
HAL Id: hal-01615465
https://hal.science/hal-01615465v1

Submitted on 12 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VOIDD: automatic vessel of intervention dynamic
detection in PCI procedures

Ketan Bacchuwar, Jean Cousty, Régis Vaillant, Laurent Najman

To cite this version:
Ketan Bacchuwar, Jean Cousty, Régis Vaillant, Laurent Najman. VOIDD: automatic vessel of inter-
vention dynamic detection in PCI procedures. CVII-Stent Workshop MICCAI 2017, Sep 2017, Quebec
City, Canada. pp.136 - 157, �10.1109/MSP.2009.934154�. �hal-01615465�

https://hal.science/hal-01615465v1
https://hal.archives-ouvertes.fr


VOIDD: automatic vessel-of-intervention
dynamic detection in PCI procedures

Ketan Bacchuwar1,2, Jean Cousty2 Régis Vaillant1, and Laurent Najman2

1 General Electric Healthcare, Buc, France
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Abstract. In this article, we present the work towards improving the
overall workflow of the Percutaneous Coronary Interventions (PCI) pro-
cedures by capacitating the imaging instruments to precisely monitor the
steps of the procedure. In the long term, such capabilities can be used to
optimize the image acquisition to reduce the amount of dose or contrast
media employed during the procedure. We present the automatic VOIDD
algorithm to detect the vessel of intervention which is going to be treated
during the procedure by combining information from the vessel image
with contrast agent injection and images acquired during guidewire tip
navigation. Due to the robust guidewire tip segmentation method, this
algorithm is also able to automatically detect the sequence corresponding
to guidewire navigation. We present an evaluation methodology which
characterizes the correctness of the guide wire tip detection and correct
identification of the vessel navigated during the procedure. On a dataset
of 2213 images from 8 sequences of 4 patients, VOIDD identifies vessel-
of-intervention with accuracy in the range of 88% or above and absence
of tip with accuracy in range of 98% or above depending on the test case.

Keywords: Interventional cardiology, PCI procedure modeling, Image
fusion, coronary roadmap

1 Introduction

Percutaneous Coronary Intervention (PCI) is a procedure employed for the treat-
ment of coronary artery stenosis. PCI is a very mature procedure relying on the
deployment of a stent having the shape of the artery at the location of the steno-
sis. These procedures are performed under X-ray guidance with use of contrast
agent. Consequently they also have side effects such as the injection of contrast
agent based on iodine to the patient. The tolerance to this contrast agent is
limited to some amount. The other side effect is the use of ionizing radiation
which affects both the patient and the operator.

In the work presented here, we develop methods based on image processing to
combine the information from fluoroscopic image sequences acquired at different
steps of the procedure. More precisely, we consider two types of images: i) the
images from reference sequence, which are injected with contrast agent to depict
the vasculature and ii) the images from navigation sequence, which are acquired



Fig. 1. VOIDD: (from left to right)Input image f ; centerline of segmented guidewire
tip; tip candidate (red) matched to vessel centerline (green) marked by pairings(blue);
corresponding location (green) of guidewire tip(red) inside vessel.

during the navigation of the tool and especially the guide wire, which is navigated
from the ostia of the coronary artery down to the distal part after crossing the
lesion. The imaging of the vessel with contrast agent provides information on the
potential location of the stenosis. The ECG of the patient is recorded along with
the images. Standard algorithm as [4] can then be used to identify the subset of
the images where the coronary images are well opacified with the contrast agent.
In this subset, a reference sequence of about 10 to 15 images is then selected
that covers a full cardiac cycle and includes best opacified images. The navigation
sequence is obtained with a low dose acquisition mode called fluoroscopy. The
guidewire, a very thin (wire-like) object of diameter 0.014′′ has two sections. The
distal section, called as the tip, is more important and is enough radio opaque
to be seen with low dose X-ray mode. Our aim is to automatically identify
navigation sequence and determine the vessel-of-intervention which is going to
be treated in the following steps of the PCI procedure, such as lesion reparation
with angioplasty balloon, stenting, post-dilatation.

Several authors have worked on the task of segmenting the guidewire. For
electrophysiology clinical application as in [7], the size of the tip of the catheters
makes its contrast significant enough to enable the development of robust algo-
rithms. For PCI application as in [5], the weak contrast of the guidewire body
makes the task very challenging. Some manufacturers of interventional suite have
proposed or are still including in their offer, applications which facilitate the vi-
sual appreciation of the relationship between the guidewire and the vessel. The
main idea is to combine a suite of consecutive injected images which visualize
the vessel along a cardiac cycle. These images are combined with the images
obtained during tool navigation. The images between these different times are
paired mostly based on the ECG and up to our knowledge neither the breathing



motion, nor any slight deformation of the arteries caused by the introduction of
the guidewire are compensated. In [8], the correspondence between a location
identified in the fluoroscopic images acquired during tool navigation and the cine
images which depict the injected vessels is searched. The addressed clinical need
is the registration of intra-vascular images acquired with a sensor placed along
the guidewire with the vessel. By this means, the operator can easily correlate
the readings of the angiographic images and the intravascular images/signals. In
this situation, a full application is developed with a specific acquisition workflow
with the different steps of the image acquisition and processing being done based
on landmark points and appropriate images selected by an operator.

The main contribution of this article is the proposition and the assessment
of a method, called VOIDD, to automatically detect the so-called vessel-of-
intervention during the navigation of the guidewire. More precisely this algo-
rithm is able to recognize from the stream of fluoroscopic images following the
acquisition of the reference sequence, the period corresponding to the guidewire
navigation and to exploit it to determine the vessel-of-intervention (see Fig. 1).
In order to reach this goal a general tracking algorithm is proposed and explained
in section 2.1. This algorithm relies on features extracted from the navigation
and reference images. Various methods can be adopted or designed to extract
these features to be used with our general tracking algorithm. In this article,
these features consists of vessel tree segmentation and of guidewire tip loca-
tion candidates detection with advanced approaches involving the use of min
tree [9]. Graph-based matching approaches derived from [2] are used to match
the guidewire tip with the vessel. These developments have been evaluated on
4 patient dataset. We present an evaluation methodology which characterizes
the correctness of the guide wire tip detection and the correct identification of
the vessel navigated during the procedures. On a dataset of 4 patients, VOIDD
identifies vessel-of-intervention with accuracy in the range of 88% or above and
absence of tip with accuracy in range of 98% or above depending on the test
case.

2 Vessel-of-intervention dynamic detection (VOIDD)
algorithm

In this section, we first elaborate the general tracking framework of the VOIDD
algorithm proposed in this article (in section 2.1). We then explain (in section
2.2) how to extract the features (from the reference sequence and the navigation
sequence), which are used by the VOIDD algorithm.

2.1 General tracking framework

We aim to obtain the vessel-of-intervention by making a smart correspondence
between the input guidewire navigation sequence and the reference sequence.
Therefore, we propose an algorithm, called VOIDD, that is able to simultane-
ously detect the guidewire tip in the navigation sequence and the section of
the coronary artery tree in which the guidewire is currently navigating in the



Algorithm 1: VOIDD

Data: Guidewire navigation sequence and reference sequence R
Result: Tvessel Track of vessel-of-intervention and detected guidewire tips

1 Initialize T , Tbest = ∅ and dbest to track assignment distance threshold ;
2 foreach image I in the guidewire navigation sequence do
3 P := ExtractFeaturePairs(I,R);

// feature pairs are ranked in decreasing order of matching score

4 foreach P ∈ P do
5 foreach T ∈ T do
6 dij := T → TrackAssignmentDistance(P ) ;
7 if dij < dbest then
8 Tbest := T ; dbest := dij ;

9 if Tbest 6= ∅ then
10 AssignTrack(Tbest,P );

11 if (P → TrackNotAssigned()) then
12 Tnew := MakeTrack(P ); T → AddTrack(Tnew) ;

13 Reset(Tbest, dbest);

14 Tvessel = T → LongestTrack() ;

reference sequence. From a broader perspective, the algorithm consists of: i) de-
tecting feature pairs from the navigation and reference sequence; ii) grouping
these feature pairs into tracks, a track being a sequence of features that are
spatially consistent in time; iii) selecting the most relevant track as the detected
vessel-of-intervention. A feature pair is made of two corresponding curves. The
first one, called a tip candidate, is extracted from the guidewire navigation se-
quence and possibly corresponds to the guidewire tip in the fluoroscopic image.
The second one, called a vessel-of-intervention (VOI) candidate is obtained from
the reference sequence and is a part of the coronary vessels that optimally fits
the associated tip candidate. The precise description of the VOIDD algorithm
and of the feature pairs extraction is given in Algorithm 1 and in the section 2.2
respectively.

VOIDD algorithm manages a dictionary of tracks T , where each track T ∈ T
is a sequence of feature pairs, with at most one pair per image in the guidewire
navigation sequence. For each time step of the navigation sequence, the essence
of the algorithm lies in optimally assigning the best detected feature pair to
the existing tracks. To this end, the feature pairs are ranked in decreasing or-
der of matching score, provided by the feature extraction algorithm. Then, a
distance between feature pair and track, called the track assignment distance
(TAD) (described in the section 2.3), is considered to optimally assign the con-
sidered feature pair to the track which is at least distance. A TAD threshold
is computed as the theoretically maximum possible value of TAD based on the
length of the guidewire tip and maximum observed guidewire speed. If TAD to
the closest track is above the TAD threshold then the feature pair is not as-
signed to any existing track but is used to initialize a new track in T . Once all



the frames in the navigation sequence are processed, the longest track (i.e. track
with maximum feature pairs) is selected as the vessel-of-intervention.

2.2 Feature pairs extraction

This section elaborates the extraction of the feature pairs, which are associations
between the images of the navigation sequence and the images of the reference
sequence. First, we explain the tip candidate extraction by segmentation and
morphological thinning. This is followed by the extraction of centerline of the
injected vessels to obtain vessel graph. Finally, we present the matching part to
find the possible associations (the VOI candidates) of the tip candidate in the
vessel graph. However, different methods can be adopted or designed to obtain
these feature pairs.

Tip candidate extraction. Guidewire tip appears as contrasted thin and
elongated object in the fluoroscopic image. We are interested to segment the
guidewire tip, using a component tree called min tree. The min tree [9] struc-
tures all the connected components of the lower-level sets of the grayscale image
based on inclusion relationship. We assign to any connected component C of the
min treeM, a shape attribute characterizing the shape and structural properties
of guidewire tip. Then, the considered attribute A describes the elongation of the
components. For any component C, A(C) = (π × lmax(C)

2
)/|C| , where |.| rep-

resents cardinality and lmax(C) is the length of the largest axis of the best fitting
ellipse for the connected component C. Since the guidewire tip is thin and long,
the component corresponding to the tip have high value of attribute A. A mere
thresholding of the elongation A is not sufficient, often giving other long and
elongated (unwanted) objects like pacing lead and filled catheters. Indeed, these
objects have higher elongation value than the guidewire tip. Hence, according to
physical properties of the guidewire tip, we set a upper bound value tmax on A
to maximum possible elongation value of the guidewire tip, to ensure that ex-
tracted components contain guidewire tip. Even with this upperbound threshold
keeping the most elongated component does not always lead to the desired tip.
Based on min tree structure, the nested connected components that satisfy the
criterion are filtered to preserve the component with largest area (taking aid of
the inclusion relationship). Therefore, we adopt the shaping framework [10] that
allows us to efficiently extract significant connected components. The extracted
components constitute the tip candidates. Shaping extensively uses the min tree
structure to regularize the attributes and to select the relevant components. In
order to facilitate matching, we perform skeletonization [3] of the selected con-
nected component(s) to obtain centerline of the tip candidates. Fig. 1 shows
the obtained centerline of segmented guidewire tip from the input image. This
centerline of the tip candidate C is modeled as a discrete polygonal curve.

Vessel centerline extraction. The coronary vessels from each fluoroscopic
image in the reference sequence are enhanced using a Hessian based technique [6]
followed by centerline extraction using Non-Maximum Supression and hysteresis
thresholding. We represent these centerlines of vessels by a non-directed graph X
where the nodes are represented by bifurcations whereas the edges refer to curvi-
linear centerlines. Apparent bifurcations resulting from superimposing vessels in



2D X-ray projections also form nodes. Such graph is computed for each frame
in the reference sequence providing us with a representation for each phase of
the cardiac cycle.

Matching. An important step in the task of vessel-of-intervention detec-
tion is to designate possible desirable associations of the corresponding location
of the guidewire tip inside the injected vessel. We refer to these locations in
vessels as vessel-of-interest (VOI) candidates. This step refers to building the
correspondences between the centerline of each tip candidate C extracted from
navigation sequence and the corresponding centerlines of the vessels X extracted
from reference sequence by taking into account ECG information. We adopt the
curve pairing algorithm of [2] to perform this task. It is required to define a
curve-to-curve distance to compare the two sets of curves mentioned above. We
use a discrete version of Fréchet distance [1] as it takes into account the topo-
logical structures of the curves. Thus, this Fréchet distance is computed from
a mapping between two ordered sets of discrete polygonal curves denoted by C
and by XC , respectively. Imposed non-decreasing surjective mappings (reparam-
eterization mapping) in computation of Fréchet distance takes into account the
order of points along curves. This order also helps us in curve pairing described
below, to give scan direction along the curves.

The above step requires the selection of every admissible curveXC in graph X .
A curve in X is a path between two nodes, without visiting the same edge twice.
In order to restrict computational complexity of search, we restrict the set of
admissible curves to be in the neighborhood of the tip candidate extremities
C[1] and C[n] and we construct all possible paths between them in the graph.
Indeed, these admissible curves are the VOI candidates. These VOI candidates,
together with the tip candidate C, is a set of feature pairs P = {(C, XC) | XC

is some curve in X matched to C}, which are further filtered and ranked ac-
cording to the shape similarity measure to prefer VOI candidates with higher
shape resemblance to the tip candidate. This term is computed from residual
Fréchet distance after the 2D transformation [2]. The set of feature pairs P is
computed for each image in the guidewire tip navigation sequence by performing
the matching with the vessel graph of the corresponding cardiac phase.

2.3 Track assignment distance (TAD)

The TAD is computed as a distance between a proposed feature pair P = (C, XC)
and a track T . It is the average of tip candidate distance, VOI candidate distance
and graph distance. The tip candidate distance and the VOI candidate distance
are computed between the proposed feature pair and the latest added feature pair
of T . The tip candidate distance accounts for the geometrical shift between the
two tip candidates. The VOI candidate distance measures the mean Euclidean
distance between the end-points of the VOI candidates. The graph distance is
computed between the proposed feature pair and the latest iso cardiac phase
feature pair in T . It is the length of the path between two VOI candidates from
two images in the same cardiac phase obtained from different cardiac cycles.
The VOI candidate distance and the graph distance helps to preserve temporal
coherency in the tracks. We transform these three distances with exponential



functions so that they belong in the same range [0− 1[. The parameters of these
exponential functions are set according to the length of the guidewire tip.

3 Results

This section reports the performance of the VOIDD algorithm to detect the
vessel-of-intervention and assesses its potential to identify the guidewire tip nav-
igation sequence. An expert user annotated (with cross-validation) the center-
line of the branch of the artery navigated by the guidewire tip as the ground
truth. Ground truth was marked by a single expert user using a semi-automatic
software guided by the vessel centerline extracted by the method in section
2.2. This ground truth centerline is modeled as a discrete polygonal curve GT
= [GT [1] · · ·GT [M ]]. A VOI candidate X selected by VOIDD is similarly mod-
eled as X = [X[1] · · ·X[N ]] with N equidistantly spaced points chosen at sub-
pixel resolution. To assess the correctness of the automatically detected vessel,
we consider the following target-to-registration (TRE) error between X and GT

given by, TRE = 1
N

∑i=N
i=1 min

∀j∈1···M−1
|d(XC [i], GT (j, j + 1))| , where GT (j, j+1)

refers to the segment between point GT [j] and GT [j+1] and d refers to point to
segment distance converted to mm using known detector pixel size. If the tip is
correctly paired to vessel-of-intervention then this TRE error is governed by the
usual small difference between the estimated centerline and the expert marked
vessel centerline. The algorithm chosen tip and vessel-of-intervention are consid-
ered as a correct detection if the corresponding TRE error is less than 0.5mm.
If TRE error is more than 0.5mm, we consider that we have a wrong detection.
If the input image contains guidewire tip, but the algorithm do not provide any
detection, then the TRE error cannot be computed and a missed detection is
reported. This may occur due to the fact that, sometimes the tip appears to
be very blurred due to its sudden movement or due to reduced visibility of the
tip caused by small contrast media injection to guide the navigation. In order
to further evaluate the efficacy of the algorithm to identify the navigation se-
quence, we analyze its robustness to detect navigated vessel in sequence with no
guidewire tip. In such sequence, if the algorithm detects a vessel-of-intervention
in an image, it is counted as a false detection.

Sequences A1, B1, C1 and D1 in Table 1 show the efficacy of VOIDD algo-
rithm to detect vessel-of-intervention during guidewire navigation in 4 patients
and over 1513 images. In summary, VOIDD algorithm is able to correctly de-
termine the location of tip in the vessel-of-intervention with an accuracy of
around 88% − 92%. The sequences A2, B2, C2 and D2 in the Table 1 portray
the efficiency to identify navigation sequence over 690 images when guidewire
tip is absent in the fluoroscopic images. The VOIDD algorithm is able to detect
these sequences as sequence without guidewire tip with accuracy of 98%− 99%.
Analyzing the navigation sequence detection accuracy of VOIDD, we can use it
to automatically detect the arrival of the guidewire tip. The parameters involved
in various stages of the algorithme.g. tip candidate extraction or TAD were de-
signed based on the physical properties of guidewire tip, permissible speed of
advancement of guidewire. Current implementation runs in average 0.33 seconds



Table 1. Performance of VOIDD algorithm on 4 patients

Patient Sequence
Number

of
frames

Frames
with
tips

Correct
detection

Wrong
detection

Missed
detection

False
Detection

A A1 164 164 92.07% 0% 7.92% NA
B B1 706 706 88.52% 5.80% 5.66% NA
C C1 449 449 92.20% 5.12% 2.67% NA
D D1 204 204 89.70% 2.94% 7.35% NA

A A2 156 0 NA NA NA 1.28%
B B2 172 0 NA NA NA 0.58%
C C2 264 0 NA NA NA 1.50%
D D2 98 0 NA NA NA 2.04%

for tracking on a Intel Core i7 cadenced at 2.80 GHz. Videos are available as
supplementary material3. Figure 2 shows the vessel of intervention obtained by
the VOIDD algorithm and corresponding ground truth on left.

4 Conclusion and future work

We proposed in this paper a framework to determine the vessel-of-intervention
in fluoroscopic images during the PCI procedures. We also demonstrate the seg-
mentation of the guidewire tip and the accuracy of its detection. This algorithm
has the potential to be part of the software embarked by X-ray imaging systems
and capable of automatically monitoring the successive steps of the procedure
in view of continuously adapting the system behavior to the user needs. For
instance, the guidewire tip tracking can be used to determine the phases related
to the navigation of the guidewire, adding more semantic information, hence can
be a first step towards smart semantic monitoring of the procedure. In order to
perform such semantic analysis of the procedure, it is important to know the
position of different interventional tools like guidewire tip, marker balls, balloon
and this application opens the doors to ease the segmentation of these objects in
the vessel-of-intervention. Encouraging results have been obtained with success
rate above 88% for vessel of intervention detection. Future work includes the
collection of additional clinical cases. In the longer term, we will investigate the
detection of the other major tools and their integration into a semantic model
of the procedure.
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