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This work is devoted to the consistent modeling of a three-phase mixture of a gas, a liquid and its vapor. Since the gas and the vapor are miscible, the mixture is subjected to a non-symmetric constraint on the volume. Adopting the Gibbs formalism, the study of the extensive equilibrium entropy of the system allows to recover the Dalton's law between the two gaseous phases. In addition, we distinguish whether phase transition occurs or not between the liquid and its vapor. The thermodynamical equilibria are described both in extensive and intensive variables. In the latter case, we focus on the geometrical properties of equilibrium entropy. The consistent characterization of the thermodynamics of the three-phase mixture is used to introduce two Homogeneous Equilibrium Models (HEM) depending on mass transfer is taking into account or not. Hyperbolicity is investigated while analyzing the entropy structure of the systems. Finally we propose two Homogeneous Relaxation Models (HRM) for the three-phase mixtures with and without phase transition. Supplementary equations on mass, volume and energy fractions are considered with appropriate source terms which model the relaxation towards the thermodynamical equilibrium, in agreement with entropy growth criterion.

The modelling of compressible multiphase flows is crucial for a wide range of applications, notably in the nuclear framework, for instance in vapor explosion of for fast transient situations [START_REF] Bartak | A study of the rapid depressurization of hot water and the dynamics of vapour bubble generation in superheated water[END_REF][START_REF] Xie | Thermodynamoc and gasdynamic aspects of a boiling liquid expanding vapour explosion[END_REF]. Within the two last decades, this topic has resulted in an abundant literature especially about two-phase flows, see for instance [START_REF] Baer | A two phase mixture theory for the deflagration to detonation (ddt) transition in reactive granular materials[END_REF][START_REF] Kapila | Two-phase modelling of ddt in granular materials: reduced equations[END_REF][START_REF] Gavrilyuk | Mathematical and numerical modeling of two-phase compressible flows with micro-inertia[END_REF][START_REF] Flåtten | Relaxation two-phase flow models and the subcharacteristic condition[END_REF][START_REF] Dreyer | Bubbles in liquids with phase transition. Part 1. On phase change of a single vapor bubble in liquid water[END_REF][START_REF] Dreyer | Bubbles in liquids with phase transition-part 2: on balance laws for mixture theories of disperse vapor bubbles in liquid with phase change[END_REF]. More recently attention has been paid to the simulation of three-phase flows [START_REF] Hérard | A three-phase flow model[END_REF][START_REF] Hérard | A class of compressible multiphase flow models[END_REF][START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF][START_REF] Han | Efficient and robust relaxation procedures for multicomponent mixtures including phase transition[END_REF], by means of relaxation models in the spirit of the two-fluid Baer and Nunziato model [START_REF] Baer | A two phase mixture theory for the deflagration to detonation (ddt) transition in reactive granular materials[END_REF]. In all the latter references the mixture is assumed to be immiscible that is all the phases occupy different volumes. The thermodynamical equilibrium of the mixture is then depicted by the equality of the pressures and temperatures of the three phases (and also chemical potential as phase transition is considered). As the mixture dynamics is considered, each phase dynamic is depicted by an Euler type system which are coupled through nonconservative interfacial terms, additional advection equations of volume fractions and relaxation terms. The overall system enters the class of hyperbolic system of relaxation and admits good properties: hyperbolicity, well-understood wave structure, entropy inequality... For particular Equations of State (EoS), the Riemann problem is also well understood and has lead to the development of relevant numerical approximation (see again [START_REF] Hérard | A three-phase flow model[END_REF][START_REF] Hérard | A class of compressible multiphase flow models[END_REF][START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF][START_REF] Han | Efficient and robust relaxation procedures for multicomponent mixtures including phase transition[END_REF] for three-fluid (perfectly immiscible) models). As immiscible mixture are considered, that is when the phases are intimate and share the same volume, one should refer to the works of Dellacherie [START_REF] Dellacherie | Relations de fermeture pour le système des équations d'euler multi-espèces. construction et étude de schémas de relaxation en multi-espèces et en multiconstituants[END_REF][START_REF] Dellacherie | Relaxation schemes for the multicomponent Euler system[END_REF]. Since the phases are miscible, the model is in adequacy with the expected Dalton's law which states that the equilibrium mixture pressure is the sum of the pressures of each phases. We refer to [START_REF] Gibbs | The Collected Works of J. Willard Gibbs[END_REF] and [START_REF] Callen | Thermodynamics and an introduction to thermostatistics[END_REF] for fundamental Thermodynamics. The dynamic of the multicomponent fluid is again described by a Baer and Nunziato type of system, including relaxation terms and non-conservative interfacial terms. The authors also investigate the impact of the closure law on the hyperbolicity of the associated Homogeneous Equilibrium Model (HEM). These works complement the study proposed in [START_REF] Lagoutière | Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants[END_REF] about the comparison of several closure laws applied to an HEM model in the case of a multicomponent immiscible mixture.

The purpose of the present work is to investigate the thermodynamics of a mixture which is not merely miscible or immiscible but of mix type. We focus on a three-phase compressible flows, composed of a liquid phase, its associated vapor phase and a gas. The gas is miscible with the vapor phase but no mass transfer can occur between either the gas and the vapor or the gas and the liquid. Besides phase transition can occur between the vapor and the liquid; in the whole paper we will distinguish whether phase transition between the liquid and the vapor occur or not. The core of the paper is the modelling of a rigorous thermodynamical model. It allows to construct reliable hyperbolic HEM models to depict the motion of the compressible three-phase mixture. We do not to address numerical aspects because of lack of relevant test cases.

First we aim at precisely give an accurate description of the thermodynamical equilibrium of the system. Adopting the Gibbs formalism, as done in [START_REF] Helluy | Relaxation models of phase transition flows[END_REF][START_REF] Mathis | Étude théorique et numérique des écoulements avec transition de phase[END_REF][START_REF] Helluy | Pressure laws and fast Legendre transform[END_REF], we intricate the extensive variables of the system. This description relies on the definition of the extensive equilibrium entropy of the system. The second law of Thermodynamics states that the thermodynamical equilibrium is attained as the mixture entropy reaches its maximum under some constraints. Depending on phase transition occurs or not between the liquid and its vapor, the set of constraints changes, leading to different properties on the entropy function. The core issue is the volume constraint which reflects the non-symmetric immiscibility properties between the liquid and the gaseous phases. This constraint makes the whole modeling difficult since it prevents from using convenient tools of convex analysis such as sub-convolution and Legendre transform, see [START_REF] Mathis | Étude théorique et numérique des écoulements avec transition de phase[END_REF][START_REF] Helluy | Pressure laws and fast Legendre transform[END_REF]. At this stage, one recovers a consistent characterization of the thermodynamical equilibrium : the Dalton's law for the gaseous phases and the equality of the temperatures apply. Note that a similar description (in terms of extensive variables) has been proposed in [START_REF] Bachmann | A simple model for cavitation with non-condensable gases[END_REF] but the computations are restricted to particular equations of state (namely stiffened gas laws for the three phases). The present study is valid for any equations of state. Turning to the intensive variables, we analyse the specific equilibrium entropies in terms of optimization problems in the spirit of [START_REF] Helluy | Relaxation models of phase transition flows[END_REF][START_REF] Allaire | A strictly hyperbolic equilibrium phase transition model[END_REF][START_REF] Mathis | Étude théorique et numérique des écoulements avec transition de phase[END_REF][START_REF] Helluy | Pressure laws and fast Legendre transform[END_REF][START_REF] Faccanoni | Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium[END_REF].

Section 3 addresses the construction of three-phase Euler systems at thermodynamical equilibrium called HEM models. Following the works of Dellacherie [START_REF] Dellacherie | Relations de fermeture pour le système des équations d'euler multi-espèces. construction et étude de schémas de relaxation en multi-espèces et en multiconstituants[END_REF][START_REF] Dellacherie | Relaxation schemes for the multicomponent Euler system[END_REF], it consists in providing the correct closure laws to the three-phase Euler system in agreement with the optimization constraints presented in Section 2. We distinguish two cases depending on phase transition occurs or not between the vapor and the liquid phases. When phase transition is omitted, we prove that the resulting system is hyperbolic using a modified Godunov-Mock theorem in the spirit of [START_REF] Lagoutière | Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants[END_REF]. When mass transfer is allowed, hyperbolicity is also proven. But the extension of the Godunov-Mock theorem is obsolete and one has to go back to the study the Jacobian matrix of the flux.

One difficulty when approximating solutions of HEM models is that the mixture pressure is often difficult to express analytically, even when the phases are depicted by simple EoS, see for instance the computations detailled in [START_REF] Bachmann | A simple model for cavitation with non-condensable gases[END_REF] for a three-phase mixture. Besides the mixture pressure law may present pathologies leading to the lack of convexity of the isentropes or slope discontinuities of the entropy, which result in the appearance of composite waves, see [START_REF] Menikoff | The Riemann problem for fluid flow of real materials[END_REF]. To overcome the problem, one could consider an approximate model by means of a relaxation procedure. One obtains a Homogeneous Relaxation model (HRM) where the relaxation towards the thermodynamical equilibrium is driven by source terms which comply with the entropy growth criterion. Section 4 presents two HRM models depending on whether phase transition occurs or not, following the construction proposed in [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF] (see also refer to [START_REF] Hurisse | Application of an homogeneous model to simulate the heating of two-phase flows[END_REF][START_REF] Helluy | Verification of a two-phase flow code based on an homogeneous model[END_REF][START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF] for computational aspects).

A consistent thermodynamical description of the three phase system

The purpose of this section is to give a proper description of the thermodynamical model. We begin by the determination of the extensive constraints on the state variables of the thermodynamical system. Because the gaseous phases are miscible with one another and immiscible with the liquid, the volume constraint is nonsymmetric. According to the second principle, the mixture entropy achieves its maximum at thermodynamical equilibrium. We characterize two possible equilibria depending on phase transition occurs or not between the liquid and its vapor. One recovers the Dalton's law satisfied by the gaseous phases. Then we introduce the intensive formulation and study the equilibrium specific entropies for the models without and with phase transition. It turns out that they are concave, possibly with a saturation zone.

2.1. Single fluid thermodynamics: main definitions and assumptions. Consider a fluid of mass M ≥ 0 and internal energy E ≥ 0 occupying a volume V ≥ 0. As the fluid is homogeneous and at rest, its thermodynamical behaviour is described by its entropy function

S : (R + ) 3 → R (M, V, E) → S(M, V, E).
This entropy function S is concave with respect to W = (M, V, E) ∈ (R + ) 3 . Then it is classical to extend it by -∞ outside the close convex cone (R + ) 3

S(W ) = S(W ), W ∈ (R + ) 3 , -∞, elsewhere.
We adopt the assumptions stated in [START_REF] Callen | Thermodynamics and an introduction to thermostatistics[END_REF] and [START_REF] Evans | A survey of entropy methods for partial differential equations[END_REF].

Assumption 1. Assume the entropy S : (R + ) 3 → R ∪ {-∞} is such that (i) the set of admissible states C := {W ∈ (R + ) 3 , S(W ) > -∞} is a nonempty close convex domain, (ii) S is a concave function of W , (iii) S is extensive or Positively Homogeneous of degree 1 (PH1), that is

∀λ ∈ R + * , ∀W ∈ C, S(λW ) = λS(W ), (iv) S is upper semi-continuous that is ∀W 0 ∈ C, lim W →W0 sup S(W ) ≤ S(W 0 ), ( 
v) S is of class C 2 on C and its partial derivative with respect to the internal energy is strictly positive

∀W ∈ C, ∂S ∂E > 0.
Assumptions (ii) and (iii) are equivalent to assume (-S) sub-linear [START_REF] Rockafellar | Convex analysis[END_REF]. The existence and continuity assumption on the derivatives of S is quite strong even if it is common in literature. Observe that the extensive entropy S cannot be strictly concave since it is PH1.

The derivative of a PH1 function is PH0, said intensive. Therefore the smoothness assumption (v) allows to define intensive potentials:

• the temperature T 1 T = ∂S ∂E ,

• the pressure P P T = ∂S ∂V ,

• the chemical potential µ µ = -T ∂S ∂M .

Hence one can state the extensive Gibbs relation

T dS = dE + P dV -µdM.
It is also common to define the specific entropy s by

M s = S(M, V, E).
The extensive entropy S being PH1, s is PH0 (intensive) such that (1)

s = S(1, V /M, E/M ).
Hence s can be seen as a function of the specific volume V /M =: τ and the specific energy E/M =: e. Setting M = 1 in the extensive Gibbs relation gives the analogous intensive form

(2) T ds = de + P dτ.

Since S is PH1, it satisfies the Euler's relation ∇S • (M, V, E) T = S which leads to another characterization of the chemical potential

(3) µ = -T s + pτ + e.
2.2. Extensive description of the three-phase model. We now consider a fluid system of fixed mass M ≥ 0, volume V ≥ 0 and internal energy E ≥ 0, composed of a gas (indicated by the index g) and a pure body present under its liquid phase (with index l) and its vapor phase (with index v). We assume that no mass transfer arises between the gas and the others remaining phases but only mechanical and thermal exchanges. We use the (abusive) appellation phase to indicate either the liquid, the vapor or the gaseous component of the mixture.

We denote by M k ≥ 0, V k ≥ 0 and E k ≥ 0 the mass, the volume and the internal energy of the phase k ∈ {l, g, v}. We assume that each phase is entirely described by its entropy function S k satisfying Assumptions 1 for an extensive state vector

W k = (M k , V k , E k ) belonging to the close convex cone C k defined in Assumption 1-(i).
We now state the constraints on the extensive variables. By the mass conservation, one has ( 4)

M = M l + M g + M v ,
and the internal energy conservation leads to

(5)

E = E l + E v + E g .
The vapor is miscible with the gas, that is these two phases form an intimate mixture occupying the same volume. On the other hand, the liquid phase is immiscible with the gas and the vapor, that is it occupies a different volume at a mesoscopic scale. One gets the following volumic constraints

(6) V = V l + V v , V g = V v .
Note that we assume that no vacuum can occur (otherwise, one should consider

V ≥ V l + V v )
and that the vapor and the gas are perfectly intimate. Unlike the mass or energy constraints, the volume constraint is not invariant over permutation of the indexes k = l, g, v. This feature induces difficulties to properly characterize the mixture equilibrium and the mixture entropy (both in extensive and intensive variables).

Remark 1. If the vapor phase (resp. the gas) is absent, the system is made of the two remaining phases. To remove the vapor phase (resp. the gas), one has to impose M v = 0 (resp. M g = 0). Indeed setting V v = 0 (resp. V g = 0) is meaningless because the volume constraint (6) would impose the disappearance of both the vapor and the gas phases. On the other hand, if the liquid phase is absent, one has to set both M l = 0 and V l = 0.

Let us address the definition of the extensive equilibrium entropy of the mixture. Out of equilibrium, the entropy of the three-phase system is the sum of the phasic entropies.

For (W l , W g , W v ) ∈ C l × C g × C v , it reads (7) Σ(W l , W g , W v ) = S l (W l ) + S g (W g ) + S v (W v ).
The second principle of Thermodynamics states that the system will evolve until the entropy Σ reaches a maximum. Depending on whether or not mass transfer arises between the vapor and the liquid phases, the maximization process relies on different set of constraints, namely Ω N P T ext (No Phase Transition) and Ω P T ext (Phase Transition), leading to two different mixture entropies. We recall that phase transition is not allowed between the gas and the other phases since it has a different molecular structure. Hence M g is fixed. 3 be the state vector of the three-phase system. The equilibrium entropy of the mixture is:

Definition 1. Fix M g ≥ 0. Let W = (M, V, E) ∈ (R + )
• without phase transition: M l and M v are fixed satisfying the mass conservation

S N P T (M, V, E, M l , M g ) = max (W l ,Wg,Wv)∈Ω N P T ext Σ(W l , W g , W v ), (4) and (8) 
where 5) and (6) hold} • with phase transition:

Ω N P T ext := {W k ∈ C k , k = l, g, v |(
(9) S P T (M, V, E, M g ) = max (W l ,Wg,Wv)∈Ω P T Σ(W l , W g , W v ),
where

Ω P T ext := {W k ∈ C k , k = l, g, v |M -M g = M l +M v , (5) 
and (6) hold}. The constraint sets Ω N P T ext and Ω P T ext are closed bounded convex sets. According to Assumption 1-(iv) the entropies S k are lower semi-continuous functions. Then the optimization problem is well posed [START_REF] Rockafellar | Convex analysis[END_REF][START_REF] Hiriart-Urruty | Fundamentals of convex analysis[END_REF].

Proposition 1. The extensive equilibrium entropy S N P T (resp. S P T ) of the threephase mixture defined either by (8) (resp. (9)) is a PH1 concave function of its arguments.

Proof. The function Σ(W

l , W g , W v ) is a concave function on C l × C g × C v since
it is a sum of concave functions. We now focus on the optimization problem (8) over the set of constraints Ω N P T ext that is without phase transition. The mass of gas M g is fixed and the maximization is performed on the volume and the energy only. Hence we omit the dependency on M l and M g and get

S(M, V, E) = max            V = V l + V v V g = V v E = E l + E g + E v Σ(W l , W g , W v ), = max      V = V l + V v E = E l + E g + E v Σ(W l , (M g , V v , E g ), W v ).
Since the masses M and M k , k ∈ {l, g, v}, are fixed, the problem can be written under the following form

S(W ) = (AH)(V, E) = max{H(V l , V v , E l , E g , E v )| A(V l , V v , E l , E g , E v ) t = (V, E) t },
where 5 (as the restriction of the concave function Σ) and A is a linear transformation, the function AH is also concave with respect to (V, E) (see [START_REF] Rockafellar | Convex analysis[END_REF], Section 5). Then it follows that S(W ) is concave with respect to W = (M, V, E) ∈ (R + ) 3 . Similar arguments hold in the case of phase transition between the liquid and its vapor.

H(V l , V g , E l , E g , E v ) = S l (M l , V l , E l ) + S g (M g , V v , E g ) + S v (M v , V v , E v ) and A = 1 1 0 0 0 0 0 1 1 1 is a linear mapping from (R + ) 5 to (R + ) 2 defining the con- straints V = V l + V v and E = E l + E g + E v . Because the function H is concave with respect to (V l , V v , E l , E g , E v ) ∈ (R + )
Remark 2. In [START_REF] Helluy | Relaxation models of phase transition flows[END_REF] the authors provide a similar extensive definition of the mixture entropy for a two-phase mixture when considering phase transition between the two phases, indexed by k = 1, 2. They consider the mass and energy conservation that is

M = M 1 + M 2 and E = E 1 + E 2 .
As the volume constraint is considered, they distinguish the immiscible and the miscible mixtures. When considering an immiscible mixture, their volume constraint is

V = V 1 + V 2 .
Then the extensive entropy of the mixture satisfies an analogous formulation as [START_REF] Dellacherie | Relaxation schemes for the multicomponent Euler system[END_REF], which turns to be an sup-convolution operation, namely

S(W ) = S 1 S 2 (W ) = max W1∈C1 (S 1 (W 1 ) + S 2 (W -W 1 )),
where the symbol is a notation for sup-convolution in convex analysis. When considering a miscible approach, their volume constraint is

V = V 1 = V 2 .
Here again the extensive entropy of the mixture is a sup-convolution operation. The supconvolution operation turns to have many interesting properties (especially linked to the Legendre transform). Such properties have been studied in [START_REF] Helluy | Pressure laws and fast Legendre transform[END_REF] and [START_REF] Mathis | Étude théorique et numérique des écoulements avec transition de phase[END_REF], for the computation of admissible pressure laws for immiscible and miscible binary mixture.

In the present case, because the volume constraint (6) is simultaneously immiscible (between the liquid and the vapor and gas phases) and miscible (between the gas and the vapor), we cannot express the energy of the mixture as a sup-convolution procedure.

When the equilibrium entropy without phase transition is differentiable with respect to the volume V and the internal energy E, then one can define the temperature and the pressure of the mixture at equilibrium [START_REF] Dellacherie | Relations de fermeture pour le système des équations d'euler multi-espèces. construction et étude de schémas de relaxation en multi-espèces et en multiconstituants[END_REF] 1

T = ∂S N P T ∂E (M, V, E, M l , M g ), P T = ∂S N P T ∂V (M, V, E, M l , M g ).
The chemical potential and the potentials linked to the masses M l and M g are

µ T = - ∂S N P T ∂M (M, V, E, M l , M g ), λ k T = ∂S N P T ∂M k (M, V, E, M l , M g ), k = l, g.
Hence one has the following relation

T dS N P T = dE + pdV -µdM + λ l dM l + λ g dM g .
When phase transition is considered, one gets

T dS P T = dE + pdV -µdM + λ g dM g .
When the maximum of the mixture entropy is reached in the interior of the set of constraints, the three phases are present and at thermodynamical equilibrium [START_REF] Helluy | Relaxation models of phase transition flows[END_REF][START_REF] Mathis | Étude théorique et numérique des écoulements avec transition de phase[END_REF].

Proposition 2. The thermodynamical equilibrium corresponds to

• the equality of the temperatures [START_REF] Dreyer | Bubbles in liquids with phase transition. Part 1. On phase change of a single vapor bubble in liquid water[END_REF] T l = T g = T v ,

• the Dalton's law on the pressures of the gas and the vapor phases

(12) p l = p g + p v .
Moreover if phase transition is allowed between the liquid and its vapor then the equilibrium is also characterized by

(13) µ l = µ v .
Proof. The optimization with respect to the energy and the volume are the same on the two sets of constraints Ω N P T ext and Ω P T ext . Let us fix the energy

E k of the phase k ∈ {l, g, v}. Then E -E k = E k + E k , with k = k , k, k ∈ {l, g, v}. Thus ∂ ∂E k (S k (M k , V k , E k ) + S k (M k , V k , E k ) + S k (M k , V k , E k )) = 1 T k - 1 T k .
Then the maximum is reached for T k = T k for any k = k ∈ {l, g, v}. Optimizing with respect to the volume under the volume constraint [START_REF] Callen | Thermodynamics and an introduction to thermostatistics[END_REF] gives

∂ ∂V l (S l (M l , V l , E l ) + S g (M g , V -V l , E g ) + S v (M v , V -V l , E g )) = p l T l - p g T g + p v T v .
Since the temperature are equal, it yields the Dalton's law on the pressures. We now focus on the case where phase transition occurs. In the case of phase transition, we then optimize with respect to the mass in the set of constraints Ω P T ext . Since the mass of the gas M g is fixed, one has M -

M g = M l + M v . It yields ∂ ∂M l (S l (M l , V l , E l ) + S g (M g , V g , E g ) + S v (M -M g -M l , V v , E v )) = µ l T l - µ v T v .
Because T l = T v , the chemical potentials of the liquid and vapor phases are also equal, the chemical potential of the gas µ g being fixed.

One observe that the pressure relation [START_REF] Dreyer | Bubbles in liquids with phase transition-part 2: on balance laws for mixture theories of disperse vapor bubbles in liquid with phase change[END_REF], which contains the Dalton's law on the miscible vapor and gaseous phases, is a direct consequence of the maximization process under the volumic constraint [START_REF] Callen | Thermodynamics and an introduction to thermostatistics[END_REF].

As a consequence, at equilibrium, one may define the mixture temperature T and pressure p by ( 14)

T = T l = T g = T v p = p l = p g + p v .
Nevertheless it is not possible de define a mixture chemical potential.

2.3.

Intensive characterization of the entropies. We now turn to the definition of intensive quantities. The system is now entirely described by its intensive entropy s defined by (1) as a function of the specific volume τ = V /M > 0 and the specific internal energy e = E/M > 0.

We introduce the mass fraction ϕ k , the volume fraction α k and the energy fraction z k of the phase k ∈ {l, g, v} defined respectively by [START_REF] Flåtten | Relaxation two-phase flow models and the subcharacteristic condition[END_REF] ϕ

k = M k /M, α k = V k /V, z k = E k /E, which belong to [0, 1]. Each phase k = l, g, v has a specific volume τ k = V k /M k = α k τ /ϕ k and a specific internal energy e k = E k /M k = z k e/ε k . The specific entropy s k of the phase k ∈ {l, g, v} is defined by s k (τ k , e k ) = S k (1, τ k , e k ).
Moreover one can derive the intensive form of the Gibbs relation (2) for each phase k ∈ {l, g, v}

T k ds k = de k + p k dτ k .

We now turn to the intensive formulation of the extensive constraints. The extensive volume constraint (6) translates into

(17) 1 = α l + α v , α g = α v .
The mass and energy conservations ( 4) and ( 5) read

1 = ϕ l + ϕ g + ϕ v , (18) 1 
= z l + z g + z v . ( 19 
)
Out of equilibrium the intensive entropy of the three-phase system, expressed as a function of τ , e and the fractions ϕ k , α k , z k , k = l, g, v, reads (20)

σ(τ, e, (ϕ k ) k , (α k ) k , (z k ) k ) = ϕ L s l α l ϕ l τ, z l ϕ l e + ϕ g s g α g ϕ g τ, z g ϕ g e + ϕ v s v α v ϕ v τ, z v ϕ v e .
At equilibrium and at fixed (τ, e), the intensive entropy reaches its maximum. As in the extensive formulation, one has to define the set of constraints depending on whether phase transition occurs or not between the liquid and the vapor phase. Moreover since the gaseous phase does not exchange mass with the others phases, its mass fraction ϕ g is fixed during the optimization process.

Proposition 3. Fix ϕ g ∈ [0, 1]. Let (τ, e) ∈ (R + ) 2 be the specific state vector of the system. The equilibrium intensive entropy s of the mixture is:

• without phase transition: ϕ l , ϕ g are fixed according to (18) and (21) s N P T (τ, e, ϕ l , ϕ g ) = max

((α k ) k ,(z k ) k )∈Ω N P T int σ(τ, e, (ϕ k ) k , (α k ) k , (z k ) k ),
where [START_REF] Gibbs | The Collected Works of J. Willard Gibbs[END_REF] and (19) hold} • with phase transition: [START_REF] Helluy | Relaxation models of phase transition flows[END_REF] s P T (τ, e, ϕ g ) = max

Ω N P T int := {(α k , z k ), k = l, g, v| ( 
((ϕ k ) k ,(α k ) k ,(z k ) k )∈Ω P T int σ(τ, e, (ϕ k ) k , (α k ) k , (z k ) k ),
where

Ω P T int := {(ϕ k , α k , z k ), k = l, g, v|1-ϕ g = ϕ l +ϕ v , (17) 
and (19) hold}.

In both cases the equilibrium intensive entropy is a concave function of its arguments.

Proof. The characterization of the mixture intensive entropy is a direct consequence of the homogeneity of the extensive mixture entropies defined in ( 8) and [START_REF] Dellacherie | Relaxation schemes for the multicomponent Euler system[END_REF], see Proposition 1. The relation (21) (resp. ( 22)) is achieved by dividing the optimization problem (8) on the set of constraints Ω N P T ext (resp. ( 9) on the set of constraints Ω P T ext ) by the mass M . In the case without phase transition, the intensive entropy s N P T (τ, e, ϕ l , ϕ g ) is the restriction of the extensive entropy S N P T (M, V, E, M l , M g ) on the affine convex subset {1} × (R + ) 2 × [0, 1] 2 . Since S N P T is a concave function of (M, V, E), s N P T is a concave function of (τ, e). The same holds in the case of phase transition.

We now focus on the intensive equilibrium entropy without phase transition s N P T and prove that it is strictly convex with respect to (τ, ε). Proposition 4. Assume that the mass fractions ϕ k are fixed (no phase transition is allowed). Then the intensive equilibrium entropy (21)

• depends only on (τ, e)

• is a strictly concave function of (τ, e) • satisfies the relation : T ds N P T = de + pdτ , where T and p are the mixture temperature and pressure at equilibrium.

Proof. According to the definition [START_REF] Helluy | Pressure laws and fast Legendre transform[END_REF], it is obvious that the equilibrium mixture entropy depends only on (τ, e) at fixed mass fractions ϕ k , k = l, g, v. Then for any equilibrium state (τ, e) ∈ (R + ) 2 , it exists (τ k , e k ) such that (23)

     e = ϕ l e l + ϕ g e g + ϕ v e v τ = ϕ l τ l + ϕ g τ g ϕ v τ v = ϕ g τ g .
We now prove the Gibbs relation

T ds = de + pdτ,
at fixed ϕ k . The phasic entropies satisfy

T ds k = de k + p k dτ k , k = l, g, v.
Multiplying by ϕ k and summing over k = l, g, v, give

T d( k=l,g,v ϕ k s k ) = d( k=l,g,v ϕ k e k ) + k=l,g,v ϕ k p k dτ k ,
according to the equality of the temperatures. By ( 20) and ( 23) it yields

T ds N P T = de + p l d(ϕ l τ l ) + p g d(ϕ g τ g ) + p v d(ϕ v τ v ).
We now use miscibility of the vapor and gas phases ϕ g τ g = ϕ v τ v to get

T ds N P T = de + p l d(ϕ l τ l ) + (p g + p v )d(ϕ g τ g ).
The characterization of the pressure equilibrium leads to conclusion. We turn to the strict concavity of the s N P T . Since the ϕ k , k = l, g, v,, are fixed, we denote s N P T (τ, e) = s N P T (τ, e, (ϕ k ) k ). In order to prove that the entropy is strictly concave, we show that for any equilibrium states (τ, e) and (τ , e ) in (R + ) 2 , one has s N P T (τ, e) < s N P T (τ , e ) + ∇ (τ,e) s N P T (τ , e ) • τ -τ e -e .

Using formulation [START_REF] Helluy | Verification of a two-phase flow code based on an homogeneous model[END_REF] one has

s N P T (τ, e) = ϕ l s l (τ l , e l ) + ϕ g s g (τ g , e g ) + ϕ v s v (τ v , e v ).
Since the phasic entropies are strictly concave functions of (τ k , e k ) and differentiable, there exists (τ k , e k ) such that

s N P T (τ, e) < k=l,g,v ϕ k s k (τ k , e k ) + ϕ k ∇s k (τ k , e k ) • τ k -τ k e k -e k . Now one has ∇s k (τ k , e k ) = 1/T k (τ k , e k ) p k (τ k , e k )/T k (τ k , e k ) with T k (τ k , e k ) = T , ∀k = l, g, v, see Proposition 2.
The definition of the equilibrium entropy, the equality of the temperature, and the constraints (18) lead to

s N P T (τ, e) < s N P T (τ , e ) + 1 T (e -e )+ 1 T ϕ l p l (τ l -τ l ) + ϕ g p g (τ g -τ g ) + ϕ v p v (τ v -τ v ) .
Using the Dalton's law [START_REF] Faccanoni | Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium[END_REF], one can express the mixture pressure as p l = p v + p g = p. Then the volume constraints τ = ϕ l τ l + ϕ g τ g and τ = ϕ l τ l + ϕ v τ v give s N P T (τ, e) < s N P T (τ , e ) + 1 T l (e -e ) + p T (τ -τ ).

According to the Gibbs relation, one has ∇ (τ,e) s N P T = 1/T, p/T which leads to the conclusion.

As phase transition is considered between the liquid and its vapor, the mixture entropy is no longer strictly concave with respect to (τ, e) as ϕ g is fixed.

Proposition 5. Assume that the mass fraction ϕ g is fixed. Then the intensive equilibrium entropy [START_REF] Helluy | Relaxation models of phase transition flows[END_REF] • depends only on (τ, e) • satisfies the relation : T ds P T = de + pdτ , where T and p are the mixture temperature and pressure at equilibrium.

The proof is similar to the proof of the Proposition 4.

Remark 3. Note that we do not prove that the equilibrium entropy is a strictly concave function of (τ, e). Actually this is not the case for binary (immiscible) mixture, see [START_REF] Jaouen | Étude mathématique et numérique de stabilité pour des modèles hydrodynamiques avec transition de phase[END_REF][START_REF] Helluy | Relaxation models of phase transition flows[END_REF][START_REF] Helluy | Pressure laws and fast Legendre transform[END_REF] for instance. One may find the computation of a threephase mixture pressure law in [START_REF] Bachmann | A simple model for cavitation with non-condensable gases[END_REF] (with a mix type volume constraint like (6)) . The authors consider that each phase is depicted by a stiffened gas but it is not possible to give an analytical formulation of the pressure. However computational results illustrate that a saturation zone exists, that is the mixture entropy is not strictly concave.

Equilibrium three-component Euler systems

We now take into account the dynamic of the three-phase mixture, assuming that the three phases have the same velocity. The aim of this section is to provide an homogeneous equilibrium multicomponent Euler's system, called HEM model, with appropriate closure laws in agreement with the thermodynamical equilibria studied in Section 2.3. Two HEM models are presented corresponding to the cases with or without phase transition. The models have good properties: entropy structure and hyperbolicity.

3.1. Three-phase model without phase transition. At thermodynamical equilibrium the three phase flow is depicted by the multicomponent Euler system (24)

                               ∂ t (ϕ l ρ) + ∂ x (ϕ l ρu) = 0, ∂ t (ϕ g ρ) + ∂ x (ϕ g ρu) = 0, ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = 0, ∂ t (ρE) + ∂ x ((ρE + p)u) = 0, E = 1 2 u 2 + e, ∀k ∈ {l, g, v} : p k = p k (τ k , e k ), τ k = ρ -1 k , ϕ l + ϕ g + ϕ v = 1,
where the flow as a density ρ (we also define the specific volume τ = 1/ρ), a velocity u, a pressure p, and an internal energy e, E being the total energy. The phase k = l, g, v is depicted by its mass fraction, its pressure p k , its specific volume τ k and its specific internal energy e k , see Section 2.3. All the phases evolve at the same velocity u and we recall that

(25)      e = ϕ l e l + ϕ v e v + ϕ g eg, τ = ϕ l τ l + ϕ g τ g , ϕ v τ v = ϕ g τ g .
The multicomponent Euler system admits ten equations and has seventeen unknowns which are (ρ, u, E, p, e, (ϕ k ) k∈{l,g,v} , (τ k ) k∈{l,g,v} , (e k ) k∈{l,g,v} , (p k ) k∈{l,g,v} ).

Thus one has to provide seven closure laws. The first three closure laws are given by the constraints [START_REF] Hiriart-Urruty | Fundamentals of convex analysis[END_REF].

The 4 remaining closure laws are given by Proposition 2, that is

(26) T = T l = T g = T v , p = p l = p g + p v ,
where T and p are the thermodynamical temperature and pressure of the three phase flow and p = p(1/ρ, e, ϕ l , ϕ g ).

Proposition 6. The intensive entropy s N P T (τ, e, ϕ l , ϕ g ) defined by (21) satisfies

∂ t s + u∂ x s N P T = 0.

Proof. Let U = (ρ, ρu, ρE, ϕ g ρ, ϕ l ρ) is a smooth solution of the system [START_REF] Hérard | A class of compressible multiphase flow models[END_REF], then one has

∂ t τ + u∂ x τ -τ ∂ x u = 0, ∂ t u + u∂ x u + τ ∂ x p = 0, ∂ t e + u∂ x e + pτ ∂ x u = 0, ∂ t ϕ k + u∂ x ϕ k = 0, k = l, g.
Since s N P T is function of (τ, e, ϕ l , ϕ g ), it follows

∂ t s N P T = ∂s N P T ∂τ ∂ t τ + ∂s N P T ∂e ∂ t e + ∂s N P T ∂ϕ l τ ∂ t ϕ l + ∂s N P T ∂ϕ g ∂ t ϕ g = ∂ x u τ ∂s N P T ∂τ -τ p ∂s N P T ∂e -u∂ x s N P T .
Because the entropy s N P T satisfies the relation T ds N P T = de+pdτ (see Proposition 4), the first term of the right hand side is zero. Hence the entropy s N P T satisfies a transport equation.

In order to study the hyperbolicity of the model ( 24), we adapt a result given in [START_REF] Lagoutière | Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants[END_REF] which extends the Godunov-Mock theorem.

Lemma 1. Let w : R + × R → R n and f : R n → R n defining the system of conservation laws

∂ t w(t, x) + ∂ x f (w)(t, x) = 0,
where w = (w 1 , w 2 ) t with w 1 ∈ R l and w 2 ∈ R n-l and f = (0, f 2 ) t with f 2 ∈ R n-l . Assume that η(w) is a strictly convex function with respect to w 2 at fixed w 1 such that ∂ t η(w) = 0, and that ∇ w1 f 2 (w) = 0. Then the system is hyperbolic. Proof. To prove the hyperbolicity we show that the system is symmetrizable that is there exists a symmetric positive-definite matrix P and a symmetric matrix Q such that

P (w)∂ t w + Q(w)∂ x w = 0.
We define the n × n symmetrization matrix P (w) by

P (w) = I l 0 0 ∇ 2 w2 η .
The entropy η being strictly convex with respect to w 2 , the matrix P (w) is symmetric positive-definite. The associated convection matrix is Q(w) = P (w)∇ w f (w). Since ∇ w1 f 2 (w) = 0, the matrix Q is symmetric so that the system is symmetrizable. As a consequence the system is hyperbolic.

This lemma holds for any variables (t, x) as soon as the system is conservative. Besides we use it in Lagrangian coordinates to prove the following result.

Theorem 1. The system (24) is hyperbolic.

Proof. First the system (24) can be written in Lagrangian coordinates

               D t ϕ l = 0, D t ϕ g = 0, D t τ -D m u = 0, D t u + D m p = 0, D t E + D m (pu) = 0, where D t v = ∂ t v + u∂ x v and D m v = τ ∂ x v.
The associated flux reads f = (0, 0, -u, p, pu). We introduce the function η η : (ϕ l , ϕ g , τ, u, E) → -s N P T (τ, E -u 2 /2, ϕ l , ϕ g ).

According to Proposition 4, the function s N P T is strictly concave with respect to (τ, e) and depends only on (τ, e). Then η is strictly convex with respect to (τ, u, E), see [START_REF] Croisille | Contribution à l'étude théorique et à l'approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces[END_REF][START_REF] Godlewski | Hyperbolic systems of conservation laws, volume 3/4 of Mathématiques & Applications[END_REF]. Moreover s N P T is solely advected by the system, since it satisfies [START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF], see Proposition 6. Hence it yields

D t η(w) = ∂ τ D t τ + ∂ u D t u + ∂ E D t E = -∂ τ s N P T (τ, E -u 2 /2, ϕ l , ϕ g )D t τ + (uD t u + D t E)∂ e s N P T (τ, E -u 2 /2, ϕ l , ϕ g ) = - p T D t τ + ∂ e s N P T (uD t u -D t E) = - p T D m u - u T D m p + 1 T D m (p) = 0.
In addition the mixture pressure p, being a partial derivative of the entropy mixture s N P T , does not depend on the fractions ϕ l and ϕ g . It implies that ∇ ϕ l ,ϕg f = 0. Now Lemma 1 leads to the conclusion.

3.2. Three-phase model with phase transition. When phase transition occurs, the equilibrium multicomponent Euler system reads (28)

                         ∂ t (ϕ g ρ) + ∂ x (ϕ g ρu) = 0, ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = 0, ∂ t (ρE) + ∂ x ((ρE + p)u) = 0, E = 1 2 u 2 + e, ∀k ∈ {l, g, v} : p k = p k (τ k , e k ), τ k = ρ -1 k , ϕ l + ϕ g + ϕ v = 1.
The system admits nine equations and seventeen unknowns which are (ρ, u, E, p, e, (ϕ k ) k∈{l,g,v} , (τ k ) k∈{l,g,v} , (e k ) k∈{l,g,v} , (p k ) k∈{l,g,v} ).

Thus one has to provide eight closure laws.

As in the previous case, three closure laws are given by the three intensive constraints (25)

     e = ϕ l e l + ϕ v e v + ϕ g eg, τ = ϕ l τ l + ϕ g τ g , ϕ v τ v = ϕ g τ g .
The five remaining closures are given by Proposition 2 (29)

     T = T l = T g = T v , p = p l = p g + p v , µ l = µ v .
where T and p are the thermodynamical temperature and pressure of the three phase flow and p = p(1/ρ, e, ϕ g ).

Since the equilibrium entropy is not a strictly concave function of its arguments (see Remark 3), it is not possible to invocate the Godunov-Mock theorem or its extension Lemma 1 to prove the hyperbolicity of the system. However it is possible to prove the hyperbolicity by studying the eigenvalues of the system and the positivity of the mixture temperature.

Theorem 2. The system (28) is hyperbolic.

Proof. The quasilinear form of the system (28) reads

∂ t     ϕ g ρ u e     +       u 0 0 0 0 u ρ 0 1 ρ ∂p ∂ϕ g 1 ρ ∂p ∂ρ u 1 ρ ∂p ∂ρ 0 0 p/ρ u       ∂ x     ϕ g ρ u e     = 0.
The Jacobian matrix of the flux has four eigenvalues u -c, u (double), u + c, where c is the speed of sound given by (30) c 2 /τ 2 = p∂ e p -∂ τ p = -T (p 2 (s P T ) ee -2p(s P T ) τ e + (s P T ) τ τ ).

According to Proposition 5, the entropy (s P T ) is a concave function which depends only on (τ, e) at fixed ϕ g . Hence the right-hand side of (30) is non negative as soon as the temperature T > 0. This concludes the proof.

Homogeneous Relaxation Models for the three-phase flow

The equilibrium multicomponent Euler systems, presented in the previous section, are difficult to use for practical computations. Although they are proved to be hyperbolic, their pressure laws have no analytical expressions (even if p k , k = l, g, v are perfect gas laws). Moreover it is well known, see for instance [START_REF] Menikoff | The Riemann problem for fluid flow of real materials[END_REF][START_REF] Jaouen | Étude mathématique et numérique de stabilité pour des modèles hydrodynamiques avec transition de phase[END_REF][START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF], that such pressure laws present pathologies such that slope discontinuities, lack of convexity of the isentropes, leading to composite waves. To overcome this problem, some authors proposed [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF][START_REF] Helluy | Relaxation models of phase transition flows[END_REF][START_REF] Hurisse | Application of an homogeneous model to simulate the heating of two-phase flows[END_REF][START_REF] Helluy | Verification of a two-phase flow code based on an homogeneous model[END_REF][START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF] to approximate the equilibrium Euler system by a homogeneous relaxation model. It consists in adding convection equations on the fractions and to modify the pressure to make it depend on the fractions. In order to achieve the thermodynamical equilibrium, appropriate relaxation source terms complete the equations on the fractions. The numerical approximation of the relaxed model is easier. Traditionally it consists on a splitting approach. In a first step the convective part is treated with a approximate Riemann solver. During the second step the conservative variables are stored and the pressure is updated from the physical entropy maximization. By construction both steps are entropy satisfying.

We propose in this section to construct the HRM models associated to the HEM three-phase models studied in Section 3 while distinguishing the cases where phase transition occurs or not. First we focus on the model without phase transition and adapt the construction of the HRM model introduced in [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF]. The case with phase transition is treated as corollary.

4.1. HRM model without phase transition. Starting from the equilibrium three-phase model [START_REF] Hérard | A class of compressible multiphase flow models[END_REF], we propose a non-homogeneous model in which the three phases are no longer at thermal and mechanical equilibrium (still without phase transition). To do so one introduces supplementary variables that are the volume fraction of liquid α l and the energy fractions z l and z g defined in [START_REF] Flåtten | Relaxation two-phase flow models and the subcharacteristic condition[END_REF]. Hence the pressure depends not only on ρ, e, ϕ l , ϕ g but also on Y = (α l , z l , z g ). When no mass transfer occurs between the liquid and the gas, the fractions should be perfectly convected i.e. Thus the resulting HRM model reads

                   ∂ t (ϕ k ρ) + ∂ x (ϕ k ρu) = 0, k = l, g, ∂ t (z k ρ) + ∂ x (z k ρu) = 0, k = l, g, ∂ t (α l ρ) + ∂ x (α l ρu) = 0, ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = 0, ∂ t (ρE) + ∂ x ((ρE + p)u) = 0, (33) 
with the closure pressure law (34) p = p(1/ρ, e, ϕ l , ϕ g , α l , z l , z g ).

One should should add un entropy criterion to the model. With ρ = 1/τ the concave function σ(τ, e, ϕ l , ϕ g , α l , z l , z g ) defined in [START_REF] Helluy | Verification of a two-phase flow code based on an homogeneous model[END_REF] would be an entropy function if it satisfies the first order PDE [START_REF] Xie | Thermodynamoc and gasdynamic aspects of a boiling liquid expanding vapour explosion[END_REF] ∂ τ σ -p(1/τ, e, ϕ l , ϕ g , α l , z l , z g )∂ e σ = 0.

Setting T = 1/∂ e σ, one recovers the relation

T dσ = de + pdτ + k=l,g ∂ ϕ k sdϕ k + ∂ α l sdα l + k=l,g ∂ z k sdz k .
Weak solutions of ( 33)-( 43) satisfy

(36) ∂ t (ρσ) + ∂ x (ρuσ) ≥ 0,
which becomes an equality as regular solutions are concerned. The concavity of σ with respect to (τ, e, ϕ l , ϕ g , α l , z l , z g ) is equivalent to the convexity of H = -ρσ with respect to the conservative variables (ρ, ρu, ρE, ϕ l ρ, ϕ g ρ, z l ρ, z g ρ, α l ρ), following [START_REF] Croisille | Contribution à l'étude théorique et à l'approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces[END_REF][START_REF] Godlewski | Hyperbolic systems of conservation laws, volume 3/4 of Mathématiques & Applications[END_REF]. Hence H = -ρσ is a Lax entropy for [START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF].

In order to bring the system to thermodynamical equilibrium described in Proposition 3-( 21), a source term has to be added to the fractions equations

∂ t Y + u∂ x Y = Q.
As relaxation towards the equilibrium is infinitely fast, one recovers the equilibrium fractions which satisfy (37) Y = Y N P T eq (τ, e, ϕ l , ϕ g ) = argmax (α l ,z l ,zg) σ(τ, e, ϕ l , ϕ g , α l , z l , z g ).

As a result the equilibrium pressure law is (38)

p N P T eq (τ, e, ϕ l , ϕ g ) := p(τ, e, ϕ l , ϕ g , Y N P T eq (τ, e, ϕ l , ϕ g )),

defined by the Dalton's law [START_REF] Faccanoni | Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium[END_REF]. Following [START_REF] Coquel | Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics[END_REF][START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF][START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF], a natural source term is (39) Q = λ(Y N P T eq (τ, e, ϕ l , ϕ g ) -Y )

where the parameter λ goes to +∞ to achieve the thermodynamical equilibrium. Moreover the source term Q complies with the entropy production criterion since (40)

∂ t σ + u∂ x σ = ∇ Y σ • (∂ t Y + u∂ x Y )
= λ∇ Y σ • (Y N P T eq (τ, e, ϕ l , ϕ g ) -Y )

≥ λ(σ(τ, e, ϕ l , ϕ g , Y N P T eq ) -σ(τ, e, ϕ l , ϕ g , α l , z l , z g ))

≥ 0, by concavity of the entropy σ.

The drawback of the source term (39) is that the relaxation parameter λ is identical for all the fractions. Hence the relaxation times towards the mechanical and thermal equilibrium are the same, which has no particular physical meaning. An alternative which guarantees the entropy production is 

               ∂ t Y + u∂ x Y = Q, ∂ t (ϕ g ρ) + ∂ x (ϕ g ρu) = 0, ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = 0, ∂ t (ρE) + ∂ x ((ρE + p)u) = 0,
where the fraction vector is Y = (ϕ l , α l , z l , z g ) and the closure pressure law (43) p = p(1/ρ, e, ϕ g , ϕ l , α l , z l , z g ).

Again the entropy σ(τ, e, ϕ g , ϕ l , α l , z l , z g ) defined in [START_REF] Helluy | Verification of a two-phase flow code based on an homogeneous model[END_REF] satisfy the entropy inequality (36) as soon as it complies with [START_REF] Xie | Thermodynamoc and gasdynamic aspects of a boiling liquid expanding vapour explosion[END_REF]. The source term Q has to be chosen to recover the thermodynamical equilibrium described by the fractions (44) Y = Y P T eq (τ, e, ϕ g ) = argmax (ϕ l ,α l ,z l ,zg) σ(τ, e, ϕ l , ϕ g , α l , z l , z g ), leading to the equilibrium pressure law (45) p P T eq (τ, e, ϕ g ) := p(τ, e, ϕ g , Y P T eq (τ, e, ϕ g )). Again the source term Q could be either (46) Q = λ(Y P T eq (τ, e, ϕ g ) -Y ), or (47) Q = λ∇ Y σ(τ, e, ϕ g , Y P T eq (τ, e, ϕ g ))

=            s l -τ l p l T l - e l T l -s v + τ v p v T v + e v T v τ p l T l - p g T g + p v T v e 1 T l - 1 T v e 1 T g - 1 T v .           
Using the characterization (3) of the chemical potential, the first component of Q boils down to (48)

∂ ϕ l σ = - µ l T l + µ v T v ,
which reflects the mass transfer between the liquid and its vapor.
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 31 ∂ t Y + u∂ x Y = 0.The mass conservation allows to write[START_REF] Mathis | Étude théorique et numérique des écoulements avec transition de phase[END_REF] under the conservative form[START_REF] Menikoff | The Riemann problem for fluid flow of real materials[END_REF] ∂ t (ρY ) + ∂ x (ρuY ) = 0.

Q,

  = ∇ Y σ(τ, e, ϕ l , ϕ g , Y ), since ∂ t σ + u∂ x σ = |∇ Y σ| 2 ≥ 0. This choice of source term enables to use different relaxation scales for mechanical and thermal equilibria.

4. 2 .

 2 HRM model with phase transition. Following the same methodology explained in Section 4.1, one obtains the HRM model taking into account phase transition between the liquid and the vapor. It reads (42)
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