
HAL Id: hal-01615673
https://hal.science/hal-01615673v1

Submitted on 13 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using linear logic and proof theory to unify
computational logic

Dale Miller

To cite this version:
Dale Miller. Using linear logic and proof theory to unify computational logic. Proceedings of Trends
in Linear Logic and Applications (TLLA 17), Sep 2017, Oxford, United Kingdom. �hal-01615673�

https://hal.science/hal-01615673v1
https://hal.archives-ouvertes.fr


Using linear logic and proof theory to unify
computational logic

by Dale Miller, Inria

To be presented at
TLLA 17: Trends in Linear Logic and Applications

3 September 2017, Oxford, UK

The opening sentence of Girard’s 1987 paper introducing linear logic
contains the words “Linear logic is a logic behind logic”. In this talk, I will
explore a slight variation of this phrase: “Linear logic is the logic behind
computational logic”. Switching the indefinite article into a definite article
is, of course, dangerous since we do not know what future analysis might
reveal. I retain this switch here since, for the scope of this talk, I will not
be tempted to consider any alternative to the core principles of linear logic.
Also, this latter phrase narrows “logic” to just “computational logic”. By
this term, I mean, the discipline that has evolved within theoretical computer
science for which there are now several conferences (such as LICS and CSL)
as well as journals (such as the Transactions on Computational Logic). In
particular, I assume that computational logic includes the following topics:

• Logic programming (proof search)

• Term representation

• Type systems (Curry-Howard)

• Functional programming (proof normalization)

• Model checking

• Theorem proving in logic and arithmetic, both automatic and interac-
tive.

Every one of these topics is mature (having been studied now for decades)
and broadly applicable (having numerous applications in practice or within
computational logic itself). Every one of these topics is taught routinely to
undergraduate or graduate students interested in applying formal methods
to computer science problems.

Young people approaching topics in computational logic will find texts
and articles that develop these topics in isolation from each other and with
antipathy for one another. For example, intuitionistic logic was developed
to rid (classical) logic of certain logical principles and model checking was

1



born in the 1980’s as an anti-proof movement (against Floyd-Hoare style
proofs).

In this talk, I want to address the challenge of finding a core set of
principles that could provide a foundation for all of these topics and, as such,
allow students to understand principles that are common and to appreciate
the different reasons those general principles need to be differentiated into
these many, separate topics.

Our proposed common foundation includes the following three logics.

1. MALL, with its classification of connectives as being additive or mul-
tiplicative and with having unambiguous polarities.

2. Linear logic (LL), as an extension of MALL with exponentials (and
possibly with first-order and higher-order quantification). LL can serve
as a foundation for classical and intuitionistic logics.

3. µMALL, as an extension of MALL with fixed points instead of ex-
ponentials. This logic appears to be more appropriate than LL as a
foundation for model checking and inductive (and coinductive) theo-
rem proving.

The foundation of this development is built on the theory and structure
of proofs (i.e., on proof theory). Here, sequent calculus is central. While
many people feel that sequent calculus is just one choice of proof presen-
tation (among other choices such as natural deduction, tableaux, Herbrand
instances, dependently typed λ-terms, etc), I will promote the point that
sequent calculus should be seen as having a distinguished position: it pro-
vides the “assembly language” for realizing proof systems. The amorphous
nature of Gentzen’s sequent calculus can be tamed and exploited by the use
of focused proof systems. The notion of synthetic inference rules arising
from focused proofs provides a framework that helps to link and distinguish
the many topics within computational logic.

A corollary of our approach to organize computational logic is that top-
ics such as model theory, category theory, type theory, algebra, and game
semantics do not play a role in presenting a unified approach to computa-
tional logic. Instead, those topics can be expected to provide deep results
and historical connections in various specialized domains of computational
logic.

Draft: 21 July 2017

2


