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A THERMODYNAMICALLY CONSISTENT MODEL OF A

LIQUID-VAPOR FLUID WITH A GAS

HÉLÈNE MATHIS

Abstract. This work is devoted to the consistent modeling of a three-phase

mixture of a gas, a liquid and its vapor. Since the gas and the vapor are mis-

cible, the mixture is subjected to a non-symmetric constraint on the volume.
Adopting the Gibbs formalism, the study of the extensive equilibrium entropy

of the system allows to recover the Dalton’s law between the two gaseous
phases. In addition, we distinguish whether phase transition occurs or not be-

tween the liquid and its vapor. The thermodynamical equilibria are described

both in extensive and intensive variables. In the latter case, we focus on the
geometrical properties of equilibrium entropy. The consistent characteriza-

tion of the thermodynamics of the three-phase mixture is used to introduce

two Homogeneous Equilibrium Models (HEM) depending on mass transfer is
taking into account or not. Hyperbolicity is investigated while analyzing the

entropy structure of the systems. Finally we propose two Homogeneous Re-

laxation Models (HRM) for the three-phase mixtures with and without phase
transition. Supplementary equations on mass, volume and energy fractions are

considered with appropriate source terms which model the relaxation towards

the thermodynamical equilibrium, in agreement with entropy growth criterion.

Key-words. Multiphase flows, entropy, thermodynamics of equilibrium, phase
transition, three-component Euler system, hyperbolicity, homogeneous relaxation
model.
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1. Introduction

The modelling of compressible multiphase flows is crucial for a wide range of
applications, notably in the nuclear framework, for instance in vapor explosion of
for fast transient situations [5, 35]. Within the two last decades, this topic has re-
sulted in an abundant literature especially about two-phase flows, see for instance
[3, 29, 16, 15, 11, 12]. More recently attention has been paid to the simulation of
three-phase flows [23, 24, 33, 19], by means of relaxation models in the spirit of
the two-fluid Baer and Nunziato model [3]. In all the latter references the mix-
ture is assumed to be immiscible that is all the phases occupy different volumes.
The thermodynamical equilibrium of the mixture is then depicted by the equality
of the pressures and temperatures of the three phases (and also chemical poten-
tial as phase transition is considered). As the mixture dynamics is considered, each
phase dynamic is depicted by an Euler type system which are coupled through non-
conservative interfacial terms, additional advection equations of volume fractions
and relaxation terms. The overall system enters the class of hyperbolic system of
relaxation and admits good properties: hyperbolicity, well-understood wave struc-
ture, entropy inequality... For particular Equations of State (EoS), the Riemann
problem is also well understood and has lead to the development of relevant numer-
ical approximation (see again [23, 24, 33, 19] for three-fluid (perfectly immiscible)
models). As immiscible mixture are considered, that is when the phases are inti-
mate and share the same volume, one should refer to the works of Dellacherie [10, 9].
Since the phases are miscible, the model is in adequacy with the expected Dalton’s
law which states that the equilibrium mixture pressure is the sum of the pressures
of each phases. We refer to [17] and [6] for fundamental Thermodynamics. The
dynamic of the multicomponent fluid is again described by a Baer and Nunziato
type of system, including relaxation terms and non-conservative interfacial terms.
The authors also investigate the impact of the closure law on the hyperbolicity of
the associated Homogeneous Equilibrium Model (HEM). These works complement
the study proposed in [30] about the comparison of several closure laws applied to
an HEM model in the case of a multicomponent immiscible mixture.

The purpose of the present work is to investigate the thermodynamics of a mix-
ture which is not merely miscible or immiscible but of mix type. We focus on a
three-phase compressible flows, composed of a liquid phase, its associated vapor
phase and a gas. The gas is miscible with the vapor phase but no mass transfer
can occur between either the gas and the vapor or the gas and the liquid. Besides
phase transition can occur between the vapor and the liquid; in the whole paper we
will distinguish whether phase transition between the liquid and the vapor occur or
not. The core of the paper is the modelling of a rigorous thermodynamical model.
It allows to construct reliable hyperbolic HEM models to depict the motion of the
compressible three-phase mixture. We do not to address numerical aspects because
of lack of relevant test cases.

First we aim at precisely give an accurate description of the thermodynamical
equilibrium of the system. Adopting the Gibbs formalism, as done in [22, 31, 21],
we intricate the extensive variables of the system. This description relies on the
definition of the extensive equilibrium entropy of the system. The second law
of Thermodynamics states that the thermodynamical equilibrium is attained as
the mixture entropy reaches its maximum under some constraints. Depending
on phase transition occurs or not between the liquid and its vapor, the set of
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constraints changes, leading to different properties on the entropy function. The
core issue is the volume constraint which reflects the non-symmetric immiscibility
properties between the liquid and the gaseous phases. This constraint makes the
whole modeling difficult since it prevents from using convenient tools of convex
analysis such as sub-convolution and Legendre transform, see [31, 21]. At this stage,
one recovers a consistent characterization of the thermodynamical equilibrium : the
Dalton’s law for the gaseous phases and the equality of the temperatures apply.
Note that a similar description (in terms of extensive variables) has been proposed
in [2] but the computations are restricted to particular equations of state (namely
stiffened gas laws for the three phases). The present study is valid for any equations
of state. Turning to the intensive variables, we analyse the specific equilibrium
entropies in terms of optimization problems in the spirit of [22, 1, 31, 21, 14].

Section 3 addresses the construction of three-phase Euler systems at thermody-
namical equilibrium called HEM models. Following the works of Dellacherie [10, 9],
it consists in providing the correct closure laws to the three-phase Euler system
in agreement with the optimization constraints presented in Section 2. We distin-
guish two cases depending on phase transition occurs or not between the vapor and
the liquid phases. When phase transition is omitted, we prove that the resulting
system is hyperbolic using a modified Godunov-Mock theorem in the spirit of [30].
When mass transfer is allowed, hyperbolicity is also proven. But the extension of
the Godunov-Mock theorem is obsolete and one has to go back to the study the
Jacobian matrix of the flux.

One difficulty when approximating solutions of HEM models is that the mixture
pressure is often difficult to express analytically, even when the phases are depicted
by simple EoS, see for instance the computations detailled in [2] for a three-phase
mixture. Besides the mixture pressure law may present pathologies leading to the
lack of convexity of the isentropes or slope discontinuities of the entropy, which
result in the appearance of composite waves, see [32]. To overcome the problem,
one could consider an approximate model by means of a relaxation procedure. One
obtains a Homogeneous Relaxation model (HRM) where the relaxation towards
the thermodynamical equilibrium is driven by source terms which comply with
the entropy growth criterion. Section 4 presents two HRM models depending on
whether phase transition occurs or not, following the construction proposed in [4]
(see also refer to [26, 20, 27] for computational aspects).

2. A consistent thermodynamical description of the three phase
system

sec:thermo

The purpose of this section is to give a proper description of the thermodynamical
model. We begin by the determination of the extensive constraints on the state
variables of the thermodynamical system. Because the gaseous phases are miscible
with one another and immiscible with the liquid, the volume constraint is non-
symmetric. According to the second principle, the mixture entropy achieves its
maximum at thermodynamical equilibrium. We characterize two possible equilibria
depending on phase transition occurs or not between the liquid and its vapor. One
recovers the Dalton’s law satisfied by the gaseous phases. Then we introduce the
intensive formulation and study the equilibrium specific entropies for the models
without and with phase transition. It turns out that they are concave, possibly
with a saturation zone.
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sec:single-fluid-therm

2.1. Single fluid thermodynamics: main definitions and assumptions.
Consider a fluid of mass M ≥ 0 and internal energy E ≥ 0 occupying a volume
V ≥ 0. As the fluid is homogeneous and at rest, its thermodynamical behaviour is
described by its entropy function

S : (R+)3 → R
(M,V,E) 7→ S(M,V,E).

This entropy function S is concave with respect to W = (M,V,E) ∈ (R+)3. Then
it is classical to extend it by −∞ outside the close convex cone (R+)3

S(W ) =

{
S(W ), W ∈ (R+)3,

−∞, elsewhere.

We adopt the assumptions stated in [6] and [13].

thm:hyp Assumption 1. Assume the entropy S : (R+)3 → R ∪ {−∞} is such that

it:hyp1 (i) the set of admissible states C := {W ∈ (R+)3, S(W ) > −∞} is a non-
empty close convex domain,

it:hyp2 (ii) S is a concave function of W ,
it:hyp3 (iii) S is extensive or Positively Homogeneous of degree 1 (PH1), that is

∀λ ∈ R+
∗ ,∀W ∈ C, S(λW ) = λS(W ),

it:hyp4 (iv) S is upper semi-continuous that is

∀W0 ∈ C, lim
W→W0

supS(W ) ≤ S(W0),

it:hyp5 (v) S is of class C2 on C and its partial derivative with respect to the internal
energy is strictly positive

∀W ∈ C, ∂S

∂E
> 0.

Assumptions (ii) and (iii) are equivalent to assume (−S) sub-linear [34]. The
existence and continuity assumption on the derivatives of S is quite strong even if
it is common in literature. Observe that the extensive entropy S cannot be strictly
concave since it is PH1.

The derivative of a PH1 function is PH0, said intensive. Therefore the smooth-
ness assumption (v) allows to define intensive potentials:

• the temperature T

1

T
=
∂S

∂E
,

• the pressure P

P

T
=
∂S

∂V
,

• the chemical potential µ

µ = −T ∂S

∂M
.
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Hence one can state the extensive Gibbs relation

TdS = dE + PdV − µdM.

It is also common to define the specific entropy s by

Ms = S(M,V,E).

The extensive entropy S being PH1, s is PH0 (intensive) such that

eq:s_intensiveeq:s_intensive (1) s = S(1, V/M,E/M).

Hence s can be seen as a function of the specific volume V/M =: τ and the spe-
cific energy E/M =: e. Setting M = 1 in the extensive Gibbs relation gives the
analogous intensive form

eq:Gibbs_intensiveeq:Gibbs_intensive (2) Tds = de+ Pdτ.

Since S is PH1, it satisfies the Euler’s relation ∇S · (M,V,E)T = S which leads to
another characterization of the chemical potential

eq:mueq:mu (3) µ = −Ts+ pτ + e.

2.2. Extensive description of the three-phase model. We now consider a fluid
system of fixed mass M ≥ 0, volume V ≥ 0 and internal energy E ≥ 0, composed
of a gas (indicated by the index g) and a pure body present under its liquid phase
(with index l) and its vapor phase (with index v). We assume that no mass transfer
arises between the gas and the others remaining phases but only mechanical and
thermal exchanges. We use the (abusive) appellation phase to indicate either the
liquid, the vapor or the gaseous component of the mixture.

We denote by Mk ≥ 0, Vk ≥ 0 and Ek ≥ 0 the mass, the volume and the internal
energy of the phase k ∈ {l, g, v}. We assume that each phase is entirely described
by its entropy function Sk satisfying Assumptions 1 for an extensive state vector
Wk = (Mk, Vk, Ek) belonging to the close convex cone Ck defined in Assumption
1-(i).

We now state the constraints on the extensive variables. By the mass conserva-
tion, one has

eq:masseq:mass (4) M = Ml +Mg +Mv,

and the internal energy conservation leads to

eq:energyeq:energy (5) E = El + Ev + Eg.

The vapor is miscible with the gas, that is these two phases form an intimate mixture
occupying the same volume. On the other hand, the liquid phase is immiscible with
the gas and the vapor, that is it occupies a different volume at a mesoscopic scale.
One gets the following volumic constraints

eq:volumeeq:volume (6)

{
V = Vl + Vv,

Vg = Vv.

Note that we assume that no vacuum can occur (otherwise, one should consider
V ≥ Vl + Vv) and that the vapor and the gas are perfectly intimate. Unlike the
mass or energy constraints, the volume constraint is not invariant over permutation
of the indexes k = l, g, v. This feature induces difficulties to properly characterize
the mixture equilibrium and the mixture entropy (both in extensive and intensive
variables).
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rem:absence Remark 1. If the vapor phase (resp. the gas) is absent, the system is made of
the two remaining phases. To remove the vapor phase (resp. the gas), one has
to impose Mv = 0 (resp. Mg = 0). Indeed setting Vv = 0 (resp. Vg = 0) is
meaningless because the volume constraint (6) would impose the disappearance of
both the vapor and the gas phases. On the other hand, if the liquid phase is absent,
one has to set both Ml = 0 and Vl = 0.

Let us address the definition of the extensive equilibrium entropy of the mixture.
Out of equilibrium, the entropy of the three-phase system is the sum of the phasic
entropies. For (Wl,Wg,Wv) ∈ Cl × Cg × Cv, it reads

eq:syst_entropeq:syst_entrop (7) Σ(Wl,Wg,Wv) = Sl(Wl) + Sg(Wg) + Sv(Wv).

The second principle of Thermodynamics states that the system will evolve until
the entropy Σ reaches a maximum. Depending on whether or not mass transfer
arises between the vapor and the liquid phases, the maximization process relies on
different set of constraints, namely ΩNPText (No Phase Transition) and ΩPText (Phase
Transition), leading to two different mixture entropies. We recall that phase tran-
sition is not allowed between the gas and the other phases since it has a different
molecular structure. Hence Mg is fixed.

Definition 1. Fix Mg ≥ 0. Let W = (M,V,E) ∈ (R+)3 be the state vector of the
three-phase system. The equilibrium entropy of the mixture is:

• without phase transition: Ml and Mv are fixed satisfying the mass conser-
vation (4) and

eq:Seq_NPTeq:Seq_NPT (8) SNPT (M,V,E,Ml,Mg) = max
(Wl,Wg,Wv)∈ΩNPT

ext

Σ(Wl,Wg,Wv),

where ΩNPText := {Wk ∈ Ck, k = l, g, v |(5) and (6) hold}
• with phase transition:

eq:Seq_PTeq:Seq_PT (9) SPT (M,V,E,Mg) = max
(Wl,Wg,Wv)∈ΩPT

Σ(Wl,Wg,Wv),

where ΩPText := {Wk ∈ Ck, k = l, g, v |M−Mg = Ml+Mv, (5) and (6) hold}.

The constraint sets ΩNPText and ΩPText are closed bounded convex sets. According
to Assumption 1-(iv) the entropies Sk are lower semi-continuous functions. Then
the optimization problem is well posed [34, 25].

prop:ext_entrop Proposition 1. The extensive equilibrium entropy SNPT (resp. SPT ) of the three-
phase mixture defined either by (8) (resp. (9)) is a PH1 concave function of its
arguments.

Proof. The function Σ(Wl,Wg,Wv) is a concave function on Cl × Cg × Cv since
it is a sum of concave functions. We now focus on the optimization problem (8)
over the set of constraints ΩNPText that is without phase transition. The mass of gas
Mg is fixed and the maximization is performed on the volume and the energy only.
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Hence we omit the dependency on Ml and Mg and get

S(M,V,E) = max
V = Vl + Vv

Vg = Vv

E = El + Eg + Ev

Σ(Wl,Wg,Wv),

= maxV = Vl + Vv

E = El + Eg + Ev

Σ(Wl, (Mg, Vv, Eg),Wv).

Since the masses M and Mk, k ∈ {l, g, v}, are fixed, the problem can be written
under the following form

S(W ) = (AH)(V,E)

= max{H(Vl, Vv, El, Eg, Ev)| A(Vl, Vv, El, Eg, Ev)
t = (V,E)t},

where H(Vl, Vg, El, Eg, Ev) = Sl(Ml, Vl, El) +Sg(Mg, Vv, Eg) +Sv(Mv, Vv, Ev) and

A =

(
1 1 0 0 0
0 0 1 1 1

)
is a linear mapping from (R+)5 to (R+)2 defining the con-

straints V = Vl+Vv and E = El+Eg+Ev. Because the function H is concave with
respect to (Vl, Vv, El, Eg, Ev) ∈ (R+)5 (as the restriction of the concave function
Σ) and A is a linear transformation, the function AH is also concave with respect
to (V,E) (see [34], Section 5). Then it follows that S(W ) is concave with respect
to W = (M,V,E) ∈ (R+)3. Similar arguments hold in the case of phase transition
between the liquid and its vapor. �

Remark 2. In [22] the authors provide a similar extensive definition of the mixture
entropy for a two-phase mixture when considering phase transition between the two
phases, indexed by k = 1, 2. They consider the mass and energy conservation that
is M = M1 + M2 and E = E1 + E2. As the volume constraint is considered,
they distinguish the immiscible and the miscible mixtures. When considering an
immiscible mixture, their volume constraint is V = V1 + V2. Then the extensive
entropy of the mixture satisfies an analogous formulation as (9), which turns to be
an sup-convolution operation, namely

S(W ) = S1�S2(W ) = max
W1∈C1

(S1(W1) + S2(W −W1)),

where the symbol � is a notation for sup-convolution in convex analysis. When
considering a miscible approach, their volume constraint is V = V1 = V2. Here
again the extensive entropy of the mixture is a sup-convolution operation. The sup-
convolution operation turns to have many interesting properties (especially linked
to the Legendre transform). Such properties have been studied in [21] and [31],
for the computation of admissible pressure laws for immiscible and miscible binary
mixture.

In the present case, because the volume constraint (6) is simultaneously immisci-
ble (between the liquid and the vapor and gas phases) and miscible (between the gas
and the vapor), we cannot express the energy of the mixture as a sup-convolution
procedure.
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When the equilibrium entropy without phase transition is differentiable with
respect to the volume V and the internal energy E, then one can define the tem-
perature and the pressure of the mixture at equilibrium

eq:TP_eq_NPTeq:TP_eq_NPT (10)
1

T
=
∂SNPT
∂E

(M,V,E,Ml,Mg),
P

T
=
∂SNPT
∂V

(M,V,E,Ml,Mg).

The chemical potential and the potentials linked to the masses Ml and Mg are

µ

T
= −∂SNPT

∂M
(M,V,E,Ml,Mg),

λk
T

=
∂SNPT
∂Mk

(M,V,E,Ml,Mg), k = l, g.

Hence one has the following relation

TdSNPT = dE + pdV − µdM + λldMl + λgdMg.

When phase transition is considered, one gets

TdSPT = dE + pdV − µdM + λgdMg.

When the maximum of the mixture entropy is reached in the interior of the set
of constraints, the three phases are present and at thermodynamical equilibrium
[22, 31].

prop:eq_thermo Proposition 2. The thermodynamical equilibrium corresponds to

• the equality of the temperatures

eq:temp_eqeq:temp_eq (11) Tl = Tg = Tv,

• the Dalton’s law on the pressures of the gas and the vapor phases

eq:daltoneq:dalton (12) pl = pg + pv.

Moreover if phase transition is allowed between the liquid and its vapor then the
equilibrium is also characterized by

eq:mu_eqeq:mu_eq (13) µl = µv.

Proof. The optimization with respect to the energy and the volume are the same
on the two sets of constraints ΩNPText and ΩPText . Let us fix the energy Ek of the
phase k ∈ {l, g, v}. Then E −Ek = Ek′ +Ek′′ , with k′ 6= k′′, k, k′ ∈ {l, g, v}. Thus

∂

∂Ek′
(Sk(Mk, Vk, Ek) + Sk′(Mk′ , Vk′ , Ek′) + Sk′′(Mk′′ , Vk′′ , Ek′′)) =

1

Tk′
− 1

Tk′′
.

Then the maximum is reached for Tk′ = Tk′′ for any k′ 6= k′′ ∈ {l, g, v}. Optimizing
with respect to the volume under the volume constraint (6) gives

∂

∂Vl
(Sl(Ml, Vl, El) +Sg(Mg, V −Vl, Eg) +Sv(Mv, V −Vl, Eg)) =

pl
Tl
−
(
pg
Tg

+
pv
Tv

)
.

Since the temperature are equal, it yields the Dalton’s law on the pressures. We
now focus on the case where phase transition occurs. In the case of phase transition,
we then optimize with respect to the mass in the set of constraints ΩPText . Since the
mass of the gas Mg is fixed, one has M −Mg = Ml +Mv. It yields

∂

∂Ml
(Sl(Ml, Vl, El) + Sg(Mg, Vg, Eg) + Sv(M −Mg −Ml, Vv, Ev)) =

µl
Tl
− µv
Tv
.

Because Tl = Tv, the chemical potentials of the liquid and vapor phases are also
equal, the chemical potential of the gas µg being fixed. �
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One observe that the pressure relation (12), which contains the Dalton’s law on
the miscible vapor and gaseous phases, is a direct consequence of the maximization
process under the volumic constraint (6).

As a consequence, at equilibrium, one may define the mixture temperature T
and pressure p by

eq:p_T_eq_mixtureeq:p_T_eq_mixture (14)
T = Tl = Tg = Tv

p = pl = pg + pv.

Nevertheless it is not possible de define a mixture chemical potential.
sec:sec_int

2.3. Intensive characterization of the entropies. We now turn to the defini-
tion of intensive quantities. The system is now entirely described by its intensive
entropy s defined by (1) as a function of the specific volume τ = V/M > 0 and the
specific internal energy e = E/M > 0.

We introduce the mass fraction ϕk, the volume fraction αk and the energy frac-
tion zk of the phase k ∈ {l, g, v} defined respectively by

eq:fractionseq:fractions (15) ϕk = Mk/M, αk = Vk/V, zk = Ek/E,

which belong to [0, 1]. Each phase k = l, g, v has a specific volume τk = Vk/Mk =
αkτ/ϕk and a specific internal energy ek = Ek/Mk = zke/εk. The specific entropy
sk of the phase k ∈ {l, g, v} is defined by

sk(τk, ek) = Sk(1, τk, ek).

Moreover one can derive the intensive form of the Gibbs relation (2) for each phase
k ∈ {l, g, v}

eq:gibbs_int_keq:gibbs_int_k (16) Tkdsk = dek + pkdτk.

We now turn to the intensive formulation of the extensive constraints. The
extensive volume constraint (6) translates into

eq:alfkeq:alfk (17)

{
1 = αl + αv,

αg = αv.

The mass and energy conservations (4) and (5) read

1 = ϕl + ϕg + ϕv,eq:phik (18)

1 = zl + zg + zv.eq:zk (19)

Out of equilibrium the intensive entropy of the three-phase system, expressed as a
function of τ , e and the fractions ϕk, αk, zk, k = l, g, v, reads

eq:intensive_entropyeq:intensive_entropy (20)

σ(τ, e, (ϕk)k, (αk)k, (zk)k)

= ϕLsl

(
αl
ϕl
τ,
zl
ϕl
e

)
+ ϕgsg

(
αg
ϕg
τ,
zg
ϕg
e

)
+ ϕvsv

(
αv
ϕv
τ,
zv
ϕv
e

)
.

At equilibrium and at fixed (τ, e), the intensive entropy reaches its maximum. As
in the extensive formulation, one has to define the set of constraints depending on
whether phase transition occurs or not between the liquid and the vapor phase.
Moreover since the gaseous phase does not exchange mass with the others phases,
its mass fraction ϕg is fixed during the optimization process.

prop:intensive_s Proposition 3. Fix ϕg ∈ [0, 1]. Let (τ, e) ∈ (R+)2 be the specific state vector of
the system. The equilibrium intensive entropy s of the mixture is:
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• without phase transition: ϕl, ϕg are fixed according to (18) and

eq:intensive_s_NPTeq:intensive_s_NPT (21) sNPT (τ, e, ϕl, ϕg) = max
((αk)k,(zk)k)∈ΩNPT

int

σ(τ, e, (ϕk)k, (αk)k, (zk)k),

where ΩNPTint := {(αk, zk), k = l, g, v| (17) and (19) hold}
• with phase transition:

eq:intensive_s_PTeq:intensive_s_PT (22) sPT (τ, e, ϕg) = max
((ϕk)k,(αk)k,(zk)k)∈ΩPT

int

σ(τ, e, (ϕk)k, (αk)k, (zk)k),

where ΩPTint := {(ϕk, αk, zk), k = l, g, v|1−ϕg = ϕl+ϕv, (17) and (19) hold}.
In both cases the equilibrium intensive entropy is a concave function of its argu-
ments.

Proof. The characterization of the mixture intensive entropy is a direct consequence
of the homogeneity of the extensive mixture entropies defined in (8) and (9), see
Proposition 1. The relation (21) (resp. (22)) is achieved by dividing the optimiza-
tion problem (8) on the set of constraints ΩNPText (resp. (9) on the set of constraints
ΩPText) by the mass M . In the case without phase transition, the intensive entropy
sNPT (τ, e, ϕl, ϕg) is the restriction of the extensive entropy SNPT (M,V,E,Ml,Mg)
on the affine convex subset {1}× (R+)2× [0, 1]2. Since SNPT is a concave function
of (M,V,E), sNPT is a concave function of (τ, e). The same holds in the case of
phase transition. �

We now focus on the intensive equilibrium entropy without phase transition
sNPT and prove that it is strictly convex with respect to (τ, ε).

prop:entrop_convex_NPT Proposition 4. Assume that the mass fractions ϕk are fixed (no phase transition
is allowed). Then the intensive equilibrium entropy (21)

• depends only on (τ, e)
• is a strictly concave function of (τ, e)
• satisfies the relation : TdsNPT = de+ pdτ , where T and p are the mixture

temperature and pressure at equilibrium.

Proof. According to the definition (21), it is obvious that the equilibrium mixture
entropy depends only on (τ, e) at fixed mass fractions ϕk, k = l, g, v. Then for any
equilibrium state (τ, e) ∈ (R+)2, it exists (τk, ek) such that

eq:tau_eeq:tau_e (23)


e = ϕlel + ϕgeg + ϕvev

τ = ϕlτl + ϕgτg

ϕvτv = ϕgτg.

We now prove the Gibbs relation

Tds = de+ pdτ,

at fixed ϕk. The phasic entropies satisfy

Tdsk = dek + pkdτk, k = l, g, v.

Multiplying by ϕk and summing over k = l, g, v, give

Td(
∑

k=l,g,v

ϕksk) = d(
∑

k=l,g,v

ϕkek) +
∑

k=l,g,v

ϕkpkdτk,

according to the equality of the temperatures. By (20) and (23) it yields

TdsNPT = de+ pld(ϕlτl) + pgd(ϕgτg) + pvd(ϕvτv).
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We now use miscibility of the vapor and gas phases ϕgτg = ϕvτv to get

TdsNPT = de+ pld(ϕlτl) + (pg + pv)d(ϕgτg).

The characterization of the pressure equilibrium leads to conclusion.
We turn to the strict concavity of the sNPT . Since the ϕk, k = l, g, v,, are fixed,

we denote sNPT (τ, e) = sNPT (τ, e, (ϕk)k). In order to prove that the entropy is
strictly concave, we show that for any equilibrium states (τ, e) and (τ ′, e′) in (R+)2,
one has

sNPT (τ, e) < sNPT (τ ′, e′) +∇(τ,e)sNPT (τ ′, e′) ·
(
τ − τ ′
e− e′

)
.

Using formulation (20) one has

sNPT (τ, e) = ϕlsl(τl, el) + ϕgsg(τg, eg) + ϕvsv(τv, ev).

Since the phasic entropies are strictly concave functions of (τk, ek) and differen-
tiable, there exists (τ ′k, e

′
k) such that

sNPT (τ, e) <
∑

k=l,g,v

ϕksk(τ ′k, e
′
k) + ϕk∇sk(τ ′k, e

′
k) ·

(
τk − τ ′k
ek − e′k

)
.

Now one has ∇sk(τ ′k, e
′
k) =

(
1/Tk(τ ′k, e

′
k)

pk(τ ′k, e
′
k)/Tk(τ ′k, e

′
k)

)
with Tk(τ ′k, e

′
k) = T , ∀k =

l, g, v, see Proposition 2. The definition of the equilibrium entropy, the equality of
the temperature, and the constraints (18) lead to

sNPT (τ, e) < sNPT (τ ′, e′) +
1

T
(e− e′)+

1

T

(
ϕlpl(τl − τ ′l ) + ϕgpg(τg − τ ′g) + ϕvpv(τv − τ ′v)

)
.

Using the Dalton’s law (14), one can express the mixture pressure as pl = pv+pg =
p. Then the volume constraints τ = ϕlτl + ϕgτg and τ = ϕlτl + ϕvτv give

sNPT (τ, e) < sNPT (τ ′, e′) +
1

Tl
(e− e′) +

p

T
(τ − τ ′).

According to the Gibbs relation, one has ∇(τ,e)sNPT =

(
1/T,
p/T

)
which leads to the

conclusion. �

As phase transition is considered between the liquid and its vapor, the mixture
entropy is no longer strictly concave with respect to (τ, e) as ϕg is fixed.

prop:entropy_PT Proposition 5. Assume that the mass fraction ϕg is fixed. Then the intensive
equilibrium entropy (22)

• depends only on (τ, e)
• satisfies the relation : TdsPT = de + pdτ , where T and p are the mixture

temperature and pressure at equilibrium.

The proof is similar to the proof of the Proposition 4.

rem:PT Remark 3. Note that we do not prove that the equilibrium entropy is a strictly
concave function of (τ, e). Actually this is not the case for binary (immiscible)
mixture, see [28, 22, 21] for instance. One may find the computation of a three-
phase mixture pressure law in [2] (with a mix type volume constraint like (6)) . The
authors consider that each phase is depicted by a stiffened gas but it is not possible
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to give an analytical formulation of the pressure. However computational results
illustrate that a saturation zone exists, that is the mixture entropy is not strictly
concave.

3. Equilibrium three-component Euler systems
sec:modell-assumpt

We now take into account the dynamic of the three-phase mixture, assuming that
the three phases have the same velocity. The aim of this section is to provide an
homogeneous equilibrium multicomponent Euler’s system, called HEM model, with
appropriate closure laws in agreement with the thermodynamical equilibria studied
in Section 2.3. Two HEM models are presented corresponding to the cases with or
without phase transition. The models have good properties: entropy structure and
hyperbolicity.

sec:euler_NPT
3.1. Three-phase model without phase transition. At thermodynamical equi-
librium the three phase flow is depicted by the multicomponent Euler system

eq:euler_NPTeq:euler_NPT (24)



∂t(ϕlρ) + ∂x(ϕlρu) = 0,

∂t(ϕgρ) + ∂x(ϕgρu) = 0,

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρE) + ∂x((ρE + p)u) = 0,

E =
1

2
u2 + e,

∀k ∈ {l, g, v} : pk = pk(τk, ek), τk = ρ−1
k ,

ϕl + ϕg + ϕv = 1,

where the flow as a density ρ (we also define the specific volume τ = 1/ρ), a
velocity u, a pressure p, and an internal energy e, E being the total energy. The
phase k = l, g, v is depicted by its mass fraction, its pressure pk, its specific volume
τk and its specific internal energy ek, see Section 2.3. All the phases evolve at the
same velocity u and we recall that

eq:intensive_conseq:intensive_cons (25)


e = ϕlel + ϕvev + ϕgeg,

τ = ϕlτl + ϕgτg,

ϕvτv = ϕgτg.

The multicomponent Euler system admits ten equations and has seventeen un-
knowns which are

(ρ, u,E, p, e, (ϕk)k∈{l,g,v}, (τk)k∈{l,g,v}, (ek)k∈{l,g,v}, (pk)k∈{l,g,v}).

Thus one has to provide seven closure laws. The first three closure laws are given
by the constraints (25).

The 4 remaining closure laws are given by Proposition 2, that is

eq:euler_eq_NPTeq:euler_eq_NPT (26)

{
T = Tl = Tg = Tv,

p = pl = pg + pv,

where T and p are the thermodynamical temperature and pressure of the three
phase flow and p = p(1/ρ, e, ϕl, ϕg).
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prop:transport_s Proposition 6. The intensive entropy sNPT (τ, e, ϕl, ϕg) defined by (21) satisfies

eq:transport_seq:transport_s (27) ∂ts+ u∂xsNPT = 0.

Proof. Let U = (ρ, ρu, ρE, ϕgρ, ϕlρ) is a smooth solution of the system (24), then
one has

∂tτ + u∂xτ − τ∂xu = 0,

∂tu+ u∂xu+ τ∂xp = 0,

∂te+ u∂xe+ pτ∂xu = 0,

∂tϕk + u∂xϕk = 0, k = l, g.

Since sNPT is function of (τ, e, ϕl, ϕg), it follows

∂tsNPT =
∂sNPT
∂τ

∂tτ +
∂sNPT
∂e

∂te+
∂sNPT
∂ϕlτ

∂tϕl +
∂sNPT
∂ϕg

∂tϕg

= ∂xu

(
τ
∂sNPT
∂τ

− τp∂sNPT
∂e

)
− u∂xsNPT .

Because the entropy sNPT satisfies the relation TdsNPT = de+pdτ (see Proposition
4), the first term of the right hand side is zero. Hence the entropy sNPT satisfies a
transport equation. �

In order to study the hyperbolicity of the model (24), we adapt a result given in
[30] which extends the Godunov-Mock theorem.

lem:lem1 Lemma 1. Let w : R+ × R → Rn and f : Rn → Rn defining the system of
conservation laws

∂tw(t, x) + ∂xf(w)(t, x) = 0,

where w = (w1, w2)t with w1 ∈ Rl and w2 ∈ Rn−l and f = (0, f2)t with f2 ∈ Rn−l.
Assume that η(w) is a strictly convex function with respect to w2 at fixed w1 such
that

∂tη(w) = 0,

and that ∇w1
f2(w) = 0. Then the system is hyperbolic.

Proof. To prove the hyperbolicity we show that the system is symmetrizable that
is there exists a symmetric positive-definite matrix P and a symmetric matrix Q
such that

P (w)∂tw +Q(w)∂xw = 0.

We define the n× n symmetrization matrix P (w) by

P (w) =

(
Il 0
0 ∇2

w2
η

)
.

The entropy η being strictly convex with respect to w2, the matrix P (w) is sym-
metric positive-definite. The associated convection matrix is Q(w) = P (w)∇wf(w).
Since ∇w1

f2(w) = 0, the matrix Q is symmetric so that the system is symmetriz-
able. As a consequence the system is hyperbolic. �

This lemma holds for any variables (t, x) as soon as the system is conservative.
Besides we use it in Lagrangian coordinates to prove the following result.

Theorem 1. The system (24) is hyperbolic.
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Proof. First the system (24) can be written in Lagrangian coordinates

Dtϕl = 0,

Dtϕg = 0,

Dtτ −Dmu = 0,

Dtu+Dmp = 0,

DtE +Dm(pu) = 0,

where Dtv = ∂tv + u∂xv and Dmv = τ∂xv. The associated flux reads f =
(0, 0,−u, p, pu). We introduce the function η

η : (ϕl, ϕg, τ, u, E)→ −sNPT (τ, E − u2/2, ϕl, ϕg).

According to Proposition 4, the function sNPT is strictly concave with respect to
(τ, e) and depends only on (τ, e). Then η is strictly convex with respect to (τ, u, E),
see [8, 18]. Moreover sNPT is solely advected by the system, since it satisfies (27),
see Proposition 6. Hence it yields

Dtη(w) = ∂τDtτ + ∂uDtu+ ∂EDtE

= −∂τsNPT (τ, E − u2/2, ϕl, ϕg)Dtτ+

(uDtu+DtE)∂esNPT (τ, E − u2/2, ϕl, ϕg)

= − p
T
Dtτ + ∂esNPT (uDtu−DtE) = − p

T
Dmu−

u

T
Dmp+

1

T
Dm(p) = 0.

In addition the mixture pressure p, being a partial derivative of the entropy mixture
sNPT , does not depend on the fractions ϕl and ϕg. It implies that ∇ϕl,ϕg

f = 0.
Now Lemma 1 leads to the conclusion. �

sec:euler_PT

3.2. Three-phase model with phase transition. When phase transition oc-
curs, the equilibrium multicomponent Euler system reads

eq:euler_PTeq:euler_PT (28)



∂t(ϕgρ) + ∂x(ϕgρu) = 0,

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρE) + ∂x((ρE + p)u) = 0,

E =
1

2
u2 + e,

∀k ∈ {l, g, v} : pk = pk(τk, ek), τk = ρ−1
k ,

ϕl + ϕg + ϕv = 1.

The system admits nine equations and seventeen unknowns which are

(ρ, u,E, p, e, (ϕk)k∈{l,g,v}, (τk)k∈{l,g,v}, (ek)k∈{l,g,v}, (pk)k∈{l,g,v}).

Thus one has to provide eight closure laws.
As in the previous case, three closure laws are given by the three intensive

constraints (25) 
e = ϕlel + ϕvev + ϕgeg,

τ = ϕlτl + ϕgτg,

ϕvτv = ϕgτg.
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The five remaining closures are given by Proposition 2

eq:euler_eq_PTeq:euler_eq_PT (29)


T = Tl = Tg = Tv,

p = pl = pg + pv,

µl = µv.

where T and p are the thermodynamical temperature and pressure of the three
phase flow and p = p(1/ρ, e, ϕg).

Since the equilibrium entropy is not a strictly concave function of its arguments
(see Remark 3), it is not possible to invocate the Godunov-Mock theorem or its
extension Lemma 1 to prove the hyperbolicity of the system. However it is possi-
ble to prove the hyperbolicity by studying the eigenvalues of the system and the
positivity of the mixture temperature.

Theorem 2. The system (28) is hyperbolic.

Proof. The quasilinear form of the system (28) reads

∂t


ϕg
ρ
u
e

+


u 0 0 0
0 u ρ 0

1

ρ

∂p

∂ϕg

1

ρ

∂p

∂ρ
u

1

ρ

∂p

∂ρ
0 0 p/ρ u

 ∂x


ϕg
ρ
u
e

 = 0.

The Jacobian matrix of the flux has four eigenvalues u− c, u (double), u+ c, where
c is the speed of sound given by

eq:ceq:c (30) c2/τ2 = p∂ep− ∂τp = −T (p2(sPT )ee − 2p(sPT )τe + (sPT )ττ ).

According to Proposition 5, the entropy (sPT ) is a concave function which depends
only on (τ, e) at fixed ϕg. Hence the right-hand side of (30) is non negative as soon
as the temperature T > 0. This concludes the proof. �

4. Homogeneous Relaxation Models for the three-phase flow
sec:homog-relax-model

The equilibrium multicomponent Euler systems, presented in the previous sec-
tion, are difficult to use for practical computations. Although they are proved to be
hyperbolic, their pressure laws have no analytical expressions (even if pk, k = l, g, v
are perfect gas laws). Moreover it is well known, see for instance [32, 28, 4], that
such pressure laws present pathologies such that slope discontinuities, lack of con-
vexity of the isentropes, leading to composite waves. To overcome this problem,
some authors proposed [4, 22, 26, 20, 27] to approximate the equilibrium Euler sys-
tem by a homogeneous relaxation model. It consists in adding convection equations
on the fractions and to modify the pressure to make it depend on the fractions. In
order to achieve the thermodynamical equilibrium, appropriate relaxation source
terms complete the equations on the fractions. The numerical approximation of
the relaxed model is easier. Traditionally it consists on a splitting approach. In a
first step the convective part is treated with a approximate Riemann solver. During
the second step the conservative variables are stored and the pressure is updated
from the physical entropy maximization. By construction both steps are entropy
satisfying.

We propose in this section to construct the HRM models associated to the HEM
three-phase models studied in Section 3 while distinguishing the cases where phase
transition occurs or not. First we focus on the model without phase transition and
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adapt the construction of the HRM model introduced in [4]. The case with phase
transition is treated as corollary.

sec:hrm-PT
4.1. HRM model without phase transition. Starting from the equilibrium
three-phase model (24), we propose a non-homogeneous model in which the three
phases are no longer at thermal and mechanical equilibrium (still without phase
transition). To do so one introduces supplementary variables that are the volume
fraction of liquid αl and the energy fractions zl and zg defined in (15). Hence the
pressure depends not only on ρ, e, ϕl, ϕg but also on Y = (αl, zl, zg). When no mass
transfer occurs between the liquid and the gas, the fractions should be perfectly
convected i.e.

eq:fraction_conveq:fraction_conv (31) ∂tY + u∂xY = 0.

The mass conservation allows to write (31) under the conservative form

eq:fraction_conv_conseq:fraction_conv_cons (32) ∂t(ρY ) + ∂x(ρuY ) = 0.

Thus the resulting HRM model reads

eq:HRM_NPTeq:HRM_NPT (33)



∂t(ϕkρ) + ∂x(ϕkρu) = 0, k = l, g,

∂t(zkρ) + ∂x(zkρu) = 0, k = l, g,

∂t(αlρ) + ∂x(αlρu) = 0,

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρE) + ∂x((ρE + p)u) = 0,

with the closure pressure law

eq:HRM_NPT_pressureeq:HRM_NPT_pressure (34) p = p(1/ρ, e, ϕl, ϕg, αl, zl, zg).

One should should add un entropy criterion to the model. With ρ = 1/τ the con-
cave function σ(τ, e, ϕl, ϕg, αl, zl, zg) defined in (20) would be an entropy function
if it satisfies the first order PDE

eq:entrop_relat_partialeq:entrop_relat_partial (35) ∂τσ − p(1/τ, e, ϕl, ϕg, αl, zl, zg)∂eσ = 0.

Setting T = 1/∂eσ, one recovers the relation

Tdσ = de+ pdτ +
∑
k=l,g

∂ϕk
sdϕk + ∂αl

sdαl +
∑
k=l,g

∂zksdzk.

Weak solutions of (33)-(43) satisfy

eq:HRM_NPT_entrop_ineqeq:HRM_NPT_entrop_ineq (36) ∂t(ρσ) + ∂x(ρuσ) ≥ 0,

which becomes an equality as regular solutions are concerned. The concavity of σ
with respect to (τ, e, ϕl, ϕg, αl, zl, zg) is equivalent to the convexity of H = −ρσ with
respect to the conservative variables (ρ, ρu, ρE, ϕlρ, ϕgρ, zlρ, zgρ, αlρ), following [8,
18]. Hence H = −ρσ is a Lax entropy for (33).

In order to bring the system to thermodynamical equilibrium described in Propo-
sition 3-(21), a source term has to be added to the fractions equations

∂tY + u∂xY = Q.
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As relaxation towards the equilibrium is infinitely fast, one recovers the equilibrium
fractions which satisfy

eq:HRM_Yeq_NPTeq:HRM_Yeq_NPT (37)
Y = Y NPTeq (τ, e, ϕl, ϕg)

= argmax
(αl,zl,zg)

σ(τ, e, ϕl, ϕg, αl, zl, zg).

As a result the equilibrium pressure law is

eq:HRM_peq_NPTeq:HRM_peq_NPT (38) pNPTeq (τ, e, ϕl, ϕg) := p(τ, e, ϕl, ϕg, Y
NPT
eq (τ, e, ϕl, ϕg)),

defined by the Dalton’s law (14). Following [7, 4, 27], a natural source term is

eq:Q_NPTeq:Q_NPT (39) Q = λ(Y NPTeq (τ, e, ϕl, ϕg)− Y )

where the parameter λ goes to +∞ to achieve the thermodynamical equilibrium.
Moreover the source term Q complies with the entropy production criterion since

eq:HRM_dissip_entrop_NPTeq:HRM_dissip_entrop_NPT (40)

∂tσ + u∂xσ = ∇Y σ · (∂tY + u∂xY )

= λ∇Y σ · (Y NPTeq (τ, e, ϕl, ϕg)− Y )

≥ λ(σ(τ, e, ϕl, ϕg, Y
NPT
eq )− σ(τ, e, ϕl, ϕg, αl, zl, zg))

≥ 0,

by concavity of the entropy σ.
The drawback of the source term (39) is that the relaxation parameter λ is

identical for all the fractions. Hence the relaxation times towards the mechanical
and thermal equilibrium are the same, which has no particular physical meaning.
An alternative which guarantees the entropy production is

eq:Q_NPT_2eq:Q_NPT_2 (41)

Q = ∇Y σ(τ, e, ϕl, ϕg, Y ),

=


τ

(
pl
Tl
−
(
pg
Tg

+
pv
Tv

))
e

(
1

Tl
− 1

Tv

)
e

(
1

Tg
− 1

Tv

)

 ,

since ∂tσ+ u∂xσ = |∇Y σ|2 ≥ 0. This choice of source term enables to use different
relaxation scales for mechanical and thermal equilibria.

sec:hrm-NPT
4.2. HRM model with phase transition. Following the same methodology ex-
plained in Section 4.1, one obtains the HRM model taking into account phase
transition between the liquid and the vapor. It reads

eq:HRM_PTeq:HRM_PT (42)



∂tY + u∂xY = Q,

∂t(ϕgρ) + ∂x(ϕgρu) = 0,

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρE) + ∂x((ρE + p)u) = 0,

where the fraction vector is Y = (ϕl, αl, zl, zg) and the closure pressure law

eq:HRM_NPT_pressureeq:HRM_NPT_pressure (43) p = p(1/ρ, e, ϕg, ϕl, αl, zl, zg).
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Again the entropy σ(τ, e, ϕg, ϕl, αl, zl, zg) defined in (20) satisfy the entropy in-
equality (36) as soon as it complies with (35). The source term Q has to be chosen
to recover the thermodynamical equilibrium described by the fractions

eq:HRM_Yeq_PTeq:HRM_Yeq_PT (44)
Y = Y PTeq (τ, e, ϕg)

= argmax
(ϕl,αl,zl,zg)

σ(τ, e, ϕl, ϕg, αl, zl, zg),

leading to the equilibrium pressure law

eq:HRM_peq_PTeq:HRM_peq_PT (45) pPTeq (τ, e, ϕg) := p(τ, e, ϕg, Y
PT
eq (τ, e, ϕg)).

Again the source term Q could be either

eq:Q_PTeq:Q_PT (46) Q = λ(Y PTeq (τ, e, ϕg)− Y ),

or

eq:Q_PT_2eq:Q_PT_2 (47)

Q = λ∇Y σ(τ, e, ϕg, Y
PT
eq (τ, e, ϕg))

=



sl − τl
pl
Tl
− el
Tl
− sv + τv

pv
Tv

+
ev
Tv

τ

(
pl
Tl
−
(
pg
Tg

+
pv
Tv

))
e

(
1

Tl
− 1

Tv

)
e

(
1

Tg
− 1

Tv

)
.


Using the characterization (3) of the chemical potential, the first component of Q
boils down to

eq:Q_PT_2_1eq:Q_PT_2_1 (48) ∂ϕl
σ = −µl

Tl
+
µv
Tv
,

which reflects the mass transfer between the liquid and its vapor.
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