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A BOUND FOR THE TORSION ON SUBVARIETIES OF
ABELIAN VARIETIES

AURÉLIEN GALATEAU AND CÉSAR MARTÍNEZ

Abstract. We give a uniform bound on the degree of the maximal torsion
cosets for subvarieties of an abelian variety. The proof combines algebraic in-
terpolation and a theorem of Serre on homotheties in the Galois representation
associated to the torsion subgroup of an abelian variety.

1. Introduction

The problem of understanding the distribution of torsion points in subvarieties
of abelian varieties was independently raised by Manin and Mumford, who stated
the following conjecture.

Conjecture 1.1 (Manin-Mumford). Let C be an algebraic curve of genus g ≥ 2,
defined over a number field and embedded in its Jacobian J . The set of torsion
points of J which lie in C is finite.

It was proved in 1983 by Raynaud [25], who soon generalized his theorem to arbi-
trary subvarieties of an abelian variety.

Theorem 1.2 (Raynaud, [26]). Let V be a subvariety of an abelian variety A
defined over a number field. Then the Zariski closure of the set of torsion points in
V is a finite union of translates of abelian subvarieties of A by torsion points.

This statement is still true if A is replaced by a semi-abelian variety defined over
a number field (see [16]) or even any field of caracteristic 0 (see [23]). The aim
of this paper is to give a precise bound for the degree of the maximal torsion
cosets (translates of abelian subvarieties by torsion points) that appear in Raynaud’s
theorem.

1.1. The number of torsion points on curves. In the case of curves, the most
spectacular quantitative versions of Raynaud’s theorem are related to a famous
conjecture of Coleman. Let C be a curve of genus g ≥ 2 embedded in its Jacobian
J , all defined over a number field K. We denote by Jtors the torsion subgroup of J
and by Ctors := C(K̄) ∩ Jtors the finite torsion subset of C.

Conjecture 1.3 (Coleman, [13]). Let p be a prime ideal of OK above a rational
prime p such that the following conditions are satisfied:

- p ≥ 5,
- K/Q is unramified at p,
- C has good reduction at p.

Then the extension K(Ctors)/K is unramified above p.

Using p-adic integration theory, Coleman managed to prove his conjecture in several
significant cases, for instance if p ≥ 2g+ 1 or if C has ordinary reduction at p. The
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ramification properties of the field generated by Ctors over K provide valuable
information in view of a quantitative version of the Manin-Mumford conjecture.

Theorem 1.4 (Coleman, [12]). Assume that p and p satisfy the hypotheses of
Conjecture 1.3. If C has ordinary reduction at p and J has (potential) complex
multiplication, then

|Ctors| ≤ pg.

The assumptions of the theorem are needed to get a bound of this strength, which
is sharp ([8, 12]). Using p-jets and Coleman’s work, Buium gave an almost uncon-
ditional estimate, which can be expressed in the following (slightly weaker) form.

Theorem 1.5 (Buium, [9]). If p and p ≥ 2g + 1 satisfy the hypotheses of Conjec-
ture 1.3:

|Ctors| ≤ (pg)4g+2.

A suitable choice of p can easily be expressed in terms of the discriminant of K and
the conductor of J .

1.2. Uniform bounds in greater dimension. Let now A be an abelian variety
of dimension g, defined over a number field K and equipped with an ample line
bundle L, so that we can define the degree of a subvariety V of A. The number
of maximal torsion cosets associated to V can be bounded in terms of V and A.
In fact, Bombieri and Zannier [7] showed that an uniform estimate can be found,
where the dependence on V is reduced to its geometric degree.

Later, Hrushovski gave a new proof of the Manin-Mumford conjecture through
model theory, which yielded an explicit uniform bound.

Theorem 1.6 (Hrushovski, [18]). The number T of maximal torsion cosets of a
subvariety V of A can be bounded as follows:

T �A deg(V )α(A),

where α(A) > 0.

Remarks. The symbol �A means that the stated inequality is true after possibly
multiplying the right member by a positive real number depending on A. The
number α(A) is doubly exponential in g, and it also depends on a prime of good
reduction for A.

A breakthrough came with the work of Amoroso and Viada on the effective
Bogomolov conjecture for subvarieties of an algebraic torus. They observed that
it was more relevant in this setting to describe the geometry of V with another
parameter. Let S be a semi-abelian variety; since it is quasi-projective, we can
define the degree of any subvariety of S.

Definition 1.7. If V is a subvariety of S, let δ(V ) be the smallest d such that V
is the intersection of hypersurfaces of S which have degree at most d.

Let V be a subvariety of S and Vtors := V (K̄) ∩ Stors be its torsion subset. It
is possible to bound the degree of the j-equidimensional part V jtors of the Zariski
closure Vtors of Vtors, for an integer 0 ≤ j ≤ dim(V ).

In the case of tori, Amoroso and Viada’s theorem concerns the Zariski density
of points of small height, but it has the following consequence.
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Theorem 1.8 (Amoroso-Viada, [2]). Let V ⊂ Gnm and 0 ≤ j ≤ dim(V ). For any
ε > 0:

deg(V jtors)�n,ε δ(V )n−j+ε.

Their result was later improved by the second author. Mixing their strategy with
ideas of Beukers and Smyth [5] more suited to the study of torsion points, one may
find a bound with optimal dependance on δ(V ).

Theorem 1.9 (Martínez, [22]). If V ⊂ Gnm and 0 ≤ j ≤ dim(V ), then

deg(V jtors) ≤ 26n
3

δ(V )n−j .

A straightforward consequence of this theorem is an estimate on the number of
maximal cosets. A further study provides a variant of this bound which proves
conjectures of Aliev and Smyth [1], and Ruppert [27].

1.3. New bounds for the torsion on subvarieties of abelian varieties. Our
main theorem is an estimate of the same strength for subvarieties of an abelian
variety A of dimension g ≥ 1 defined over a number field (with fixed embedding in
projective space).

Combining algebraic interpolation with a theorem of Serre on homotheties in the
Galois representation associated to the torsion points of A, we prove the following
bound.

Theorem 1.10. If V is a subvariety of A and 0 ≤ j ≤ dim(V ), then

deg(V jtors)�A δ(V )g−j .

This immediately translates into a bound for the number of maximal torsion cosets.
In the equidimensional case, this only depends on the degree of V .

Corollary 1.11. The number T of maximal torsion cosets of a subvariety V of A
is bounded as follows:

T �A deg(V )g.

In the case of curves, we get an improved bound.

Theorem 1.12. Let C be a curve in A which is not a torsion coset. Then

|Ctors| �A deg(C)2.

The dependence on A in these three estimates will be explicited below in terms of
the constant that appears in Serre’s theorem (which is still rather mysterious).

Remark. Some results on the effective Bogomolov problem ([14] under a conjec-
ture of Serre on the ordinary primes of A, or [15] for V a hypersurface) may be
combined with Amoroso and Viada’s method to yield explicit bounds which are
polynomial in δ(V ) but weaker than Theorem 1.10 (or even an abelian analogue
of Theorem 1.8). It is not suprising since this approach does not fully exploit the
properties of torsion points.

The article is organized as follows. In the next section, we discuss and study
alternate measures for the degree of subvarieties of A, introduce Hilbert functions
and recall the classical upper bound (resp. lower bound) proved by Chardin (res.
Chardin and Philippon).

In the third section, we state Serre’s theorem, which is a first step towards a
famous conjecture of Lang on homotheties in the Galois group of the extensions
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generated by torsion points of A. We use it several times to locate the torsion subset
Vtors of an irreducible subvariety V of A that is not a torsion coset. We thus show
that Vtors ⊂ V ′, where V ′ is an algebraic set that satisfies some important properties
and can be described precisely in terms of V . We then prove Theorem 1.12, where
algebraic interpolation is not needed and a simple application of Bézout’s theorem
is sufficient to conclude.

In the last section, our estimates on Hilbert functions allow us to interpolate V ′
by a hypersurface of A retaining most of the crucial information contained in V ′.
We give a proof of Theorem 1.10, and we will finally discuss its optimality in terms
of δ(V ).

Conventions. Unless stated otherwise, we fix throughout this paper an abelian
variety A of dimension g ≥ 1 defined over a number field K. We also fix an ample
line bundle L on A. After possibly replacing L by L⊗3, we will assume that L
is very ample and defines a normal embedding into some projective space Pn. In
addition, after possibly tensorizing L by L−1, we may assume that L is symmetric.
By abuse of language, we will say in this article that a real number depends on A
when it depends on both A and L.

A projective embedding being fixed, we may now identify every subvariety V of
A (not necessarily irreducible or equidimensional) with its image in Pn. The field
of definition of V will be denoted by KV . We will say that V is non-torsion if it is
not a torsion coset.

We also let Ators be the torsion subgroup of A over K̄, and Ktors the field
generated over K by Ators. If l is a positive integer, the l-torsion subgroup of A
will be denoted by A[l], and its field of definition by Kl.

2. Geometric preliminaries

Our approach relies strongly on fine interpolation results which follow from es-
timates on the Hilbert function proved by Chardin and Philippon. Before stating
them at the end of this section, we will need to recall some basic geometric prop-
erties of abelian varieties, and then introduce various measures of the geometric
degree for a subvariety of A, that naturally appear in our bounds on Hilbert func-
tions.

2.1. Classical facts on abelian varieties. We gather here classical properties
about the geometry of abelian varieties, morphisms and stabilizers, which will be
used frequently in the sequel. Let us start with a precious information concerning
the translations in A.

Lemma 2.1 (Lange-Ruppert, [21]). The translations in A can be defined by ho-
mogeneous polynomials in K[X0, . . . , Xn] with degree at most 2.

Notice that a projectively normal embedding in Pn is needed here. Without this
assumption, the degree of the homogeneous polynomials can not be so explicitly
bounded.

The degree of a subvariety of A is invariant under translation. We now describe
how it behaves under some isogenies. Let V be an irreducible subvariety of A, and
for a non-zero integer k, denote by [k] the isogeny: A → A. By Lemme 6 of [16],
we have
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(1) deg([k]−1V ) = k2 codim(V ) deg(V ).

Suppose now that V is non-torsion. We will exploit this assumption by looking
at the stabilizer of V .

Definition 2.2. The stabilizer of V is the algebraic subgroup of A defined by

Stab(V ) := {P ∈ A(K̄) | P + V = V }.

Because we assume that V is non-torsion, it follows from Bézout’s theorem ([16],
Lemme 8) that

dim(Stab(V )) < dim(V ),

and
deg(Stab(V )) ≤ 2g deg(V )dim(V )+1.

By Poincaré’s complete reducibility theorem, the abelian variety A is isogenous to
a product

B × Stab(V )0,

where Stab(V )0 is the connected component of Stab(V ) which contains 0, and B
is an abelian subvariety of A ([16], Lemme 9). After composing with an isogeny
whose kernel is Stab(V )/ Stab(V )0, we find a surjective homomorphism

(2) ϕV : A→ B,

with kerϕV = Stab(V ). Taking K large enough so that all the simple factors of A
are defined over K, we may assume that ϕV is defined over K.

2.2. Degrees of definition and Hilbert functions. A key point in our approach
is to use some (classical) refined variants of the projective degree. If V is a subvariety
of A, we define its degree to be the sum of the degrees of its irreducible components.
We have already introduced δ(V ) as the minimal degree of hypersurfaces of A with
intersection V . The next definition only retains the projective nature of V .

Definition 2.3. The degree of incomplete (resp. complete) definition of V , denoted
by δ0(V ) (resp. δ1(V )), is the minimal d such that the irreducible components of
V are irreducible components of an intersection (resp. V is an intersection) of
hypersurfaces in Pn which all have degree at most d.

For a family of subvarieties V1, . . . , Vt of A, we easily get the following inequality,
see for instance ([22], Lemma 2.6):

(3) δ1

( t⋃
i=1

Vi

)
≤

t∑
i=1

δ1(Vi).

We have the following inequalities between our different degrees.

Lemma 2.4. If V ⊂ A is an equidimensional variety, we have
(i) δ0(V ) ≤ δ1(V ) ≤ deg(V ),
(ii) δ1(V ) ≤ δ(V ) ≤ deg(A)δ1(V ).
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Proof. The first inequality is straightforward. The image of V by a linear map
Pn → Pdim(V )+1 has degree at most deg(V ), and the variety V is the intersection
of hypersurfaces of Pn obtained by pull-backs of such linear maps. This shows that

δ1(V ) ≤ deg(V ).

Now, if Z is a hypersurface of A, we have δ1(Z) ≤ deg(Z). We choose a set of
hypersurfaces Zi of A of degree at most δ(V ) and such that V =

⋂
i Zi. We get:

δ1(V ) ≤ max
i
δ1(Zi) ≤ max

i
deg(Zi) ≤ δ(V ).

Assume finally that V =
⋂
i Zi where the Zi’s are hypersurfaces of Pn. After

possibly removing some of the Zi’s, we have V =
⋂
i Zi ∩ A, where Zi ∩ A is a

hypersurface of A. The last inequality is then a direct consequence of Bézout’s
theorem. �

The degrees of complete and incomplete definition do not necessarily behave as
the usual degree with respect to translations in A. However, we have the following
useful comparison.

Lemma 2.5. Let V be a subvariety of A. If P ∈ A, then
δ1(P + V ) ≤ 2 δ1(V ) and δ0(P + V ) ≤ 2 δ0(V ).

Proof. By Lemma 2.1, if we have a set of complete (resp. incomplete) equations of
degree d > 0 for V , we get a set of complete (resp. incomplete) equations of degree
2d for V + P . This proves the announced inequalities. �

We now introduce the Hilbert function that can be attached to any projective
variety. The incomplete degree of definition naturally arises in a classical lower
bound on this function, which explains why we needed to introduce and study this
degree.

To a subvariety V ⊂ A ⊂ Pn, there corresponds the homogeneous ideal I of poly-
nomials of K̄[X0, . . . , Xn] which vanish on V . This defines a graded K̄[X0, . . . , Xn]-
module K̄[X0, . . . , Xn]/I. For ν a positive integer, we let

H(V ; ν) := dim(K̄[X0, . . . , Xn]/I)ν

the Hilbert function of V at ν. We start with a classical upper bound on the Hilbert
function.

Theorem 2.6 (Chardin, [10]). If V is an equidimensional variety of dimension d
and ν ∈ N, then

H(V ; ν) ≤
(
ν + d
d

)
deg(V ).

On the other hand, a refined version of Chardin and Phillipon’s theorem on Castel-
nuovo’s regularity yields a lower bound for the Hilbert function when ν is large
enough in a precise sense. The following is Théorème 6.1 of [3] (see [11], Corol-
laire 3 for the original statement).

Theorem 2.7 (Chardin-Philippon). Let V :=
⋃

1≤j≤s Vj an union of equidimen-
sional varieties of dimension d and m := s− 1 + (n−d)

∑s
j=1(δ0(Vj)− 1). For any

integer ν > m, we have

H(V ; ν) ≥
(
ν + d−m

d

)
deg(V ).
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Remark. Combining these two bounds provides a powerful interpolation tool, yield-
ing for a well chosen pair of varieties (V, V ′) a hypersurface of controlled degree
which contains V and avoids V ′.

3. Galois properties of torsion points and geometric consequences

In this section, we use a deep theorem of Serre on Galois representations to
locate the torsion subset of a subvariety of A. Our strategy is primarily based on
the classical approach to the Manin-Mumford conjecture initiated by Lang in [20].

3.1. Homotheties in the image of Galois. For every prime number `, let T`(A)
be the `-adic Tate module of A. There is a representation

ρ` : GK := Gal(K̄/K) −→ GLZ`
(
T`(A)

)
,

induced by the action of GK on the torsion subgroup of A. A long-standing con-
jecture of Lang states that the image of the absolute Galois group GK in the adelic
representation

ρ :=
∏
`

ρ` : GK −→
∏
`

GLZ`
(
T`(A)

)
contains an open subgroup of the group of homotheties. In [6], Bogomolov proved
that for a fixed prime number `, the group ρ`(GK) contains an open subgroup of
the group of homotheties. Serre later showed that ρ(GK) contains a fixed power of
every admissible homothety. We will use the following version of his theorem.

Theorem 3.1 (Serre). There is an integer c(A) ≥ 1 such that, for any two coprime
positive integers l and k, there exists an automorphism σ ∈ GK satisfying

σ|A[l] =
[
kc(A)

]
.

Proof. This is [31], Théorème 3. See also [28] p.136, Théorème 2 for the original
statement, or [16], Lemme 12. �

Remark. The problem of finding an explicit c(A) in terms of A - and of the field K
over which A is defined - is still open and discussed in [31], Section 2. In order to
simplify notations, and since A is fixed, we will write c for c(A) in the sequel.

Let V be an irreducible non-torsion subvariety of A. Serre’s theorem is our main
tool to find a strict subvariety of V that contains the torsion subset Vtors of V . We
let X := ϕV (V ), where ϕV was defined in (2).

We distinguish several cases according to wether and how KX ⊂ Ktors, and first
tackle the simpler case where KX is not contained in Ktors.

Lemma 3.2. If KX 6⊂ Ktors, there is a conjugate V ′ under the action of GK such
that

Vtors ⊂ V ∩ V ′ ( V.

Proof. The isogeny ϕV is defined over K, so the extension KV /KV ∩Ktors is strict
and there is a nontrivial field isomorphism σ : KV → K̄ such that

σ|KV ∩Ktors = Id.

Since σ acts trivially on Vtors, the lemma follows. �
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3.2. Scanning the field of definition. For the remaining of this section, we
now assume that KX ⊂ Ktors. In comparison with the toric case, some technical
difficulties arise here because of the complexity of Ktors, and because of the gap
between Lang’s conjecture and Serre’s theorem.

We start with a preliminary examination of KX , and we define two integers M
and N that quantify more precisely the link between KX and Ktors. Since KX is a
number field, there is an integer l ≥ 1 such that

KX ⊂ Kl.

We denote by v2 the 2-adic valuation of an integer. For the remaining of the section,
fix M ≥ 1 the smallest integer such that the latter inclusion holds, and

v2(M) ≥ c2 + 2,

where c2 := v2(c). For P ∈ A[M ], we consider the subset of the integers

N (P ) =
{
α > −v2(M),∃σ ∈ GK , σ|A[M ] =

[
(1 + 2αM)c

]
and σ|KX+P

= Id
}
.

This set contains N because [M ]|A[M ] = 0 and KX+P ⊂ KM . Let β(P ) be the
biggest integer not in N (P ), and

β := min
P∈A[M ]

{β(P )}.

In particular, notice that both β(R) and β are always negative. Finally, we set

N := 2β+1M.

We will use repeatedly the following computation based on the properties of
binomial coefficients.

Lemma 3.3. Let 2 ≤ γ ≤ δ be two integers. If k is an integer with v2(k) ≥ 2:

v2
(
(δγ)kγ

)
≥ v2(k) + v2(δ) + 1.

Proof. Recall that

(δγ) =
δ

γ
(δ−1γ−1).

We deduce

v2
(
(δγ)kγ

)
≥ v2(δ)− v2(γ) + γv2(k)

≥ v2(kδ) + (γ − 1)v2(k)− v2(γ)

≥ v2(kδ) + 2γ − 2− v2(γ)

If γ ≥ 3, then γ − v2(γ) ≥ 0, and therefore

2γ − 2− v2(γ) ≥ γ − 2 ≥ 1.

This inequality is still true for γ = 2, so the proof of the lemma is complete. �

We will need to compare the 2-adic valuations of M and N .

Lemma 3.4. We have
v2(N) + c2 ≤ v2(M).
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Proof. The lemma follows directly from these inequalities:

β(P ) ≤ −c2 − 1, ∀P ∈ A[M ]

This is trivially true if c2 = 0, so we can assume that c2 ≥ 1. If α ≥ −c2, we
compute

(1 + 2αM)c = 1 + c2αM +
∑

2≤γ≤c

(cγ)(2αM)γ .

By choice of M , v2(M) ≥ c2 + 2. Hence, v2(2αM) ≥ 2, and Lemma 3.3 shows that

∀γ ≥ 2, v2
(
(cγ)(2αM)γ

)
≥ v2(M) + α+ c2 + 1 > v2(M).

Therefore
[(1 + 2αM)c]|A[M ] = Id.

Now, for all P ∈ A[M ], the variety X + P is defined over KM so α ∈ N (P ) and
the stated inequality holds. �

Remark. With M being fixed, we can associate in exactly the same way an integer
βR to each translate of X by an M -torsion point R. For a good choice of R, we get
that βR = βR(0). After possibly replacing V (resp. X) by V + R (resp. X + R),
we will now assume that β = β(0). This will have no effect on our subsequent
geometric construction, because the properties of Vtors that we want to prove are
invariant under translation by a torsion point.

3.3. The torsion subset of X. We are ready to locate the torsion of X when
KX ⊂ Ktors. The following proposition gives an explicit description of an algebraic
subset of X that contains Xtors.

Proposition 3.5. There are two automorphisms σ, ρ ∈ Gal(K̄/K) depending only
on M , such that if

X ′ :=
⋃

P∈B[4c]

[
2c
]−1(

Xσ + P
)
∪

⋃
P∈B[2]\{0}

(
X + P

)
∪

⋃
P∈B[2]

(
Xρ + P

)
,

then
Xtors ⊂ X ∩X ′.

Proof. Fix Q ∈ Xtors with exact order L ≥ 1, and let

m := lcm(L,M), and u :=
∏
p 6=2

pmax{0,vp(L)−vp(M)}.

Since u is odd, Bézout’s identity yields an odd positive integer v and an integer w
such that

2v2(M)w + uv = 1.

We consider different cases according to v2(L).

Case 1. Assume on the one hand that v2(L) ≤ c2 + 2. Let

l :=
∏
p 6=2

pmax{vp(L),vp(M)}v = 2−v2(M)Muv.

Since the integers m and 2+ l are coprime, we are in a position to use Theorem 3.1.
This gives an automorphism σ ∈ GK such that

σ|A[m] =
[
(2 + l)c

]
.
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Looking at the action of σ on Q, we obtain:

Qσ =
[
2c
]
Q+

∑
1≤γ≤c

[
(cγ)2c−γ lγ

]
Q =

[
2c
]
Q− P,

where P ∈ Ators has order dividing 2v2(L). In particular P ∈ A[4c], since

2v2(L) | 2c2+2 | 4c.
We immediately get

Q ∈
[
2c
]−1(

Xσ + P
)
⊂ X ′.

By construction, we also have

σ|A[M ] =
[
(2 + 2αM)c

]
,

with α = −v2(M), so the action of σ on X does not depend on Q.

Case 2. Assume on the other hand that v2(L) ≥ c2 + 3. We first examine the case
where v2(L) > c2 + v2(N). Let

l′ =
2v2(L)

2c2+1

∏
p 6=2

pmax{vp(L),vp(M)}v =
2v2(L)

2c2+1
2−v2(M)Muv.

Remark that the prime divisors of m also divide l′. Therefore m and l′ + 1 are
coprime and Theorem 3.1 gives an automorpshim τ ∈ GK such that

τ |A[m] =
[
(1 + l′)c

]
.

We check that v2(l′) = v2(L)−c2−1 ≥ 2, so Lemma 3.3 shows that, for any integer
2 ≤ γ ≤ c,

v2
(
(cγ)l′γ

)
≥ v2(l′) + c2 + 1 = v2(L).

Hence, the action of τ on Q yields

Qτ = Q+ [cl′]Q = Q− P,
where P ∈ Ators has exact order 2. So, we find that Q ∈ Xτ +P . Furthermore, we
have that

τ |A[M ] =
[
(1 + 2αM)c

]
,

with
α := −v2(M) + v2(L)− c2 − 1 ≥ v2(N)− v2(M) ≥ β + 1.

So α ∈ N (0) and we have τ |KX = Id, by definition of N (0). We derive Xτ = X,
and Q ∈ X + P ⊂ X ′.
Case 3. Assume finally that c2 + 3 ≤ v2(L) ≤ c2 + v2(N). Let

l′′ =
2c2+v2(N)

2c2+1

∏
p 6=2

pmax{vp(L),vp(M)}v = 2v2(N)−1−v2(M)Muv,

which is an integer by the assumption. Again, m and 1 + l′′ are coprime, and
Theorem 3.1 ensures that there exists an automorphism ρ ∈ GK such that

ρ|A[m] =
[
(1 + l′′)c

]
.

Notice that v2(l′′) = v2(N)− 1 ≥ 2, so by Lemma 3.3, for any integer 2 ≤ γ ≤ c,
v2
(
(cγ)l′′γ

)
≥ v2(l′′) + c2 + 1 ≥ v2(N) + c2 ≥ v2(L).

From this, we derive
Qρ = Q+ [cl′′]Q = Q− P,
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where P ∈ A[2]. Hence
Q ∈ Xρ + P ⊂ X ′.

We check that the action of ρ on X does not depend on Q, since

ρ|A[M ] =
[
(1 + 2αM)c

]
,

with α = β = v2(N)− 1− v2(M) ≥ 2− v2(M). �

Remark. The proof of the proposition shows that we can choose σ and ρ such that

σ|A[M ] =
[
(2 + 2−v2(M)M)c

]
and ρ|A[M ] =

[
(1 + 2βM)c

]
,

where the components of X ′ concerning ρ only appear when β ≥ 2− v2(M). This
completely describes the action of σ and ρ on X.

3.4. Pulling back from X to V . At this point, the important condition that X
does not lie in the algebraic set X ′ is still missing in our construction. This will
be fixed by pulling back from X to V and exploiting the classical properties of the
stabilizer. Let V ′ ⊂ A be the preimage of X ′ by ϕV , i.e.

V ′ :=
⋃

P∈ϕ−1
V (B[4c])

[
2c
]−1(

V σ+P
)
∪

⋃
P∈ϕ−1

V (B[2]\{0})

(
V +P

)
∪

⋃
P∈ϕ−1

V (B[2])

(
V ρ+P

)
,

for σ, ρ ∈ Gal(K̄/K) chosen as in Proposition 3.5 (and the remark below the proof
of this proposition).

Lemma 3.6. We have
Vtors ⊂ V ∩ V ′ ( V.

Proof. First remark that

ϕV (Vtors) ⊂ Xtors ⊂ X ′,
so Vtors ⊂ ϕ−1V (X ′) ⊂ V ′ because ϕV is an isogeny defined over K. Thus

ϕ−1V ϕV (V ) = V + kerϕV = V + Stab(V ) = V.

We now check that the inclusion V ∩V ′ ⊂ V is strict, and we cut the proof in three
pieces corresponding to each type of component of V ′.

Case 1. Suppose first that there is P ∈ ϕ−1V (B[4c]) such that

V ⊂
[
2c
]−1(

V σ + P
)
.

We derive ⋃
R∈[2c]−1Stab(V )

(
V +R

)
⊂
[
2c
]−1(

V σ + P
)
.

Using for instance [16], Lemme 6, we compare the degrees of these two algebraic
sets and find

22c·codim(Stab(V )) deg(V ) ≤ 22c·codim(V ) deg(V ).

This yields
dim(V ) ≤ dim(Stab(V )),

which is a contradiction since V is not a torsion subvariety of A.

Case 2. This is where we really use the properties of our isogeny ϕV . Suppose that
P ∈ ϕ−1V (B[2] \ {0}). Then we have that P /∈ Stab(V ), and so

V + P 6= V.
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Case 3. After composing by ϕV , we are reduced to considering the possibility
that there exist P ∈ A[2] such that Xρ + P = X. We can find a torsion point
R ∈ A[2c2+v2(N)] such that [c2βM ]R = P . We may also assume that β ≥ 2−v2(M)
(see the remark following the proof of Proposition 3.5). Using Lemma 3.3, we see
that

(X +R)ρ = Xρ +
[
(1 + 2βM)c

]
R

= X − P +R+ P

= X +R.

So X +R is fixed by ρ and β ∈ N (R). Furthermore, if α ≥ β + 1, there is τ ∈ GK
such that τ |A[M ] = [(1 + 2αM)c] and τ |KX = Id. We compute

(1 + 2αM)c = 1 + c2αM +
∑

2≤γ≤c

(cγ)(2αM)γ .

Since v2(2αM) ≥ 3, we can apply Lemma 3.3 again to obtain, for γ ≥ 2,

v2
(
(cγ)(2αM)γ

)
≥ v2(N) + c2 + 1.

This means that τ(R) = R, and so

(X +R)τ = Xτ +Rτ = X +R.

Thus α ∈ N (R), and we finally have

β ≤ β(R) ≤ β − 1,

which yields a contradiction. �

3.5. The case of curves. The information contained in Lemma 3.2 and Lemma 3.6
is enough to bound the number of torsion points on a curve C ⊂ A. The following
is a precise version of Theorem 1.12.

Proposition 3.7. Let C ⊂ A be an irreducible non-torsion curve. Then

|Ctors| ≤ 4(2c+1)g deg(C)2.

Proof. We notice that since C is non-torsion, its stabilizer is finite. Let X := φC(C)
and assume that KX 6⊂ Ktors. By Lemma 3.2, there is a conjugate Cσ of C such
that

Ctors ⊂ C ∩ Cσ ( C.

We are thus in a position to use Bézout’s theorem:

|Ctors| ≤ deg(C) · deg(Cσ) = deg(C)2,

and this bound is stronger than that stated in the proposition.
Now, if KX ⊂ Ktors, Lemma 3.6 shows that Ctors ⊂ C ∩ C ′ ( C, where

C ′ =
⋃

P∈φ−1
C (B[4c])

[2c]−1(Cσ+P ) ∪
⋃

P∈φ−1
C (B[2]\{0})

(C+P ) ∪
⋃

P∈φ−1
C (B[2])

(Cρ+P ),
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for some σ, ρ ∈ Gal(K̄/K). We use (1) and the invariance of the degree under
translation, then we add up the degrees of all the components of C ′ to obtain

deg(C ′) ≤
(
(4c)2g22c(g−1) + (22g − 1) + 22g

)
deg(C)

≤
(
24g+2cg−2cc2g + 22g+1 − 1

)
deg(C)

≤
(
22g(c+2)−2cc2g + 22g+1

)
deg(C)

≤
(
2(2c+1)2g−2c + 22g+1

)
deg(C)

≤ 2(2c+1)2g−2c+1 deg(C)

≤ 4(2c+1)g deg(C).

The statement follows once again by Bézout. �

Remarks. If C is not defined over Ktors, our proof gives a much stronger bound:

|Ctors| ≤ deg(C)2.

If we consider the case where A is the Jacobian J of C, both C and J are defined
over the same number field (in particular, the third union in the definition of V ′
disappears). If we consider the canonical embedding of the Jacobian, we have
deg(C) = g and a quick computation gives

|Ctors| ≤ 4(2c+2)g.

4. Bounding the torsion through interpolation

We turn to the proof of our main theorem for general subvarieties of A. Since
a simple iterated application of Bézout’s theorem like in the case of curves would
yield a bound far weaker than expected, we will follow a strategy based on the
existence of a nice obstructing hypersurface through refined interpolation tools.

4.1. The interpolation machine. We first build a preliminary interpolation ma-
chine suited to our situation. This is mainly derived from Chardin and Philippon’s
estimates for Hilbert functions.

Lemma 4.1. Let V be an irreducible subvariety of A, as well as σ ∈ Gal(K/K),
P ∈ Ators and k ≥ 2 an integer.

(i) If P + V σ 6= V , there exists a hypersurface Z of Pn such that P + V σ ⊂ Z,
V 6⊂ Z and deg(Z) ≤ 6ng δ0(V ).

(ii) If V is non-torsion, there exists a hypersurface Z ′ of Pn such that [k]−1(P+
V σ) ⊂ Z ′, V 6⊂ Z ′ and deg(Z ′) ≤ 4ng k2g δ0(V ).

Remark. The conclusion of (ii) implies that V 6⊂ [k]−1(P+V σ). In fact, this follows
directly from the fact that V is non-torsion, using the same argument as above in
the proof of Lemma 3.6, Case 1.

Proof. The arguments of proof are similar in each case. We start with (i). Notice
that P +V σ is also an irreducible subvariety of A. By Theorem 2.6, for any positive
integer ν

H(P + V σ; ν) ≤
(
ν + d
d

)
deg(V ),
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where d = dim(V ). Let Ṽ := V ∪ P + V σ. This is an equidimensional variety of
dimension d and degree 2 deg(V ). By Theorem 2.7, for any ν > m

H(Ṽ ; ν) ≥
(
ν + d−m

d

)
2 deg(V ),

with
m := 1 + (n− d)(δ0(V ) + δ0(P + V σ)− 2).

Using both inequalities with ν := m(2d+ 1), we obtain

H(P + V σ; ν)

H(Ṽ ; ν)
≤ 1

2

(
ν + d
d

)(
ν + d−m

d

)−1
≤ 1

2

(
1 +

m

ν −m

)d
≤ 1

2

(
1 +

1

2d

)d
≤
√

e

2
< 1.

Hence, there is a hypersurface Z of Pn of degree ν such that P + V σ ⊂ Z and
Ṽ 6⊂ Z. The last inclusion implies that V 6⊂ Z. Moreover, Lemma 2.5 gives
δ0(P + V σ) ≤ 2δ0(V σ) = 2δ0(V ), so we obtain:

deg(Z) ≤ 3(2d+ 1)(n− d)δ0(V ) ≤ 6ngδ0(V ),

concluding the proof of (i).

We now turn our attention to assertion (ii). To simplify notations, we let

W := [k]−1(P + V σ).

It is an equidimensional subvariety of A of dimension d, and by (1), we have
deg(W ) = k2(g−d) deg(V ). Theorem 2.6 gives, for any positive integer ν,

H(W ; v) ≤
(
ν + d
d

)
k2(g−d) deg(V ).

Consider
W̃ :=

⋃
Q∈[k]−1 Stab(V σ)

Q+ V.

Recall here that ϕV given by (2) is assumed to be defined over K, so that

Stab(V σ) = Stab(V ).

Since V is non-torsion, the variety W̃ is equidimensional of dimension d and de-
gree k2r deg(V ), where we denote r := codim(Stab(V )). By Theorem 2.7, for any
ν > m

H(W̃ ; ν) ≥
(
ν + d−m

d

)
k2r deg(V ),

where

m = 1 + (n− d)
∑

Q∈[k]−1 Stab(V σ)

(δ0(V +Q)− 1) ≤ 2(n− d)q2gδ0(V )

and the last inequality follows from Lemma 2.5. We know that r > g − d since V
is non-torsion, and

k2(g−d)−2r ≤ k−2 < e−1.

Fixing ν = m(d+ 1), we obtain the following inequality:

H(W ; ν)

H(W̃ ; ν)
≤ k2(g−d)−2r

(
ν + d
d

)(
ν + d−m

d

)−1
< e−1

(
1 +

1

d

)d
< 1.
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Thus, there is a hypersurface Z ′0 of Pn of degree ν such that W ⊂ Z ′0 and
W̃ 6⊂ Z ′0. This means that there exists

R ∈ [k]−1 Stab(V σ)

such that R+ V 6⊂ Z ′0. If we let Z ′ := −R+Z ′0, we see that V 6⊂ Z ′. On the other
hand, we immediately check that R + W ⊂ W , so W ⊂ Z ′. By Lemma 2.1, we
obtain

deg(Z ′) ≤ 2ν ≤ 4ng k2gδ0(V ),

which ends the proof of (ii). �

4.2. The obstructing hypersurface. The interpolation machine applied to our
Lemma 3.6 yields an obstructing hypersurface for V . This hypersurface con-
tains Vtors and its degree is precisely controlled.

Proposition 4.2. If V is an irreducible non-torsion subvariety of A, there exists
a hypersurface Z ⊂ Pn such that Vtors ⊂ V ∩ Z ( V and

deg(Z) ≤ 16g(c+1) n δ0(V ).

Proof. We are going to apply Lemma 4.1 to each of the components that appear in
the various definitions of V ′ above.

Assume first that KX 6⊂ Ktors. We apply Lemma 3.2 to V and obtain a variety
V ′ which is a conjugate of V under the action of Gal(K̄/K), such that

Vtors ⊂ V ∩ V ′ ( V.

By Lemma 4.1(i), we get a hypersurface Z in Pn such that V ∩ V ′ ⊂ V ∩ Z ( V
and

deg(Z) ≤ 6ng δ0(V ),

and we rapidly check that this is stronger than the announced bound.
If KX ⊂ Ktors, we apply Lemma 3.6 to V and obtain that Vtors ⊂ V ∩ V ′ ( V ,

where

V ′ =
⋃

P∈ϕ−1
V (B[4c])

[
2c
]−1(

V σ+P
)
∪

⋃
P∈ϕ−1

V (B[2]\{0})

(
V +P

)
∪

⋃
P∈ϕ−1

V (B[2])

(
V ρ+P

)
,

for some σ, ρ ∈ Gal(K̄/K).
By Lemma 4.1(ii), for each P ∈ ϕ−1V (B[4c]), there exists a hypersurface Z1,P of

degree at most 22gc+2 ng δ0(V ) such that

V ∩
([

2c
]−1(

V σ + P
)
⊂ V ∩ Z1,P ( V.

Moreover, the corresponding union in V ′ consists of (4c)2 dim(B) irreducible compo-
nents, each giving rise to a hypersurface of this kind.

By Lemma 4.1(i), for each P ∈ ϕ−1V (B[2] \ {0}), there also exists a hypersurface
Z2,P of degree at most 6ng δ0(V ) such that

V ∩
(
V + P

)
⊂ V ∩ Z2,P ( V.

Moreover, the corresponding union in V ′ consists of 22 dim(B) − 1 such varieties,
each giving rise to a hypersurface if this kind.

By the same argument, for each P ∈ ϕ−1V (B[2]), we obtain a hypersurface Z3,P

of degree at most 6ng δ0(V ) such that

V ∩
(
V ρ + P

)
⊂ V ∩ Z3,P ( V,
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and there are 22 dim(B) hypersurfaces of this kind.
So we let

Z :=
⋃

P∈ϕ−1
V (B[4c])

Z1,P ∪
⋃

P∈ϕ−1
V (B[2]\{0})

Z2,P ∪
⋃

P∈ϕ−1
V (B[2])

Z3,P ,

which satisfies Vtors ⊂ V ∩ V ′ ⊂ V ∩ Z ( V and has degree

deg(Z) ≤
(
(4c)2g22gc+2 + 6(22g − 1) + 6 · 22g

)
ng δ0(V )

≤ (c2g22gc+4g+2 + 22g+4)ng δ0(V )

≤ c2g22gc+4g+3 ng δ0(V ) ≤ 24cg+2g+3 ng δ0(V )

≤ 16g(c+1) n δ0(V ).

This completes the proof of our proposition. �

4.3. Geometric preparation. We are now almost in a position to complete the
proof of our Theorem 1.10. We first need two technical results of geometric flavour.
The first one is a weighted variant of Bézout’s theorem and is due to Philippon
([24], Corollaire 5).

Lemma 4.3. Let X be an irreducible variety and Z1, . . . , Zt hypersurfaces of Pn
with degree ≤ θ. For 1 ≤ s ≤ t, if Xs := X ∩ Z1 ∩ · · · ∩ Zs, we have∑

W⊂Xs
irred. comp.

deg(W )θdim(W ) ≤ deg(X)θdim(X).

Proof. We prove this by induction. For s = 1, this is a consequence of the theorem
of Bézout. Assume that the result holds for s ≥ 1, and take W to be an irreducible
component ofXs. Since the inequality in the statement is a sum over the irreducible
components, it is enough to prove∑

W ′⊂W∩Zs+1

irred. comp.

deg(W ′)θdim(W ′) ≤ deg(W )θdim(W ).

If W ⊂ Zs+1, this is trivially an equality. Otherwise, by Krull’s Hauptidealsatz

dim(W ′) = dim(W )− 1,

and the inequality follows once again from Bézout. �

A second statement concerns the existence of an obstructing hypersurface in
a relative setting. This will allow us to proceed inductively to reach the torsion
subsets of small dimension.

Proposition 4.4. Let W ⊂ V ⊂ A be subvarieties of A with k = codim(V ) ≤ k′ =
codim(W ) ≤ g− 1. If W is irreducible and not contained in any torsion subvariety
of V , there exists a hypersurface Z ⊂ Pn such that Wtors ⊂W ∩ Z (W and

deg(Z) ≤ θ :=
(

16g(c+1)n
)g−k

δ1(V )

Remark. We stress that all the codimensions in this statement and the proof below
concern subvarieties of A.



A BOUND FOR THE TORSION ON SUBVARIETIES OF ABELIAN VARIETIES 17

Proof. The proof is by contradiction. We build recursively a chain of varieties

Xk ⊇ · · · ⊇ Xk′+1

satisfying the following properties, for every k ≤ r ≤ k′ + 1:

(i) W ⊂ Xr;
(ii) each irreducible component of Xr containing W has codimension ≥ r;
(iii) δ1(Xr) ≤ Dr :=

(
16g(c+1)n

)r−k
δ1(V )

For r = k, we choose Xk := V and quickly check that all three properties hold.
Next, we assume that the variety Xr is already constructed for some r ≥ k. We
write

Xr = W1 ∪ · · · ∪Wt,

where W1, . . . ,Wt are the irreducible components of Xr. By (i), there exists an
s ≥ 1 such that W ⊂ Wj if and only if 1 ≤ j ≤ s (after possibly reordering
the components). By assumption, the varieties W1, . . . ,Ws are not torsion cosets.
Thus, for every j = 1, . . . , s, by Proposition 4.2, there is a hypersurface Zj such
that

deg(Zj) ≤ 16g(c+1)n δ0(Wj) ≤ 16g(c+1)n δ1(Xr) ≤ Dr+1,

and

(4) Wj,tors ⊂Wj ∩ Zj (Wj .

Because W ⊂ Wj , we have Wtors ⊂ Zj which has degree ≤ Dr+1 ≤ θ. Since we
proceed by contradiction, this forces W ⊂ Zj . We define

Xr+1 := Xr ∩
⋂

1≤j≤s

Zj .

We know that W ⊂ Zj for all 1 ≤ j ≤ s, so we have W ⊂ Xr+1, and Xr+1

satisfies (i). To show that property (ii) holds for Xr+1, first observe that the only
irreducible components of Xr+1 that contain W are also irreducible components of
Wj ∩ Z1 ∩ · · · ∩ Zs for some j ≤ s. By induction hypothesis, condition (ii) is true
for Xr, so that

codim(Wj) ≥ r

for every 1 ≤ j ≤ s. The second strict inclusion in (4) gives

codim(Wj ∩ Zj) ≥ r + 1,

and (ii) is satisfied by Xr+1. The inequalities

δ1(Xr+1) ≤ max{δ1(Xr),deg(Z1), . . . ,deg(Zs)} ≤ Dr+1.

finally show property (iii) for Xr+1, which ends the proof of our induction.
Now that the existence of our chain of varieties is proved, we see by (ii) that there

is an irreducible component of Xk′+1 of codimension ≥ k′ + 1 which contains W .
This is a contradiction for W has codimension k′. �
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4.4. Proof of the main theorem. We can now state a precise version of Theo-
rem 1.10. It is proved by a combination of our geometric preliminaries and a second
induction process.

Theorem 4.5. Let V ⊂ A be a variety of dimension d > 0. For every 0 ≤ j ≤ d,

deg(V jtors) ≤ cj δ(V )g−j ,

where

cj =
(

16g(c+1)n
)(g−j)d

deg(A).

Proof. Write V := X0 ∪ · · · ∪Xd, where Xj represents the j-equidimensional part
of V for 0 ≤ j ≤ d. To simplify the notation, we fix

θ :=
(

16g(c+1)n
)d
δ(V ).

The key is to prove the following inequality

d∑
j=0

deg(V jtors)θ
j ≤

d∑
j=0

deg(Xj)θj .(5)

To do so, we build inductively a family of varieties (Y d, . . . , Y 0) such that, for
0 ≤ r ≤ d:

(i) Y r is r-equidimensional,
(ii) V 0

tors ∪ · · · ∪ V rtors ⊂ X0 ∪ · · · ∪Xr−1 ∪ Y r,
(iii)

∑d
j=r+1 deg(V jtors)θ

j−r + deg(Y r) ≤
∑d
j=r deg(Xj)θj−r,

(iv) every irreducible component of Y r has non-empty intersection with Vtors
and is not contained in any V jtors, for j > r.

Compared to (Xd, . . . , X0), this family retails more adequate information on the
torsion of V , and the degree of each variety is controlled. We set Y d to be the union
of all irreducible components of Xd having non-empty intersection with Vtors, and
rapidly check that Y d satisfies conditions (i)-(iv). Next, we assume that the variety
Y r is already built for some 0 < r ≤ d, and write

Y r = V rtors ∪W1 ∪ · · · ∪Ws,

where W1, . . . ,Ws are the irreducible components of Y r that do not lie in V rtors.
Observe that if there is no such component, we can take Y r−1 to be the union of all
the irreducible components of Xr−1 satisfying (iv) and check that (i)-(iii) also hold.
Hence, we assume that s ≥ 1. Moreover, since Y r satisfies (iv), the components
W1, . . . ,Ws do not lie in a torsion coset of V .

For each j = 1, . . . , s, we apply Proposition 4.4 with V , and W = Wj which has
codimension ≤ g − 1. This gives a hypersurface Zj such that

Wj,tors ⊂Wj ∩ Zj (Wj ,

and using (ii) of Lemma 2.4: deg(Zj) ≤ θ. Krull’s Hauptidealsatz implies that
Wj ∩ Zj is either empty or (r − 1)-equidimensional. We then define

Y r−1 = Xr−1 ∪
⋃

j=1,...,s

(Wj ∩ Zj).
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By construction, Y r−1 satisfies properties (i) and (ii) for r − 1. Moreover, by
Bézout’s theorem we have

deg(Y r−1) ≤ θ
s∑
j=1

deg(Wj) + deg(Xr−1) ≤ θ
(

deg(Y r)− deg(V rtors)
)

+ deg(Xr−1),

where the last inequality follows from the fact that Y r = V rtors ∪W1 ∪ · · · ∪Ws.
Adding

∑d
j=r deg(V jtors) θ

j+1−r on both sides, we find
d∑
j=r

deg(V jtors) θ
j+1−r+deg(Y r−1) ≤ θ

( d∑
j=r+1

deg(V jtors) θ
j−r+deg(Y r)

)
+deg(Xr−1).

By property (iii) in the induction step for r
d∑
j=r

deg(V jtors) θ
j+1−r + deg(Y r−1) ≤

d∑
j=r−1

deg(Xj) θj+1−r,

and this shows that Y r−1 satisfies property (iii) for r−1. After possibly discarding
some irreducible components (which does not affect the properties already proved),
we secure the fact that Y r−1 also satisfies (iv) for r−1. This concludes the induction.

Now, the inequality (5) follows from the inclusion V 0
tors ⊂ Y 0 together with (iii)

for r = 0. We use this and Lemma 4.3 with X = A and a family of hypersurfaces
of A defining V of degree ≤ δ(V ) ≤ θ to get

d∑
j=0

deg(V jtors)θ
j ≤ deg(A) θg.

So for 0 ≤ j ≤ d:
deg(V jtors) ≤ deg(A) θg−j ,

which yields the bounds announced in the theorem. �

We immediately get a proof of our corollary, with an explicit bound for the
number of torsion cosets.

Proof of Corollary 1.11. The number T of maximal torsion cosets in V is bounded
in the following way:

T ≤
d∑
j=0

deg(V jtors) ≤ deg(A)
(
16g(c+1)n

)g d
δ(V )g

≤ deg(A)g+1
(
16g(c+1)n

)g d
deg(V )g,

where d = dim(V ) and the last inequality follows from Lemma 2.4. �

Remark. For a good choice of our embedding, we can get a more explicit constant
(although the geometric measure of V still depends on the ample line bundle). It
is in fact possible to embed A into a projective space of dimension 2g + 1 (see for
instance [29], §5.4 Theorem 9, and notice that for general g, this is optimal by [4]
and [30]). Furthermore, [19], Theorem 1.4 gives that the degree of A with respect
to this embedding is ≤ 22g.

Composing by a suitable Veronese morphism yields a normal embedding (that
can be assumed to be symmetric after translation) in a projective space of di-
mension ≤ (2g + 4)3, and we now get deg(A) ≤ 62g. If V ⊂ A is a subvariety of
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dimension d > 0, and T is the number of maximal torsion cosets in V , Theorem 1.10
and Corollary 1.11 yield

T ≤ deg(V dtors) ≤ 16(c+3)dg2 δ(V )g.

4.5. Optimality. We finally discuss the optimality of our Theorem 1.10. We fix
K a number field, as well as two integers g ≥ 1 and 0 ≤ j ≤ g − 1. Let also B be
an abelian variety of dimension j defined over K.

By [17], Theorem 1, there is an absolutely simple abelian variety B′ of dimension
g − j defined over K. Let Z be a subvariety of B′ with codimension 1 ≤ k ≤ g − j
that goes through the neutral element 0 ∈ B′. Theorem 1.2 insures that the set of
torsion points in Z has finite cardinality, say T . By construction, we have T ≥ 1.

Now, for a positive integer d, define φd : A := B ×B′ → B′ by

φd(x, y) = [d]y.

If V := φ−1d (Z), we see that V jtors is a union of Td2(g−j) translates of B, hence

deg(V jtors) = T deg(C)d2(g−j).

Furthermore, we can get a set of equations defining V by pulling back a given set
of equations defining Z, so we have: δ(V ) ≤ δ(Z)d2. We derive

deg(V jtors) ≥ T
deg(B)

δ(Z)g
δ(V )g−j �A,Z δ(V )g−j ,

and as the degree of V jtors goes to infinity with d, we see that the dependence on V
(which has dimension g − k ≥ j) in Theorem 1.10 cannot be improved for A.
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