the
idea is not to reject spurious measurements but for various

sensors to compensate each other. According to Luo et al.
[128], three levels of information fusion can be identified:
low-level with raw data, mid-level with features and high-
level with objects. In [129], the authors propose to couple
laser with camera data. The fusion is done at a landmark
level (laser estimation followed by camera refinement). In
[130], camera, laser and GPS are fused based on information
coherency. Already discussed before, the method described in
[105] combines vision and 3D laser data to produce a low-
drift algorithm. However, even if coupling information can
benefit the accuracy and consistency of an algorithm, it does
not ensure that it will not drift. It only partially corrects the
drift induced by one sensor.

Even if these methods have been proven to reduce or
partially avoid the drift, it does not allow for a drift-free
estimation during long periods of time. Correcting the drift
in a reliable manner involves that constraints about where
a vehicle is with relation to a previously known, local or
absolute, reference should be regularly taken into account.

C. Evaluation criteria for SLAM in autonomous driving

While the previously described approaches can be success-
fully applied for autonomous indoor mobile robots with a
dedicated exploration scheme, it is not sufficient for the large-
scale environments of the autonomous driving setting. It means
that it is necessary to rely on previous knowledge (absolute or
local information) or to be able to improve the built map over
time until it is accurate enough (loop closing, for instance). As
such, the mapping aspect is central in self-driving vehicles and
raises important challenges about how to build or use compact,
relevant, reliable and evolutive maps.

We have identified 6 criteria that we think must be fulfilled
by a SLAM approach to be viable for autonomous driving.
They are described below:

• Accuracy: refers to how accurate the vehicle localization
is, be it in world coordinates or with relation to an
existing map. Ideally, the accuracy should be below a
threshold (usually around 20 centimeters [109]) at all
times. Of course, in straight lines, the longitudinal local-
ization can be less accurate without major consequences.

• Scalability: refers to the capacity of the vehicle to handle
large-scale autonomous driving. The SLAM algorithm
should be able to work in constant time and with a
constant memory usage. It implies the use of a map
manager to load data when needed. The second aspect is
that the map built and/or used has to be light (or stored
on a distant server and retrieved on the fly) so as for the
approach to be easily generalizable over long distances.

• Availability: refers to the immediate possibility for a
SLAM algorithm to provide an adequate localization
that could be used right away for autonomous driving if
sufficiently accurate. In other words, no first passage of
the algorithm is needed to build a map of the environment
and it implies that the approach is able to leverage
existing map resources (or integrate absolute information
more generally). This criterion is particularly important
not to restrain where a self-driving vehicle can operate
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(a world-wide mapping process is costly and requires
dedicated means).

• Recovery: refers to the ability to localize the vehicle
inside a large-scale map. Initially, the vehicle does not
know where it is and a dedicated process is, most of the
time, needed to have a rough idea of its position in a map.
It is also a way to recover from a failure (kidnapped robot
problem).

• Updatability: refers to the identification of permanent
changes between the map and the current observation. It
also includes the update policy that is needed to integrate
these lasting changes and not the temporary ones. Long-
term autonomous driving requires the automation of map
updates.

• Dynamicity: refers to how the SLAM approach is able to
handle dynamic environments and changes. This includes
dynamic obstacles that can distort the localization estima-
tion. It also integrates weather conditions that can vary as
well as seasonal changes (trees losing leaves, etc.). One of
the challenges of long-term SLAM is to find sufficiently
discriminative features or methods in order to be robust
against those changes.

We will now go through existing methods for both single
and multi-vehicle SLAM and compare them with regard to
the previously defined criteria so as to have a panorama on
the maturity of SLAM approaches for autonomous driving.

IV. SINGLE-VEHICLE SLAM

All the challenges that appear from the criteria detailed
above point at the necessity to build better maps and so at
environment representation and recognition both at a metric
and topological level. To cover this broad topic, we divide
the works in three categories which reflect how the SLAM
community usually considers their contributions. The first one
concerns loop closure (recognizing a previously mapped place)
which is an essential part of SLAM as it allows correcting
maps and making them coherent. An interesting aspect is
that these algorithms are usually applicable to relocalize a
vehicle inside its environment and so provide an answer
to the recovery criterion. The second category deals with
the localization inside a previously built map. As previously
discussed, it is a direct way to constrain the drift. Theoretically,
every SLAM approach could be reusing its map but we will
focus here on the articles that explicitly do so and on those
which address the long-term challenges of reusing maps. A
third part focuses on localization approaches that leverage
existing data so as to avoid the first passage of a specifically
equipped vehicle. For each part of this section, we will provide
a synthesis of the discussed approaches, how they respond
to the previously established criteria and briefly discuss the
remaining challenges.

A. Relocalization and loop closure

Recognizing a previously mapped place, and thus reducing
the drift induced by SLAM algorithms, is considered as an
essential part of SLAM. The main difficulty comes from the
fact that the estimation process is inconsistent and cannot be

trusted to find those loops. It means that, most of the time,
this problem is solved by a dedicated algorithm that runs
at all times, independently from the estimation process. This
dedicated algorithm is also often used to relocalize the vehicle
inside a previously built map (kidnapped robot problem) which
is of prime interest when considering autonomous vehicles.

Most of the approaches use cameras to find loops because
of the richness of the visual information. Williams et al. [131]
have identified 3 categories in which these algorithms can be
separated:

• Image-to-image methods [132]
• Map-to-map methods [133]
• Image-to-map methods [134]
1) Image-to-image methods: In image-to-image methods,

the loop detection takes place in the sensor space. Bag-of-
words approaches based on visual clues [132][135] belong to
this category. The idea is to build a dictionary where each word
represents similar descriptors. SIFT [136] is often used to find
descriptors and compare them due to its good robustness to
scale, rotation or viewpoint changes in images. Many visual
descriptors can be considered in a redundant fashion (SURF,
CenSurE, etc.) so as to have the largest database possible and
a representative dictionary. Once the latter is built, it can be
used to check if some images can be described with the same
words and thus be qualified as representing the same place.

Algorithms like FAB-MAP (Fast Appearance Based Map)
[99] (and its extension FAB-MAP 2.0 [137]) and PIRF-Nav
(Position Invariant Robust Feature Navigation) [138] are two
examples of SLAM solutions based on landmark appearance
for loop closures. In the first one, information having a strong
dependency is extracted so as to avoid false recognitions which
often affect loop closing algorithms. The approach has been
evaluated on a 1000-km outdoor data set and shows that, using
a dictionary built offline, the algorithm can provide proper
topological loop closures and make maps more coherent (the
gain in accuracy is not evaluated). In [138], the objective is
the same but features allowing to be robust against dynamic
changes are favored (PIRF). A major difference with FAB-
MAP is that the whole process is online and incremental.
However, it does not scale well (quadratic complexity for
image retrieval) and as thus has not been applied to vehicles
contrary to FAB-MAP.

Still to reduce the number of false positives, SeqSLAM
[139] proposes to be less discriminative on single images
but to analyze over sequences in order to ensure a proper
matching. Results on a 22 and 8-km data sets demonstrate
the ability of SeqSLAM to handle day/night matching in real
time (even though the computing time scales linearly with the
size of the data set) with different weather conditions under
which FAB-MAP is unable to properly operate. SeqSLAM
is demonstrated as a pure place recognition approach and
does not apply loop closure to correct previous measurements
even though it is possible. SeqSLAM has even been extended
to integrate motion estimation between matching by using a
graph structure representing the potential roads and a particle
filter to maintain the consistency of the positioning [140]. This
approach, SMART PF, shows better results than SeqSLAM.
Another interesting approach is shown in [141] where the
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algorithm is tested to find loop closures across different
seasons. To do so, the problem is also solved by using image
sequences. A flow network is built (a directed graph with start
and end-of-traversal nodes) and is used to formulate the image
matching as a minimum cost flow problem. On the proposed
data set (summer/winter matching), the approach outperforms
SeqSLAM. It requires a few seconds to process each image.
An evolution of this method has been presented in [142]. The
authors replaced the HOG features used to represent images
with a global image feature map from a Deep Convolutional
Neural Networks. They are able to obtain better performances.
The found loops are taken into account in a graph-based
approach (g2o [78]) with odometry constraints without giving
insights about the reached accuracy. The approach runs on a
GPU and is thus faster than the previous implementation (real
time with a data set of 48,000 images) even though its speed
still depends on the data set size.

2) Map-to-map methods: Map-to-map methods are solely
based on information contained in the map. It is the case
of the GCBB algorithm (Geometric Constraint Branch and
Bound) proposed in [143]. The principle is to define geometric
constraints between landmark pairs in the map and the current
observation. An association tree is established so to as to
find the most likely association hypothesis that respects the
geometric organization of the landmarks in the map. It has
been applied successfully in [133] with a hierarchical approach
in outdoor experiments even if the accuracy of the resulting
map is not measured.

Li et al., in [144] and [145], proposed to merge occupancy
grids by using a genetic algorithm to find the best alignment
possible. A low-cost GPS is used to constrain the search space
to smaller regions. Similarly to the previous example, the
consistency of the map is drastically improved but its accuracy
is not measured. In the case that the drift can be approximately
estimated, the JCBB algorithm (Joint Compatibility Branch
and Bound) [146] selects compatible landmarks according to
their uncertainty.

Map-to-map methods are difficult to apply without any hint
of where to look for loops as maps are either too sparse to
be sufficiently distinctive (monocular SLAM for instance) or
too complex for a complete exploration in real-time. In such
cases, the use of a GPS, like in [145], makes sense as it allows
the system to considerably reduce the exploration space.

3) Image-to-map methods: The last category, called image-
to-map (or more generally sensor-to-map), extracts informa-
tion from the sensor space and compares it directly with the
map. The approach described in [134] is based on classifiers
trained on the detected landmarks. The loop closing stage
uses these classifiers on the image to check if there is a
match. Then, a RANSAC algorithm takes the corresponding
3D positions to compute the new pose of the vehicle. Results
with a single camera show that the map becomes coherent in
an outdoor scenario.

Another possibility to close the loop or relocalize a vehicle
is to use hierarchical techniques to speed up the processing. A
low-resolution map first serves to identify a rough positioning
of the vehicle which is then refined as the map resolution
increases. These methods are particularly suited to occupancy

grids and have been applied successfully to automated vehicles
with laser sensors in [147]. In this example, a coarse-to-fine
approach is used to relocalize the vehicle inside a map and not
to perform loop closure. Experiments show that the method
works well but that the size of the map is a crucial aspect.

4) Discussion: We have focused on how loop closure is
applied in SLAM algorithms. The recent years have seen a
clear focus on how to deal with seasonal or weather changes
and we refer our readers to this survey [93] for a detailed view
of this field, independently of loop closure.

Even it may seem like image-to-image methods are favored,
recent approaches tend to couple different methods to ensure
that a place has been properly recognized. As an example,
an application of FAB-MAP with a visual odometry can be
found in [148]. The authors rely on dense stereo mapping
and use FAB-MAP to indicate loop closures. Their metric
integration is done within a graph formulation and is calculated
using the Iterative Closest Point (ICP) algorithm [149] between
the observation and the previously built map. Even if the
accuracy is not directly measured, the built map indicates
a consistent mapping. In [150], a bag-of-words method is
first employed to generate candidates that are then checked
using Conditional Random Fields (CRF) in which a constraint
ensures a geometric consistency between the landmarks. The
whole approach is applied in a visual SLAM framework. In
Table II, we give a brief overview of the principal methods
that have been described here with relation to the autonomous
driving problematic.

Based on the established criteria, we can see that these ap-
proaches propose a solution to the recovery problem. However,
loop closure was initially seen as a way to correct drift. While
it produces more coherent maps, the articles cited here do
not clearly expose the gain in accuracy. In [151], the authors
explain that closing the loop can counter the drift inside the
loop but that the result will always be overconfident. Another
approach was proposed in [152] where errors are redistributed
in a probabilistic fashion around the past trajectory when a
loop is identified. It avoids the previously mentioned overcon-
fidence problem but does not guarantee the consistency of the
localization.

It also explains why the community does not necessarily
focus on improving the accuracy but on addressing difficult
conditions and building consistent maps. Even if the results are
impressive, especially with seasonal changes and sunny/rain
conditions, the approaches cited here, when considered for
autonomous driving, can be seen as a better GPS but within
a given zone. As such, it gives two main challenges for the
future: can these approaches be generalized by using already
available information (maps, images, etc.) to avoid the zone
restriction? Can these methods be extended and integrated into
SLAM frameworks to give very resilient approaches that could
be viable for autonomous driving?

B. Localization in a previously built map

The localization of a vehicle in a previously built map
is tightly linked to the methods presented in the previous
section about loop closing and relocalization. Indeed, the first
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Method Accuracy Scalability Availability Recovery Updatability Dynamicity
[137] FAB-MAP 2.0 Coherent map Partly (1000-km experiment) 7 3 7 Partly
[138] PIRF-Nav Coherent map 7 Partly (online) 3 7 Partly
[139] SeqSLAM No loop closure 7 7 3 7 3

[140] SMART PF No loop closure 7 7 3 7 3

[142] SLAM across seasons Coherent map 7 7 3 7 3

[133] Mapping large loops Coherent map 3 Partly (online) 7 7 Very partly
[145] Occupancy grid maps merging Coherent map 7 Partly (online) 7 7 7

[134] Image-to-map Coherent map 7 Partly (online) 3 7 7

[147] Occupancy grid map SLAM No loop closure 7 Partly (online) 3 7 7

TABLE II: Relocalization and loop closure methods regarding autonomous driving criteria. Tick: criterion satisfied. Cross: criterion not satisfied.

necessary action is to globally identify where the vehicle is
located in the map. Once this first step is accomplished, more
classical data association algorithms can be used. If countering
the drift is not entirely possible with loop closure, constraining
the localization inside a given map is a viable solution for
autonomous driving. However, building a map that scales well,
that can be updated or that can work whatever the conditions
is not a trivial task. We will go through existing methods that
have showed that reusing a map is possible without or with a
dedicated map building process.

1) Identical method between first mapping and on-the-fly
localization: The logical extension of any SLAM algorithm
is to reuse a built map in order to constrain the localization.
While it still requires a first passage, the map can be used right
away and does not necessitate a dedicated offline processing.
Nevertheless, not all methods have demonstrated that they are
viable under such circumstances as it involves continuously
building or enriching maps.

Map management is widely covered by all the approaches
that involve submaps, which allows SLAM algorithms to work
with a near-constant time and memory consumption [28].
However, reusing the maps is not necessarily considered in
these methods. In [59], PML-SLAM is proposed to tackle
these problems (map loading and unloading between RAM
and hard drive based on the vehicle position, etc.) using laser
scanners and occupancy grids. This approach has been proven
to be viable for autonomous driving in [153] in certain areas.
The map can also be continuously updated but no dedicated
process handles it, meaning that temporary changes will also
be integrated.

In [154], the authors describe a long-term mapping process
where new measurements improve the map. The approach is
based on vision and inertial sensors and uses a pose graph
representation to integrate new data. Scalability over known
areas is achieved thanks to the reduction of the pose graph.
No control is made on whether or not an update corresponds
to a permanent change. Already mentioned before, the work
of McDonald et al. in [150] uses anchor nodes to link together
pose graphs acquired during different sessions. This way, the
produced visual SLAM maps can all be taken into account.
Similarly to [154], all maps are integrated without distinction.
The authors of [155] propose a monocular approach that
uses a low number of landmarks and their visual patches to
characterize them. Landmarks are reprojected in the image
and matched thanks to their patches with Normalized Cross-
Correlation [156]. Even if this approach is very resource-light,
no dedicated mechanism is able to handle map portions that

are no longer needed. The use of a memory of images is
quite common [157][158][159]. The principle is to compare
the current image with a reference database stored in memory,
which can be costly and a limiting factor for a map. Data
association can also be a problem in such cases. In [160], the
authors propose data association graphs as a way to model and
solve this problem.

Building maps that are able to evolve and follow permanent
changes is a challenge that has mainly been tackled in indoor
environments. The Dynamic Pose Graph [161] maintains two
maps: an active and a dynamic map. The laser scan points
are labeled in order to identify mobile obstacles and then both
maps can be updated accordingly. The pose graph represen-
tation allows the system to remove inactive nodes and keep
a more tractable representation. In [162], a visual odometry
approach is coupled with a place recognition mechanism in
order to stitch maps acquired at different times. Old views are
deleted when they are not longer relevant allowing the system
to maintain an up-to-date map even though temporary changes
are integrated as well.

A 3-month outdoor experiment is proposed in [163] in
which the authors introduce the concept of plastic maps as
a way to integrate visual experiences over time. The idea is
that the visual odometry tries to relate to a past experience. If
none exists, a new one is created. Experiences can be partial
along the trajectory in order to only store changes on dedicated
portions and not on the whole map. The authors show through
experiments that the number of required experiences tends to
be bounded over time. The main advantage of this concept is
that it allows the detection of sudden and long-term changes
in an unified method. Gathering all the needed experiences
requires many traversals of a same road which can only be
done at a world level with probe cars.

2) Dedicated map-building process: The increasing capac-
ity of computers, coupled with the fact that a first traversal
is needed for autonomous driving with SLAM, has led re-
searchers to focus on how to build the best maps possible for
online exploitation.

Place recognition approaches, most of the time, fall also
in this category as they require a previous passage to build
specific databases that are then exploited. In [164], one SVM
per feature is trained across several images. The robustness
is ensured by discarding the detectors not accurate or unique
enough across the neighboring images. These classifiers and
their temporal connection can be seen as the map. The
authors demonstrate a great reduction in localization failures
but do not directly assess the accuracy of the method. The
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PoseNet algorithm, in [165], trains a Convolutional Network to
associate images to the corresponding position and orientation.
The CNN is then applied to locate an image in real-time.
These approaches do localize the vehicle inside a map but
do not ensure continuity in the localization service as with
more classical methods.

Many approaches have also chosen to improve maps over
time. In [166], the authors consider that, in the future, maps
will be coming from centralizing collect services. As such,
they propose a system where maps, constructed using vision by
optimizing over 2D-3D associations, serve to feed a database.
An offline process takes all these information to produce
summary maps where all the meaningful data are contained
(most seen landmarks). The localization accuracy is under 30
cm in various conditions. The problem of the scalability of
such an approach is mentioned but not addressed. In [167],
the authors consider an initial metric and semantic map and
propose an unsupervised method to make them evolve through
time in a parking context. The metric map uses a pose graph
relaxation algorithm in order to take into account multiple
passages. The semantic part is updated thanks to machine
learning techniques. Multiple timescales are maintained in
[168] in order to choose the one that best fits the current
observation. A first run is performed to obtain an initial map.
After that, local maps are maintained online with a short-term
memory while an offline update allows the system to build
more consistent global maps. Indoor experiments show that
the map slowly adapts to long-term changes.

A different approach is proposed in [169] and [170] where
spherical images (intensity, depth, saliency and sampling
spheres) are built from several images. The main advantage of
a sphere is to cover a given area and not only one position. An
online registration method based on monocular inputs serves to
localize the vehicle. In [171], a two-step process is proposed.
During the first phase (teach), a database is built using SURF
keypoints and submapping techniques. Then, the repeat phase
localizes the robot according to the constructed map in order
for it to follow the same path as previously. Similarly, in
[172], a visual database is first built offline using a hierarchical
bundle adjustment method. Then, in real-time, the vehicle lo-
calizes itself inside the map. Both approaches do not allow the
system to modify the map once built. In [172] the results show
an impressive accuracy (around 2 centimeters with the exact
same path). However, the map remains quite heavy (around
100 Mb for a kilometer). Still related to vision, in [173], a
geo-referenced visual map approach is proposed. The map is
first built offline using SURF features and GPS constraints
within a graph-based optimization framework. Online, the GPS
is not used and only the map and stereovision are employed.
The map memory is one of the problem cited by the authors
(500,000 landmarks for 1 km) for an average accuracy of 30
centimeters.

A topometric localization is presented in [174]. During a
first passage, a GPS is coupled with vision and range sensors
to create a database of compact features (a descriptor per
image and a range and standard deviation value between each
image). A Bayesian filter is then used for online localization.
Extensive experiments (over 4 months) have been carried out

to show the resilience of the features to various conditions. The
average localization error is around 1 meter. Still in a multi-
sensor context, Maximally Stable Extremal Regions (MSER)
[175] are extracted from both images and laser grid maps
[176]. Coupled with a GPS-RTK, they serve to establish a
database during a first passage. A particle filter then keeps
track of the vehicle pose online. 2574 landmarks are required
for 7 km for an average error below 50 centimeters. Finally,
an interesting approach, first proposed in [177] then extended
in [178], focuses on building high-quality road surface maps
using a 3D laser. A calibration method for reflectivity values
is proposed and maps are then computed using a graph
approach with inertial and GPS constraints. A histogram filter
is used for the online localization inside the map. Results have
been demonstrated in autonomous driving for more than 6
kilometers with an accuracy of less than 10 centimeters. A
map manager ensures a constant-memory usage. 10 MB are
required for 1.6 km. The authors indicate that the reliance
on the built map could have inappropriate consequences in
complicated weather settings. Instead of a laser-built map,
Napier and Newman, in [179], construct orthographic images
of the road surface from a visual odometry approach. During
the online localization phase, a synthetic image, based on
the predicted pose, is generated and compared with the map
using mutual information so as to refine the localization. The
approach does not work in real time at the moment and its
accuracy has not been directly assessed.

3) Discussion: An overview of the main approaches dis-
cussed in this section and how they fill our autonomous driving
criteria is exposed in Table III.

We can see that almost all approaches propose a recovery
system (except [173] where it is not mentioned) which makes
sense with regard to the localization in a previously built map.
Vision alone, to be sufficient, requires dense representations
or a high number of landmarks. It is also worth noting that
experimental conditions are not the same between all these
approaches and as such one method could not be able to
reach a proper accuracy in a different setting. Building long-
term maps remain a difficult task and it is not always clear if
always updating the map is the good strategy. We also notice
that this kind of methods has the disadvantage not to limit the
size of the maps (even if this effect is limited) which can be
problematic in the long run. Many approaches do not propose
a specific mechanism to store partial maps as the scope of
the experiments do not necessarily requires it. However, the
information density needed for most approaches makes a
world-wide deployment difficult to envisage at the moment.
Direct availability of maps is the main problem but it is
worth noting that [166] mentions probe cars (multiple sensor-
equipped vehicles) as a future way to reduce this problem.
This will be further discussed in Section V.

From this short analysis, it appears that the problem of
building life-long maps that can take into account permanent
changes as well as seasons and weather in a bounded manner
remains a challenge. Regarding accuracy, even though some
impressive results are shown, it is difficult to predict how one
map representation will work in a different environment. As
there is no clear way to evaluate this, more tests in various
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Method Accuracy Scalability Availability Recovery Updatability Dynamicity
[59] PML-SLAM 3 3 Partly (online) 3 7 7

[154] Reduced pose graph Indoor Partly (not bounded) Partly (online) 3 Partly 7

[161] Dynamic Pose Graph Indoor Partly (not bounded) Partly (online) 3 Partly Very partly
[163] Plastic maps Not measured Partly (not bounded) Partly (online) 3 3 3

[165] PoseNet 7 7 7 3 7 Partly
[166] Summary maps 3 Partly (not bounded) 7 3 3 3

[168] Multiple timescales Indoor Partly (manual bound) 7 3 3 Partly
[170] Sphere map 3 3 7 3 7 Very partly
[172] Hierarchical Bundle Adjustment 3 7 7 3 7 Very partly
[173] City GPS Not always sufficient 7 7 7 7 Very partly
[174] Topometric localization 7 7 7 3 7 3

[176] MSER map Not always sufficient 7 7 3 7 7

[178] Road surface maps 3 3 7 3 7 Very partly

TABLE III: Localization in a previously built map methods regarding autonomous driving criteria. Tick: criterion satisfied. Cross: criterion not satisfied.

conditions are needed. The final, bigger problem is how can
the creation of these maps be generalized at a world level? At
the moment, it is not clear if it will happen as world-wide raw
sensor data may never be available.

C. Localization in existing maps

Even without world-wide raw sensor data, there exists many
different sources already furnishing large-scale information.
In the prospect of facilitating the deployment of autonomous
vehicles, many researchers have proposed approaches to lever-
age these geographic information sources. In this part, we will
first focus on new map (or potentially new) formats and their
applications as it could drive how information are collected
in the near future. Then, we will discuss localization methods
that already integrate existing widely available data to build
prior maps.

1) Building and using future maps: In the recent years,
researchers have proposed custom map formats in order to
respond to the need of a prior knowledge for autonomous
driving. Some have considered the practical challenges of
building world-wide maps in an automatic way.

In [180], the authors propose a custom format, Emap
(enhanced map), usable for a lane-level localization. Lanes
are represented as a series of straight lines, circles or clothoids
based on GNSS and dead reckoning measurements. This map
format has been utilized in [181] in a 30-minute experiment
where lane accuracy was achieved (error below 1 meter most
of the time). An extension of the Route Network Definition
File format (RNDF), initially specified by DARPA, is dis-
cussed in [182]. This new format, RNDFGraph, overcomes
some of the limitations of the original definition by including
lane relationships and lane change information. This is made
possible by using a graph representation. Splines are also
generated based on waypoints in order to ensure a smooth
trajectory. This format has been used in German highways
for path planning but not directly for localization purposes.
Accurate lane-level map generation is also the objective pur-
sued in [183]. Here, the authors combine line-segment features
extracted from a 3D laser and a graph SLAM approach with
an OpenStreet Map map. A particle filter is used to obtain
a lane estimation that is then integrated inside the map. The
authors show that they are able to reach an average accuracy
of 5 cm. The map utilization inside a localization algorithm

is not proposed in the article. Still regarding automatic lane-
level map generation, Guo et al. in [184] (and extended in
[185]) propose a low-cost approach based on an OSM map,
an INS, a GPS and orthographic images generated from a
camera. The idea is that such a system could be used by probe
cars and could generalize the map-building process. First, the
INS and GNSS measurements are optimized together to obtain
the vehicle localization. A second optimization using visual
odometry is performed. The image is then aligned according to
local map segment extracted from OSM. The lanes are finally
extracted from the orthographic image. Still centered on a path
planning use, lanelets have been proposed in [186]. The format
is proposed with tools to manually create maps from satellite
views. This map representation has been used in [109] but
dedicated maps for localization were built as well. Finally, in
[187], a system based on a high precision GNSS, a 3D laser
and a cameras pointing downwards is proposed to build maps.
Bird eye view images are generated and localized according to
the GNSS. Lane markings and curbs are then extracted from
them and are manually reviewed. A localization application,
LaneLoc, is proposed where the map is reprojected in the
images (no laser is used in the localization phase) using the
estimated vehicle position. It eases the subsequent extraction
of the lane markings and of the curbs. The localization is able
to reach the map accuracy (around 10 centimeters) most of
the time.

All the previously cited methods bring geometric informa-
tion to, for now, topologic-only maps. As such, approaches
making use of this kind of prior information might be viable in
the near future. A map-aided localization is proposed in [188]
that takes advantage of prior knowledge about lanes and stop
lines. A vision system that detects these lanes and compares
them with the map is implemented inside a particle filter that
also integrates IMU and GPS measurements. This light system
is able to reach a 50-cm accuracy. In [189], the authors use
only road segments and integrate them inside FastSLAM. The
idea of this road constrained approach is to limit the lateral
deviation as well as angular errors by matching them with the
expected value computed from the map. The latter is built
using a Differential GPS. A lane-accuracy is reached with
an average error of 1.4 m. Similarly, an accurate digital map
of the lane markings is built and used in [190]. Fused with
GPS and proprioceptive information, the lane detection allows
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the localization to be constrained to 10 centimeters along the
lateral axis. However, longitudinally, the error is around 1
meter. In general, lane approaches are difficult to apply in more
complex settings like intersections and roundabouts where the
accuracy is an important concern.

Instead of lanes, the authors of [191] use a map containing
the walls of the surroundings. A Bayesian network decides the
most appropriate wall to detect using a laser scanner in order
to reach a defined accuracy objective in a top-down manner.
A 20-cm accuracy is attained using a precise map of the walls
composing the scene. A previously-built pole database serves
as a reference map in [192]. The accuracy depends on the
frequency of the poles but is on average around 1 meter. In
[193], the authors exploit the entire pole-like infrastructure.
A map is first built using stereovision and a high-precision
DGPS/INS combination. During the localization phase, stereo
matching with the map, along with odometry and GPS are all
integrated inside a particle filter. The accuracy is not directly
measured but the authors claim a lateral accuracy of around
20 centimeters.

2) Leveraging current map resources: An impressive
amount of data has already been gathered around the world
(topological maps, panoramas, etc.) and can be used to create
specific maps that do not require a prior passage of a specific
vehicle. However, leveraging the available resources at hand
to produce high-quality maps is not easy.

A few approaches are starting to use Google Street View
images (see Figure 5) or equivalent. In [194], an aerial
vehicle takes advantage of Street Views to localize itself.
Artificial views are created to overcome the difference in
viewpoints and are then compared using the Approximate
Nearest Neighbors on extracted features. The objective is to
resolve the place recognition problem in urban environment
with an aerial vehicle. In [195], SIFT descriptors are extracted
from Street View images and indexed in tree structures which
are then browsed with a nearest-neighbor algorithm from the
descriptors of the current image. A vote across the candidates
is then accomplished to choose the closest image. This work
has been extended in [196] with a Bayesian tracking filter in
order to ensure the continuity of the localization. Even though
the filter allows for a smoother trajectory, sudden jumps around
the position still occur. This city-scale localization has an
accuracy that ranges from more than 1 meter to 12 meters. In
[197], visual bag-of-words methods are employed to build two
dictionaries from Street View images using SIFT and MSER
(Maximally Stable Extremal Regions) detectors so as to have
both local and regional feature descriptors. Based on these,
the closest Street View from a real image can be recovered.
The relationships between physically close panoramas serve
to speed up the matching process. For all these approaches,
the difficult task is to find sufficiently discriminating features
to increase the matching ratio as explained in [198]. As such,
these methods share strong relationships with the new descrip-
tors that have emerged for the urban context [199][200][201].
Another way to improve the results is to process sequences that
can then be matched against the topology of the environment
as proposed in [202]. A better performance is obtained by
considering visual words from a query image across multiple

images than just one. The authors formulate the problem
as a regression on an image graph. The approach is only
evaluated by matching Street Views together and according
to the capacity of the algorithm to retrieve the right image.

Fig. 5: Available information from Google: panorama, depth
map and road topology (each circle indicates a panorama/depth
map).

The mentioned approaches solve the place recognition
problem inside Street Views. However, they do not manage
to achieve a sufficient accuracy for autonomous driving. This
issue is more difficult due to the sparse nature of the Street
View panoramas. In [203], the authors propose to create
synthetic views to improve the continuity of the matching
and thus of the localization. The depth associated to Street
Views is used in a 3D-to-2D matching that is injected inside
an optimization framework to minimize the reprojection error.
They are able to obtain an accuracy of approximately 60 cm at
best. In [204], the pose estimation is performed by comparing
features from the current image with the best Street Views
(highest number of matching with the query image). Proper
correspondences are identified by evaluating the residual of
the corresponding transformation over all the matches. The
pose is then estimated between the best two reference views.
The accuracy of the system oscillates between less than 2
meters to 16 meters. A method with two separated modules
is described in [205]. In the first one, a visual odometry
algorithm is applied from feature points tracked for short
periods of time. In the second one, the transformation linking
these points to Street View panoramas is computed so as to
obtain a global localization with an accuracy below 1.5 m. In
an original approach, the authors of [206] propose a text-based
geo-localization method that extracts textual contents with a
camera from available shop signs. It is then compared with an
annotated map built from Street View panoramas in order to
estimate the pose of the camera for an average error of around
10 meters.

Other than Street View imagery, in [207], the authors show
that it is possible to consider traffic signs as geo-referenced
landmarks coming from existing maps. 3D models of these
traffic signs are matched in images and the position of the
vehicle is optimized inside a Bundle Adjustment approach.
Results are below 0.5 m most of the time but depend on the
number of traffic signs. However, the database that is used
need to be quite precise and is built by a mobile mapping
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system. With a more traditional traffic sign database, the
authors of [208] are able to reach a 5-meter accuracy by
combining vision, GPS and an INS inside a Bayes filter. The
structure of the road graph can also serve to roughly localize a
vehicle as proposed in [209]. In this paper, a particle filter, only
fed by odometric information, progressively converges toward
the true location of the vehicle by matching the trajectory
followed against the map. The result is an average error of 5.8
m in a large network. The authors of [210] combine a visual
odometry system along with features (lane markings) extracted
from satellite imagery. The aerial images are pre-processed
offline using a SVM and a clustering algorithm to identify
road markings. The latter are then used online to constrain the
localization. The accuracy of the system is not measured but
the authors show that they are able to align satellite image
features with the current image.

3) Discussion: We provide a synthesis of the main ap-
proaches covered here in Table IV with relation to the estab-
lished criteria.

The current state of localization methods based on existing
maps show that they are not yet viable for autonomous driving.
The accuracy is not sufficient or requires more precise maps
that the ones currently available. An interesting observation
is that even the algorithms that utilize more precise lane
maps (built manually) do not reach the critical accuracy
(around 20 cm [109]) for automated driving. Of course, things
could evolve in the near future depending on the information
available in the upcoming high-precision maps. Nevertheless,
leveraging current databases is an evolving trend that can
be an interesting prospect. However, even if scalability can
theoretically be achieved with these methods, it will require
dedicated pre-processing algorithms to transform data in the
right format (for instance, creating bag of words according
to zones). All of the methods depicted in Table IV are able
to recover their pose inside the map, most the time using a
standard GNSS which might prove to be more difficult in
dense urban environments.

The main challenge for the localization methods presented
in this part is how to improve the accuracy by building more
relevant, accurate maps. One solution might come naturally
with new world-wide sources (new maps, etc.). A key aspect
remains the information density of the sources. Street Views,
even though interesting, are, for now, too physically spaced to
be viable alone. This is why generating synthetic data might
be a possible answer. Authors tend to focus on a specific kind
of data and finding a framework and an estimation method
that take advantage of all the available resources at once
might be an interesting prospect. Knowing in advance what
will be the map elements that must be sought should also
be considered in order for a vehicle to evaluate beforehand,
without having directly experienced it, if, with regard to its
capacity, a sufficient accuracy can be reached for autonomous
driving. The approaches mentioned in this Section do not
consider the update of these shared resources. While it is not
a trivial task to update inaccurate maps with an approximate
vehicle position, it would clearly contribute to progressively
improve these maps until they are viable for autonomous
driving.

V. MULTI-VEHICLE SLAM

The complexity of creating or exploiting maps for local-
ization purposes at a world scale indicates that cooperation
between vehicles might be needed in order to improve existing
maps or ease the large-scale collection of data for appropriate
map construction. However, doing so is not trivial as the
collaboration of several vehicles has an impact on how to
design an effective approach. One important initial distinction
concerns how the cooperation is handled. Two systems exist:
the centralized approaches and the decentralized ones. In the
first case, communications are all directed towards one entity
that agglomerates and fuses all data before sending the result
back to the vehicles. Decentralized systems assume that each
vehicle is capable of building its own decentralized map while
communicating with the other vehicles of the fleet. It means
that information flows must be controlled to avoid bandwidth
explosions and estimation problems which typically happen in
such cases (double counting a measurement, for instance). It
is worth noting that this field is still fairly recent and concerns
mostly mobile robotics for now. We will discuss both systems
(centralized and decentralized) and how they can be applied
to autonomous driving.

A. Centralized SLAM

Centralized SLAM may seem like a natural extension of
single-vehicle SLAM algorithms where parts of the compu-
tation are offloaded to a distant server. However, there are
many ways to share the SLAM task in a centralized approach
depending on the objective. The main distinction that can be
made is whether or not the centralized part should be running
in real-time or in an offline manner.

1) Online centralized SLAM: This organization makes the
extension of SLAM algorithms quite immediate. One of the
first works on the subject was presented by Fenwick et al.
in [211]. An Extended Kalman filter is utilized to integrate
the state vectors (pose and landmarks) of all the vehicles.
The paper covers more the theoretical aspects and only shows
simulation results. In [212], submaps are built individually by
robots using cylindrical object features detected by a laser
scanner. All these submaps are fused in a centralized fashion
from a nearby server. The relative locations of the robots
must be known. The approach is demonstrated with a very
simple experiment with two robots. The work presented in
[213] was the first, to our knowledge, to propose a multi-robot
visual SLAM. Observations and visual descriptors are sent to a
central agent which builds a map shared among all the robots.
The initial positions of the vehicles must be approximately
known so as to localize everyone in this common map.
The estimation of the different trajectories within this unique
map is performed by a Rao-Blackwellized particle filter. The
approach has only been tested in simulation and the results
show that the processing power needed to compute a proper
map and the localization of the vehicles is not enough to meet
real-time constraints.

A recent trend has moved this processing from one vehicle
or close entity to the cloud in order to take advantage of the
available processing power. One well-known example can be
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Method Accuracy Scalability Availability Recovery Updatability Dynamicity
[181] Emap 7 In theory Might be available 3 7 7

[187] LaneLoc 3 In theory Probably not 3 7 7

[188] Map-aided lanes and stop lines 7 In theory Might be available 3 7 7

[189] Road constrained SLAM 7 In theory Might be available 3 7 7

[191] Top-down wall localization 3 In theory Probably not 3 7 7

[196] City-scale localization 7 In theory 3 Approximate 7 7

[203] Synthetic Street Views 7 In theory 3 3 7 7

[205] Metric localization with Street Views 7 In theory 3 3 7 7

[207] 3D traffic signs localization Most of the time In theory 7 3 7 7

[209] Road graph localization 7 In theory 3 3 7 3

[210] Satellite imagery matching Not measured In theory 3 3 7 7

TABLE IV: Localization in existing maps (or potential future maps) methods regarding autonomous driving criteria. Tick: criterion satisfied. Cross: criterion not satisfied.

found in [214]. In this article, the authors expose a cloud
framework, C2TAM, which shares the workload between a
cloud server and the robot. All the demanding tasks are moved
to the cloud and only the part where a high frequency is
required is executed on the robot. The proposed application
performs all the mapping aspects of a RGB-D SLAM on a
distant computer and only the tracking of the pose is done
locally. Even if the approach is proposed as a cloud framework,
the experiments use a desktop computer with a wireless con-
nection. They demonstrate the ability of the system to perform
cooperative update on the map as well as online map merging.
In [215], the DAvinCi architecture is presented. Its objective is
to offload all the computations on a cloud system. The software
architecture enables heterogeneous agents to share and upload
common data on the cloud. A grid-based FastSLAM has been
adapted to fit the needs of this cloud approach. Each particle
responsible for the pose estimation can be run on separated
nodes. The experiments demonstrate a faster execution time
for a single-vehicle FastSLAM but the authors do not consider
the delays or latencies induced by these outsourced compu-
tations on a real-time approach. Rapyuta [216] is another
framework designed for cloud robotics. Its use is demonstrated
with a RGB-D odometry. Different settings are evaluated:
a complete offloading of the computation to the cloud, a
combination where only the mapping process is offloaded
and a collaborative mapping by two robots. Keyframes, sent
to the cloud, are compressed in order to reduce the needed
bandwidth. In their experiments, the Amazon cloud service
was used. The complete offloading of information requires
too much bandwidth despite the compression. However, hybrid
approaches, were only a part of the computations is done on
the cloud, are viable. The authors do not, however, discuss the
impact of the delay on the map building in these experiments.

Cloud-based robotics applications are fairly new and have
a great potential to, at least, reduce the computational require-
ments inside autonomous vehicles in the future. Interested
readers can refer to [217] for a short survey of this recent
practice and to [218] for a more general review of cloud
approaches in robotics.

2) Offline centralized SLAM: The delays and latencies
involved by cloud computations can prevent the use of the
previously cited methods in autonomous cars. However, with
the aim of easing the creation of world-wide maps, offline
computations of data gathered during the day by fleet of
vehicles can be a way to build consistent large-scale maps.

Offline computation of SLAM data can be seen as a natural
extension of multisession SLAM algorithms. Multisession
SLAM is the possibility for a SLAM algorithm to take
into account several passages in overlapping areas and so to
extend the map initially built. The identification of common
grounds between two maps usually involves place recognition
algorithms that loop closing constraints to compute more
coherent maps. Approaches proposing multisession mapping
are based on a graph representation which has the advantage
to be flexible when it comes to adding new constraints and
nodes to optimize. We refer the readers to the description of
the following works in Section IV which could be utilized
by several vehicles in a cloud computation: [148] [150] [154]
[161] [163] [166] [167] [168]. While these approaches are
only applied to a single-vehicle, the extension to a fleet
is straightforward. In [166], the authors mention that the
objective in the long-term is the deployment of such a system
in probe cars that would gather data and fuse them in the
cloud to then provide maps as a service. The main difficulties
are the necessity to divide maps by sectors in order to be still
optimizable in a reasonable time and to limit how maps can
grow to avoid having intractable environment representation.
The first problem has already been addressed in single-vehicle
SLAM with submapping techniques and the second is still an
open challenge. Finally, a practical problem is to have common
representations within a set of probe cars to be able to build
and exploit the same map.

The resources involved to roll out such an application make
it more an industrial challenge than a research problem. This
is the objective of the map creator HERE which intends to
build HAD (Highly Automated Driving) maps by collecting
data from probe cars. The data serve to feed different maps,
which are computed offline in the cloud, for specific services.
A noticeable research effort can be found in [219] where a
cloud service is proposed in which data can be collected,
stored and shared. Most of the previously cited cloud-based
approaches are connected to this service and it could be a way
to experiment large-scale multi-vehicle offline map building in
the future.

B. Decentralized SLAM

The increasing connectivity capacities of the autonomous
vehicle with the infrastructure (Vehicle To Infrastructure, V2I)
and other cars (Vehicle To Vehicle, V2V) bring the question
of how localization methods can take advantage of them.
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One major aspect, as with other multi-vehicle approaches,
is the possibility to map new areas in a quicker way. The
main difference with centralized methods is that data can
directly be exchanged between vehicles without the need of a
dedicated infrastructure. Vehicles could benefit from a direct
communication to quickly update maps in case of sudden
changes or to anticipate dynamic conditions (pre-load a map
adapted to rain conditions, for instance).

However, fully decentralized SLAM is difficult to achieve
as there are many new constraints that must be taken into
account. As such, the closest current applications concern
mobile robotics and not directly autonomous vehicles. We will
thus focus on them in this section before discussing how they
could be integrated inside autonomous driving applications.
Interest readers can refer to [94] for a complete overview of
this field.

The first works on that matter come from the data fusion
community where a task was split between several CPUs to
speed up the computations. For instance, the multi-vehicle
localization algorithm proposed by Nettleton et al. in [220]
is derived from the advances in decentralized data fusion
presented in [221] and [222]. We will focus here on the
main design difficulties of such methods: data incest, data
association and communication issues before discussing the
main experimental results.

1) Data incest: One common difficulty between the appli-
cations sharing information is data incest which is responsible
for inconsistency by double-counting data in the estimation
process. Decentralized SLAM (or decentralized localization
as a whole) is particularly prone to this phenomenon as ob-
servations and maps are shared, relayed and fused by vehicles
[223][224]. The data incest phenomenon in a SLAM context
is illustrated in Figure 6. In this example, the red vehicle
receives from the blue one a fused state already integrating
its own map. As it does not know it, it will fuse this landmark
within its map and thus double-count its own landmark and
become overconfident (inconsistent). Keeping a track of what
is exchanged is a possibility with a few vehicles but does not
scale well with a large fleet.

To solve this problem in a SLAM context, Nettleton et
al. in [220] proposed a dedicated network architecture to
avoid double-counting. Only point-to-point communications
are allowed thus forcing information to go through several
nodes before reaching its target. In [225], an approach where
submaps are only exchanged when closed is exposed. A
topological global map puts all the submaps in a common
frame. The main constraint comes from the fact that submaps
cannot be updated and are only sent once on the network.
The work of Vidal-Calleja et al. in [226] also proposes an
extension of submap SLAM, and more specifically of the
hierarchical approach introduced in [31]. Only the topological
map is exchanged inside the fleet and a global metric map
cannot be recovered on the fly. In [227], a multi-robot graph-
based SLAM is introduced. The map of each vehicle is
compressed and sent to the neighbors. A data cache filters out
already received information. Similarly, in [228] and [229],
a consensus is sought between neighbors so as to find the
best map possible that avoids double-counting information. In

(a) The red landmark is mapped
by the red vehicle and is then sent
to the blue one.

(b) The blue landmark is mapped
by the blue vehicle. The red land-
mark is the one previously re-
ceived.

(c) The green landmark is the
fusion between the blue and red
ones by the blue vehicle and sent
to the red one.

(d) The grey triangle is the true
pose of the red vehicle (and sim-
ilarly for the landmark). Dotted
ellipses are the true uncertainties.
Plain ones are those estimated
after the fusion of the green land-
mark with the red one (data in-
cest).

Fig. 6: Data incest in a SLAM context. Triangles represent
vehicles and diamonds, landmarks. Ellipses are the corre-
sponding uncertainties.

[113], each vehicle state (pose and map) is stored separately
from the others. Each vehicle can obtain a global map by
fusing all the received states with its own. In [230], the Split
Covariance Intersection Filter (SCIF), initiated by Julier et al.
in [231], is applied to a multi-vehicle context. This filter is
based on Covariance Intersection so as to produce consistent
estimates even with unknown correlations between data.

2) Data association: Data association in a multi-vehicle
context can be extremely complicated as the relative posi-
tions between the vehicles are not necessarily known and
the information that can be communicated is limited by the
bandwidth. Some approaches have chosen to consider that
the initial distance between the vehicles is known beforehand
[232][220]. Another possibility, introduced in [233], is to
define a rendezvous towards which vehicles will converge to
observe themselves directly.

Among the data association algorithms specifically de-
signed for a multi-vehicle application, we can cite [234] in
which each landmark is characterized by measures (distance
and angle) to other close landmarks. Similar configurations
of landmarks are then sought in maps from different vehi-
cles. In [235], landmarks are grouped by 3 and a Delaunay
triangulation is applied to obtain a unique map. The perime-
ters and areas of these triangles are given to a RANSAC
algorithm in order to find the best correspondence between



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. XX, NO. X, XX 201X 18

two map pieces coming from two different vehicles. In [236],
the authors analyze the distribution of potential multi-vehicle
correspondences. Inliers are assumed to produce the same
transformation between two vehicles conversely to outliers. A
clustering algorithm is used to find initial candidates that can
then be further analyzed with more classical methods. The
works of Li et al. [144][145] solve the initial alignment of
the maps from different vehicles using a low-cost GPS and a
genetic algorithm in the restrained search space

3) Communication issues: The bandwidth needs are often
neglected in decentralized SLAM. For instance, in [225],
submaps are directly sent. In [237], graphs (nodes comprise
raw data) are exchanged, which is only suitable for small
vehicle fleets. In [238], the authors propose to exchange
maps only when vehicles can detect each other, which means
that big amount of data will be sent punctually. Methods
communicating only topological maps, like in [226] and [227],
avoid this problem by providing very light maps.

The exchange strategy should also be able to cope with
potential losses and delays. When not considered, a temporary
saturation or failure can lead to information definitively lost
[237][225]. The algorithms built around interactions with
neighbors are usually capable of identifying and asking for
missing data [227]. Another possibility, described in [239], is
the Lazy Belief Propagation which integrates observations in
a Particle Filter that does not depend on the temporal order
in which data are added to the filter. Thus, missing or late
information can still be integrated later without a problem.
However, it is necessary to be able to identify missing values.
More generally, all the approaches based on the inverse form
of the Kalman Filter, namely the Information Filter, handle
delay natively. Indeed, the update becomes additive and does
not depend on any temporal order. It has become a common
choice in the multi-vehicle community [234][240][241].

4) Experimental results: The experiments carried out in
the previously cited articles give a clear visibility on the
potential deployment of such methods for autonomous driving.
Indeed, most methods are only demonstrated in simulated ex-
periments [220][225][227][235][239][240]. The main reason
is that addressing all the issues mentioned in this section
in order to conduct real data experiments can be difficult as
they are not all directly connected to the estimation problem.
Some approaches have been demonstrated indoor in real time
[242][233]. In [226], the authors demonstrate an air/ground
cooperation in outdoor environment. The map is built in a
cooperative fashion with vision landmarks. The accuracy has
not been measured. In [113], outdoor experiments with two
or three vehicles are performed. The method relies on the
exchange of visual landmarks. The accuracy oscillates between
50 cm and a few meters depending on the capacity of the
vehicle to identify common landmarks. Finally, in [145], 2
vehicles equipped with laser merge their maps together in an
outdoor experiment. The method is able to reach a 3-meter
error on average.

This short survey of recent results shows that we are
still far from generalizing the use of decentralized SLAM
for autonomous driving. However, the communication means
themselves continue to improve and bandwidth limitations

might be less of a problem in the coming years. Still,
large-scale demonstrations of the capabilities of decentralized
SLAM are yet to be proven and applying the previously
described approaches to autonomous driving is one of the
upcoming challenges of SLAM.

C. Discussion

This overview of multi-robot SLAM approaches has
showed that the maturity of such methods for autonomous
driving differs vastly depending on the way data are handled
(in a centralized or decentralized fashion). Online central-
ized SLAM systems have been demonstrated on small-scale
experiments with either a classic computer that serves as a
hub to collect observations or with cloud processing. The
extension from mobile robots to driverless cars raises the
question of the bandwidth capacity that will be available in
tomorrow’s cars but most importantly of the availability of
an Internet connection in the vehicle. Completely offloading
critical processing onto the cloud will probably not be safe
enough. However, delegating the task of updating maps gath-
ered from several vehicles in a reasonable amount of time is
an interesting prospect. Real-time updates for map portions
that might have changed could help driverless cars to adapt in
a quicker way. Moreover, environmental conditions that have
a low dynamicity could be alerted beforehand in order for
the vehicle to anticipate by choosing more adapted features,
etc. To attain this goal, large-scale experiments, involving a
realistic number of vehicles, are necessary. It also means that
a major prospect remains the design of software architectures
able to cope with data flows and to properly segment updates.
One key element to make online cloud-based methods viable
is the choice of a map representation able to integrate all
incoming information.

In that sense, fully decentralized methods share similar
goals. The main difference comes from the fact that, by
receiving the information from nearby cars, the ego-vehicle
can select which information to integrate in its map. An
interesting challenge thus becomes to establish criteria in order
to evaluate the information gain that can bring maps coming
from different vehicles with relation to the goal of the ego-
vehicle (destination, energetic constraints, etc.). However, all
the practical implications of decentralized methods are the
first challenge to tackle. Contrary to cloud approaches, where
processing power is less of a limit, the tractability of the final
solution will also be an important factor to consider. Large-
scale experiments are also an important milestone to reach in
order to clearly exhibit the benefits of decentralized SLAM
for autonomous vehicles.

Offline centralized methods might be the most mature for
autonomous driving mainly because this challenge is very
close to multisession SLAM. While future HAD maps may
not provide all the needed information to reliably localize a
vehicle in various conditions, probe cars might be a way to
quickly gather enough data to build such maps. It is also an
interesting perspective regarding the capacity of vehicles to
detect long-term changes. Indeed, the agglomeration of differ-
ent viewpoints on a situation should ease this process. Being
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able to limit the growth of these maps remains a blocking
point. Finally, a considerable challenge is to build sufficiently
robust software architectures to integrate and process all these
data. The cost of such an infrastructure directs large-scale
experiments with such methods towards industrial companies
rather than small research teams.

VI. LARGE-SCALE EXPERIMENTS FOR AUTONOMOUS
VEHICLES

During the recent years, the scope of the experiments
used to validate localization algorithms has broadened with
the availability of large-scale data sets. Moreover, many re-
search teams now have a dedicated platform to test, during
many kilometers, their algorithms. In this section, we give
an overview of the large-scale experiments that have involved
fully autonomous vehicles. We will, of course, focus on the
localization algorithms and the context in which they have
been used.

The first large-scale experiments took place at the beginning
of the 90’s and were mostly on highways [243][244]. In both
approaches, localization was performed using lane detection
with vision sensors to laterally position the vehicle on the road.
Lane detection algorithms have been the default localization
system in autonomous driving demonstration for a long time
as it is totally appropriate in a highway context. The DARPA
Grand Challenge [245] with its 244-km race across the desert
changed things with a new setting. In [246], a GPS is coupled
with elevation maps built using laser scanners and a road-
finding algorithm in order to avoid cliffs, rocks and the like.
A similar approach is chosen by the winner of the challenge
[247]. The GPS is coupled with an IMU and an algorithm to
detect the road. In [248], a terrain reconstruction with lasers
was also used. In mostly empty territories, the use of a GPS
alone was sufficient for navigation. Obstacles and the difficult
terrain added the necessity to build maps that can provide a
safe corridor in which vehicles could evolve.

The DARPA Urban Challenge that followed focused on
urban environments with a 97-km autonomy test in a city-like
traffic [249]. It has to be noted that the environment was still
sufficiently open for a Differential GPS to operate properly.
The reliance on maps was more important this time. The
Route Network Definition File (RNDF) format was specially
designed for this challenge in order to furnish the topology and
geometry of the road. Junior, the vehicle proposed by Stanford
[250], used a GPS and the RNDF map to position the vehicle.
The accuracy was improved with a laser system performing
lane and curb detection. In [251], a visual lane detection
algorithm combined with the RNDF was responsible for the
vehicle localization. The authors pointed out the difficulty to
have a reliable localization with a vision-only system because
of environmental conditions like shadows, etc. The winner of
this challenge [252] combined a GPS along with an IMU and
the RNDF map. Localization was improved with a laser-based
lane detection. The authors mention the necessity of prior road
models for an efficient localization. Semantic information is
also referred to as an important point in order to disambiguate
situations.

Another interesting challenge conducted in 2011 is the
Grand Cooperative Driving Challenge (GCDC) [253]. The idea
was to evaluate how collaboration in platooning can help to
reduce congestion. The winner of the GCDC challenge in 2011
[254] used a previously built map in which received positions
of the other fleet members were matched and coupled with
on-board radar detection. This showed that sharing simple
localization information can still benefit autonomous driving
by agreeing on speed or anticipating maneuvers.

A very large-scale experiment has been conducted by
the VisLab team [255] with a 13,000-km trip from Italy to
China. Technical details about the embedded technologies can
be found in [256]. The localization was performed using a
lane keeping algorithm (stereo and monocular) and a leader
following system. A laser terrain mapping algorithm was
also implemented for off-road driving but not used in this
experiment. The leader following is an interesting possibility
for autonomous driving if vehicles agree on their destination
(or at least, a part of the trip). It still implies that one vehicle
should be able to have a full localization system. For instance,
cars with less expensive sensors could use platooning-like
formations.

Automatic guidance of a vehicle was demonstrated in [257]
for the Stadpilot project. This work can be seen as an update
of the results of the Urban Challenge [249]. During a 15-
km experiment on open roads, a combination of DGPS, IMU
and lane keeping algorithm was used. Prior digital maps were
also employed. Based on their experience in DARPA, the
authors clearly indicate that GPS and IMU are not sufficient
for autonomous driving in urban environments. An evolution
of [255] was presented in [258]. In a 13-km experiment in
different environments and real traffic, VisLab demonstrated
the possibility of using lane or leader following based on
vision, IMU and DGPS. An interesting aspect is that a map of
the environment was used to trigger the appropriate perception
module.

The V-Charge project aims at providing automated valet
parking with close-to-market sensors. In [259], the authors
evaluate their localization approach in a real-world scenario.
First, the map is built using SURF keypoints extraction from
fisheye cameras. Loop closures are defined manually and the
map is optimized using global Bundle Adjustment. Localiza-
tion is then performed against the known map still using SURF
features. The algorithm is evaluated 0, 1 and 2 months after the
map creation with a sufficient accuracy. However, the authors
state that map update is needed over long periods of time
to reflect changes. Another open question raised here but not
addressed is the map portability between different vehicles.
Still in the V-Charge project, [260] completed this system with
height maps built from stereovision. A semantic map and a
road graph were also needed to identify parking places and
how to navigate between them.

Large-scale outdoor experiments with mobile robots have
also been carried out in real-world environments. In [261],
a robot traveled 20 km in crowded streets. The map was
built beforehand with a graph-based laser SLAM. The on-the-
fly localization was based on a particle filter and a GPS for
initialization. The system was able to perform reinitialization
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when lost. The authors indicate that mobile obstacles masking
the map were a source of localization losses. In [262], a
robot traveled several times at different periods of the year
a 1-km road. The map was built beforehand as well and the
localization was based on road boundaries detected by laser
and integrated inside an EKF. One of the problems cited by
the authors is the recovery when the robot is lost and the
GPS is not available. Also appearance changes, like leaves
on the ground, proved to be difficult to handle. In [263],
a 6-km experiment in pedestrian walkways is discussed. A
3D laser map of edges was built beforehand with 2D lasers.
The localization system compared the map with the current
observation to weight the particles of a particle filter. An
important difficulty faced by the authors is the presence of
glass windows that disturbed the localization system based on
laser. They conclude by saying that 2D lasers are not sufficient
for this kind of experiments.

Shuttle demonstrations in cities are also becoming more
frequent as the mapping is confined to a dedicated area. In
[264], the authors discuss the lessons learned after 1,500 km of
a vision-guided shuttle in a private site. The experiments took
place over 3 months and the localization was performed using
a hierarchical Bundle Adjustment method over a previously
built map. This approach could be used with either a front
or a back camera. The main difficulties were the lightning
conditions despite the use of front and back cameras. The
dynamic range of vision sensors was not sufficient to handle
day-time changes that were qualified by the authors as having
a greater impact on the localization than the 3-month gap. The
CityMobil2 project has cumulated 26,000 km in various cities
for several months [265]. The localization differed depending
on the experiments but was based on pre-built maps with laser
or vision and GPS. The weather and the general reliability of
the software had a significant impact on the results.

Already discussed before, Levinson et al. showed an update
of the Stanford’s vehicle from the Urban Challenge in [266].
Ground maps were generated using precise GPS, IMU and a
64-layer 3D laser from multiple passages in an offline manner.
The localization inside this map was then performed in real-
time with a 2D histogram filter for a 10-cm accuracy on
many kilometers. The approach of Ulm University is exposed
in [267]. A map, composed of MSER features coming from
vision and of a laser grid, is built beforehand and geo-
referenced using a RTK-GPS. This map representation is light
and allowed for a 10-cm accuracy on average during the 5-km
test. Using both sensors for localization improved the results
but the need of a highly-precise built-in-advance map is seen
as a problem by the authors.

BMW, in [268], gives an interesting overview of their expe-
rience with autonomous driving over thousands of kilometers
on public roads (highways). Their approach relies on lane
marking using vision and laser, as well as odometry and a
DGPS. Road boundaries were also detected using laser and
radar. A high-precision map is needed for a proper localization.
Their map integrates semantic and geometric information (lane
models, connectivity, etc.) as well as localization data (lane
marking and road boundary positions) with different layers.
The difficulties presented by the authors were the necessity to

remap from time to time the environment for a proper online
exploitation. This process should be automated according to
the authors. Large-scale maps are also a concern and they
should be broken down in submaps. The standardization of
these maps is also an important aspect that needs to be
addressed to be able to use probe cars and crowd-source the
required information for digital maps.

Daimler experimented with their autonomous vehicle over
103 km in mixed environments (urban, highways, etc.) with
close-to-market sensors [109]. Their system is a combination
of vision, radar and accurate digital maps. The localization
fuses lane detection with feature-based localization for a 20-
cm accuracy on average. All the lanes and features were
acquired during a first passage and fused in a UKF. Among
the topics of importance cited by the authors, the scalability
of the maps is crucial. Two other major aspects that need to
be addressed for a commercial use are the reliance on an up-
to-date digital map as well as its accuracy. For the authors, the
sensor setup should be improved in order to be less dependent
of the map.

Among the industrial works in autonomous driving, Waymo
(formerly Google Car project) was a pioneer. The project
started following the DARPA Urban Challenge on the foun-
dation of the winner [252]. While the algorithms are not
specifically known, the localization relies on dedicated 3D
maps built beforehand and corrected by hand. The capacity
of Google makes that solution viable and more than 40,000
km per week are said to be driven by Waymo. Even with these
impressive results, the disengagements reports published each
year [269] [270] indicate that drivers must occasionally take
back the wheel due to software failures and in a more frequent
manner in urban environments. Conversely to Google, Tesla’s
strategy is to collect data from their own vehicles in order to
improve the capabilities of their vehicles [271]. This method
offers, by definition, less control on the quality of the produced
outputs. Anyway the role of this philosophy on the localization
is not known.

VII. DISCUSSION AND CONCLUSION

In this survey, we have focused on the individual challenges
that should be considered depending on the approach chosen.
To conclude this paper, we will now discuss how some more
general aspects could have an impact on the localization of
autonomous vehicles.

During the 23rd ITS World Congress, a localization com-
petition was proposed. Based on low-resolution voxel maps
of above-the-ground objects and lanes furnished by HERE,
participants were asked to propose an accurate localization al-
gorithm. The competition ended with no winner as the targeted
accuracy was not reached. It is not yet clear if HAD maps,
that are going to be available in the coming years, will provide
a strong enough prior knowledge for localization algorithms.
Depending on the outcome, the community will surely adapt
what kind of prior knowledge is used in SLAM. These maps
are also intended to be used as part of the Local Dynamic Map
(LDM) that gathers static and dynamic information to which
SLAM could contribute. As such, standardization is needed
[272].
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An aspect that is not often discussed is sensor placement.
It can have a tremendous impact on the performance of a
localization system. For instance, a laser on the car roof is
going to have a clear view on the infrastructure and avoid most
of the mobile obstacles while one in the undercarriage might
be affected by masked information. Similarly, the minimal set
of sensors necessary for localization is not clearly defined
yet (even if lasers and cameras seem to be favored). Such
a definition should be made conjointly with the map represen-
tation that is going to serve as prior knowledge. Of course, this
aspect is also tightly linked to the cost of those sensors. An
interesting perspective in that sense is multi-modality where a
map could be built by an expensive 3D laser but then exploited
by a simple camera as proposed in [273]. Another interesting
challenge is to build flexible architectures in which a decision
system can choose what are the sensors, detectors or maps to
favor depending on the context.

Context by itself is an important part of autonomous driving
and its understanding would help place recognition algorithms
or could even be directly integrated to make SLAM more
robust. For now, most of the works carried out have concerned
indoor localization. They have been initiated by Chatila et
al. in [274] where semantic (object) maps are used for high-
level decision-making. SLAM methods have since then been
frequently considered for semantic map building. In [275] and
[276], the authors take advantage of a 3D laser to identify
the ceiling, the floor and objects. In [277], a conceptual
space representation is proposed based on three different
maps: metric (from a SLAM system), navigation (free space)
and topological (connections between door-separated areas).
The conceptual map allows the robot to have a semantic
representation for rooms and objects that helps the interactions
with users. In [278], the authors integrate well known objects
inside a monocular SLAM. A similar approach is followed in
SLAM++ [279] where objects are detected and optimized in
a common localization framework. In these last two works,
context and relations between objects are not directly used
to reason upon. In that sense, semantic SLAM in outdoor
environments is still a challenge that needs to be tackled.

However, semantic mapping from images alone is a field
that has grown lately [280][281]. Deep Convolutional Neural
Networks have largely contributed to this trend and methods
like SegNet [281] show impressive results. Their application
in localization methods remains an open challenge but a direct
use would be to remove moving, or temporally static, obstacles
that can disturb the proper behavior of a SLAM algorithm.
More generally, CNNs could change how place recognition is
performed by using feature maps coming from these networks
as in [142]. The impact and the use of CNNs for localization
in autonomous driving will surely evolve in the coming years.
A recent example like [282] shows that localization might
not even be needed. In this paper, Nvidia demonstrates the
possibility to directly learn the steering angle that should be
applied from camera clues. Nevertheless, the scalability of
such methods has yet to be demonstrated.

In the recent years, experiments have broadened their scope
and autonomous driving for several kilometers and over long
periods of time is more common. Shuttle experiments are also

starting in various cities. Even though, in that case, SLAM
approaches can use a previously built map without scalability
issues, it is a good way to test them over long periods of
time and confront them to the environment variability. In most
roadmaps [283], the automation of transit systems is actually
foreseen at a shorter term than other vehicles as it has the
advantage to restrain the covered area.

Finally, the safety of localization algorithms is an important
issue to consider. Multiple sources should be envisaged and
strategies to safely switch among them must be designed.
Taking into account the failures and their impacts on the lo-
calization system could help in creating degraded localization
modes that ensure that a vehicle can reach a stopping spot
safely.
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[106] I. Cvišić and I. Petrović, “Stereo odometry based on careful feature
selection and tracking,” in 2015 European Conference on Mobile
Robotics, 2015, pp. 1–6.

[107] M. Buczko and V. Willert, “How to distinguish inliers from outliers
in visual odometry for high-speed automotive applications,” in IEEE
Intelligent Vehicle Symposium, 2016, pp. 478–483.

[108] M. Persson, T. Piccini, M. Felsberg, and R. Mester, “Robust stereo
visual odometry from monocular techniques,” in IEEE Intelligent
Vehicle Symposium, 2015, pp. 686–691.

[109] J. Ziegler, P. Bender, M. Scheriber, H. Lategahn, T. Strauss, C. Stiller,
T. Dang, U. Franke, N. Appenrodt, C. G. Keller, E. Kaus, R. G. Her-
rtwich, C. Rabe, D. Pfeiffer, F. Lindner, F. Stein, F. Erbs, M. Enzweiler,
C. Knoppel, J. Hipp, M. Haueis, M. Trepte, C. Brenk, A. Tamke,
M. Ghanaat, M. Braun, A. Joos, H. Fritz, H. Mock, M. Hein, and
E. Zeeb, “Making Bertha DriveAn Autonomous Journey on a Historic
Route,” IEEE Intelligent Transportation Systems Magazine, vol. 6,
no. 2, 2014.

[110] S. Huang and G. Dissanayake, “Convergence and Consistency Analysis
for Extended Kalman Filter Based SLAM,” IEEE Transactions on
Robotics, vol. 23, no. 5, pp. 1036–1049, 2007.

[111] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency
of the EKF-SLAM Algorithm,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2006, pp. 3562–3568.



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. XX, NO. X, XX 201X 24

[112] U. Frese, “A Discussion of Simultaneous Localization and Mapping,”
Autonomous Robots, vol. 20, no. 1, pp. 25–42, 2006.

[113] G. Bresson, R. Aufrère, and R. Chapuis, “A General Consistent
Decentralized SLAM Solution,” Robotics and Autonomous Systems,
no. 74, pp. 128–147, 2015.

[114] S. Huang, Y. Lai, U. Frese, and G. Dissanayake, “How far is SLAM
from a linear least squares problem?” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010, pp. 3011–3016.

[115] J. A. Castellanos, J. Neira, and J. D. Tardós, “Limits to the Consis-
tency of EKF-Based SLAM,” in 5th IFAC Symposium on Intelligent
Autonomous Vehicles, 2004.

[116] J. A. Castellanos, R. Martinez-Cantin, J. D. Tardós, and J. Neira,
“Robocentric Map Joining: Improving the Consistency of EKF-
SLAM,” Robotics and Autonomous Systems, vol. 55, no. 1, pp. 21–29,
2007.

[117] J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel, “1-
Point RANSAC for EKF-Based Structure from Motion,” in IEEE/RSJ
International Conference on Intelligent Robot and Systems, 2009, pp.
3498–3504.

[118] B. P. Williams and I. D. Reid, “On Combining Visual SLAM and
Visual Odometry,” in IEEE International Conference on Robotics and
Automation, 2010, pp. 3494–3500.

[119] T.-D. Vu, “Vehicle perception: Localization, mapping with detection,
classification and tracking of moving objects,” Ph.D. dissertation,
Institut National Polytechnique de Grenoble-INPG, 2009.

[120] C.-C. Wang, C. Thorpe, and A. Suppe, “Ladar-based detection and
tracking of moving objects from a ground vehicle at high speeds,” in
IEEE Intelligent Vehicles Symposium, 2003, pp. 416–421.

[121] C.-C. Wang, C. Thorpe, and S. Thrun, “Online simultaneous local-
ization and mapping with detection and tracking of moving objects:
Theory and results from a ground vehicle in crowded urban areas,” in
IEEE International Conference on Robotics and Automation, 2003, pp.
842–849.

[122] S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey, “Sensor fault de-
tection and identification in a mobile robot,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1998, pp. 1383–1388.

[123] P. Goel, G. Dedeoglu, S. I. Roumeliotis, and G. S. Sukhatme, “Fault
detection and identification in a mobile robot using multiple model
estimation and neural network,” in IEEE International Conference on
Robotics and Automation, 2000, pp. 2302–2309.

[124] P. Sundvall and P. Jensfelt, “Fault detection for mobile robots using
redundant positioning systems,” in IEEE International Conference on
Robotics and Automation, 2006, pp. 3781–3786.

[125] Y. Morales, E. Takeuchi, and T. Tsubouchi, “Vehicle localization in
outdoor woodland environments with sensor fault detection,” in IEEE
International Conference on Robotics and Automation, 2008, pp. 449–
454.

[126] A. Jabbari, R. Jedermann, and W. Lang, “Application of computational
intelligence for sensor fault detection and isolation,” World academy
of science, engineering and technology, vol. 33, pp. 265–270, 2007.

[127] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2017.

[128] R. C. Luo, C.-C. Yih, and K. L. Su, “Multisensor fusion and integration:
approaches, applications, and future research directions,” IEEE Sensors
Journal, vol. 2, no. 2, pp. 107–119, 2002.

[129] J. A. Castellanos, J. Neira, and J. D. Tardós, “Multisensor fusion for
simultaneous localization and map building,” IEEE Transactions on
Robotics and Automation, vol. 17, no. 6, pp. 908–914, 2001.

[130] L. Wei, C. Cappelle, and Y. Ruichek, “Camera/laser/GPS fusion method
for vehicle positioning under extended NIS-based sensor validation,”
IEEE Transactions on Instrumentation and Measurement, vol. 62,
no. 11, pp. 3110–3122, 2013.

[131] B. Williams, M. Cummins, J. Neira, P. Newman, I. Reid, and J. Tardós,
“A comparison of loop closing techniques in monocular SLAM,”
Robotics and Autonomous Systems, vol. 57, no. 12, pp. 1188–1197,
2009.

[132] E. Eade and T. Drummond, “Unified Loop Closing and Recovery for
Real Time Monocular SLAM,” in British Machine Vision Conference,
2008.

[133] L. A. Clemente, A. J. Davison, I. D. Reid, J. Neira, and J. D. Tardós,
“Mapping Large Loops with a Single Hand-Held Camera,” in Robotics:
Science and Systems, 2007.

[134] B. Williams, M. Cummins, J. Neira, P. Newman, I. Reid, and J. Tardós,
“An image-to-map Loop Closing Method for Monocular SLAM,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2008, pp. 2053–2059.

[135] J. Sivic and A. Zisserman, “Efficient Visual Search of Videos Cast as
Text Retrieval,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 31, no. 4, pp. 591–606, 2009.

[136] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, 2004.

[137] M. Cummins and P. Newman, “Appearance-only SLAM at large scale
with FAB-MAP 2.0,” The International Journal of Robotics Research,
vol. 30, no. 9, pp. 1100–1123, 2011.

[138] A. Kawewong, N. Tongprasit, S. Tangruamsub, and O. Hasegawa,
“Online and Incremental Appearance-Based SLAM in Highly Dy-
namic Environments,” The International Journal of Robotics Research,
vol. 30, no. 1, pp. 33–55, 2010.

[139] M. J. Milford and G. F. Wyeth, “SeqSLAM: Visual Route-Based
Navigation for Sunny Summer Days and Stormy Winter Nights,” in
IEEE International Conference on Robotics and Automation, 2012, pp.
1643–1649.

[140] E. Pepperell, P. Corke, and M. Milford, “Routed roads: Probabilistic
vision-based place recognition for changing conditions, split street and
varied viewpoints,” The International Journal of Robotics Research,
2016.

[141] T. Naseer, L. Spinello, W. Burgard, and C. Stachniss, “Robust Visual
Robot Localization Across Seasons Using Network Flows,” in AAAI
Conference on Artificial Intelligence, 2014, pp. 2564–2570.

[142] T. Naseer, M. Ruhnke, C. Stachniss, L. Spinello, and W. Burgard,
“Robust Visual SLAM Across Seasons,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2015, pp. 2529–2535.

[143] J. Neira, J. D. Tardós, and J. A. Castellanos, “Linear time vehicle
relocation in SLAM,” in IEEE International Conference on Robotics
and Automation, vol. 1, 2003, pp. 427–433.

[144] H. Li and F. Nashashibi, “A new method for occupancy grid maps
merging: Application to multi-vehicle cooperative local mapping and
moving object detection in outdoor environment,” in International
Conference on Control, Automation, Robotics and Vision, 2012, pp.
632–637.

[145] ——, “Multi-vehicle cooperative localization using indirect vehicle-to-
vehicle relative pose estimation,” in IEEE International Conference on
Vehicular Electronics and Safety, 2012, pp. 267–272.

[146] J. Neira and J. D. Tardós, “Data Association in Stochastic Mapping
Using the Joint Compatibility Test,” IEEE Transactions on Robotics
and Automation, vol. 17, no. 6, pp. 890–897, 2002.

[147] J. Xie, F. Nashashibi, M. Parent, and O. G. Favrot, “A Real-Time
Robust Global Localization for Autonomous Mobile Robots in Large
Environments,” in International Conference on Control, Automation,
Robotics and Vision, 2010, pp. 1397–1402.

[148] P. Newman, G. Sibley, M. Smith, M. Cummins, A. Harrison, C. Mei,
I. Posner, R. Shade, D. Schroeter, D. Cole, and I. Reid, “Navigating,
Recognising and Describing Urban Spaces With Vision and Laser,”
The International Journal of Robotics Research, vol. 28, no. 11-12,
pp. 1406–1433, 2009.

[149] P. Besl and N. McKay, “Method for registration of 3-D shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 2, pp. 239–256, 2002.

[150] J. McDonald, M. Kaess, C. Cadena, J. Neira, and J. J. Leonard, “6-
DOF Multi-session Visual SLAM using Anchor Nodes,” in European
Conference on Mobile Robotics, 2011, pp. 69–76.

[151] A. Martinelli, N. Tomatis, and R. Siegwart, “Some Results on SLAM
and the Closing the Loop Problem,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2005, pp. 2917–2922.

[152] D. M. Cole and P. M. Newman, “Using Laser Range Data for 3D
SLAM in Outdoor Environments,” in IEEE International Conference
on Robotics and Automation, 2006, pp. 1556–1563.

[153] G. Bresson, M.-C. Rahal, D. Gruyer, M. Revilloud, and Z. Alsayed, “A
Cooperative Fusion Architecture for Robust Localization: Application
to Autonomous Driving,” in IEEE 19th International Conference on
Intelligent Transportation Systems, 2016.

[154] H. Johannsson, M. Kaess, M. Fallon, and J. J. Leonard, “Temporally
scalable visual SLAM using a reduced pose graph,” in IEEE Interna-
tional Conference on Robotics and Automation, 2013, pp. 54–61.
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Sébastien Glaser received the Dipl.-Ing. Degree
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Université Jean Monnet, Saint Etienne, France, and
the Ph.D. degree in automatic control, with emphasis
on the vehicle dynamic analysis, from the Université
d’Evry, Evry, France, in 2004. He obtained his Ha-
bilitation, from the Université d’Evry, Evry, France,
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