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Introduction

A growing trend in automated deduction is the generalization of conflict-driven reasoning from propositional to first-order logic (cf. [START_REF] Bonacina | On conflict-driven reasoning[END_REF] for a brief coeval survey). For propositional satisfiability (SAT), the conflict-driven clause learning (CDCL) procedure works by guessing assignments to variables, propagating their consequences through clauses, and learning new clauses, or lemmas, when assignments lead to conflicts [START_REF] Silva | Conflict-driven clause learning SAT solvers[END_REF]. The conflict-driven paradigm has been extended to decide the T -satisfiability of sets of literals when T is one of several fragments of arithmetic [START_REF] Cotton | Natural domain SMT: A preliminary assessment[END_REF]7,[START_REF] Jovanović | Cutting to the chase: solving linear integer arithmetic[END_REF][START_REF] Jovanović | Solving non-linear arithmetic[END_REF][START_REF] Korovin | Conflict resolution[END_REF][START_REF] Mcmillan | Generalizing DPLL to richer logics[END_REF][START_REF] Wang | Deciding separation logic formulae by SAT and incremental negative cycle elimination[END_REF][START_REF] Wolfman | The LPSAT engine and its application to resource planning[END_REF]. Key features of such conflict-driven T -satisfiability procedures are the use of assignments to first-order variables and the explanation of conflicts with lemmas, which may contain atoms that are not in the input. We illustrate these features by an example. Consider the following set of literals, which is unsatisfiable in Linear Rational Arithmetic (LRA): R = {l 0 : (-2 •x -y < 0), l 1 : (x + y < 0), l 2 : (x < -1)}. A conflict-driven LRA-satisfiability procedure attempts to build a model by guessing a value for one of the variables, say y←0. This lets l 0 yield the lower bound x > 0. Given the upper bound l 2 , the space of possible values for x is empty, revealing that the guess and the constraints are in conflict. The procedure explains the conflict by the new atom l 3 : (-y < -2), the linear combination of l 0 and l 2 that eliminates x. This excludes not only y←0, but also all assignments y←c where c ≤ 2. Suppose the procedure retracts the assignment y←0 and tries y←4. This lets l 1 yield the upper bound x < -4, and l 0 the lower bound x > -2. The procedure explains this conflict by the new atom l 4 : (y < 0), the linear combination of l 0 and l 1 that eliminates x. As l 4 is violated by the assignment y←4, the procedure retracts y←4. Then no assignment to y can satisfy both l 3 and l 4 . This third conflict is explained by the linear combination of l 3 and l 4 that eliminates y, namely 0 < -2, which is also a new atom. Since this consequence of the original problem is a contradiction, the procedure returns unsatisfiable.

Applications typically require deciding the satisfiability of arbitrary quantifier-free formulae, or, equivalently, sets of ground clauses, in a combination T of theories T 1 , . . . , T n . The DPLL(T ) approach [START_REF] Barrett | Splitting on demand in SAT modulo theories[END_REF][START_REF] Krstić | Architecting solvers for SAT modulo theories: Nelson-Oppen with DPLL[END_REF] combines a CDCL-based SAT-solver with a T -satisfiability procedure, obtained from T i -satisfiability procedures by the equality sharing method [START_REF] Nelson | Simplification by cooperating decision procedures[END_REF], assuming that the theories T i are disjoint and stably infinite: they do not share symbols other than equality and admit countably infinite models. The T i -satisfiability procedures are combined as black-boxes that only propagate equalities between shared variables. DPLL(T ) uses their combination as a black-box that only detects T -conflicts and propagates T -lemmas, while the SAT-solver tries assignments and builds a candidate model. If conflict-driven T i -satisfiability procedures were integrated in this manner, the combination would not be conflict-driven. To make it conflict-driven, the T i -satisfiability procedures need to cooperate to build a model, sharing assignments and exporting lemmas to explain conflicts, possibly using new atoms.

MCSAT, for Model-Constructing Satisfiability, is a paradigm for integrating a CDCL-based SAT-solver with a conflict-driven T -satisfiability procedure [START_REF] De Moura | A model-constructing satisfiability calculus[END_REF]. MCSAT uses first-order assignments on a par with Boolean ones, coordinates the conflict explanation mechanisms at the Boolean and theory levels in a unified manner, and incorporates the capability of creating new atoms. MCSAT lifted CDCL to SMT in the sense of satisfiability modulo a single theory T , which was instantiated to the theory of bit-vectors [START_REF] Zeljić | Deciding bit-vector formulas with mcSAT[END_REF] and to non-linear integer arithmetic [START_REF] Jovanović | Solving nonlinear integer arithmetic with MCSAT[END_REF]. A version of MCSAT was also given for the specific combination of LRA and Equality with Uninterpreted Function symbols (EUF) [START_REF] Jovanović | The design and implementation of the model-constructing satisfiability calculus[END_REF], but the conflict-driven combination of a generic range of theories remained an open problem.

In this paper we generalize conflict-driven reasoning to generic combinations of disjoint theories, solving the problem of combining multiple conflict-driven T i -satisfiability procedures into a conflict-driven T -satisfiability procedure. We introduce a new method for theory combination, called CDSAT for Conflict-Driven Satisfiability. For example, it decides the satisfiability of problems in the combination of LRA, EUF and the theory of arrays, such as

P = {f (select(store(a, i, v), j)) w, f (u) w-2, i j, u v}.
CDSAT treats propositional and theory reasoning uniformly: formulae are terms of sort prop (for proposition); propositional logic is one of the theories T 1 , . . . , T n ; and CDCL is one of the T i -satisfiability procedures to be combined. With formulae reduced to terms, assignments become the data manipulated by inferences. CDSAT combines T i -inference systems, called theory modules [START_REF] Ganzinger | Modularity and refinement in inference systems[END_REF], rather than T isatisfiability procedures. Ideally, a T i -satisfiability procedure, like any reasoning procedure, is defined by an inference system and a search plan. Since all conflictdriven procedures have the same conflict-driven search plan, what needs to be combined are the inference systems, while the common conflict-driven control is factored out and handled centrally by CDSAT. We prove that CDSAT is sound, complete, and terminating, identifying the sufficient conditions that theories and theory modules need to fulfill for these properties to hold.

We believe that the abstraction of viewing combination of theories as combination of inference systems, rather than procedures, allows us to bring simplicity and elegance to theory combination. A T i -satisfiability procedure that is not conflict-driven can still be integrated in CDSAT by treating it as a theory module whose only inference rule invokes the T i -satisfiability procedure to detect the T i -unsatisfiability of a set of assignments. Therefore CDSAT subsumes both MCSAT and equality sharing. CDSAT reduces to MCSAT, if there are only propositional logic with CDCL and another theory T with a conflict-driven T -satisfiability procedure. CDSAT reduces to equality sharing, if none of the theories has a conflict-driven T -satisfiability procedure.

Preliminaries

We assume the basic definitions of multi-sorted first-order logic. A signature Σ = (S, F ) consists of a set S of sorts, including prop, and a set F of symbols, including a collection S of equality symbols s : (s×s)→prop for every s ∈ S. Sorts can be omitted when clear from context. The other symbols in F may be constant, function, and predicate symbols, as well as logical connectives such as ∧, ∨, and ¬. Given a class V = (V s ) s∈S of sets of sorted variables, Σ[V ]-terms are defined as usual, and formulae are terms of sort prop. We use l for formulae and t and u for terms of any sort. Formulae in the standard sense are obtained as the closure of our formulae under quantifiers and logical connectives; Σ-sentences are those with no free variables.

A Σ[V ]-interpretation M interprets each sort s in S as a non-empty set s M with prop M = {true, false}; each symbol f : (

s 1 × • • • ×s m ) → s in F as a function f M : s M 1 × • • • ×s M m → s M with M
s returning true if and only if its arguments are identical; and each variable v ∈ V s as an element v M ∈ s M . The interpretation M(t) of a Σ[V ]-term t is defined as usual. Σ[∅]-interpretations, known as Σ-structures, suffice for Σ-sentences.

A theory T on signature Σ is defined axiomatically as a set of Σ-sentences, called its axioms, or model-theoretically as the class of Σ-structures, called Tmodels, that satisfy the axioms of

T . A T [V ]-model is any Σ[V ]-interpretation whose underlying Σ-structure is a T -model.
Let T 1 , . . . , T n be disjoint theories with signatures Σ 1 =(S 1 , F 1 ),. . . , Σ n =(S n , F n ): they do not share symbols other than equality, but can share sorts, meaning that F i ∩F j = ( Si∩Sj ) for i =j. Let T ∞ be their union, with signature

Σ ∞ =(S ∞ , F ∞ ) for S ∞ = n k=1 S k and F ∞ = n k=1 F k ,
and axiomatization given by the union of those of T 1 , . . . , T n . We fix a global collection of variables V ∞ = (V s ∞ ) s∈S∞ , use variables for variables in V ∞ , and terms for Σ ∞ [V ∞ ]-terms. Example 1. Problem P from Sect. 1 is written in the signatures

Σ LRA = ( {prop, Q}, {prop,Q} ∪ {0, 1 : Q, + : Q×Q→Q} ∪ {q • : Q→Q | q ∈ Q} ) Σ EUF = ( {prop, Q, V }, {prop,Q,V } ∪ {f : V →Q} ) Σ Arr = ( {prop, V, I, A}, {prop,V,I,A} ∪ {select : A×I →V, store : A×I×V →A} )
where Q and Q are the sort and the set of the rationals, q • is scalar multiplication, and A, I, and V are the sorts of arrays, indices, and values.

Assignments and Theory Modules

CDSAT solves T ∞ -satisfiability problems presented as assignments of values to terms. For example, a set of formulae {l 1 , . . . , l m } is represented as the assignment {l 1 ←true, . . . , l m ←true}. The input assignment may contain terms of any sort. Assignments are public, meaning visible to all T k -inference systems.

Assignments

We need to identify the language of values that the system can assign to terms, besides true and false. Assignable values are not necessarily in the theories' signatures (e.g., consider x← √ 2 for the sort of the reals). Therefore, we introduce for each theory T k , 1 ≤ k ≤ n, a conservative extension T + k with signature

Σ + k = (S k , F + k )
, where F + k is the extension of F k with a possibly empty set of new constant symbols called T + k -values. An extension is conservative if any

T + k -unsatisfiable set of Σ k [V ]
-formulae is also T k -unsatisfiable. This ensures that reasoning in the extension does not change the problem: if CDSAT discovers T + kunsatisfiability, the problem is T k -unsatisfiable; if the problem is T k -satisfiable, there is a T + k -model that CDSAT can build. A sort s ∈ S k with at least one T + k -value is called T k -public, as a term of sort s may be assigned a T + k -value. A sort s may be T i -public and T j -public for i =j. We stipulate that sort prop is T kpublic for all k, with T + k -values true and false, which are valid and unsatisfiable, respectively, in T + k . We use b for true or false. We assume that the extended theories are still disjoint except for the two Boolean values true and false.

Example 2. Let RA be the theory of real arithmetic with sorts {R, prop} and symbols {R,prop} ∪ {0, 1 : R; +, -, • : R×R→R}. RA + adds a new constant for every real number, so R is RA-public. The axioms of RA + are the formulae that hold in the standard model of the reals interpreting every RA + -value as itself.

Extending the signature with names that denote all individuals in the domain of a T k -model is a standard move in automated reasoning, where models need to be built out of syntax, and especially when T k has an "intended model" as in arithmetic. In such cases a T + k -value is both the domain element and the constant symbol that names it. t1←c1, t2←c2 t1 s t2 if c1 and c2 are the same T + -value of sort s t1←c1, t2←c2 t1 s t2 if c1 and c2 are distinct T + -values of sort s t1 s t1 t1 s t2 t2 s t1 t1 s t2, t2 s t3 t1 s t3 Fig. 1. Equality inference rules: t1, t2, and t3 are terms of sort s Definition 1 (Assignment). Given a theory T with extension T + , a T -assignment is a set of pairs t←c, where t is a term and c is a T + -value of the same sort. Term t and all its subterms are said to occur in the assignment. An assignment is plausible if it does not contain both l←true and l←false for any formula l.

For example, {x← √ 2, x + y← √ 3} and {f (x)← √ 2, (1•x x)←true} are RA-assignments.
If for all pairs t←c the sort of t and c is s, the T -assignment is of sort s, and if s = prop it is Boolean. A first-order T -assignment is a T -assignment that is not Boolean. We use J for generic T -assignments, A for singleton ones, and L for Boolean singletons. We abbreviate l←true as l, l←false as l, and t s u ←false as t s u. The flip L of L assigns to the same formula the opposite Boolean value. The union of T + 1 , . . . ,

T + n is an extension T + ∞ of T ∞ , with signature Σ + ∞ = (S ∞ , F + ∞ ) for F + ∞ = n k=1 F + k .
We use H for T ∞assignments, called assignments for short. Plausibility does not forbid an assignment {t ← 3.1, u ← 5.4, t ← red, u ← blue}, where the first two pairs are T 1assignments and the last two are T 2 -assignments; the sort of t and u is both T 1 -public and T 2 -public. When building a model from this assignment, 3.1 will be identified with red and 5.4 with blue.

Definition 2 (Theory view). Let T and S be either T ∞ and S ∞ , or T k and S

k for 1 ≤ k ≤ n. The T -view of an assignment H is the T -assignment H T = { t←c | t←c is a T -assignment in H } ∪ n k=1 ( { t 1 s t 2 | t 1 ←c, t 2 ←c are T k -assignments in H of sort s∈S\{prop} } ∪ { t 1 s t 2 | t 1 ←c 1 , t 2 ←c 2 are T k -assignments in H of sort s∈S\{prop}, c 1 =c 2 } ).
H T contains the T -assignments of H, plus all equalities and disequalities induced by the T k -assignments in H, 1 ≤ k ≤ n. We introduce next theory modules, the abstract counterpart of theory solvers or theory plugins [START_REF] Jovanović | The design and implementation of the model-constructing satisfiability calculus[END_REF].

Theory Modules

A theory module I for theory T is an inference system whose inferences, called I-inferences only derive Boolean assignments because CDSAT does not justify first-order assignments by inferences, not even when a first-order assignment is forced by others (e.g., y←2 by x←1 and (x+y)←3). We assume we have theory modules I 1 , . . . , I n for T 1 , . . . , T n . We now define acceptability and relevance.

Definition 3 (Acceptability).

Given T k -assignments t←c and J, t←c is acceptable for J and I k , if (i) J does not assign a value to t and (ii) either t←c is Boolean or there are no I k -inferences J , (t←c) I k L with J , L ⊆ J.

When adding t ← c to J, acceptability prevents repetitions (cf. Condition (i)) and contradictions: if t ← c is Boolean, its flip should not be in J, preserving plausibility (cf. Condition (i)); if t ← c is first-order, and therefore has no flip, so that plausibility does not apply, acceptability ensures that none of the consequences one inference step away has its flip in J (cf. Condition (ii)).

Definition 4 (Relevance).

A term is T k -relevant for an assignment H, if either (i) it occurs in H and has a T k -public sort, or (ii) it is an equality t 1 s t 2 whose terms t 1 and t 2 occur in H and whose sort s ∈ S k is not T k -public.

Relevance organizes the division of labor among modules. For instance in the assignment {x←

√ 5, f (x)← √ 2, f (y)← √ 3}, x and y of sort R are RA-relevant, not EUF-relevant, assuming R is not EUF-public, while x R y is EUF-relevant, not RA-relevant.
Each theory has a mechanism to fix and communicate equalities between terms of a known sort, such as x and y: EUF does it by assigning a truthvalue to x R y; RA does it by assigning values to x and y.

Examples of Theory Modules

In this section we give theory modules for several theories. We may use ⊥ to stand for the assignment (x prop x)←false for an arbitrary variable x. For brevity, we omit equality symbols from signatures and equality inference from modules.

A Module for Propositional Logic

Σ Bool has only the sort prop and the symbols ¬ : prop → prop, and ∨, ∧ : (prop×prop)→prop. Let Bool + be the trivial extension with only {true, false} as Bool + -values. I Bool features an evaluation inference rule that derives the truth value b of formula l, given truth values b 1 , . . . , b m of subformulae l 1 , . . . , l m , and then, from left to right, two rules for negation, two rules for conjunction elimination, and two rules for unit propagation:

l 1 ←b 1 , . . . , l m ←b m Bool l←b ¬l Bool l l 1 ∨ • • • ∨ l m Bool l i l 1 ∨ • • • ∨ l m , {l j | j = i} Bool l i ¬l Bool l l 1 ∧ • • • ∧ l m Bool l i l 1 ∧ • • • ∧ l m , {l j | j = i} Bool l i
where 1 ≤ j, i ≤ m, and, for the first rule, l must be in the closure of l 1 , . . . , l m with respect to the Σ Bool -connectives. Although the evaluation rule alone is sufficient for completeness (cf. Sect. 6.3), the other six rules, including in particular unit propagation as in CDCL, are obviously desirable.

A Theory Module for LRA

Let Σ LRA be as in Example 1 and LRA + be the extension that adds a constant q and the axiom q Q q •1 for each rational number q ∈ Q. Here too, the first rule of I LRA is an evaluation inference rule that derives the value b of formula l, given values q1 , . . . , q m of subterms t 1 , . . . , t m of sort Q:

Evaluation t1← q1, . . . , tm← q m LRA l←b Positivization t1 < t2 LRA t2 ≤ t1 t1 ≤ t2 LRA t2 < t1 Equality elimination t1 Q t2 LRA ti ≤ tj with {i, j} = {1, 2} Disequality elimination (t1 ≤ x), (x ≤ t2), (t1 Q t0), (t2 Q t0), (x Q t0) LRA ⊥ Fourier-Motzkin resolution (t1 1 x), (x 2 t2) LRA (t1 3 t2)
where t 0 , t 1 , t 2 , and x are terms of sort Q; x is a Σ LRA -variable that is not free in t 0 , t 1 , t 2 (cf. Sect. 6); 1 , 2 , 3 ∈ {<, ≤} and 3 is < if and only if either 1 or 2 is <. For the first rule, l must be a formula whose normal form is in the closure of t 1 , . . . , t m with respect to the symbols of F LRA . For example, w-2 Q w can be normalized to -2 Q 0 and evaluates to false. In the last two rules, each formula l appearing on the left stands for any formula that can be normalized to l. For instance, Fourier-Motzkin (FM) resolution applies to y-x < 2 •y and 2 •x < 3 yielding -y < 3 2 . The three linear combinations of constraints in the solution of problem R in Sect. 1 are instances of FM resolution, as a linear combination e 1 +z<c 1 , e 2 -z<c 2 e 1 +e 2 <c 1 +c 2 is expressed as an FM resolution e 2 -c 2 <z, z<c 1 -e 1 LRA e 2 -c 2 <c 1 -e 1 .

A Theory Module for EUF

For a signature Σ EUF = (S, S ∪ F ), I EUF may include (ti ui)i=1...m, f (t1, . . . , tm) f (u1, . . . , um) EUF ⊥ (ti ui)i=1...m EUF f (t1, . . . , tm) f (u1, . . . , um) (ti ui) i=1...m,i =j , f (t1, . . . , tm) f (u1, . . . , um) EUF tj uj for all symbols f ∈ F . The first rule alone is sufficient for completeness: it captures a lazy approach that does not propagate anything before equalities between existing terms are found to be in contradiction with a congruence axiom [START_REF] Jovanović | The design and implementation of the model-constructing satisfiability calculus[END_REF]. The other two rules can be used directly for eager congruence propagation. Since I EUF does not use first-order assignments, no sort needs to be EUF-public, and the only assignments assign truth values to equalities. Alternatively, one may make the sorts in S EUF-public, with a countably infinite collection of EUF + -values in each sort and no axioms about them. Equality inferences can employ assignments of EUF + -values to determine whether terms are equal, using EUF + -values as identifiers for equivalence classes of terms. For example, assume that c 1 , c 2 , and c 3 are distinct EUF + -values. The assignment {x←c 1 , y←c 1 , f (x)←c 2 } places x and y in the equivalence class c 1 , and f (x) in class c 2 . If f (y)←c 3 is added to the assignment, two equality inferences and an application of the first rule of I EUF expose a conflict in the above-mentioned lazy style.

A Theory Module for Arrays

The array sort constructor builds from an index sort I and a value sort V the sort I⇒V of arrays with indices in I and values in V . Consider a signature Σ Arr = (S, F ), where S is the free closure of a set of basic sorts with respect to the array sort constructor, and F is

{selectI⇒V : (I⇒V )×I →V | (I⇒V ) ∈ S} ∪ {storeI⇒V : (I⇒V )×I×V →(I⇒V ) | (I⇒V ) ∈ S} ∪ {diffI⇒V : (I⇒V )×(I⇒V )→I | (I⇒V ) ∈ S},
where diff I⇒V is the Skolem function symbol that arises from clausifying the extensionality axiom for array sort I⇒V . For brevity, subscripts are omitted, select(a, i) is written as a[i], and store(a, i, v) as a[i]:=v. Module I Arr features the following rules, where a, b, c, d are variables of any I⇒V sort, u, v are variables of sort V , and i, j, k of sort I:

a b, i j, a[i] b[j] Arr ⊥ a b, i j, u v, (a[i]:=u) (b[j]:=v) Arr ⊥ b (a[i]:=u), i j, b[j] u Arr ⊥ b (a[i]:=u), i j, j k, a[j] b[k] Arr ⊥ a b Arr a[diff (a, b)] b[diff (a, b)] a c, b d, diff (a, b) diff (c, d) Arr ⊥
The first two inference rules capture the congruence axioms for select and store. The third and fourth rules correspond to the read-over-write axioms. The fifth rule corresponds to the clausal form of the extensionality axiom; it is the only rule that can produce new terms. The last rule states the congruence axiom for diff . These rules are triggered by the truth-values of equalities. As with I EUF , in order to determine whether equalities hold, one has the option of declaring all sorts to be Arr-public, with infinitely many Arr + -values used as identifiers of equivalence classes. One can also add rules for eager propagations of equalities.

Generic Theory Modules for Equality Sharing

Assume T is a stably infinite theory with signature Σ = (S, F ) and equipped with a T -satisfiability procedure. Its inference module I T comprises the rule l 1 ←b 1 , . . . , l m ←b m T ⊥ that fires when the conjunction of the literals corresponding to the Boolean assignments on the left is T -unsatisfiable. Unlike the previous ones, this module is coarse-grained, in the sense that a single application of its inference rule requires the execution of a T -satisfiability procedure. As with EUF and Arr, one has the option of declaring non-Boolean sorts T -public to determine equalities. If the T -satisfiability procedure can produce unsatisfiable cores, we can restrict the above rule so that the assignment on the left is an unsatisfiable core. This provides a more precise conflict resolution mechanism, which leads us to Sect. 5.

The CDSAT Inference System

In this section we present CDSAT and exemplify its features by applying it to problems R and P in the introduction. A CDSAT derivation transforms a state consisting of a trail Γ . A trail is a sequence of distinct singleton assignments that are either justified assignments, denoted H A, or decisions, denoted ? A. The justification H in H A is a set of singleton assignments that appear before A in the trail. For instance, a theory inference J I k L for some k, 1 ≤ k ≤ n, can justify adding J L to the trail. A decision is written ? A because it is generally a guess. A trail can be used as an assignment by ignoring order and justifications.

Phase 1 id trail items just lev 0 -2 •x -y < 0 {} 0 1 x + y < 0 {} 0 2 x < -1 {} 0 3 y←0 1 4 -y < -2 {0, 2} 0 conflict E 1 : {3, 4} 1 Phase 2 id trail items just lev 0 -2 •x -y < 0 {} 0 1 x + y < 0 {} 0 2 x < -1 {} 0 3 -y < -2 {0, 2} 0 4 y←4 1 5 y < 0 {0, 1} 0 conflict E 2 : {4, 5} 1 Phase 3 id trail items just lev 0 -2 •x -y < 0 {} 0 1 x + y < 0 {} 0 2 x < -1 {} 0 3 -y < -2 {0, 2} 0 4 y < 0 {0, 1} 0 5 0 < -2 {3, 4} 0 conflict E 3 : {5} 0 

Fig. 2. CDSAT derivation in one theory (LRA)

The evolution of the trail for problem R is described in three successive phases in Fig. 2. The input is shown above the horizontal line of Phase 1. In each proceeding phase, the assignments above the horizontal line are those inherited from the previous phase. Assignments are numbered in chronological order, and their numbers, shown in the first column, are used as identifiers. For every justified assignment, the justification is shown as a set of identifiers in the third column. In the sequel, A m n is the assignment with identifier n in phase m. For example, the justification of A 1 4 is {0, 2}, because A 1 4 is derived by the FM resolution rule of I LRA from A 1 0 and A 1 2 . The last column shows the level of A as defined next.

Definition 5 (Level). Given a trail Γ with assignments

A 0 , . . . , A m , level Γ (A i ) = 1 + max{levelΓ (Aj) | j < i} if Ai is a decision, levelΓ (H) if Ai has justification H; Given a T ∞ -assignment H ⊆ Γ , level Γ (H) = 0 if H = ∅, max{levelΓ (A) | A ∈ H} otherwise.
The restriction of a trail Γ to its elements of level at most m is written Γ ≤m .

The rules of the CDSAT inference system, given in Fig. 3, comprise search rules, whose application is denoted by -→, and conflict resolution rules, whose application is denoted by =⇒, with transitive closure =⇒ * . The system is parameterized by a set B of terms, called global basis, used to limit the range of terms that CDSAT may generate, in order to ensure termination (cf. Sect. 6.2). The Backjump rule is similar in that the conflict contains an assignment whose level is greater than that of all others. Backjump applies if this assignment is a Boolean assignment L; its flip L is justified by the rest of the conflict E. Therefore we backjump to the level of E, and add E L to the trail. Assignment L is a Unique Implication Point [START_REF] Silva | Conflict-driven clause learning SAT solvers[END_REF]. We see an application of this rule in Fig. 4. Phase 1 starts with a series of decisions, from A 1 4 through A 1 9 , where c is an Arr + -value of sort V , and A 1 5 is the only acceptable choice given A 1 3 and A 1 4 . Then Deduce generates A 1 10 and A 1 11 by equality inferences (cf. Fig. 1), and ConflictSolve applies, as E 1 I EUF ⊥ by the first inference rule of I EUF . Rule Undo does not apply to E 1 , because E 1 does not contain first-order decisions, but rule Backjump does apply, with A 1 11 playing the role of L. CDSAT jumps back to level 3, the level of A 1 10 , and places A 1 11 on the trail with justification A 1 10 , named A 2 7 in Phase 2. Deduce places A 2 9 and A 2 10 on the trail by transitivity of equality (cf. Fig. 1). ConflictSolve applies as ∅ LRA w-2 w.

Phase 1 id trail items just lev 0 f ((a[i]:=v)[j]) w {} 0 1 w-2 f (u) {} 0 2 i j {} 0 3 u v {} 0 4 u←c 1 5 v←c 2 6 (a[i]:=v)[j]←c 3 7 w←0 4 8 f ((a[i]:=v)[j])←0 5 9 f (u)←-2 6 10 u (a[i]:=v)[j] {4, 6} 3 11 f (u) f ((a[i]:=v)[j]) {8, 9} 6 conflict E 1 : {10, 11} 6 Phase 2 id trail items just lev 0 f ((a[i]:=v)[j]) w {} 0 1 w-2 f (u) {} 0 2 i j {} 0 3 u v {} 0 4 u←c 1 5 v←c 2 6 (a[i]:=v)[j]←c 3 7 u (a[i]:=v)[j] {4, 6} 3 8 f (u) f ((a[i]:=v)[j]) {7} 3 9 f (u) w {0, 8} 3 10 w-2 w {1, 9} 3 conflict E 2 1 : {10} 3 conflict E 2 2 : {1, 9} 3 conflict E 2 3 : {0, 1, 8} 3 conflict E 2 4 : {0, 1, 7} 3 Phase 3 id trail items just lev 0 f ((a[i]:=v)[j]) w {} 0 1 w-2 f (u) {} 0 2 i j {} 0 3 u v {} 0 4 u (a[i]:=v)[j] {0, 1} 0 5 u←c 1 6 v←c 2 7 (a[i]:=v)[j]←d 3 8 v (a[i]:=v)[j] {6, 7} 3 conflict E 3 : {2, 8} 3 Phase 4 id trail items just lev 0 f ((a[i]:=v)[j]) w {} 0 1 w-2 f (u) {} 0 2 i j {} 0 3 u v {} 0 4 u (a[i]:=v)[j] {0, 1} 0 5 v (a[i]:=v)[j] {2} 0 conflict E 4 : {3, 4, 5} 0 
The Resolve rule unfolds a conflict by replacing an assignment A in the conflict with its justification H, provided H does not introduce a first-order decision of the same level as that of the conflict. Starting from E 2 1 in Fig. 4, three Resolve steps yield conflict E 2 4 . Resolve does not apply to A 2 7 because its justification contains A 2 6 . Backjump solves E 2 4 by jumping back to level 0 and flipping A 2 7 into A 3 4 . Then CDSAT guesses A 3 5 through A 3 7 , where A 3 6 is forced by A 3 3 and A 3 5 . For A 3 7 , another Arr + -value d of sort V is used, since A 3 4 and A 3 5 prevent assigning c to (a[i]:=v)[j]. Deduce generates A 3 8 by an equality inference, and conflict E 3 arises as (i j), (v (a[i]:=v)[j]) Arr ⊥.

Phase 1 id trail items just lev 0 (x>1) ∨ (y<0) {} 0 1 (x<-1) ∨ (y>0) {} 0 2 x←0 1 3 x>1 {2} 1 4 x<-1 {2} 1 5 y<0 {0, 3} 1 6 y>0 {1, 4} 1 7 0<0 {5, 6} 1 conflict E1: {7} 1 conflict E2: {5, 6} 1 conflict E3: {0, 3, 6} 1 conflict E4: {0, 1, 3, 4} 1 Phase 2 id trail items just lev 0 (x>1) ∨ (y<0) {} 0 1 (x<-1) ∨ (y>0) {} 0 2 x>1 1 3 x←2 2 4 x<-1 {3} 2 5 y>0 {1, 4} 2 6 y←1 3 7 y<0 {6} 3 
Backjump solves E 3 by jumping back to level 0 and flipping A 3 8 into A 4 5 . The final conflict E 4 violates transitivity of equality, and because E 4 is at level 0, rule Fail closes the derivation.

The UndoDecide rule corresponds to Tbackjump-decide [START_REF] De Moura | A model-constructing satisfiability calculus[END_REF] and semantic split [START_REF] Jovanović | The design and implementation of the model-constructing satisfiability calculus[END_REF]. It applies when the conflict contains two assignments L and L whose justifications include a first-order decision of maximal level in the conflict. Rule Resolve is barred from replacing L or L by their justification, so the only way to solve the conflict is to trade the first-order decision for a Boolean decision on the flip of L or L . In Fig. 5, conflict E 4 is solved by UndoDecide, as both A 1 3 and A 1 4 are justified by the first-order decision A 1 2 . UndoDecide arbitrarily chooses to flip A 1 3 , and then values can be found for variables without raising a conflict: the problem is satisfiable.

Soundness, Termination, and Completeness of CDSAT

In this section we establish soundness, termination, and completeness of CDSAT. The proofs of these theorems can be found in the technical report [START_REF] Bonacina | A model-constructing framework for theory combination[END_REF]. The key point is to reduce such global properties to theory-local requirements for the theory modules involved in the combination. In other words, we need to discover sufficient conditions whose fulfillment by all theory modules I 1 , . . . , I n ensures soundness, termination, and completeness of the combined system. This reduction raises the issue of how to handle the fact that assignments contain symbols unknown to a theory. For the combination of theory modules to be truly modular, I k treats as a variable any subterm whose root is a symbol foreign to T k . Formally, if Σ = (S, F ) is a signature included in Σ ∞ , the free Σvariables fv Σ (t) of a term t are the maximal subterms of t, in the subterm ordering , whose root is not in F . For a set X of terms, fv

Σ (X) = {u | u ∈ fv Σ (t), t ∈ X},
and for an assignment H, fv Σ (H) = {u | u ∈ fv Σ (t), t←c ∈ H}. For problem P in Sect. 1, signatures Σ LRA , Σ EUF , Σ Arr of Example 1 define for instance:

fv Σ LRA (P ) = { f (select(store(a, i, v), j)), w, f (u), i j, u v } fv Σ EUF (P ) = { select(store(a, i, v), j), w, u, w-2, i j, v } fv Σ Arr (P ) = { f (select(store(a, i, v))j) w, f (u) w-2, i, j, u, v }
In the next two definitions, T and Σ stand for either T ∞ and Σ ∞ or T k and Σ k , 1 ≤ k ≤ n. The identification of sufficient conditions for soundness and completeness and their proofs demand that we relate the assignments manipulated by CDSAT to models. This is the purpose of the notion of endorsement:

Definition 6 (Endorsement). A T + [V ]-model M endorses a T -assignment J, such that fv Σ (J) ⊆ V , if for all t←c in J, M(t) = c M .
For Boolean assignments, it means that formulae are interpreted with the correct truth values. Definition 6 uses T + -models, because assignments contain T + -values (e.g., √

2), and therefore we need models that interpret T + -values, and interpret them consistently with the axioms (e.g.,

√ 2• √ 2 = 2). Definition 7 (View endorsement). A T + [V ]-model M view-endorses a T ∞ - assignment H with fv Σ (H) ⊆ V , if it endorses its T -view H T .
This definition combines endorsement and view (cf. Definition 2) because CD-SAT works with T ∞ -assignments, which mix T k -assignments for any k, 1 ≤ k ≤ n. If H is Boolean, view endorsement collapses to endorsement.

Soundness

The sufficient condition for soundness is that for every theory module I k , for all I k -inferences J I k L, and all V such that fv Σ k (J ∪ {L}) ⊆ V , every T + k [V ]model that view-endorses J endorses L. Under this assumption, we prove that CDSAT is sound, by showing that each transition rule produces a trail whose restriction to level 0 is equisatisfiable to the input assignment.

Theorem 1 (Soundness). For all input assignments H, if a CDSAT derivation from

H reaches state unsat, no T + ∞ [V ]-model with fv Σ∞ (H) ⊆ V view- endorses H; if H is Boolean, no T ∞ [V ]-model with fv Σ∞ (H) ⊆ V endorses H.
All theory modules in Sect. 4 satisfy the soundness requirement.

Termination

l0 :-2 •x -y < 0 l1 : x + y < 0 l2 : x < -1 l3 : -y < -2 (l0 + 2l2) l4 : x < -2 (l1 + l3) l5 : -y < -4 (l0 + 2l4) l6 : x < -4
(l1 + l5) l7 : -y < -8 (l0 + 2l6) . . .

Fig. 6. Divergence

As CDSAT allows the introduction of terms that are not in the input problem (cf. Deduce), termination is imperiled. For instance, applying the FM resolution rule of I LRA to problem R from Sect. 1, one can infer the formulae of Fig. 6. Such divergence is prevented by imposing finiteness of the global basis B, that is the source of new terms in a CDSAT derivation.

Theorem 2 (Termination). If the global basis B is finite, every CDSAT derivation is guaranteed to terminate.

Then the issue is to give sufficient conditions for the existence of a global basis B, that is finite, and yet sufficiently rich for CDSAT to be complete. To address this question at the combination level we begin by imposing a similar requirement at the single theory level. We require that each theory module comes with a function basis k , called local basis, that maps any finite set X of terms to a finite set of terms basis k (X), and has the following properties: it is (i) extensive (X ⊆ basis k (X)), (ii) monotone (X ⊆ Y implies basis k (X) ⊆ basis k (Y )), (iii) idempotent (basis k (basis k (X)) = basis k (X)), (iv) downward-closed with respect to the subterm ordering (if t u and u ∈ basis k (X) then t ∈ basis k (X)), (v) closed with respect to equality (if t, u ∈ basis k (X), of a sort s different from prop, then (t s u) ∈ basis k (X)), and (vi) does not introduce foreign symbols (fv

Σ k (basis k (X)) ⊆ fv Σ k (X) ∪ V ∞ ).
Intuitively, basis k (X) is the supply of terms that I k is allowed to introduce during a derivation from an input problem whose terms are in X. However, basis k (X) is not pre-computed. Furthermore, basis k should provide enough terms to make I k complete, according to a notion of completeness of a theory module defined in the sequel in terms of both I k -inferences and basis k .

The divergence in Fig. 6 involves only I LRA . It can be avoided by assuming a fixed arbitrary order ≺ on Σ LRA -variables [START_REF] Jovanović | The design and implementation of the model-constructing satisfiability calculus[END_REF], and defining basis LRA as the function that saturates its argument with the terms introduced by all positivization inferences and by the FM resolution inferences (t 1 1 x), (x 2 t 2 ) LRA (t 1 3 t 2 ) where x is the ≺-greatest Σ LRA -variable in both t 1 1 x and x 2 t 2 . For Fig. 6, assume that y ≺ x. Then l 3 , generated by (-y < 2 •x), (2 •x < -2) LRA (-y < -2), is in the local basis, whereas l 4 , generated by (x < -y), (-y < -2) LRA (x < -2), is not, so that the series of inferences halts.

Completeness

As theory modules are used to extend the trail and reveal conflicts, the aim for completeness is that whenever no theory module can extend the trail, then the trail provides enough information to build a T + ∞ -model of the input problem. We begin by formalizing the concept that a theory module can extend an assignment.

Definition 8 (Assignment extension). Module I k with local basis basis

k can extend a T k -assignment J if -Either there exists a T k -assignment t←c, for a T k -relevant term t of J, that
is acceptable for J and I k ; -Or there exist a T k -assignment J ⊆ J, a formula l ∈ basis k (J), and an

I k -inference J I k (l ← b) such that (l ← b) ∈ J.
view-endorses J. However, when no theory module can extend its view of a trail Γ , the existence of a theory-specific model for Γ for each theory does not imply the existence of a model for the combination of the theories. As in the equalitysharing method [START_REF] Nelson | Simplification by cooperating decision procedures[END_REF], these models need to agree on equalities between shared variables and on cardinalities of shared sorts. If all theories are stably infinite, the common cardinality is countably infinite. Nonetheless, there are interesting combinations that involve finite cardinalities, such as combining a theory with finite sorts and the theory of arrays with extensionality. CDSAT can handle such cases, if one of the combined theories, say T 1 , knows all the sorts (i.e., S 1 = S ∞ ) and offers information about their cardinalities. A combination of stably infinite theories is the instance of this scheme where T 1 is a theory T whose models interpret every sort in S ∞ \{prop} as a countably infinite set.

The theory-specific requirements for completeness of CDSAT are that I 1 is complete, and all other modules are complete relative to T 1 . The latter notion, that we call T 1 -completeness, in turn relies on T 1 -compatibility, defined below.

Definition 9 (T 1 -compatibility).

A T k -assignment J is T 1 -compatible with T + k , sharing a set of terms G, if for any T + 1 [fv Σ1 (J ∪ G)]-model M 1 that view- endorses J, there exists a T + k [fv Σ k (J ∪ G)
]-model M that view-endorses J, such that for all sorts s ∈ S k , s M = s M1 , and for all terms t and t in G of sort s,

M(t) = M(t ) if and only if M 1 (t) = M 1 (t ). A module I k is T 1 -complete, if for all plausible T k -assignments J that I k cannot extend, J is T 1 -compatible with T +
k , sharing all terms that occur in J. Then, the global basis B is stable, if basis k (B) ⊆ B holds for all k, 1 ≤ k ≤ n. A derivation can reach a state satisfying the hypotheses of Lemma 1 long before it reaches a state that no module can extend. An implementation of a module could notify the main algorithm when the trail becomes T 1 -compatible with its theory. In this sense, Theorem 3 covers the worst-case scenario. A stable global basis can be obtained by taking B = basis π(k) (. . . basis π(1) (X)), where X is the set of terms occurring in the input assignment and π is a permutation of {1, . . . , k} that satisfies the following property: if i < j then basis π(i) (basis π(j) (X)) ⊆ basis π(j) (basis π(i) (X)). A syntactic criterion on the local bases implies this permutability property [START_REF] Bonacina | A model-constructing framework for theory combination[END_REF].

Theorem 3 (Completeness

For all theory modules of Sect. 4, except I LRA , we can define a local basis that makes them T N -complete (cf. [START_REF] Bonacina | A model-constructing framework for theory combination[END_REF] for stronger completeness properties). For I LRA , the local basis basis LRA given above makes the module T N -complete only under the strategy that assigns Σ LRA -variables in ≺-increasing order. Otherwise, considering again problem R and the ordering y ≺ x, the LRA-assignment l 0 , l 1 , l 2 , l 3 , (x←0) cannot be extended by I LRA even though it is LRA-unsatisfiable. Indeed, the obvious FM resolution combining l 1 and l 3 would eliminate y, which is not maximal in l 1 , as required by basis LRA . An additional inference rule can be added to I LRA to make it complete regardless of strategy [START_REF] Bonacina | A model-constructing framework for theory combination[END_REF].

Discussion

In this paper we introduced CDSAT, a conflict-driven system for deciding the satisfiability of quantifier-free problems in the union of disjoint theories. CDSAT combines theory inference systems, termed theory modules. We presented several theory modules, including one for arrays which is the first integration of this theory in a conflict-driven combination. CDSAT lifts CDCL to SMT in the sense of satisfiability modulo multiple theories. Since it accepts input problems containing Boolean and first-order assignments, CDSAT solves a class of problems that extends SMT and that we call SMA for Satisfiability Modulo Assignments. For such problems, the input format presupposes the theory extensions (cf. Sect. 3).

CDSAT generalizes MCSAT [START_REF] De Moura | A model-constructing satisfiability calculus[END_REF][START_REF] Jovanović | Solving nonlinear integer arithmetic with MCSAT[END_REF][START_REF] Jovanović | The design and implementation of the model-constructing satisfiability calculus[END_REF][START_REF] Zeljić | Deciding bit-vector formulas with mcSAT[END_REF] to theory combinations. Furthermore, CDSAT solves the hitherto open problem of integrating conflict-driven procedures and the black-box solvers used in the equality sharing method [START_REF] Nelson | Simplification by cooperating decision procedures[END_REF]. CD-SAT generalizes equality sharing itself, which corresponds to the case where all theories are stably infinite, all theory modules are black-boxes (cf. Sect. 4.5), and CDSAT decisions are limited to equalities between shared variables.

Clause learning, including theory lemmas, can be easily added to the version of CDSAT presented here [START_REF] Bonacina | A model-constructing framework for theory combination[END_REF]. Directions for future work include: the generation of proofs, by composition of theory inferences; efficient techniques to detect the applicability of theory inference rules and determine whether an assignment is acceptable (e.g., watched variables [START_REF] Jovanović | The design and implementation of the model-constructing satisfiability calculus[END_REF]); and heuristic strategies to make decisions and prioritize theory inferences.
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 4 Fig. 4. CDSAT derivation in three theories (LRA, EUF, and Arr)
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 5 Fig. 5. CDSAT derivation in two theories (Bool and LRA)

  ). For all input assignments H, if the global basis B is stable and contains all terms that occur in H, whenever a CDSAT derivation from H reaches a state Γ other than unsat such that no CDSAT inference applies, there exists a T + If there exists a T + 1 [fv Σ1 (H)]-model that view-endorses H, and such that for all k, 2 ≤ k ≤ n, the T k -view H T k is T 1 -compatible with T + k sharing G, then there exists a T + ∞ [fv(H)]-model that view-endorses H.

∞ [fv Σ∞ (Γ )]-model that view-endorses Γ and H contained in Γ .

The proof of this theorem

[START_REF] Bonacina | A model-constructing framework for theory combination[END_REF] 

relies on the following: Lemma 1 (Model glueing). Let H be an assignment and G be the collection of shared terms inductively defined by:

(t←c) ∈ H t ∈ G u, u ∈ G t ∈ fv Σi (u) ∩ fv Σj (u ) i =j t ∈ G u ∈ G t ∈ fv Σ k (u)\V ∞ t ∈ G

I-inferences and written J I L, derive a singleton Boolean assignment L from a T -assignment J. Since all theories include equality, all theory modules include the equality inference rules of Fig.1. The following inferences are I RA -inferences:(x← √ 2), (y← √ 2) I RA (x•y 1+1) (y← √ 2), (x← √ 2) I RA (y x) (y←√2), (x← √ 3) I RA (y x)

The first case is used for a Decide step and the second one for a Deduce, Fail, or ConflictSolve step. A module I k is said to be complete, if for all plausible T kassignments J that I k cannot extend, there exists a T + k [fv Σ k (J)]-model M that
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Search rules

Decide Γ -→ Γ, ? A if A is a T k -assignment for a T k -relevant term of Γ that is acceptable for ΓT k and I k , with 1 ≤ k ≤ n The next three rules share the conditions: J ⊆ Γ , (J I k L), and L ∈ Γ , for some k,

Fig. 3. The CDSAT inference system

The global basis is fixed throughout a CDSAT derivation but depends on the input problem. We describe next the CDSAT rules, beginning with the search rules. The Decide rule extends a trail Γ with a theory assignment A without justifying it by a theory inference: it is a decision. A assigns a value to a relevant term, and is acceptable for the theory view of the trail and the theory module (cf. Definitions 2, 3 and 4). In Fig. 2, y is the relevant term in A 1 3 and A 2 4 . The Deduce rule extends a trail Γ with an assignment L justified by a theory inference J I k L. In Fig. 2, Deduce infers A 1 4 from {A 1 0 , A 1 2 }, A 2 5 from {A 2 0 , A 2 1 }, and A 3 5 from {A 3 3 , A 3 4 }, by using the FM resolution rule of I LRA . Rules Fail and ConflictSolve apply to a trail Γ that is conflicting because a theory inference J I k L contradicts an assignment L already present in Γ . The set J ∪ {L} is the conflict. Its level is denoted level Γ (J, L). If it is 0, rule Fail returns unsat (e.g., E 3 in Fig. 2). If it is greater than 0 (e.g., E 1 and E 2 in Fig. 2), rule ConflictSolve triggers a series of conflict resolution steps transforming Γ into a trail Γ where the conflict is solved. In all three conflicts in Fig. 2, the inferences that expose the conflict are applications of the evaluation rule of I LRA : y←0 -y < -2 for E 1 , y←4 y < 0 for E 2 , and ∅ 0 < -2 for E 3 .

We now describe the conflict resolution rules, referring to Fig. 2 and4 for their application to problems R and P , respectively. Conflict resolution rules operate on pairs Γ ; E , where Γ is a trail and E is a set of assignments in Γ termed conflict. If the conflict contains a first-order decision A, whose level n is greater than that of the rest of the conflict, rule Undo removes A and all assignments of level greater than or equal to n. In Fig. 2, rule Undo solves conflicts E 1 and E 2 .