
HAL Id: hal-01615526
https://hal.science/hal-01615526v1

Preprint submitted on 12 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Paracontrolled quasilinear SPDEs
Marco Furlan, Massimiliano Gubinelli

To cite this version:

Marco Furlan, Massimiliano Gubinelli. Paracontrolled quasilinear SPDEs. 2017. �hal-01615526�

https://hal.science/hal-01615526v1
https://hal.archives-ouvertes.fr


Paracontrolled quasilinear SPDEs

M. Furlan

CEREMADE
PSL - Université Paris Dauphine, France

Email: furlan@ceremade.dauphine.fr

M. Gubinelli

IAM & HCM
Universität Bonn, Germany

Email: gubinelli@iam.uni-bonn.de

Abstract. We introduce a non-linear paracontrolled calculus and use it to renor-
malise a class of singular SPDEs including certain quasilinear variants of the periodic
two dimensional parabolic Anderson model.

1. Introduction

We show how to renormalise a class of general quasilinear equations of which one of the
simplest examples is the following parabolic SPDE:

@tu(t; x)¡ a(u(t; x))�u(t; x)= �(x); u(0; x)= u0(x); x2T2; t> 0; (1)

with a:R! [�;1] for �> 0 a uniformly bounded C3 di�usion coe�cient, and ka(k)kL16 1
for k=0; :::;3. We assume that �2C �¡2(T2) with 2/3<�<1 where C �(T2) is the Besov
space B1;1

� (T2). This would apply to the space white noise on T2, for example. In this
case we only expect that u(t; �)2C �(T2) and the term a(u(t; �))�u(t; �) is not well de�ned
when 2� ¡ 2 < 0. Eq. (1) is a quasilinear generalisation of the two�dimensional periodic
parabolic Anderson model (PAM).

Let us remark from the start that the framework we will consider below allows to deal
with a class of equations of the form

a1(u(t; x))@tu(t; x)¡ a2(u(t; x))�u(t; x)= �(a3(u(t; x)); t; x); x2T2; t> 0; (2)

where a1; a2 are su�ciently smooth non-degenerate coe�cients and �(z; t; x) is a Gaussian
process with covariance

E[�(z; t; x)�(z 0; t0; x0)]=F (z; z 0)Q(t¡ t0; x¡x0); x; x02T2; t; t0; z; z 02R;

with F a smooth function and Q a distribution of parabolic regularity � > ¡4/3. This
includes the space white noise discussed before or a time white noise with a regular depen-
dence on the space variable or some noise mildly irregular in space and time.

Also the scalar character of the equation or of the non-linear di�usion coe�cient will not
play any speci�c role and we could consider vector�valued equations with general di�usion
coe�cients provided the template problem (7) below remains uniformly parabolic.

For the sake of clarity and simplicity we will discuss mainly the basic example (1) since
this contains already most of the technical di�culties. The fact that one can handle models
as general as (2) can be considered a direct byproduct of the techniques we will introduce
below.

Recently Otto and Weber [33] and Bailleul, Debussche and Hofmanova [7] investigated
quasilinear SPDEs in the context of pathwise methods and in a range of regularities com-
patible with the ones we will consider in this paper.

� In [33] the authors obtained a priori estimates for equations of the form

@tu(t; x)¡ a(t; x)@x2u(t; x)= f(u(t; x))�(t; x); (t; x)2T2
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where both space and time variables take values in a one dimensional periodic
domain and their noise can be white in time but colored in space, essentially
behaving like a distribution of parabolic regularity in (¡4 / 3; 1). In order to do
so they introduce a speci�c notion of modelled function and related estimates.

� Bailleul, Debussche and Hofmanová in [7] obtain local well-posedness for the gen-
eralised parabolic Anderson model equation

@tu(t; x)¡ a(u(t; x))�u(t; x)= g(u(t; x))�(x) t> 0; x2T2: (3)

The authors obtain the same result as the one presented in Section 6 of our work,
without the machinery of nonlinear paraproducts introduced here, but using only
the basic tools of paracontrolled analysis and some clever transformations.

On the other hand, we remark that the apparently innocuous vectorial formu-
lation of (3)

@tu(t; x)¡ aij(u(t; x))
@2

@xi @xj
u(t; x)= g(u(t; x))� t> 0; x2T2

is out of reach of the techniques used in [7], while can be treated �awlessly in our
framework.

Let us state one simple result that can be obtained via the theory developed in this
paper:

Theorem 1. Fix 2/3<�< 1. Let � 2C �¡2(T2) be a space white noise with zero average
on the torus, u02C � an initial condition and a:R! [�; 1] for some �> 0, a2C3(R) and
ka(k)kL16 1 8k 2 0; :::; 3. Let (�"; u0;")">0 be a family of smooth approximations to �; u0
obtained by convolution with a rescaled smoothing kernel and u" the classical solution to
the Cauchy problem

@tu"¡ a(u")�u"= �"+�"
a0(u")

a(u")2
; u(0)=u0;": (4)

Then we can choose the constants (�")">0 and a random time T > 0 in such a way that
the family of r.v. (u")">0�L T

�(T2) almost surely converge as "! 0 to a random element
u2L T

�(T2), where L T
� is the parabolic space C([0; T ];C �(T2))\C�/2([0; T ];C 0(T2)).

This element can be characterised as the solution to a paracontrolled singular SPDE
(see below for more details).

In order to devise a suitable formulation of eq. (1) and obtain a theory with u 2
C � we decompose the non-linear di�usion term in the l.h.s. with the help of Bony's
paraproduct [31] and write

@tu¡ a(u)��u= �+�(u) (5)

with

�(u) := a(u) ��u+ a(u)��u (6)

where �;� are standard paraproducts and � denotes the resonant product (see below for
precise de�nitions). Now the l.h.s. is always well de�ned irrespective of the regularity of
the function u and the problem becomes that of controlling the resonant product a(u)��u
appearing in the r.h.s. . A key point of the analysis put forward below is that this term
can be expected to be of regularity 2�¡ 2>�¡ 2 so better than the leading term �.
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Our approach can be described as follows. For an equation of the form

@tu¡ a1(u)�u= a2(u)�;

we consider at �rst a parametric �template� problem with constant coe�cients

@t#(�; t; x)¡ �1�#(�; t; x)= �2�(t; x); (7)

where now � = (�1; �2) are �xed numbers. A nonlinear paraproduct ��� will allow us to
modulate the parametric solution # with the coe�cient a(u)= (a1(u); a2(u)) as to capture
the most irregular part of the solution u itself. As a consequence, the paracontrolled Ansatz

u=���(a(u); #)+u
]

will de�ne a regular remainder term u] which solves a standard PDE. With this decompo-
sition the resonant products appearing in the equation can be estimated along the lines of
the standard paracontrolled arguments introduced in [15] and all the arguments introduced
there can be extended in a straightforward manner to the quasilinear setting.

This approach has been inspired by the parametric controlled Ansatz of Otto and
Weber [33]. At variance with their approach we use the parametric Ansatz in the context
of the paradi�erential calculus and consider more general noise terms.

Usefulness of paraproducts in the analysis of non-linear PDEs is by now well estab-
lished: see for example the seminal paper of Meyer [31], the early review of Bony [10],
the recent books of Alinhac and Gérard [1] and Bahouri, Chemin, and Danchin [3]. Let
us mention also the interesting paper of Hörmander [25] where paradi�erential operators
allows to bypass the Nash�Moser �xpoint theorem in some applications where the loss of
regularity prevents straightforward use of standard Banach �xpoint theorem. The main
observation in that paper is that, with the aid of paradi�erential operators, it is possible
to identify a �corrected� problem for which standard Banach �xpoint applies.

Paracontrolled calculus for singular SPDEs has beed introduced by Gubinelli, Imkeller
and Perkowski [15] (see also the lecture notes [17]) and used to study various equations
like the KPZ equation [16], the dynamic �34 model [11] in d=3 and its global well�posed-
ness [32], the spectrum of the continuous Anderson Hamiltonian in d = 2 [2]. By using
heat�semigroup techniques paracontrolled calculus has been extended to the manifold
context by Bailleul and Bernicot [4].

Non�linear generalisation of the classic bilinear paraproducts already appeared in
the notion of paracomposition introduced by Alinhac [10]. Non�linear versions of rough
paths have been considered by one of the authors in order to study the Korteweg�de Vries
equation [14]. Non�linear Young integrals were used by one of the authors in joint work
with Catellier [12] to study the the regularising properties of sample paths of stochastic
processes processes. See also the related work of Hu and Le [24] on di�erential systems in
Hölder media. Relevant to this discussion of non-linear variants of rough paths is the work
of Bailleul on rough �ows [8] and their application to homogeneisation [6]. By looking at
the composition f(g(x)) as the action of the distribution �g(x) on the function f , non�linear
constructions can be linearised at the price of working in in�nite�dimensional spaces:
this is the approach chosen by Kelly and Melbourne to avoid non�linear generalisations
of rough path theory in their study of homogeneisation of fast�slow system with random
initial conditions [26]. It is worth mentioning also Kunita's theory of semimartingale vector
�elds [27] which occupy a place in stochastic analysis quite similar to that which these
recent developments occupy in the landscape of rough paths/paracontrolled distributions
theories.
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Paracontrolled calculus is currently limited to ��rst order� computations. This limita-
tion is also ubiquitous in the present work. Even if, in practice, this is not a big issue, and
the calculus is still able to deal with a large class of problems, it makes the paracontrolled
approach less appealing for a general theory of singular SPDEs. Let us remark that recently
Bailleul and Bernicot [5] developed an higher order version of the paracontrolled calculus.
However, apart from these recent development, whose impact is still to be assessed, the
most general theory for singular SPDEs has been developed by Hairer [19, 20, 13] under
the name of regularity structures theory. Regularity structures are a vast generalisation
of Lyons' rough paths [28, 30, 29] which give e�ective tools to describe non-linear oper-
ations acting on certain spaces of distributions, their renormalization by subtraction of
local singularities and their use to solve singular SPDE. Regularity structures have been
successfully applied to all the models mentioned so far [19, 18], to other models like the
Sine�Gordon model [22] (which however can also be handled via paracontrolled techniques)
and to study weak universality conjectures [21, 23]. In their current instantiation it does
not seem possible to solve quasilinear SPDEs via regularity structures. The results of
the present paper hint to the fact that a non-linear version of regularity structures is
conceivable, at least in principle. Indeed one can imagine models depending on additional
parameters and modelled distributions acting as evaluations of the parametric models at
certain space�time dependent values of the parameters. It would be interesting to pursue
further this intuition.

The structure of the paper is the following. In Section 2 we introduce our basic tools: the
non-linear paraproduct decomposition and some related commutation lemmas. In Section 3
we introduce the paracontrolled Ansatz which allows to transform the singular problem (1)
into a well�behaved PDE. In Section 4 we discuss the apriori estimates, the uniqueness of
the solution of the transformed PDE and its continuity w.r.t. the random data and the
initial condition, we introduce also the algebraic structure which allows to renormalise the
model. Section 5 deals with the renormalization of the stochastic data and the construction
of the enhanced noise associated to white noise. Section 6 deals with the extension of the
results to more general equations, in particular with equation (3) or with noise whose law
depends on the solution itself. Finally Appendix A reviews some reference material on
Besov spaces and proves some technical lemmas.

Notations. We will denote C � := B1;1
� (T2) the Zygmund space of regularity � 2 R

on the torus T2. See Appendix A for the de�nition of the general Besov spaces Bp;q
� ,

the Littlewoord�Paley operators (�i)i>¡1 and the basic properties thereof needed in this
paper. If V is a Banach space and T > 0, we denote CT�V the space of ��Hölder functions
in CTV :=C([0; T ];V ). We introduce parabolic spaces L T

� :=CT
�/2C 0\CTC � with norm

kf kL T
�= kf k

CT
�/2C 0+ kf kCTC �: (8)

Moreover for convenience we denote C T
� :=CTC �. We will avoid to note explicitly the time

span T whenever this does not cause ambiguities. We will need also spaces for functions
of (�; t; x) where � is an additional parameter in [�;1] for �2 (0; 1) which we denote C�

kV
with norm

kF kC�kV = sup
�2[�;1]

sup
n=0;:::;k

k@�nF (�; �)kV ; (9)

where V is a Banach space of functions on [0; T ]�T2, in our case V = C T
� or V =L T

�.
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We will denote by Ki;x(y) = 22iK(2i(x ¡ y)) the kernel of the Littlewood�Paley
operator �i and Qi;t(s)=Qi(t¡s)=22iQ(22i(t¡s)) a smoothing kernel at scale 22i in the
time direction where Q is a smooth, positive function with compact support in R+ and
mass 1. We introduce also the shortcut Pi;x=K<i¡1;x=

P
j<i¡1Ki;x. Another notation

shortcut widely used in this article is to write
R
x;y

for integrals on T2 or R with respect
to the measures dx and dy without specifying the integration bounds, whenever this
does not create ambiguity. Finally, we will note �fsytx= f(t; x)¡ f(s; y) and �� fsytx= f(s;
y)+ �(f(t; x)¡ f(s; y)) for � 2 [0; 1].

2. Nonlinear paraproducts

In this section we introduce the nonlinear paraproduct and related results that will be used
in Section 3 to analyse equation (1).

Let g: [0; T ] � T2 ! R, and h: R � [0; T ] � T2 ! R be smooth functions. We can
decompose the composition h(g(�); �) via nonlinear paraproducts as follows. De�ne

��(g; h)(t; x) :=
X
q

Z
y;z
Pq;x(y)Kq;x(z)h(g(t; y); t; z) (10)

��(g; h)(t; x) :=
X
k�q

Z
y;z
Kk;x(y)Kq;x(z)h(g(t; y); t; z) (11)

��(g; h)(t; x) :=
X
k

Z
y;z
Kk;x(z)Pk;x(y)h(g(t; z); t; y) : (12)

This gives a map

(g; h) 7!�}(g; h) :=��(g; h)+��(g; h)+��(g; h)=h(g(�); �) (13)

that can be uniquely extended to

�}:C T
� �C�

2C T
!C T

^� �2 (0; 1);  2R; �+  > 0;

thanks to the following bounds:

Lemma 2. (Nonlinear paraproduct estimates) Let g 2 C T
� for some � 2 (0; 1),

g 2 [�; 1], and h2C�
2C T

 for any  2R. Then

k��(g; h)kC T
 . khkC�C T

 ; k��(g; h)kC T
�^(�+). kgkC T

� khkC�1C T
 ;

and

k��(g1; h)¡��(g2; h)kC T
 . kg1¡ g2kCTL1khkC�1C T

 ;

k��(g1; h)¡��(g2; h)kC T
�^(�+) . kg1¡ g2kCTL1(kg1kC T

� + kg2kC T
� )khkC�2C T



+kg1¡ g2kC T
� khkC�1C T

 :

Moreover if �+  > 0 we have also

k��(g; h)kC T
�+. khkC�1C T

 kgkC T
� ;

k��(g1; h)¡��(g2; h)kC T
�+ . kg1¡ g2kCTL1(kg1kC T

� + kg2kC T
�)khkC�2C T



+kg1¡ g2kC T
� khkC�1C T

 :
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In particular if � +  > 0 the composition �}(g; h) = h(g(�); �) is linear in h and locally
Lipshitz in g:

k�}(g; h)kC T
 . khkC�1C T

 kgkC T
� ;

k�}(g1; h)¡�}(g2; h)kC T
 . kg1¡ g2kC T

�(1+ kg1kC T
� + kg2kC T

�)khkC�2C :

Proof. Using the fact that

k�kh(g(t; y); t; �)kL1. 2¡kkhkC�C T
 ;

k�kh(g(t; y); t; �)¡�kh(g(t; y
0); t; �)kL1. 2¡kkhkC�1C T

 kgkCT C �jy¡ y 0j�;
and

k�kh(g1(t; y); t; �)¡�kh(g2(t; y); t; �)kL1. 2¡kkhkC�1C T
 kg1¡ g2kCTL1;

we obtain the bounds on ��(g; h), ��(g; h), ��(g; h) and ��(g1; h) ¡ ��(g2; h). We
proceed to estimate the term ��(g1; h)¡��(g2; h). We will use the following notation for
brevity:

�g2z
1y: =g1(t; y)¡ g2(t; z) and �� g2z

1y: =g2(t; z)+ �(g1 (t; y)¡ g2(t; z)):
Then ����Z

y;z
Kk;x(z)Pk;x(y)[h(g1(t; z); t; y)¡h(g2(t; z); t; y)]

����
=

����Z
y;z;�2[0;1]

Kk;x(z)Pk;x(y)[@�h(�� g2z
1z ; t; y)�g2z

1z¡ @�h(�� g2x1x ; t; y)�g2x1x]
����

.
����Z

y;z;t2[0;1];�2[0;1]
Kk;x(z)Pk;x(y)@�

2h(��(�� g2
1)x
z ; t; y)(�g1x

1z¡ �g2x2z)�g2z1z
����

+

����Z
y;z;�2[0;1]

Kk;x(z)Pk;x(y)@�h(�� g2x
1x ; t; y)(�g2z

1z¡ �g2x1x)
����

. kg1¡ g2kCTL1(kg1kCTC �+ kg2kCTC �)khkC�2CTC  2¡�k
X

q<k¡1
2¡q

+kg1¡ g2kCTC � khkC�1CTC  2¡� k
X

q<k¡1
2¡q :

With the same reasoning we can bound the norm of ��(g1; h)¡��(g2; h). �

We will need the following time-smoothed nonlinear paraproduct

���(g; h)(t; x) :=
X
i

Z
y;s
Qi;t(s)Pi;x(y)(�ih(g(s; y); t; �))(x); (14)

with Q 2 Cc
1(R) with total mass 1, and Qi;t(s) := 22iQ(2i(t ¡ s)) as speci�ed in the

introduction. In (14) we use the convention that a continuous function t 7! g(t) on R+ is
extended to R by de�ning g(t)= g(0) for t6 0. This preserves the Hölder norms of index
in [0; 1]. The modi�ed nonlinear paraproduct enjoys similar bounds to the regular one.

Lemma 3. Let g 2CTL1, g 2 [�; 1] and h2C�
1L T

 for  2 (0; 2). Then

k���(g; h)kC T
 . khkC�C T

 and k���(g; h)kL T
 . khkC�L T

 :

Moreover, ���(g; h) is linear in h and:

k���(g1; h)¡���(g2; h)kC T
 . kg1¡ g2kCTL1khkC�1C T

 ;

k���(g1; h)¡���(g2; h)kL T
 . kg1¡ g2kCTL1khkC�1L T

 :
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Proof. The norm k���(g; h)kCTC  can be treated in the same way as in Lemma 2. We
estimate k���(g; h)kCT/2C 0 as follows:

k�j���(g; h)(t1)¡�j���(g; h)(t2)kL1

. sup
x

�����
Z
z
Kj;x(z)

X
i�j

Z
y;s
Qi;t1(s)Pi;z(y)[�ih(g(s; y); t1; z)¡�ih(g(s; y); t2; z)]

�����
+sup

x

�����
Z
z
Kj ;x(z)

X
i�j

Z
y;s
[Qi;t1(s)¡Qi;t2(s)]Pi;z(y)�ih(g(s; y); t2; z)

�����
. kh(�; t1; �)¡h(�; t2; �)kC�C 0+ jt1¡ t2j/2khkC�C T

 :

The second inequality can be obtained easily with the same techniques used so far. �
Remark 4. Using the Fourier support properties of the kernel Pq;x it is easy to see that
it has mass 1. Therefore, the paraproducts (10) and (14) when g(t; x) = g� is a constant
smooth function become 8(t; x)2R�T2:

��(g�; h)(t; x) = h(g�; t; x)=�}(g�; h);

���(g�; h)(t; x) = h(g�; t; x):

2.1. Nonlinear commutator.
The next technical ingredient is a commutator lemma between the non-linear parapro-

duct of (14) and the standard resonant product. It will be needed below to analyse a term
of the form ���(g; h) �����(g; h), then we will specialise our discussion to this speci�c
structure. Notice that in the following the various space�time operators act pointwise in
the parameter �, in the sense that, for example:

(h ��h)(�; t; x)= (h(�; t; �) ��h(�; t; �))(x):

Lemma 5. We de�ne the map �:C1([0; T ];T2)�C�
2C1([0; T ];T2)!C1([0; T ];T2) by

�(g; h) := [���(g; h) �����(g; h)]¡�}(g; h ��h):

Then for all �2 (0; 1),  <R, "> 0 such that 2 ¡ 2+ �¡ "> 0 and g 2 [�; 1], we have

k�(g; h)kC T
2¡2+�¡". kgkL T

� khkC�1C T


2

and

k�(g1; h)¡�(g2; h)kC T
2¡2+�¡" . kg1¡ g2kCTL1(kg1kL T

� + kg2kL T
� )khkC�2C T


2

+kg1¡ g2kL T
� khkC�1C T


2 :

As a consequence � can be uniquely extended to a locally Lipshitz function

�:L T
� �C�

2C T
!C T

2¡2+�¡":

Proof. Let A(t; z) := ���(g; h) �����(g; h)(t; z) . We can approximate A(t; z) with its
value for a �xed g= g(t; z), to obtain

�qA(t; x) =

Z
z
Kq;x(z)(���(g; h) �����(g; h))(t; z)

=

Z
z
Kq;x(z)(���(g(t; z); h) �����(g(t; z); h))(t; z)

+

Z
z
Kq;x(z)((���(g; h)¡���(g(t; z); h)) �����(g(t; z); h))(t; z) (15)

+

Z
z
Kq;x(z)(���(g; h) ��(���(g; h)¡���(g(t; z); h)))(t; z): (16)
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with the remainders (15) and (16). To estimate the �rst term notice that

�j[����(g(t; z); h)](t; z)=�j���(g(t; z);�h)(t; z)

and that, by Remark 4

�i���(g(t; z); h)(t; z) =

Z
z 0
Ki;z(z 0)���(g(t; z); h)(t; z 0)

=

Z
z 0
Ki;z(z

0)h(g(t; z); t; z 0)

= �ih(g(t; z); t; �)(z):

This yields

(���(g(t; z); h) �����(g(t; z); h))(t; z) =
X
i�j

�i���(g(t; z); h)

=
X
i�j

�ih(g(t; z); t; �)(z)�j[�h(g(t; z); t; �)](z)

= �}(g; h��h)(t; z):

We proceed then to estimate (15) and (16). We obtainZ
z
Kq;x(z)[(���(g; h)¡���(g(t; z); h)) �����(g(t; z); h)](t; z)

=

Z
z
Kq;x(z)

X
i�j&q

(�i���(g; h)(t; z)¡�i���(g(t; z); h)(t; z))�j����(g(t; z); h)(t; z):

Using Lemma 3 we have

j��j���(g(t; z); h)(t; z)j. 2(2¡)jkhkC�C T
 :

Lemma 6 gives

j�i(���(g; h)¡���(g(t; z); h))(t; z)j. 2¡(+�¡")ikgkL T
� khkC�1C T

 ;

and thus (15) is bounded by 2¡(2+�¡2¡")qkgkL T
� khkC

T


2 .

We can easily bound (16) in the same way, and this proves the �rst inequality. For the
second inequality, Lemma 3 yields

j�j����(g1; h)(t; z)¡�j����(g2; h)(t; z)j. 2(2¡)jkg1¡ g2kCTL1khkC�1C T
 ;

and using the second inequality of Lemma 6 we obtain the desired bound.
The extension of � to L T

� �C�
2L T

 is standard (see e.g. the proof of the commutator
lemma in [15], Lemma 2.4). �

Lemma 6. With the same assumptions of Lemma 5 we have

j�i���(g; h)(t; z)¡�i���(g(t; z); h)(t; z)j. 2("¡�¡)ikgkL T
� khkC�1C T



and

j�i���(g1; h)(t; z)¡�i���(g1(t; z); h)(t; z)¡�i���(g2; h)(t; z)+�i���(g2(t; z); h)(t; z)j

.2("¡�¡)i
�
kg1¡ g2kL T

� khkC�1C T
 + kg1¡ g2kCTL1(kg1kL T

� + kg2kL T
�)khkC�2C T



�
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Proof.

[�i���(g; h)¡�i���(g(t; z); h)](t; z)

=
X
k�i

Z
x;y;s;�

Ki;z(x)Qk;t(s)Pk¡1;x(y)@��kh(�� gtz
sy; t; x)

¡
�gty

sy+ �gtz
ty�

.
X
k�i

Z
x;y;s;�

jKi;z(x)Qk;t(s)Pk¡1;x(y)jk@��khkCTL1jt¡ sj(�¡")/2kgkCT�/2¡"/2L1

+
X
k�i

Z
x;y;s;�

jKi;z(x)Qk;t(s)Pk¡1;x(y)jk@��khkCTL1jy¡ z jkgkC T
�

. 2¡(�¡")i2¡ik@�hkC T


�
kgkCT�C 0+ kgkC T

�

�
where we used the notation �gtz

sy= g(s; y)¡ g(t; z), ��gtz
sy= g(t; z)+ �(g(s; y)¡ g(t; z)) and

Lemma 22. This proves the �rst bound.
The second inequality can be obtained in the same way with the techniques already

used here and in Lemma 2. �

2.2. Approximate paradi�erential problem.
In this section we construct an approximate solution to the equation

(@t¡ g��)u= f ; u(0; �)=0; (17)

with data f 2C ¡2 and g 2L T
� , for some �xed �;  2 (0;1). The idea is to obtain it via a

certain class of paradi�erential operators. We introduce the operator L acting on functions
of (�; t; x) by

(L U)(�; t; x) := @tU(�; t; x)¡ ��U(�; t; x): (18)

We will also use the notation L �1 := @t¡ �1� with �12R.
Observe that if u does not depend on � we can de�ne

��(g;L )u :=��(g;L u) (19)

and from de�nition (10) with h=L u we obtain ��(g;L )u= @tu¡ g��u.
We can describe the commutation between the di�erential operator L and the para-

product ���(g; �) via the following estimate:

Lemma 7. Let �2 (0; 1),  2R. Let U 2C�
2C T

 and g 2L T
� such that g 2 [�; 1]. De�ne

	(g; U) :=R1+R2

with R1 and R2 as in ( 22), ( 23). Then for every "> 0

k	(g; U)kC T
�+¡2¡". (1+ kgkCTL1)kgkL T

� kU kC�1C T

 : (20)

Moreover, 	(g; U) is linear in U and

k	(g1; U)¡	(g2; U)kC T
�+¡2¡". kg1¡ g2kL T

�(1+ kg1kL T
� + kg2kL T

�)kU kC�2C T

 :

In particular, we have

	(g; U)=���(g;L U)¡��(g;L )���(g; U)2CTC �+¡2¡" (21)

whenever this expression makes sense.
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Proof. We start considering g 2C1([0; T ];T2) and U 2C�2C1([0; T ];T2), and prove (21)
in this setting. Notice that ���(g(t; y); L g(t;y)U) = L U(g(t; y)). As a consequence, we
can estimate

���(g;L U)(t; x)¡��(g;L ���(g; U))(t; x)

= ���(g;L U)(t; x)¡
X
k

Z
y
Pk;x(y)(L g(t;y)�k���(g; U))(t; x)

= ���(g;L U)(t; x)¡
X
k

Z
y
Pk;x(y)(@t�k���(g; U))(t; x)

+
X
k

Z
y
Pk;x(y)g(t; y)(��k���(g; U))(t; x)

= ���(g;L U ¡ @tU)(t; x)+
X
k

Z
y
Pk;x(y)g(t; y)(�k���(g;�U))(t; x)

+
X
k

Z
Pk;x(y)g(t; y)(�k[�;���(g; �)]U)(t; x)¡

X
k

Z
Pk;x(y)(�k[@t;���(g; �)]U)(t; x)

with the commutators

[�;���(g; �)]U := ����(g; U)¡���(g;�U);
[@t;���(g; �)]U := @t�k���(g; U)¡�k���(g; @tU):

We have

���(g;L U ¡ @tU)(t; x)+
X
k

Z
y
Pk;x(y)g(t; y)(�k���(g;�U))(t; x) = R1(t; x)

with the de�nition

R1(t; x) :=X
k;i

Z
y;z
y 0;s
Pk;x(y)Kk;x(z)Pi;z(y

0)Qi;t(s)[g(t; y)¡ g(s; y 0)]��iU(g(s; y
0); t; z) (22)

andX
k

Z
y
Pk;x(y)[g(t; y)(�k[�;���(g; �)]U)(t; x)¡ (�k[@t;���(g; �)]U)(t; x)]=R2(t; x)

with the de�nition

R2(t; x) :=
X
k;i

Z
y;y 0;s

Pk;x(y)Kk;x(z)Qi;t(s)g(t; y)�Pi;z(y
0)�iU(g(s; y

0); t; z)

+2
X
k;i

Z
y;y 0;s

Pk;x(y)Kk;x(z)Qi;t(s)g(t; y)rPi;z(y 0)r�iU(g(s; y
0); t; z)

¡
X
k;i

Z
y;y 0;s

Pk;x(y)Kk;x(z)@tQi;t(s)Pi;z(y 0)�iU(g(s; y 0); t; z): (23)

Indeed:

([@t;���(g; �)]U)(t; x) =
X
i

Z
y;s
(@tQi;t)(s)Pi;x(y)(�iU(g(s; y); t; x));

([�;���(g; �)]U)(t; x) =
X
i

Z
y;s
Qi;t(s)�Pi;x(y)(�iU(g(s; y); t; x)) (24)

+2
X
i

Z
y;s
Qi;t(s)rPi;x(y)(r�iU(g(s; y); t; x)):
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This shows that (21) holds for smooth functions.
With the techniques used in Lemma 6 we can estimate

j�qR1(t; x)j.
X
k�q

�
2¡(�¡")kkgk

CT
�/2C 0+2¡�kkgkC T

�

�
2(2¡)kkU kC�C T

 :

By the spectral support properties of the commutators we have that

k[�;���(g; �)]U kC T
+�¡2 . kgkC T

� kU kC�1C T
 ;

k�q[@t;���(g; �)]U kCTL1 .
�
2(2+"¡�¡)qkgk

CT
�/2C 0+2(2¡�¡)qkgkC T

�

�
kU kC�1C T

 :

This yields

kR2kC T
+�¡2¡". (1+ kgkCTL1)kgkL T

� kU kC�1C T
 :

We have so far proved (20) and then (21) follows by continuity. The local Lipshitz depen-
dence on g can be obtained via similar computations. �

Remark 8. If f does not depend on � we consider the parametric problem

(@t¡ ��)Uf(�; t)= f ; Uf(�; 0)=0; � 2 [�; 1]; (25)

which is solved by

Uf(�; t)=

Z
0

t

e��(t¡s)fds:

Remark that

@�Uf(�; t)=

Z
0

t

e��(t¡s)(t¡ s)�fds and @�
2Uf(�; t)=

Z
0

t

e��(t¡s)(t¡ s)2�2fds:

We have, thanks to the well-known Schauder estimates of Lemma 21 (since �>�):
kUf kC�2L T

 := sup
n=0;1;2

sup
�2[�;1]

k@�nUf(�)kL T
 . kf kC T

¡2 (26)

We de�ne then

u(t; x) :=���(g; Uf)(t; x) (27)

and observe that u(t; x) is an approximate solution of equation (17), indeed

(@t¡ g��)u=��(g;L ���(g; Uf))=���(g;L Uf)¡	(g; Uf)= f ¡	(g; Uf)

and the estimation in Lemma 7 together with the bound (26) yield immediately the fol-
lowing inequality:

k	(g; Uf)kC T
�+¡2¡". kgkL T

� (1+ kgkCTL1)kf kC T
¡2 : (28)

3. Paracontrolled Ansatz

In order to give a meaning to the PDE in (5) with initial condition u0 2 C �, our initial
goal will be to get informations on solutions �= �(g) of the equation

@t�¡ g���= �;

for a �xed g 2 C T
�, 2/3<�< 1, g 2 [�; 1]. Using the results of Section 2.2, we consider to

this e�ect the parametric problem

(@t¡ ��)#(�; t)= �;

M. Furlan, M. Gubinelli 11



for � 2 [�; 1]. We will consider the stationary solution of this problem which has the form

#(�; x)=

Z
0

1
e��s �ds=(¡��)¡1� (29)

and in order for (29) to be well de�ned we impose that the noise � has zero mean on T2

(this is a simplifying assumption which can be easily removed, e.g. at the price of adding a
linear term to the equation). We can control (29) by bounding its Littlewood-Paley blocks
with a Bernstein lemma for distributions with compactly supported Fourier transform ([3],
Lemma 2.1) to obtain:

k#kC�2L T
�= k#kC�2C T

�. k�kC �¡2 : (30)

We de�ne now for every t2 [0; T ]

�(t; x) :=���(a(u); #):

Thanks to Lemma 3 we have the bound k�kL
T
�. k#kC�L

T
� . k�kC �¡2 . We observe that

this de�nition together with Lemma 7 gives

@t�¡ a(u)���= �¡	(a(u); #)

with k	(a(u); #)kC T
2�¡2¡".ka(u)kL T

�
2 k�kC T

�¡2 . We expect then 	(a(u); #) to be bounded
in C T

2�¡2¡" for any "> 0. At this point let us introduce the Ansatz

u= �+ u] : (31)

Remark 9. Notice that we are not making any assumption on the existence of such u,
which is the subject of Section 4. Our aim here is to �nd the equation that a couple
(u; u])2 C T

� � C T
2� verifying (31) must solve, in order for u to solve (5).

Observe that

@tu¡a(u)��u=(@t¡a(u)��)�+(@t¡a(u)��)u]= �+(@t¡a(u)��)u]¡	(a(u);#):

It follows that u] must solve(
(@t¡ a(u)��)u]=�(u)+	(a(u); #)

u](t=0)=u0
] := u0¡���(a(u0); #)(t=0)2 C �

(32)

with �(u)=a(u)��u+a(u)��u, and if we can make sense of the resonant term a(u)��u,
it is reasonable to expect u](t; �)2C 2� 8t2 (0; T ]. Indeed, take U ] :=UQ to be the solution
of

L U ](�) := (@t¡ ��)U ](�)=Q U ](�; t=0)= 0 (33)

for some Q = Q(u]) to be determined and � 2 [�; 1]. Using again Lemma 7 as shown in
Remark 8 we have

(@t¡ a(u)��)���(a(u); U ])=Q(u])¡	(a(u); U ]):

For � 2 [�; 1]we de�ne P tu0
](�) := e��tu0

] so that L (P tu0
])=0, with L as in (18).

We set

u] :=���(a(u); U
])+���(a(u);P u0

]) : (34)

Taking

Q(u]):=�(u)+	(a(u); #)+	(a(u); U ])+	(a(u);P u0
]) ;
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we obtain that U ] solves equation (33) if and only if u] solves equation (32). As we will
see, Q(u])(t) belongs to C 2�¡2 8t2 (0; T ] but not uniformly as t! 0. However it belongs
to C �¡2 uniformly as t! 0.

It remains to control the resonant term a(u) ��u appearing in �(u). We have

a(u) ��u= a(u) ���+ a(u) ��u] :

By paralinearization (see Theorem 25) a(u) = a0(u) � u + Ra(u) with kRa(u)kC T
2� .

1+ kukC T
�

2 , and then

a(u) ���=(a0(u)�u) ���+Ra(u) ���:

In order to use the commutator lemma (Lemma 26) we can estimate a0(u), recalling that
�2 (0; 1), as

ka0(u)kC T
�. ka00kL1kukC T

�

and write

a(u) ���= a0(u)(u���)+C(a0(u); u;��)+Ra(u) ���:

Then, Ansatz (31) gives

a(u) ���= a0(u)(� ���)+ a0(u)(u] ���)+C(a0(u); u;��)+Ra(u) ���:

Summarizing, we have:

�(u) = a0(u)(� ���)+ a(u)��u+ a0(u)(u] ���)
+C(a0(u); u;��)+Ra(u) ���+ a(u) ��u]

Thanks to the nonlinear commutator (Lemma 5), we can decompose the resonant term
� ��� to obtain

�(u) = a(u)��u+ a0(u)(u] ���)+C(a0(u); u;��)+Ra(u) ���+ a(u) ��u]

+a0(u)�(a(u); #)+ a0(u)�}(a(u);�2)

and �(a(u); #)2C T
3�¡2¡" if u2L T

�. Here we de�ned

�2(�; x) := (# ��#)(�; x)=
X
i�j

�i#(�; �)(x)�j[�#(�; �)](x) (35)

Finally, recalling the decomposition of u] in two terms (34) we obtain

�(u)= a0(u)�}(a(u);�2)+�1(u)+�2(u)

where

�1(u) := a(u)��u+C(a0(u); u;��)+Ra(u) ���+ a0(u)�(a(u); #)
+a0(u)(���(a(u); U

]) ���)+ a(u) �����(a(u); U ]) ;

�2(u) := a0(u)(���(a(u);P u0
]) ���)+ a(u) �����(a(u);P u0

]):

Thanks to Lemma 2 the terms a0(u)�}(a(u);�2) and �1(u) can be estimated in C T
2�¡2,

provided �2 2 C�
2C T

2�¡2 (see Section 5). On the other hand the term �2(u)(t) can be
estimated in C 2�¡2 only for strictly positive times t>0 due to the lack of regularity of the
initial condition u0

] which a priori lives only in C �.
Note moreover that the speci�c form of � allows to deduce that if we replace �2 by

�~ 2 =�2¡H with H 2 C�
2C T

2�¡2 then this is equivalent to consider an equation for u of
the form

@tu(t; x)¡ a(u(t; x))�u(t; x)= �(x)¡ a0(u(t; x))H(a(u(t; x)); t; x):
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Let us resume this long discussion in the following theorem:

Theorem 10. Assume that � 2C 0; u02C 2;H 2C�2C T
0. u2CT1C 2 is the classical solution

to the equation

@tu(t; x)¡ a(u(t; x))�u(t; x)= �(x)¡ a0(u(t; x))H(a(u(t; x)); t; x); u(0)= u0; (36)

up to time T > 0 if

u=���(a(u); #+U ]+P u0
]);

where # is the solution to eq. ( 29) and U ] is the solution to the PDE

(@t¡ ��)U ](�)=F (u; U ]; u0
]) U ](�; 0)=0 � 2 [�; 1] (37)

with

F (u;U ]; u0) = a0(u)�}(a(u);�2)+�1(u)+�2(u)+	(a(u); #)+	(a(u); U ])

+	(a(u);P u0
])

and �2=# ��#¡H.

De�nition 11. For any �2R we de�ne X��C�
2C ��C�

2C 2�¡2 the closure of the image
of the map

(�;H)2C�
2C 2�C�

2C 0 7! J(�;H)= (�; ����¡H)2C�2C 2�C�2C 0

(in the topology of C�
2C ��C�

2C 2�¡2).

We call the elements in X � enhanced noises. In the next section we will exploit the
space X� for 2/3<�< 1 to solve equations (37) and (31).

4. Local wellposedness

The main result of this section is the local well�posedness for equations (31) and (37) when
(#;�2)2X � and u02C � for 2/3<�< 1. This yields a unique solution to (36), thanks to
Theorem 10.

Theorem 12. Let � > 2/3: Then for any (#;�2) 2 X � and u0 2 C � there exists a time
T > 0 depending only on k(#;�2)kX� and ku0k� up to which the system of equations ( 31)
and ( 37) has a unique solution (u; U ])2L T

� �C�2L T
2� for all � <� such that 2�+�> 2.

For any �xed � > 0 there exist a ball B� � C ��X � such that the solution map

��: (u0; #;�2)2B� 7! (u; U ])2L �
��C�2L �

2�

is well de�ned and Lipshitz continuous in the data.

Remark 13. The proof is based on a Picard �xed point argument. In order to obtain a
small-time contraction we carry on our estimates of U ] in the space C�

2L T
2��C�

2L T
2�.

Proof. (Theorem 12) Let GT =L T
� �C�

2L T
2�. We introduce the map

¡: (u;U ])2 GT 7! (¡u(u;U
]);¡U ](u;U ]))2 GT

by

¡u(u;U ]) :=���(a(u); #)+���(a(u);¡U ](u;U ]))+���(a(u);P u0
])

and

(@t¡ ��)¡U ](u; U ])(�)=F (u; U ]; u0
]); ¡U ](u;U ])(�)(0)= 0; � 2 [�; 1];
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We will establish that this map is a contraction in the space GT :
First, we have to show that there exists a ball B � GT such that ¡(B)�B. We have

the bound kP u0
]kC�1L T

� . ku0
]kC T

� . It is easy to obtain, using the estimates of Section 2
and Lemma 21:Z

0

T

e¡��(t¡s)[�1(u)+	(a(u); #)+	(a(u); U ])+	(a(u);P u0
])]sds


C�
2L T

2�

. T �(1+ kukL T
�)4(1+ k�kC �¡2)2ku0

]kC �

¡
1+ kU ]kC�2L T

2�

�
for some �> 0.

By the assumption that (#; �2) 2 X � we deduce that there exists M > 0 such that
k�2kC�2C T

2�¡26M . We haveZ
0

T

e¡��(t¡s)[a0(u)�}(a(u);�2)]sds


C�
2L T

2�
.T�¡�(1+ kukC T

�)2k�2kC�2C T
2�¡2 :

To bound the term �2(u) we observe that kP tu0
]kC�2C 2�. t¡

�

2ku0
]kC � thanks to Lemma 21.

This givesZ
0

T

e¡��(t¡s)�2(u)sds


C�
2L T

2�
.T�¡�(1+ kukC T

�)(1+ k�kC �¡2)ku0
]kC �

and then ¡U ](u; U
]) is bounded in C�

2L T
2� for T small enough. We have also

k¡u(u; U ])kL T
� . k�kC �¡2+ ku0

]kC �+ k¡U ](u; U ])kC�L T
�

. k�kC �¡2+ ku0
]kC �+T

2�¡�
2 k¡U ](u;U ])kC�2L T

2�

and these bounds show that ¡(B)�B. The contractivity of ¡U ](u;U ]) can be obtained in
the same way. Now consider ¡u(u;U ]): we have

k���(a(u1); U1
])¡���(a(u2); U2

])kL T
�

. T
2�¡�
2
¡
kU1

]¡U2
]kC�L 2�+ ku1¡u2kCTL1kU2

]kC�1L 2�

�
while for the other terms in ¡u(u1; U1

])¡¡u(u2; U2
]) we remark that

sup
s2[0;t]

ku1;s¡ u0¡u2;s+u0kL1. t"/2ku1¡u2kC[0;t]"/2
L1
:

Then 80<"<�, using Lemma 3 and Lemma 22:

k���(a(u1); #)¡���(a(u2); #)kL T
� . ka(u1)¡ a(u2)kCTL1k#kC�1L T

�

. ku1¡ u2kCTL1k�kC �¡2

. T "/2 ku1¡ u2kCT"/2L1k�kC �¡2

. T "/2ku1¡ u2kL T
�k�kC �¡2 :

With the same reasoning we estimate

k���(a(u1);P u0
])¡���(a(u2);P u0

])kL T
� . T "/2ku1¡ u2kCT"/2L1kP u0

]kC�1L T
�

. T "/2ku1¡ u2kL T
�ku0

]kC T
�

and then ¡ is a contraction for small times.
The uniqueness of the solution (u;U ])2L T

��C�2L T
2� and the Lipshitz continuity of the

localized solution map �� can be proved along the same lines via standard arguments. �
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5. Renormalization

At this point we want to construct an enhanced noise � associated to the white noise �.
Already in the standard setting of the generalised PAM model with constant di�usion
matrix, the construction of the enhancement requires a renormalization since the resonant
product # ��# is not well de�ned.

Let  2S(T2) be a cuto� function and let  "(x)="¡2 (x/"). Then de�ne a regularised
noise by �"=  " � � and let #"=(¡��)¡1�". Notice that

H"(�) :=E[#"(�; x) ��#"(�; x)]=E[#"(�; x)�#"(�; x)]=¡
X

k2Z2nf0g

 ̂"(k)
2

�2jk j2 =¡
�"
�2

where

�" :=
X

k2Z2nf0g

 ̂"(k)
2

jk j2 ' jlog "j

as "! 0. Subtracting the diverging quantity H" to #" ��#" and then taking the limit as
"! 0 delivers a �nite result.

Theorem 14. Take � < 1 and let �"= (�"; �2;"): =(�"; #" ��#"¡H"). Then the family
(�")"�X� converges a.s. and in Lp to a random element �= (�;�2)2X �.

Proof. The proof is a mild modi�cation of the proof for PAM [15]. In order to establish
the required C�

2C T
2�¡2 regularity for �2 we follow the computations for the case where the

di�usion coe�cient is constant. We have only to discuss the additional regularity in the �
parameter. In order to do so observe that

�2;"(�)=
X
i�j

J�i#"(�)�j�#"(�)K

where JK denotes the Wick product with respect to the Gaussian structure of �. Then we
have

@��2;"(�)=
X
i�j

J�i@�#"(�)�j�#"(�)K+
X
i�j

J�i#"(�)�j�@�#"(�)K;

and

@�
2�2;"(�) =

X
i�j

J�i@�
2#"(�)�j�#"(�)K+

X
i�j

J�i#"(�)�j�@�
2#"(�)K

+
X
i�j

2J�i@�#"(�)�j�@�#"(�)K:

Now the computations relative to the regularities of these additional stochastic objects
are equivalent to those for the term �2;" where one or two instances of #"(�) are replaced by
Gaussian �elds of similar regularities of the form @�#"(�) and @�2#"(�), a direct inspection
of the proof allows us to deduce that we have almost sure C 2�¡2 regularity for these
terms and also for random �elds @�n�2;" for any �nite n. This allows also to deduce that
the random �eld is a.s. smooth in the parameter �. Similar computations allow to prove
continuity in " for "> 0. The rest of the proof is standard. �

In conclusion we see that in order to be able to use this convergence result we need to
modify our approximate PDE and consider instead

@tu"¡ a(u")�u"= �"¡ a0(u")H"(a(u"))

which gives the renormalised equation (4).
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Our well�posedness results for the paracontrolled formulation of this equation together
with the convergence result in Theorem 14 allow to deduce that u"! u in C T

� for any
2/3<�<�<1 and that the limiting process u satis�es a modi�ed version of eq. (1), namely

@tu¡ a(u)��u= �; u(0)=u0;

where a(u)��u denotes a renormalized di�usion term given by

a(u)��u := a(u)��u+ a0(u)�}(a(u);�2)+�1(u)+�2(u): (38)

6. Nonlinear source terms

Let us start by discussing the presence of a u dependent r.h.s. in eq. (1). We want to solve

@tu¡ a1(u)�u= a2(u)�

where a1 is a non-linear di�usion coe�cient as before and a2:R!R is another bounded
function with su�ciently many bounded derivatives. We rewrite this equation as

��(a(u);L )u= a2(u)� �+ a1(u) ��u+ a2(u) � �+ a1(u)��u+ a2(u)� �

where now a(u)= (a1(u); a2(u)) is a vector valued non-linearity. Since we don't need u to
depend on any parameter �=(�1; �2), we have de�ned L as

L (�) := @t¡ �1�

and used the identity ��(a(u);L )u= (@t¡ a1(u)��)u, similarly to what we have done
in (19).

Notice that the non�linear paraproduct can be extended trivially to the vector valued
case in such a way that, for example,

���((g1; g2); h)(t; x)=
X
i

Z
y;s
Qi;t(s)Pi;x(y)(�ih((g1(s; y); g2(s; y)); t; �))(x):

As before we make the Ansatz

u=���(a(u); #)+u
]

where now # solves

L (�)#(�)= (@t¡ �1�)#(�)= �2 �;

for �=(�1; �2)2 [�;1]� [¡L;L] where L is a large but �xed constant. The bounded domain
is important to be able to have uniform estimates and reuse the estimates proved above
in the simple situation of �2=1. The solution of this equation is

#(�; �)= �2

Z
0

1
e�1�s�ds=¡�2

�1
�¡1�:

Observe that

��(a(u);L )u=��(a(u);L )���(a(u); #)+��(a(u);L )u]

and recall that (Lemma 7) ��(a(u);L )���(a(u); #)=���(a(u);L #)+	(a(u); #). Now

(L #)(�)= (@t¡ �1�)#(�; t; x)=�(�); �=(�1; �2)2 [�; 1]� [¡L;L]

with �(�)(t; x)= �2�(x) and then

���(a(u);L #)=���(a(u);�)= a2(u)�� �:
In conclusion

��(a(u);L )���(a(u); #)= a2(u)�� �+	(a(u); #)
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and the equation for u] reads

��(a(u);L u]) = a1(u) ��u+ a2(u) � �+ [a2(u)� �¡ a2(u)�� �]
+a1(u)��u+ a2(u)� � ¡	(a(u); #)

where now all the terms on the r.h.s. can be treated as remainder terms. Let us just
remark that the commutation term a2(u) � � ¡ a2(u) �� � has a standard treatment via
Lemma 27. Of course, the �rst two terms require to be treated as resonant terms. Note
that, modulo terms of order C T

3�¡2 (or E�/2C 2�¡2 as de�ned in Lemma 21) the terms
a1(u) ��u+ a2(u) � � are equivalent to

a1
0 (u)�}(a(u); # ��#)+ a20 (u)(���(a(u); #) � �)

and that by computations similar to those of the previous sections one can prove that

(���(a(u); #) � �)=�}(a(u); # � �)+ C T
3�¡2

so the resonant terms are comparable to the sum of the two terms

a1
0 (u)�}(a(u); # ��#)+ a20 (u)�}(a(u); # � �)

which require renormalization of the form

a1
0 (u)a2(u)2

a1(u)2
�"¡

a2
0 (u)a2(u)
a1(u)

�" (39)

and the convergence follows with the same arguments of Section 5.
We remark that the structure of the second renormalisation term, which is due to the

r.h.s. in the equation, is the same of that found by Bailleul, Debussche and Hofmanova
in [7].

Remark 15. Our approach works straightforwardly for the equation

@tu(t; x)¡ aij(u(t; x))@ij2 u(t; x)= g(u(t; x))�

with a:R!M2(R) such that
P

i;ja(u)ij xi xj>C jxj2 8x2R2 for C>0 and @ij2 :=
@2

@xi @xj
.

To see that, let a(u) :=(aij(u); g(u))2R5 and �=(�i;j ; �g)2R5. Let L (�) :=@t¡ �ij@ij2

and �(�) := �g� with the uniform ellipticity condition
P

i;j �ij xi xj > C jxj2 8x 2R2. It
is easy to verify that Lemma 7 and Lemma 5 hold within this setting, just considering
nonlinear paraproducts for functions depending on 5 parameters. We have then:

u=���(a(u); #+U
]+P u0

])

with #(�) stationary solution of L #(�)=�(�), P tu0
] := e�ij@ij

2 tu0
] and U ](�) which solves

L U ](�)=�}((a(u); a
0(u));�1)+�}((a(u); a

0(u));�2)+Q(u; U ])

with Q(u;U ])2C 2�¡2¡", �12C�2C� 0
2 C 2�¡2=#(�)� �ij0 @ij2 #(�), �2(�; �

0)=#(�)� �g0 � and
U ](t=0)= 0. Note that we can write # as

#(�)= �g

Z
0

1
et�ij@ij

2

�dt #̂(k)= �g
�̂(k)
�ij ki kj

; k 2Z2nf0g:

From the uniform ellipticity condition we have that k#kC�kC � . k�kC �, and Schauder
estimates analogous to those of Lemma 21 hold as well.
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Now consider the renormalization. We have

H1
"(�; � 0) :=E(�1(�; � 0)) = ¡�g2

X
k2Z2nf0g

 ̂"(k)
2

P
i;j �ij

0 ki kj

(
P

i;j �ij ki kj)
2
;

H2
"(�; � 0) :=E(�2(�; �

0)) = �g�g
0
X

k2Z2nf0g

 ̂"(k)
2P

i;j �ij ki kj
:

The convergence of �1
" ¡ H1

", �2
" ¡ H2

" in C(�;� 0)
k C 2�¡2(T2) can be obtained with the

techniques used in [15], Section 5.2.

7. Full generality

Within the framework of the present work we are actually able to treat equations of the
form

@tu(t; x)¡ a1(u(t; x))�u(t; x)= �(a2(u(t; x)); x) (40)

where �(�2; x) is a Gaussian process with covariance

E[�(�2; x)�(�~2; x~)]=F (�2; �~2)�(x¡x~)

where F is a smooth covariance function. Let as before 2/3<�< 1. In this case we can
take as a parametric equation

L (�)# := @t#(�; t; x)¡ �1�#(�; t; x)= �(�2; x)

whose solution # is a Gaussian process, smooth with respect to the variable � = (�1; �2)
which we assume taking value in a compact subset of R2 for which �1> � > 0 with �xed
�. Letting a(u)= (a1(u); a2(u)) we can rewrite the l.h.s. of eq. (40) in the form

@tu¡ a1(u)�u=�}(a(u);L u)

and the r.h.s. as

�(a2(u(t; x)); x)=�}(a(u);�)

where �(�; x)= �(�2; x). Now we perform the paraproduct decomposition to get

��(a(u);L u)¡��(a(u);�) = ��(a(u);�)+��(a(u);Du)

+��(a(u);�)+��(a(u);Du):

with D(�) := �1�. Let P t(�) := e
t�1� as before, and invoke the paracontrolled Ansatz in

the usual form

u=���(a(u); #+U
]+P u0

]):

Using that

��(a(u);L ���(a(u); #+U
]+P u0

])) = ���(a(u);L (#+U ]+P u0
]))

+	(a(u); #+U ]+P u0
])

and observing that we can take L #=� and that L P u0
]=0 to get

���(a(u);L U ])=F (u; U ])

where

F (u; U ]) = ��(a(u);�)+��(a(u);Du)+��(a(u);�)+��(a(u);Du)

+[��(a(u);�)¡���(a(u);�)]¡	(a(u); #+U ]+P u0
])
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which is solved by U ] satisfying

L U ]=F (u; U ]):

Indeed ��(a(u); F (u; U ])) = F (u; U ]), since F (u; U ]) does not depend on the additional
parameter. Remark that the term ��(a(u); �)¡ ���(a(u); �), which does not appear in
the simpler case, can be treated with Lemma 28.

It remains now to discuss the handling of the resonant products under the paracon-
trolled assumption, namely ��(a(u);�) and ��(a(u);Du). Next lemma is a paralineariza-
tion result adapted to our non-linear context.

Lemma 16. Assume that u2C T
� and Z 2C�

2C T
 then if +2�> 0 we have

C(u; Z) :=��(a(u); Z)¡ u���((a(u); a0(u));DZ)2C T
+2�

where DZ((�; � 0); t; x) :=
P

i �i
0@�iZ(�; t; x).

Proof.

��(a(u); Z)(t; x) =
X
i�j

Z
y;z
Ki;x(y)Kj;x(z)Z(a(u(t; y)); t; z)

=
X
i�j

X
k

Z
y;z;z 0;z 00

Ki;x(y)Kj ;x(z)Pk;z(z
00)Kk;z(z

0)Z(a(u(t; y)); t; z 0)

=
X
i�j

X
k

Z
y;z;z 0;z 00

Ki;x(y)Kj ;x(z)Pk;z(z
00)Kk;z(z

0)[Z(a(u(t; y)); t; z 0)¡Z(a(u(t; z 00)); t; z 0)]

=
X
i�j

X
k

Z
y;z;z 0;z 00

Ki;x(y)Kj ;x(z)Pk;z(z
00)Kk;z(z

0)�

�
�X

`

a`
0(u(t; z 00))�utz 00

ty @a`Z(a(u(t; z
00)); t; z 0)

�
+
X
i�j

X
k�j

Z
z 0;z 00
y;z

Ki;x(y)Kj ;x(z)Pk;z(z
00)Kk;z(z

0)O((�utz 00
ty )2)@�

2Z(a(u(t; y)); t; z 0)

and observe that the �rst term is equal to u���((a(u); a0(u));DZ) while the second term
can be easily estimated in C T

+2�. �

Using this result and Lemma 28 we can expand

��(a(u);�) = u���((a(u); a0(u));D�)+C T
3�¡2

= ���(a(u); #) ���((a(u); a0(u));D�)+ C T
3�¡2

= �}((a(u); a
0(u)); # �D�)+C T

3�¡2

and similarly, noting that

��((a(u); a
0(u)); (DD)u) = ��((a(u); a

0(u)); (DD)���(a(u); #))+ C T
3�¡2

= ��((a(u); a
0(u)); (DD)#)+C T

3�¡2

where (DD)(�; � 0)= �1
0�, we have

��(a(u);L u) = u���((a(u); a0(u)); (DD)u)+C T
3�¡2

= ���(a(u); #) ���((a(u); a0(u)); (DD)#)+C T
3�¡2

= �}((a(u); a
0(u)); # � (DD)#)+ C T

3�¡2
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Finally the equation for U ] reads

L U ]=�}((a(u); a
0(u)); # �D�+# � (DD)#)+ C T

3�¡2:

This equation can be solved essentially as we did in the simpler context. We see that the
general enhancement has the form

(�; # �D�+# � (DD)#)

which of course will require renormalization like we did before. In particular

(# �D�+# � (DD)#)(�; � 0) = #(�) � �20@�2�(�2; �)+#(�) � �10�#(�)

= ¡�2
0

�1
(�¡1�(�2; �)) � @�2�(�2; �)+

�1
0

�1
2(�

¡1�(�2; �)) � �(�2; �)

where we used that �1�#(�)=¡�(�2; �). Now observe that

E[(�¡1�"(�2; �)) � �"(�2; �)] =¡F (�2; �2)�"
and that

E[(�¡1�"(�2; �)) � @�2�"(�2; �)] =¡(@1F )(�2; �2)�"
with @1F denoting the derivative with respect to the �rst entry.

In the end the renormalized enhanced noise is obtained as the limit in X � of (�";�2;")
where

�2;"(�; �
0)=¡�2

0

�1
(�¡1�"(�2; �)) � @�2�"(�2; �)+

�1
0

�1
2(�

¡1�"(�2; �)) � �"(�2; �)¡H"(�; �
0)

with

H"(�; �
0)=

�2
0

�1
(@1F )(�2; �2)�"¡

�1
0

�1
2
F (�2; �2)�":

We remark that if we take F (�2; �~2) = �2�~2 we reobtain the situation treated in
Section 6, indeed in this case

�}((a(u); a
0(u));H")=

a2
0 (u)a2(u)
a1(u)

�"¡
a1
0 (u)a2(u)2

a1(u)2
�":

which coincides with (39).

Remark 17. Consider the more general equation (2), where the noise depends explicitly
on time, e.g. with a covariance

E[�(�; t; x)�(� 0; t0; x0)] =F (�; � 0)Q(t¡ t0; x¡ x0)

with F a smooth function and Q a distribution of parabolic regularity �>¡4/3. First note
that the coe�cient a1(u)2 [�; 1] in front of the time derivative can be eliminated trivially
by dividing.

In order to handle the time dependence of the noise, the framework of this paper will
still apply, provided we consider space�time paraproducts instead of paraproducts which
act only on the space variable. This can be done exactly following the lines of the paper [15]
where time paraproducts were considered in the paracontrolled approach to solutions to
SDE driven by gaussian signals.

The constraint of regularity �>¡4/3 does allow to treat a noise which is white in time
and smooth in space, but not a space�time white noise. It is well known that the �rst order
paracontrolled approach on which the present paper is based does not allow to treat this
kind of irregular signals in full generality.
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Appendix A. Besov spaces

In this Appendix we collect some classical results from harmonic analysis needed in the
paper. For a gentle introduction to Littlewood-Paley theory and Besov spaces see the
recent monograph [3], where most of our results are taken from. There the case of tempered
distributions on Rd is considered. The Schauder estimates for the heat semigroup are
classical and can be found in [15, 17].

Fix d2N and denote by Td=(R/(2�Z))d the d-dimensional torus. We focus here on
distributions and SPDEs on the torus, but everything in this Appendix applies mutatis
mutandis on the full space Rd, see [15]. The space of distributions D 0=D 0(Td) is de�ned
as the set of linear maps f from C1=C1(Td;C) to C, such that there exist k 2N and
C > 0 with

jhf ; 'ij := jf(')j6C sup
j�j6k

k@�'kL1(Td)

for all ' 2 C1. In particular, the Fourier transform F f : Zd!C, F f(k) = hf ; e¡ik�i, is
de�ned for all f 2 D 0, and it satis�es jF f(k)j6 jP (k)j for a suitable polynomial P . We
will also write f̂(k) =F f(k). Conversely, if (g(k))k2Zd is at most of polynomial growth,
then its inverse Fourier transform

F ¡1g=(2�)¡d
X
k2Zd

eihk;�ig(k)

de�nes a distribution, and we have F ¡1F f = f as well as FF ¡1g= g. To see this, it suf-
�ces to note that the Fourier transform of '2C1 decays faster than any rational function
(we say that it is of rapid decay). Indeed, for � 2N0

d we have jk�ĝ(k)j = jF (@�g)(k)j 6
k@�gkL1(Td) for all k 2 Zd. As a consequence we get the Parseval formula hf ; 'i =
(2�)¡d

P
k f̂(k)'̂(k) for f 2D 0 and '2C1.

Linear maps on D 0 can be de�ned by duality: if A:C1!C1 is such that for all k2N
there exists n2N and C > 0 with supj�j6k k@�(A')kL16C supj�j6n k@�'k, then we set
htAf ; 'i= hf ; A'i. Di�erential operators are de�ned by h@�f ; 'i= (¡1)j�jhf ; @�'i. If
':Zd!C grows at most polynomially, then it de�nes a Fourier multiplier

'(D)f =F ¡1('F f);

which gives us a distribution '(D)f 2D 0 for every f 2D 0.

Littlewood-Paley blocks give a decomposition of any distribution on D 0 into an in�nite
series of smooth functions.

De�nition 18. A dyadic partition of unity consists of two nonnegative radial functions
�; � 2C1(Rd;R), where � is supported in a ball B = fjxj6 cg and � is supported in an
annulus A = fa6 jxj6 bg for suitable a; b; c> 0, such that

1. �+
P

j>0 �(2
¡j�)� 1 and

2. ��(2¡j�)� 0 for j> 1 and �(2¡i�)�(2¡j�)� 0 for all i; j> 0 with ji¡ j j> 1.
We will often write �¡1= � and �j= �(2¡j�) for j> 0.

Dyadic partitions of unity exist, see [3]. The reason for considering smooth partitions
rather than indicator functions is that indicator functions do not have good Fourier prop-
erties. We �x a dyadic partition of unity (�; �) and de�ne the dyadic blocks

�jf = �j(D)f =F ¡1(�jf̂); j>¡1:
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We also use the notation

Sjf =
X

i<j¡1
�if

and notice that

�jf(x)=

Z
Kj ;x(y)f(y)dy; Sjf(x)=

Z
Pj ;x(y)f(y)dy

with Kj ;x(y)= 2djK(2j(x¡ y)), Pj ;x(y)=
P

i<j¡1Ki;x(y), K radial with zero mean.
Every dyadic block has a compactly supported Fourier transform and it belongs there-

fore to C1. It is easy to see that f =
P

j>¡1�jf = limj!1Sj f for all f 2D 0.
For � 2 R, the Hölder-Besov space C � is given by C � = B1;1

� (Td;R), where for p;
q 2 [1;1] we de�ne

Bp;q
� =Bp;q

� (Td;R)=

8<:f 2D 0: kf kBp;q� =

 X
j>¡1

(2j� k�j f kLp)q
!
1/q

<1

9=;;
with the usual interpretation as `1 norm in case q=1. Then Bp;q

� is a Banach space and
while the norm k�kBp;q� depends on (�; �), the space Bp;q

� does not, and any other dyadic
partition of unity corresponds to an equivalent norm.

If �2 (0;1)nN, then C � is the space of b�c times di�erentiable functions whose partial
derivatives of order b�c are (�¡b�c)-Hölder continuous (see page 99 of [3]). Note however,
that for k 2N the space C k is strictly larger than Ck, the space of k times continuously
di�erentiable functions.

The following lemma gives useful characterisation of Besov regularity for functions that
can be decomposed into pieces which are localized in Fourier space.

Lemma 19.

1. Let A be an annulus, let �2ℝ, and let (uj) be a sequence of smooth functions such
that F uj has its support in 2jA , and such that kujkL1. 2¡j� for all j. Then

u=
X
j>¡1

uj 2C � and kuk�. sup
j>¡1

f2j�kujkL1g:

2. Let B be a ball, let �> 0, and let (uj) be a sequence of smooth functions such that
F uj has its support in 2jB , and such that kujkL1. 2¡j� for all j. Then

u=
X
j>¡1

uj 2C � and kuk�. sup
j>¡1

f2j�kujkL1g:

The Bernstein inequalities of the next lemma are extremely useful when dealing with
functions with compactly supported Fourier transform.

Lemma 20. Let A be an annulus and let B be a ball. For any k 2 N0, � > 0, and
16 p6 q61 we have that

1. if u2Lp is such that supp(F u)��B , then

max
�2Nd:j�j=k

k@�ukLq.k�
k+d

�
1

p
¡1

q

�
kukLp;

2. if u2Lp is such that supp(F u)��A , then

�kkukLp.k max
�2Nd:j�j=k

k@�ukLp:
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We recall the following standard heat kernel estimations (see [3], Chapter 2).

Lemma 21. (Schauder estimates) Let Vt =
R
0

t
e�(t¡s)�vsds and P tu0 = e��tu0, with

�>�. We de�ne L T
� and C�

kL T
�, C�

kC T
� for k 2N as in ( 8), ( 9) and introduce the norm

kvkET�C �= sup
t2[0;T ]

t�kv(t; �)kC � :

Then for any  2 [0; 1) and �2R:

sup
t2[0;T ]

tkVtkC�kC �¡2� . sup
t2[0;T ]

t+�kvtkC �¡2 8� 2 [0; 1)

kV k
C�
kL T

�¡2� . T �kvkC T
�¡2 8� 2 [0; 1)

kV k
C�
kL T

�¡2� . T �¡�kvkE
T
�C �¡2 8� 2 [0; 1);8� 2 [0; �]

kV kC�kL T
 . T

�¡
2
+1¡�kvkE

T
�C � 8�2 [ ¡ 2; ); 8� 2

h
0;
�¡ 
2

+1
i

kP tu0kC�kC � . t
¡�¡�

2 ku0kC � 8� <�

kP tu0¡P su0kC�kC � . s¡� jt¡ sj
�¡�
2
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We need the following interpolation lemma:

Lemma 22. Let  2 (0; 2), 0<"<  and u2L T
 . Then

kuk
CT
/2¡"/2

L1
. kukL T



Proof.

sup
s=/ t

kut¡ uskL1
jt¡ sj/2¡"/2

6 sup
s=/ t

"X
i6n

k�iut¡�iuskL1
jt¡ sj/2¡"/2

+
X
i>n

k�iut¡�iuskL1
jt¡ sj/2¡"/2

#

and choosing 2¡n¡16 jt¡ sj1/26 2¡n we obtainX
i<n

k�iut¡�iuskL1
jt¡ sj/2¡"/2

. kuk
CT
/2C 0

X
i6n

jt¡ sj"/2

X
i>n

k�iut¡�iuskL1
jt¡ sj/2¡"/2

. kukC T


X
i>n

2¡i 2¡(+")n

and this gives the result. �

Terms of the type ka(u(t; x))kC 0 with a:R!R cannot be estimated directly with their
Hölder norm. In the following lemma we note some bounds used in Section 4.

Lemma 23. Let a2Cb3 uniformly bounded and u2L T
�=C T

� \CT
�/2C 0, then

ka(u)kL T
� . kakL1+ ka0kL1

�
kuk

CT
�/2C 0+ kukC

T
�

�
+ ka00kL1kukCT�/2C 0kukC

T
�

. 1+ kukL T
�+ kukL T

�
2 ;

ka(u1)¡ a(u2)kL T
� . ku1¡u2kL T

�(1+ ku1kC T
�+ ku2kC T

�)2;

ka(u1)¡ a(u2)kC T
0 . ku1¡u2kC T

0 (1+ ku1kC T
�+ ku2kC T

�) :
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Proof. The bound on ka(u)kC T
� is trivial. We estimate ka(ut)¡ a(us)kC 0 as����Z

z
Ki;x(z)[a(u(t; z))¡ a(u(s; z))]

����= ����Z
z;�2[0;1]

Ki;x(z)a
0(��usz

tz)[u(t; z)¡ u(s; z)]
����

6

������
Z
z;w;�2[0;1]

Ki;x(z)
X
j.k�i
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������
+

������
Z
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X
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������
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Z
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X
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0(��usw
tw)
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If k >¡1 we haveZ

w
Kk;z(w)a

0(��usw
tw)=

Z
w
Kk;z(w)[a

0(��usw
tw)¡ a0(��usztz)]

and then the �rst term above becomes������
Z
z;w;� ;�

Ki;x(z)
X
j.k�i
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00(��(��us

t)z
w)[�utz
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X
j.k�i

Z
w
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�. i2¡�ika00kL1kut¡uskC 0kukC T
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The second term is�����
Z
z;w;�2[0;1]

Ki;x(z)
X
j�i

[�ju(t; �)¡�ju(s; �)](z)Pj ;z(w)a0(��uswtw)
�����

. kut¡ uskC 0kPj ;z(w)a0(��uswtw)kL1. kut¡uskC 0ka0kL1

The third term can be estimated as the �rst one when k>¡1. Otherwise we just bound
it as�����
Z
z;w;�2[0;1]

Ki;x(z)
X
j6N

[�ju(t; �)¡�ju(s; �)](z)K¡1;z(w)a0(��uswtw)
�����. kut¡ uskC 0ka0kL1:

For the three terms together we have the bound

ka(ut)¡ a(us)kC 0. kut¡uskC 0(ka0kL1+ ka00kL1kukC
T
�)

With the same technique we obtain

ka(u1)¡ a(u2)kCT�/2C 0 . ka0kL1ku1¡ u2kCT�/2C 0

+ka00kL1ku1¡u2kCT�/2C 0ku1¡ u2kC T
�

+ka000kL1ku1¡ u2kCT�/2C 0ku1¡ u2kC T
�

2

and this gives the second estimate. The third one can be obtained easily. �

A.1. Bony's paraproduct.
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In terms of Littlewood�Paley blocks, the product f g can be decomposed as

f g=
X
j>¡1

X
i>¡1

�i f �j g= f � g+ f � g+ f � g:

Where the paraproducts f � g and f � g and the resonant product f � g are de�ned as

f � g= g� f :=
X
j>¡1

X
i=¡1

j¡2

�i f �j g and f � g :=
X

ji¡j j61
�i f �j g:

We will often use the shortcuts
P

i�j for
P
ji¡j j61 and

P
i.j for

P
i<j¡1 . Of course, the

decomposition depends on the dyadic partition of unity used to de�ne the blocks �j, and
also on the particular choice of the pairs (i; j) in the diagonal part. The choice of taking
all (i; j) with ji¡ j j6 1 into the diagonal part corresponds to property 2 in our de�nition
of dyadic partitions of unity.

Bony's crucial observation [9, 31] is that the paraproduct f � g (and thus f � g) is
always a well-de�ned distribution. Heuristically, f � g behaves at large frequencies like
g (and thus retains the same regularity), and f provides only a frequency modulation of
g. The only di�culty in constructing f g for arbitrary distributions lies in handling the
resonant product f � g. The basic result about these bilinear operations is given by the
following estimates.

Theorem 24. (Paraproduct estimates) For any � 2R and f ; g 2D 0 we have

kf � gkC �.� kf kL1kgkC �; (41)

and for �< 0 furthermore

kf � gkC �+�.�;� kf kC �kgkC �: (42)

For �+ � > 0 we have

kf � gkC �+�.�;� kf kC �kgkC �: (43)

Bony proved also a basic paralinearisation result, soon after improved by Meyer. We
give here a particular version suited to our purposes.

Theorem 25. Let �2 (0; 1), f 2 (C �)k and F 2C3(Rk;R) then

RF(f) :=F (f)¡F 0(f)� f 2C 2�

with

kRF(f)kC 2�. kF kC2(1+ kf kC �)2:

Moreover the map f 7!RF(f) is locally Lipshitz and

kRF(f)¡RF(f~)kC 2�. kF kC3(1+ kf kC �+ kf~kC �)2kf~¡ f kC �:

The additional key ingredient at the core of the paracontrolled approach is the following
commutation result proved in [15], Lemma 2.4:

Lemma 26. Assume that �; �;  2R are such that �+ � +  > 0 and � +  < 0. Then
for f ; g; h2C1 the trilinear operator

C(f ; g; h) := ((f � g) �h)¡ f (g �h)
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allows for the bound

kC(f ; g; h)kC �+. kf kC �kgkC �khkC ; (44)

and can thus be uniquely extended to a bounded trilinear operator

C:C ��C ��C �! C �+:

We will need the following two lemmas to compare standard and time-smoothed para-
products. The �rst one has essentially the same proof as [15], Lemma 5.1.

Lemma 27. Let �2 (0; 2),  2R. Then for every "> 0 we have the bound

kg�h¡ g��hkC T
�+¡". kgk

CT
�/2C 0khkC T

 :

The second lemma has a standard proof.

Lemma 28. Let g 2L T
�, h2C�1C T

 with �2 (0; 1),  2R. We have, 8"> 0

k��(g; h)¡���(g; h)kC T
�+¡". kgkL T

� khkC�1C T
 :
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