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Abstract

We consider parametric exponential families of dimension K on the real line. We study a
variant of boundary crossing probabilities coming from the multi-armed bandit literature,
in the case when the real-valued distributions form an exponential family of dimension
K. Formally, our result is a concentration inequality that bounds the probability that
Bψ(θ̂n, θ

?) > f(t/n)/n, where θ? is the parameter of an unknown target distribution, θ̂n is
the empirical parameter estimate built from n observations, ψ is the log-partition function
of the exponential family and Bψ is the corresponding Bregman divergence. From the
perspective of stochastic multi-armed bandits, we pay special attention to the case when
the boundary function f is logarithmic, as it enables to analyze the regret of the state-
of-the-art KL-ucb and KL-ucb+ strategies, whose analysis was left open in such generality.
Indeed, previous results only hold for the case when K = 1, while we provide results for
arbitrary finite dimension K, thus considerably extending the existing results. Perhaps
surprisingly, we highlight that the proof techniques to achieve these strong results already
existed three decades ago in the work of T.L. Lai, and were apparently forgotten in the
bandit community. We provide a modern rewriting of these beautiful techniques that we
believe are useful beyond the application to stochastic multi-armed bandits.

Keywords: Exponential Families, Bregman Concentration, Multi-armed Bandits, Opti-
mality.

1. Multi-armed bandit setup and notations

Let us consider a stochastic multi-armed bandit problem (A, ν), where A is a finite set of
cardinality A ∈ N and ν = (νa)a∈A is a set of probability distribution over R indexed by A.
The game is sequential and goes as follows:

At each round t ∈ N, the player picks an arm at based on her past observations and
observes a stochastic payoff Yt drawn independently at random according to the

distribution νat . Her goal is to maximize her expected cumulated payoff over a possibly
unknown number of steps.

Although the term multi-armed bandit problem was probably coined during the 60’s in
reference to the casino slot machines of the 19th century, the formulation of this problem
is due to Herbert Robbins – one of the most brilliant mind of his time, see Robbins (1952)
and takes its origin in earlier questions about optimal stopping policies for clinical trials,
see Thompson (1933, 1935); Wald (1945). We refer the interested reader to Robbins (2012)
regarding the legacy of the immense work of H. Robbins in mathematical statistics for
the sequential design of experiments, compiling his most outstanding research for his 70’s
birthday. Since then, the field of multi-armed bandits has grown large and bold, and we
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humbly refer to the introduction of Cappé et al. (2013) for key historical aspects about
the development of the field. Most notably, they include first the introduction of dynamic
allocation indices (aka Gittins indices, Gittins (1979); Lattimore (2016)) suggesting that
an optimal strategy can be found in the form of an index strategy (that at each round
selects an arm with highest ”index”); second, the seminal work of Lai and Robbins (1985)
that shows indices can be chosen as ”upper confidence bounds” on the mean reward of
each arm, and provided the first asymptotic lower-bound on the achievable performance for
specific distributions; third, the generalization of this lower bound in the 90’s to generic
distributions by Burnetas and Katehakis (1997) (see also the recent work from Garivier
et al. (2016)) as well as the asymptotic analysis by Agrawal (1995) of generic classes of
upper-confidence-bound based index policies. Finally Auer et al. (2002) popularized a
simple sub-optimal index strategy termed UCB and most importantly opened the quest for
finite-time, as opposed to asymptotic, performance guarantees. We now recall the necessary
formal definitions and notations, closely following Cappé et al. (2013).

Quality of a strategy For each arm a ∈ A, let µa be the expectation of the distribution
νa, and let a? be any optimal arm in the sense that a? ∈ Argmaxa∈A µa. We write µ?

as a short-hand notation for the largest expectation µa? and denote the gap of the expected
payoff µa of an arm a to µ? as ∆a = µ? − µa. In addition, we denote the number of times

each arm a is pulled between the rounds 1 and T by Na(T )
def
=

T∑
t=1

I{at=a}.

Definition 1 (Expected regret) The quality of a strategy is evaluated using the notion
of expected regret (or simply, regret) at round T > 1, defined as

RT
def
= E

[
Tµ? −

T∑
t=1

Yt

]
= E

[
Tµ? −

T∑
t=1

µat

]
=
∑
a∈A

∆a E
[
Na(T )

]
, (1)

where we used the tower rule for the first equality. The expectation is with respect to the
random draws of the Yt according to the νat and to the possible auxiliary randomization
introduced by the decision-making strategy.

Empirical distributions We denote empirical distributions in two related ways, depend-
ing on whether random averages indexed by the global time t or averages of given number
of pulls of a given arms are considered. The first series of averages are referred to by using
a functional notation for the indexation in the global time: ν̂a(t), while the second series
are indexed with the local times t in subscripts: ν̂a,t. These two related indexations, func-
tional for global times and random averages versus subscript indexes for local times, will be
consistent throughout the paper for all quantities at hand, not only empirical averages.

Definition 2 (Empirical distributions) For each m > 1, we denote by τa,m the round at
which arm a was pulled for the m–th time, that is τa,m = min

{
t ∈ N : Na(t) = m

}
. For

each round t such that Na(t) > 1, we then define the following two empirical distributions

ν̂a(t) =
1

Na(t)

t∑
s=1

δYs I{as=a} and ν̂a,n =
1

n

n∑
m=1

δXa,m , where Xa,m
def
= Yτa,m .

where δx denotes the Dirac distribution on x ∈ R.

Lemma 3 1 The random variables Xa,m = Yτa,m, where m = 1, 2, . . ., are independent and
identically distributed according to νa. Moreover, we have the rewriting ν̂a(t) = ν̂a,Na(t) .

1. We refer to Cappé et al. (2013) for a proof of this elementary result.
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2. Boundary crossing probabilities for the generic KL-ucb strategy.

The first appearance of the KL-ucb strategy can be traced at least to Lai (1987) although it
was not given an explicit name at that time. It seems the strategy was forgotten after the
work of Auer et al. (2002) that opened a decade of intensive research on finite-time analysis
of bandit strategies and extensions to variants of the problem (Audibert et al. (2009);
Audibert and Bubeck (2010), see also Bubeck et al. (2012) for a survey of relevant variants
of bandit problems), until the work of Honda and Takemura (2010) shed a novel light on the
asymptotically optimal strategies. Thanks to their illuminating work, the first finite-time
regret analysis of KL-ucb was obtained by Maillard et al. (2011) for discrete distributions,
soon extended to handle exponential families of dimension 1 in the unifying work of Cappé
et al. (2013). However, as we will see in this paper, we should all be much in dept of the
work of T.L. Lai regarding the analysis of this index strategy, both asymptotically and in
finite-time, as a second look at his papers shows how to bypass the limitations of the state-
of-the-art regret bounds for the control of boundary crossing probabilities in this context
(see Theorem 19 below). Actually, the first focus of the present paper is not stochastic
bandits but boundary crossing probabilities, and the bandit setting that we provide here
should be considered only as providing a solid motivation for the contribution of this paper.

Let us now introduce formally the KL-ucb strategy. We assume that the learner is given
a family D ⊂M1(R) of probability distributions that satisfies νa ∈ D for each arm a ∈ A,
where M1(R) denotes the set of all probability distributions over R. For two distributions
ν, ν ′ ∈ M1(R), we denote by KL(ν, ν ′) their Kullback-Leibler divergence and by E(ν) and
E(ν ′) their expectations. (This expectation operator is denoted by E while expectations
with respect to underlying randomizations are referred to as E.)

The generic form of the algorithm of interest in this paper is described as Algorithm 1. It
relies on two parameters: an operator ΠD (in spirit, a projection operator) that associates
with each empirical distribution ν̂a(t) an element of the model D; and a non-decreasing
function f , which is typically such that f(t) ≈ log(t). At each round t, an upper confidence
bound Ua(t) is computed on the expectation µa of the distribution νa of each arm; an arm
with highest upper confidence bound is then played.

Algorithm 1 The KL-ucb algorithm (generic form).

Parameters: An operator ΠD : M1(R)→ D; a non-decreasing function f : N→ R
Initialization: Pull each arm of {1, . . . ,K} once

for each round t+ 1, where t > K, do

for each arm a, compute Ua(t) = sup

{
E(ν) : ν ∈ D and KL

(
ΠD
(
ν̂a(t)

)
, ν
)
6 f(t)

Na(t)

}
;

pick an arm at+1 ∈ argmax
a∈A

Ua(t).

In the literature, another variant of KL-ucb is introduced where the term f(t) is replaced
with f(t/Na(t)). We refer to this algorithm as KL-ucb+. While KL-ucb has been analyzed
and shown to be provably near-optimal, the variant KL-ucb+ has not been analyzed yet.

Alternative formulation of KL-ucb We wrote the KL-ucb algorithm so that the opti-
mization problem resulting from the computation of Ua(t) is easy to handle. Under some
assumption, one can rewrite this term in an equivalent form more suitable for the analysis:
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Lemma 4 (Rewriting, see Cappé et al. (2013)) Under the assumption that

Assumption 1 A known interval I⊂R with boundary µ−6µ+ is such that each model
D=Da of probability measures for a∈A satisfies Da⊂P(I) and ∀ν∈Da, µ∈I\{µ+},

inf
{
KL(ν, ν ′) : ν ′ ∈ Da s.t. E(ν ′)>µ

}
= min

{
KL(ν, ν ′) : ν ′ ∈ Da s.t. E(ν ′)>µ

}
,

then the upper bound used by the KL-ucb algorithm satisfies the following equality

Ua(t) = max

{
µ ∈ I \ {µ+} : Ka

(
Πa (ν̂a(t)) , µ

)
6

f(t)

Na(t)

}
where Ka(νa, µ?)

def
= inf

ν∈Da:E(ν)>µ?
KL(νa, ν) and Πa

def
= ΠDa .

Likewise, a similar result holds forKL-ucb+ but where f(t) is replaced with f(t/Na(t)).

Remark 5 For instance, this assumption is valid when Da = P([0, 1]) and I = [0, 1]. In-
deed we can replace the strict inequality with an inequality provided that µ < 1 by Honda and
Takemura (2010), and the infimum is reached by lower semi-continuity of the KL divergence
and convexity and closure of the set {ν ′ ∈ P([0, 1]) s.t. E(ν ′) > µ}.

Using boundary-crossing probabilities for regret analysis We continue this warming-
up by restating a convenient way to decompose the regret and make appear the boundary
crossing probabilities. The following lemma is a direct adaptation2 from Cappé et al. (2013):

Lemma 6 (From Regret to Boundary Crossing Probabilities) Let ε ∈ R+ be
a small constant such that ε ∈ (0,mina∈A\{a?}∆a). For µ, γ ∈ R, let us introduce the
following set

Cµ,γ =
{
ν ′ ∈M1(R) : Ka(Πa(ν

′), µ) < γ
}
.

Then, the number of pulls of a sub-optimal arm a ∈ A by Algorithm KL-ucb satisfies

E
[
NT (a)

]
6 2 + inf

n06T

{
n0 +

T∑
n>n0+1

P
{
ν̂a,n ∈ Cµ?−ε,f(T )/n

}}

+
T−1∑
t=|A|

P
{
Na?(t) Ka?

(
Πa?(ν̂a?,Na? (t)), µ

? − ε
)
> f(t)

}
︸ ︷︷ ︸

Boundary Crossing Probability

.

Likewise, the number of pulls of a sub-optimal arm a ∈ A by Algorithm KL-ucb+ satisfies

E
[
NT (a)

]
6 2 + inf

n06T

{
n0 +

T∑
n>n0+1

P
{
ν̂a,n ∈ Cµ?−ε,f(T/n)/n

}}

+
T−1∑
t=|A|

P
{
Na?(t) Ka?

(
Πa?(ν̂a?,Na? (t)), µ

? − ε
)
> f(t/Na?(t))

}
︸ ︷︷ ︸

Boundary Crossing Probability

.

2. the proof is deferred to the appendix; in this lemma, the optimal arm is assumed to be unique.
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Lemma 6 shows that two terms need to be controlled in order to derive regret bounds for the
considered strategy. The boundary crossing probability term is arguably the most difficult
to handle and is the focus of the next sections. The other term involves the probability
that an empirical distribution belongs to a convex set, which can be handled either directly
as in Cappé et al. (2013) or by resorting to finite-time Sanov-type results such as that of
(Dinwoodie, 1992, Theorem 2.1 and comments on page 372), or its variant from (Maillard
et al., 2011, Lemma 1). For completeness, the exact result from Dinwoodie (1992) writes

Lemma 7 (Non-asymptotic Sanov’s lemma) Let C be an open convex subset of P(X )
s.t. Λ(C) = infκ∈C KL(κ, ν) is finite. Then, ∀t> 1, Pν{ν̂t ∈ C} 6 exp

(
−tΛ(C)

)
where C is

the closure of C.

Scope and focus of this work We present the setting of stochastic multi-armed bandits
because it gives a strong and natural motivation for studying boundary crossing probabil-
ities. However, one should understand that one goal of this paper is to give credit to the
work of T.L. Lai regarding the neat understanding of boundary crossing probabilities rather
than providing a regret bound for such bandit algorithms as KL-ucb or KL-ucb+. Also, we
believe that results on boundary crossing probabilities are useful beyond the bandit problem
in hypothesis testing, see Lerche (2013). Thus, to avoid obscuring the main result regarding
boundary crossing probabilities, we choose not to provide regret bounds here and to leave
them has an exercise for the interested reader; controlling the remaining term appearing
in the decomposition of Lemma 6 is indeed mostly technical and does not seem to require
especially illuminating or fancy ideas. We refer to Cappé et al. (2013) for an example of
bound in the case of exponential families of dimension 1. Last, since the boundary crossing
probability involves properties of a single distribution (that of an optimal arm) and is not
specific to bandit problems, we drop a? from all notations, thus defining K, Π, N(t), ν̂N(t).

High-level overview of the contribution We are now ready to explain the main results
of this paper. For the purpose of clarity, we provide them as an informal statement before
proceeding with the technical material. Our contribution is about the behavior of the
boundary crossing probability term for exponential families of dimension K when choosing
the threshold function f(x) = log(x) + ξ log log(x). Our result reads as follows.
Theorem (Informal statement) Assuming the observations come from an exponential
family of dimension K that satisfies some mild conditions, then for any non-negative ε and
some class-dependent but fully explicit constants c, C (depending on ε) it holds that

P
{
N(t) K

(
Π(ν̂N(t)), µ

? − ε
)
> f(t)

}
6

C

t
log(t)K/2−ξe−c

√
f(t)

P
{
N(t) K

(
Π(ν̂N(t)), µ

? − ε
)
> f(t/N(t))

}
6

C

t
log(tc)K/2−ξ−1 .

The first inequality holds for all t and the second one for large enough t> tc for a class
dependent but explicit and ”reasonably” small tc. (We dropped a? in the notations)

We provide the rigorous statement in Theorem 19 and Corollaries 22, 23 below. This
result shows how to tune ξ with respect to the dimension K of the family. Indeed, in order
to ensure that the probability term is summable in t, the bound suggests that ξ should
be at least larger than K/2−1. The case of exponential families of dimension 1 (K = 1)
is especially interesting, as it supports the fact that both KL-ucb and KL-ucb+ can be
tuned using ξ = 0 (and even negative ξ for KL-ucb). This fact was observed in numerical
experiments in Cappé et al. (2013) although not theoretically supported until now.
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The remaining of the paper is organized as follows: Section 3 provides the background
about exponential families, Section 4 provides the precise statements of the main results,
Section B details the proof of Theorem 19 and Section C those of Corollaries 22, 23.

3. General exponential families, properties and examples

Before focusing on the boundary crossing probabilities, we require a few tools and definitions
related to exponential families. The purpose of this section is thus to present them and
prepare for the main result of this paper. In this section, for a set X ⊂ R, we consider a
multivariate function F : X → RK and denote Y = F (X ) ⊂ RK .
Definition 8 (Exponential families) The exponential family generated by the function
F and the reference measure ν0 on the set X is

E(F ; ν0) =
{
νθ ∈M1(X ) ; ∀x ∈ X νθ(x) = exp

(
〈θ, F (x)〉 − ψ(θ)

)
ν0(x), θ ∈ RK

}
,

where ψ(θ)
def
= log

∫
X

exp
(
〈θ, F (x)〉

)
ν0(dx) is the normalization (log-partition) function of

the exponential family. θ is called the vector of canonical parameters. The parameter set of

the family is the domain ΘD
def
=
{
θ ∈RK : ψ(θ)<∞

}
, and the invertible parameter set is

ΘI
def
=
{
θ∈RK : 0<λMIN(∇2ψ(θ))6λMAX(∇2ψ(θ))<∞

}
⊂ΘD, where λMIN(M) and λMAX(M)

denote the minimum and maximum eigenvalues of a semi-definite positive matrix M .

Remark 9 When X is compact, which is a common assumption in multi-armed bandits
(X = [0, 1]) and F is continuous, then we automatically get ΘD = RK .

In the sequel, we assume that the family is regular (ΘD has non empty interior) and
minimal. Another key assumption is that the parameter θ? of the optimal arm belongs
to the interior of ΘI and is away from its boundary. This essentially avoids degenerate
distributions, as we illustrate below.

Examples Bernoulli distributions form an exponential family with K = 1, X = {0, 1},
F (x) = x,ψ(θ) = log(1 + eθ). The Bernoulli distribution with mean µ has parameter
θ = log(µ/(1 − µ)). Further, ΘD = R and degenerate distributions with mean 0 or 1
correspond to parameters ±∞.

Gaussian distributions on X = R form an exponential family withK = 2, F (x) = (x, x2),

and for each θ = (θ1, θ2), ψ(θ) = − θ21
4θ2

+ 1
2 log

(
− π

θ2

)
. The Gaussian distribution N (µ, σ2)

has parameter θ = ( µ
σ2 ,− 1

2σ2 ). It is immediate to check that ΘD = R×(−∞, 0). Degenerate
distributions with variance 0 correspond to a parameter with both infinite components,
while as θ approaches the boundary R × {0}, the variance tends to infinity. It is natural
to consider only parameters that correspond to a not too large variance. For a study of
bandits with Gaussian distributions (but specific tools) see Katehakis and Robbins (1995)
or more recently Cowan et al. (2015).

3.1. Bregman divergence induced by the exponential family

An interesting property of exponential families is the following straightforward identity:

∀θ, θ′ ∈ ΘD, KL(νθ, νθ′) = 〈θ − θ′,EX∼νθ(F (X))〉 − ψ(θ) + ψ(θ′) ,

In particular, the vector EX∼νθ(F (X)) is called the vector of dual (or expectation) param-
eters. It is equal to the vector ∇ψ(θ). Now, we write KL(νθ, νθ′) = Bψ(θ, θ′), where we
introduced the Bregman divergence with potential function ψ defined by

Bψ(θ, θ′)
def
= ψ(θ′)− ψ(θ)− 〈θ′ − θ,∇ψ(θ)〉 .

6
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Thus, if Πa is chosen to be the projection on the exponential family E(F ; ν0), and ν is a
distribution with projection given by νθ = Πa(ν), then we can rewrite the definition of Ka
in the simpler form

Ka
(
Πa(ν), µ

)
= inf

{
Bψ(θ, θ′) ; Eνθ′ (X) > µ

}
. (2)

We continue by providing simple but powerful properties of the Bregman divergence.

Lemma 10 (Bregman duality) For all θ? ∈ ΘD and η ∈ RK such that θ?+η ∈ ΘD,
let Φ(η) = ψ(θ? + η)− ψ(θ?). Let the Fenchel-Legendre dual of Φ be

Φ?(y) = sup
η∈RK

〈η, y〉 − Φ(η) .

Then, it holds logEθ? exp

(
〈η, F (X)〉

)
= Φ(η) . Further, for all F such that

F =∇ψ(θ) for some θ∈ΘD, then Φ?(F )=Bψ(θ, θ?).

Lemma 11 (Bregman and Smoothness) The following inequalities hold true

Bψ(θ, θ′) 6
‖θ − θ′‖2

2
sup{λMAX(∇2ψ(θ̃)) ; θ̃ ∈ [θ, θ′]} ,

‖∇ψ(θ)−∇ψ(θ′)‖ 6 sup{λMAX(∇2ψ(θ̃)) ; θ̃ ∈ [θ, θ′]}‖θ − θ′‖ ,

Bψ(θ, θ′) >
‖θ − θ′‖2

2
inf{λMIN(∇2ψ(θ̃)) ; θ̃ ∈ [θ, θ′]} ,

‖∇ψ(θ)−∇ψ(θ′)‖ > inf{λMIN(∇2ψ(θ̃)) ; θ̃ ∈ [θ, θ′]}‖θ − θ′‖ ,

where λMAX(∇2ψ(θ̃)), λMIN(∇2ψ(θ̃)) are the largest and smallest eigenvalue of ∇2ψ(θ̃).

3.2. Dual formulation of the optimization problem

Using Bregman divergences enables to rewrite the K-dimensional optimization problem
(2) in a slightly more convenient form thanks to a dual formulation. Indeed introducing
a Lagrangian parameter λ ∈ R+ and using Karush-Kuhn-Tucker conditions, one gets the
following necessary optimality conditions

∇ψ(θ′)−∇ψ(θ)− λ∂θ′Eνθ′ (X) = 0, with

λ(µ− Eνθ′ (X)) = 0, λ > 0, Eνθ′ (X) > µ ,

and by definition of the exponential family, we can make use of the fact that

∂θ′Eνθ′ (X) = Eνθ′ (XF (X))− Eνθ′ (X)∇ψ(θ′) ∈ RK ,
where we remember that X∈R and F (X)∈RK . Combining these two equations, we obtain
the system {

∇ψ(θ′)(1 + λEνθ′ (X))−∇ψ(θ)− λEνθ′ (XF (X)) = 0 ∈ RK ,
with λ(µ− Eνθ′ (X)) = 0, λ > 0, Eνθ′ (X) > µ .

(3)

For minimal exponential family, this system admits for each θ, µ a unique solution in θ′.

Remark 12 For θ ∈ ΘI , when the optimal value of λ is λ? = 0, then it means that
∇ψ(θ′) = ∇ψ(θ) and thus θ′ = θ, which is only possible if Eνθ(X) > µ. Thus whenever
µ > Eνθ(X), the dual constraint is active, i.e. λ > 0, and we get the vector equation

∇ψ(θ′)(1 + λµ)−∇ψ(θ)− λEνθ′ (XF (X)) = 0 and Eνθ′ (X) = µ .
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The example of discrete distributions In many cases, the previous optimization prob-
lem reduces to a simpler one-dimensional optimization problem, where we optimize over the
dual parameter λ. We illustrate this phenomenon on a family of discrete distributions. Let
X = {x1, . . . , xK , x?} be a set of distinct real-values. Without loss of generality, assume that
x? > maxk6K xk. The family of distributions p with support in X is a specific K-dimensional
family. Indeed, let F be the feature function with kth component Fk(x) = I{x = xk}, for
all k ∈ {1, . . . ,K}. Then the parameter θ = (θk)16k6K of the distribution p = pθ has com-

ponents θk = log(p(xk)
p(x?) ) for all k 6= 0. Note that p(xk) = exp(θk − ψ(θ)) for all k 6= 0, and

p(x0) = exp(−ψ(θ)). It then comes ψ(θ) = log(
∑K

k=1 e
θk +1), ∇ψ(θ) = (p(x1), . . . , p(xK))>

and E(XFk(X)) = xkpθ(xk). Further, ΘD = (R ∪ {−∞})K and θ ∈ ΘD corresponds to the
condition pθ(x?) > 0. Now, for a non trivial value µ such that Epθ(X) < µ < x?, it can be
readily checked that the system (3) specialized to this family is equivalent (with no surprise)
to the one considered for instance in Honda and Takemura (2010) for discrete distributions.
After some tedious but simple steps detailed in Honda and Takemura (2010), one obtains
the following easy-to-solve one-dimensional optimization problem (see also Cappé et al.
(2013)), although the family is of dimension K:

K
(
Π(ν), µ

)
= K

(
νθ, µ

)
= sup

{∑
x∈X

pθ(x) log
(

1− λ x− µ
x? − µ

)
; λ ∈ [0, 1]

}
.

3.3. Empirical parameter and definition

We now discuss the well-definedness of the empirical parameter corresponding to the pro-
jection of the empirical distribution on the exponential family. While this is innocuous for
most settings, in full generality one needs a specific care to ensure that all the objects are
well-defined and all parameters θ we talk about indeed belong to the set ΘD (or better ΘI).

An important property is that if the family is regular, then ∇ψ(ΘD) is an open set
that coincides with the interior of realizable values of F (x) for x ∼ ν for any ν absolutely
continuous with respect to ν0. In particular, by convexity of the set ∇ψ(ΘD) this means
that the empirical average 1

n

∑n
i=1 F (Xi) ∈ RK belongs to the closure ∇ψ(ΘD) for all

{Xi}i6n ∼ νθ with θ ∈ ΘD. Thus, for the observed samples X1, . . . , Xn ∈ X coming from
νθ? , the projection Π(ν̂n) on the family can be represented by a sequence {θ̂n,m}m∈N ∈ ΘD
such that

∇ψ(θ̂n,m)
m→ F̂n where F̂n

def
=

1

n

n∑
i=1

F (Xi) ∈ RK .

In the sequel, we want to ensure that provided that νa? = νθ? with θ? ∈ Θ̊I (the
interior of ΘI), then F̂n ∈ ∇ψ(Θ̊I) holds, which means there is a unique θ̂n ∈ Θ̊I such that
∇ψ(θ̂n) = F̂n, or equivalently θ̂n = ∇ψ−1(F̂n). To this end, we assume that θ? is away from
the boundary of ΘI . In many cases, it is then sufficient to assume that n is larger than a
small constant (roughly K) to ensure we can find a unique θ̂n ∈ Θ̊I such that ∇ψ(θ̂n) = F̂n.

Example Let us consider Gaussian distributions on X = R, with K = 2. We consider a
parameter θ? = ( µ

σ2 ,− 1
2σ2 ) corresponding to a Gaussian finite mean µ and positive variance

σ2. Now, for any n > 2, the empirical mean µ̂n is finite and the empirical variance σ̂2
n is

positive, and thus θn = ∇ψ−1(F̂n) is well-defined.
The case of Bernoulli distributions is interesting as it shows a slightly different situation.

Let us consider a parameter θ? = log(µ/(1− µ)) corresponding to a Bernoulli distribution
with mean µ. Before F̂n can be mapped to a point in Θ̊I = R, one needs to wait that the
number of observations for both 0 and 1 is positive. Whenever µ ∈ (0, 1), the probability
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that this does not happen is controlled by P(n0(n) = 0 or n1(n) = 0) = µn + (1 − µ)n 6
2 max(µ, 1−µ)n, where nx(n) denotes the number of observations of symbol x ∈ {0, 1} after

n samples. For µ > 1/2, the later quantity is less than δ0 ∈ (0, 1) for n > log(2/δ0)
log(1/µ) , which

depends on the probability level δ0 and cannot be considered to be especially small when
µ is close 3 to 1. That said, even when the parameter θ̂n does not belong to R, the event
n0(n) = 0 corresponds to having empirical mean equal to 1. This is a favorable situation
since any optimistic algorithm should pull the corresponding arm. Thus, we only need to
control P(n1(n) = 0) = (1 − µ)n. This is less than δ0 ∈ (0, 1) for n> log(1/δ0)

log(1/(1−µ)) , which is

essentially a constant. For illustration, when δ = 10−3 and µ = 0.9, this happens for n > 3.

Following the previous discussion, in the sequel we consider that n is always large enough
so that θ̂n =∇ψ−1(F̂n)∈ Θ̊I is uniquely defined. We now make formal the separation be-
tween the parameter and the boundary. For that purpose introduce the following definition:

Definition 13 (Enlarged parameter set) Let Θ ⊂ ΘD and some constant ρ > 0. The
enlargement of size ρ of Θ in Euclidean norm (aka ρ-neighborhood) is defined by

Θρ
def
=
{
θ ∈ RK ; inf

θ′∈Θ
|θ − θ′| < ρ

}
.

For each ρ such that Θρ ⊂ ΘI , we further introduce the quantities

vρ = vΘρ
def
= inf

θ∈Θρ
λMIN(∇2ψ(θ)), Vρ = VΘρ

def
= sup

θ∈Θρ

λMAX(∇2ψ(θ)) .

Using the notion of enlarged parameter set, we highlight an especially useful property
to prove concentration inequalities, summarized in the following result

Lemma 14 (Log-Laplace control) Let Θ ⊂ ΘD be a convex set and ρ > 0 such that
θ? ∈ Θρ ⊂ ΘI . Then, for all η ∈ RK such that θ? + η ∈ Θρ, it holds

logEθ? exp(η>F (X)) 6 η>∇ψ(θ?) +
Vρ
2
‖η‖2 .

In the sequel, we are interested in sets Θ such that Θρ ⊂ Θ̊I for some specific ρ. This
comes essentially from the fact that we require some room around Θ and ΘI to ensure all
quantities remain finite and well-defined. Before proceeding, it is convenient to introduce
the notation d(Θ′,Θ) = infθ∈Θ,θ′∈Θ′ ‖θ − θ′‖, as well as the Euclidean ball B(y, δ) = {y′ ∈
RK : ‖y′ − y‖ 6 δ}. Using these notations, the following lemma whose proof is immediate
provides conditions for which all future technical considerations are satisfied.

Lemma 15 (Well-defined parameters) Let θ? ∈ Θ̊I and ρ? = d({θ?},RK\ΘI) > 0.
Then for any convex set Θ⊂ΘI such that θ? ∈Θ and d(Θ,RK \ΘI) = ρ?, and any ρ <
ρ?/2, it holds Θ2ρ ⊂ Θ̊I . Further, for any δ such that F̂n∈B(∇ψ(θ?), δ)⊂∇ψ(Θρ),
then ∃θ̂n∈Θρ⊂Θ̊I such that ∇ψ(θ̂n)= F̂n.

In the sequel, we restrict our analysis to the slightly more restrictive case when θ̂n ∈ Θρ

with Θ2ρ⊂Θ̊I . This is mostly for convenience and avoid dealing with rather specific cases.

Remark 16 We recall that when X is compact and F is continuous, then ΘI = ΘD = RK .

3. This also suggests to replace F̂n with a Laplace or a Krichevsky-Trofimov estimate that provide initial
bonus to each symbol and, as a result, maps any F̂n, for n > 0 to a parameter in θ̂n ∈ R.

9



Maillard

Illustration We now illustrate the definition of vρ and Vρ. For Bernoulli distributions with
parameter µ∈ [0, 1],∇ψ(θ)=1/(1+e−θ) and ∇2ψ(θ)=e−θ/(1+e−θ)2 =µ(1−µ). Thus, vρ is
away from0 whenever Θρ excludes the meansµclose to 0 or1, andVρ61/4. Now for a family

of Gaussian distributions with unknown mean and variance, ψ(θ) = − θ21
4θ2

+ 1
2 log

(−π
θ2

)
, where

θ = ( µ
σ2 ,− 1

2σ2 ). Thus, ∇ψ(θ) = (− θ1
2θ2
,
θ21
4θ22
− 1

2θ2
), and ∇2ψ(θ) = (− 1

2θ2
, θ1

2θ22
; θ1

2θ22
,− θ21

2θ32
+

1
2θ22

) = 2µσ2( 1
2µ , 1; 1, 2µ + σ2

µ ). The smallest eigenvalue is larger than σ4/(1/2 + σ2 + 2µ2)

and the largest is upper bounded by σ2(1 + 2σ2 + 4µ2), which enables to control Vρ and vρ.

4. Boundary crossing for K-dimensional exponential families

In this section, we study the boundary crossing probability term appearing in Lemma 6 for
a K-dimensional exponential family E(F ; ν0). We first provide an overview of the existing
results before detailing our main contribution. As explained in Section 2, the key technical
tools that enable to obtain the novel results were already known three decades ago. Thus,
even though the novel result is impressive due to its generality and tightness, it should be
regarded as a modernized version of an existing but almost forgotten result, that enables
to solve as a by-product some long-lasting open questions.
4.1. Previous work on boundary-crossing probabilities

Previous results from the bandit literature about boundary-crossing probabilities are re-
stricted to a few specific cases. For instance in Cappé et al. (2013), the authors provide the
following control for a distribution νθ? with mean µ?.

Theorem 17 (Cappe et al, 2013) For the canonical (F (x) =x) exponential family
of dimension K= 1, and the threshold function f(x) = log(x)+ξ log log(x), then for all
t>1

Pθ?
{ t⋃
n=1

nK
(
Π(ν̂n), µ?

)
> f

(
t
)
∩ µ? > µ̂n

}
6 edf(t) log(t)ee−f(t) .

Further, for discrete distributions with S many atoms and ξ>3 it holds for all t>1, ε>0

Pθ?
{ t⋃
n=1

nK
(
Π(ν̂n), µ?−ε

)
> f

(
t
)}
6 e−f(t)

(
3e+ 2 + 4ε−2 + 8eε−4

)
.

In contrast in Lai (1988), the authors provide an asymptotic control in the more general
case of exponential families of dimension K with some basic regularity condition, as we
explained earlier. We now restate this beautiful result from Lai (1988) in a way that is
suitable for a more direct comparison with other results. The following holds:

Theorem 18 (Lai, 88) Let us consider an exponential family of dimension K. Define
for γ > 0 the cone Cγ(θ) = {θ′ ∈ RK : 〈θ′, θ〉 > γ‖θ‖‖θ′‖}. Then, for a function f such
that f(x) = α log(x) + ξ log log(x) it holds for all θ† ∈ Θ such that |θ†− θ?|2 > δt, where
δt → 0, tδt →∞ as t→∞,

Pθ?
{ t⋃
n=1

θ̂n ∈ Θρ ∩ nBψ(θ̂n, θ
†) > f

( t
n

)
∩ ∇ψ(θ̂n)−∇ψ(θ†) ∈ Cγ(θ† − θ?)

}
t→∞
= O

(
t−α|θ† − θ?|−2α log−ξ−α+K/2(t|θ† − θ?|2)

)
= O

(
e−f(t|θ†−θ?|2) log−α+K/2(t|θ† − θ?|2)

)
.

10
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Discussion Bψ(θ̂n, θ
†) is the direct analog of K

(
Π(ν̂n), µ?−ε) in Theorem 17. However,

f(t/n) replaces the larger quantity f(t), which means Theorem 18 controls a larger quan-
tity than Theorem 17, and is thus stronger in this sense. Also, it applies to general expo-
nential families of dimension K. Finally, the right hand side terms of both theorems have

different scaling: Since edf(t) log(t)ee−f(t) =O( log2−ξ(t)+ξ log(t)1−ξ log log(t)
t ), the first part of

Theorem 17 requires ξ>2 so that this term is o(1/t), and ξ>0 for the second part. In con-
trast, Theorem 18 shows that using f(x) = log(x) + ξ log log(x) with ξ>K/2−1 is enough
to ensure a o(1/t) bound. For K=1, this means we can even use ξ>−1/2 and in particular
ξ=0, which corresponds to the value Cappé et al. (2013) choose in the experiments.

Thus, Theorem 18 improves in three ways over Theorem 17: it is an extension to
dimension K, it provides a bound for f(t/n) (and thus for KL-ucb+) and not only f(t), and
finally allows for smaller values of ξ. These improvements are partly due to the fact that
Theorem 17 controls a concentration with respect to θ†, not θ?, which takes advantage of
the gap that appears when going from µ? to distributions with mean µ? − ε. The proof of
Theorem 18 directly takes advantage of this, contrary to that of the first part of Theorem 17.

However, Theorem 18 is asymptotic whereas Theorem 17 holds for finite t. Furthermore,
we notice two restrictions on the controlled event. First, θ̂n∈Θρ; we showed in the previous
section that this is a minor restriction. Second, the restriction to Cγ(θ†−θ?) which simplifies
the analysis, is a more dramatic restriction as it cannot be removed trivially. Indeed from
the complete statement of (Lai, 1988, Theorem 2), the right hand-side blows up to∞ when
γ→ 0. As we will see, it is possible to overcome this restriction by resorting to a smart
covering of the space with cones, and sum the resulting terms via a union bound over the
covering. We explain the precise way of proceeding in the proof of Theorem 19 in section B.

4.2. Main results and contributions

We provide several results on boundary crossing probabilities, that we prove in details in the
next section. We first provide a non-asymptotic bound with explicit terms for the control of
the boundary crossing probability term. We then provide two corollaries that can be used
directly for the analysis of KL-ucb and KL-ucb+ and that better highlight the asymptotic
scaling of the bound with t, which helps seeing the effect of the parameter ξ on the bound.

Theorem 19 (Boundary crossing for exponential families) Let ε > 0 and de-
fine ρε = inf{‖θ′ − θ‖ : µθ′ = µ? − ε, µθ = µ?}. Let ρ? = d({θ?},RK \ΘI) and Θ ⊂ ΘD
be a set such that θ? ∈ Θ and d(Θ,RK \ ΘI) = ρ?. Thus θ? ∈ Θ ⊂ Θρ ⊂ Θ̊I for
each ρ < ρ?. Assume that n → f(t/n)/n is non-increasing and n → nf(t/n) is non-
decreasing. Then, ∀b>1, p, q, η ∈ [0, 1], and ni = bi if i < It = dlogb(qt)e, nIt = t+ 1,

Pθ?
{ ⋃

16n6t

θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ? − ε) > f(t/n)/n
}

6 C(K, b, ρ, p, η)

It−1∑
i=0

exp

(
− niρ2

εα
2−ρεχ

√
nif(t/ni)−f

( t

ni+1−1

))
f
( t

ni+1−1

)K/2
,

where we introduced the constants α = η
√
vρ/2, χ = pη

√
2v2
ρ/Vρ and

C(K, b, ρ, p, η) = Cp,η,K

(
2

ωp,K−2

ωmax{p, 2√
5
},K−2

max
{ 2bV 4

ρ

pρ2v6
ρ

,
V 3
ρ

v4
ρ

,
b2V 5

ρ

pv6
ρ(

1
2 + 1

K )

}K/2
+ 1
)
.

Here Cp,η,K is the cone-covering number of ∇ψ
(
Θρ\B2(θ?, ρε)

)
with minimal angular

separation p, excluding ∇ψ
(
Θρ\B2(θ?, ηρε)

)
; and ωp,K =

∫ 1
p

√
1−z2Kdz if K>0, 1 else.
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Remark 20 The same result holds by replacing all occurrences of f(·) by the constant f(t).

Remark 21 In dimension1, the result takes a simpler form since Cp,η,1=2 for all p,η∈(0, 1).

Thus, choosing b=2 for instance, C(1, 2, ρ, p, η) reduces to 2
(

2 max
{

2V 2
ρ

ρv3ρ
,
V

3/2
ρ

v2ρ
,

2V
5/2
ρ

v3ρ

}
+1
)

.

In the case of Bernoulli distributions, if Θρ = {log(µ/(1 − µ)), µ ∈ [µρ, 1 − µρ]}, then
vρ = µρ(1− µρ), Vρ = 1/4 and C(1, 2, ρ, p, η) = 2( 1

8µ3ρ(1−µρ)3
+ 1).

Let f(x) = log(x) + ξ log log(x). We now state two corollaries of Theorem 19, The first
one is stated for the case when the boundary is set to f(t)/n and is thus directly relevant
to the analysis of KL-ucb. The second corollary is about the more challenging boundary
f(t/n)/n that corresponds to the KL-ucb+ strategy. We note that f is non-decreasing
only for x > e−ξ. When x = t, this requires that t > e−ξ. Now, when x = t/N(t) where
N(t) = t−O(log(t)), imposing that f is non-decreasing requires that ξ > log(1−O(log(t)/t))
for large t, that is ξ > 0. In the sequel we thus restrict to t > e−ξ when using the boundary
f(t) and to ξ > 0 when using the boundary f(t/n). Finally, we recall that the quantity

χ = pη
√

2v2
ρ/Vρ is a function of p, η, ρ, and introduce the notation χε = ρεχ for convenience.

Corollary 22 (Boundary crossing for f(t) ) Let f(x) = log(x) + ξ log log(x). Us-
ing the same notations as in Theorem 19, for all p, η ∈ [0, 1], ρ < ρ? and all t > e−ξ

such that f(t) > 1 it holds

Pθ?
{ ⋃

16n<t

θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ? − ε) > f(t)/n
}

6
C(K, 4, ρ, p, η)(1 + χε)

χεt

(
1 + ξ

log log(t)

log(t)

)K/2
log(t)−ξ+K/2e−χε

√
log(t)+ξ log log(t) .

Corollary 23 (Boundary crossing for f(t/n) )
Let f(x) = log(x) + ξ log log(x). For all p, η ∈ [0, 1], ρ < ρ? and ξ > max(K/2 − 1, 0),

provided that t ∈ [85χ−2, tχ] where tχ = χ−2
ε

exp(log(4.5)2/χ2
ε)

4 log(4.5)2
, it holds

Pθ?
{ ⋃

16n<t

θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ?−ε) > f(t/n)/n
}
6 C(K, 4, ρ, p, η)

[
e−χε

√
tc′

+
(1+ξ)K/2

ct log(tc)

{
16
3 log(tc log(tc)/4)K/2−ξ + 80 log(1.25)K/2−ξ if ξ > K/2
16
3 log(t/3)K/2−ξ + 80 log(t c log(tc)

4−c log(tc))K/2−ξ if ξ ∈ [K/2−1,K/2]

]
,

where c = χ2
ε/(2 log(5))2, and c′ =

√
f(5)/5 if ξ > K/2 and

√
f(4)/4 else. Further, for

larger values of t, t > tχ, the second term in the brackets becomes

(1 + ξ)K/2

ct log(tc)

{
144 log(1.25)K/2−ξ if ξ > K/2

144 log(t/3)K/2−ξ if ξ ∈ [K/2− 1,K/2] (and ξ > 0) .

Remark 24 In Corollary 22, since the asymptotic regime of χε
√

log(t)−(K/2−ξ) log log(t)
may take a massive amount of time to kick-in when ξ < K/2− 2χε, we recommend to take
ξ > K/2− 2χε. Now, we also note that the value ξ = K/2− 1/2 is interesting in practice,
since then log(t)K/2−ξ =

√
log(t) < 5 holds for all t 6 109.
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Remark 25 The restriction to t>85χ−2
ε is merely for ξ'K/2−1.For instance for ξ>K/2,

the restriction becomes t>76χ−2
ε , and it becomes less restrictive for larger ξ. The term tχ

is virtually infinite: when χε=0.3, this is already larger than 1012, while 85χ−2
ε <945.

Remark 26 According to this result, the value K/2−1 (when it is non-negative) is a critical
value for ξ, since the boundary crossing probabilities are not summable in t for ξ6K/2−1, but
are summable for ξ>K/2−1. Indeed, the terms behind the curved brackets are conveniently
o(log(t)) with respect to t, except when ξ=K/2−1. Now in practice, since this asymptotic
behavior may take a large time to kick-in, we recommend ξ to be away from K/2−1.

Remark 27 Controlling probabilities for the threshold f(t/N(t)) is more challenging than
for f(t). Only the later case was analyzed in Cappé et al. (2013) as the former was out
of reach of their analysis. Also, the result is valid with exponential families of dimension
K and not only dimension 1, which is a major improvement. Interestingly, when K = 1,
max(K/2−1, 0) = 0, and we indeed observe experimentally a sharp phase transition for
KL-ucb+ precisely at the value ξ = 0: the algorithm suffers a linear regret when ξ < 0 and
a logarithmic regret when ξ = 0. For KL-ucb, no sharp phase transition appears at ξ = 0.
Instead, a smooth phase transition appears for a negative ξ depending on the problem. Both
observations are coherent with the statements of the corollaries, which is remarkable.

Discussion regarding the proof technique The proof technique significantly differs
from the proof from Cappé et al. (2013) and Honda and Takemura (2010), and combines
key ideas disseminated in Lai (1988) and Lai (1987) with some non-trivial extension that we
describe below; also, we simplify some of the original arguments and improve the readability
of the initial proof technique, in order to shed more light on these neat ideas. More precisely:
-Change of measure At a high level, the first big idea of this proof is to resort to a
change of measure argument, which is classically used only to prove the lower bound on
the regret. The work of Lai (1988) should be given full credit for this idea. This is in stark
contrast with the proof techniques later developed for the finite-time analysis of stochastic
bandits. The change of measure is actually not used once, but twice. First, to go from θ?,
the parameter of the optimal arm to some perturbation of it θ?c . Then, which is perhaps
more surprising, to to go from this perturbed point to a mixture over a well-chosen ball
centered on it. Although we have reasons to believe that this second change of measure may
not be required (at least choosing a ball in dimension K seems slightly sub-optimal), this
two-step localization procedure is definitely the first main component that enables to handle
the boundary crossing probabilities. The other steps for the proof of the Theorem include
a concentration of measure argument and a peeling argument, which are more standard.
-Bregman divergence The second main idea is to use Bregman divergence and its relation
with the quadratic norm, which is due to Lai (1987). This enables indeed to make explicit
computations for exponential families of dimension K without too much effort, at the price
of loosing some ”variance” terms (linked to the Hessian of the family). We combine this
idea with some key properties of Bregman divergence that enable us to simplify a few steps,
notably the concentration step, that we revisited entirely in order to obtain clean bounds
valid in finite time and not only asymptotically.
-Concentration of measure and boundary effects One specific difficulty of the proof
is to handle the shape of the parameter set Θ and the fact that θ? should be away from its
boundary. The initial asymptotic proof of Lai did not account for this and was not entirely
accurate. Going beyond this proved to be challenging due to the boundary effects, although
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the concentration result (section B.4, Lemma 33) that we obtain is eventually valid without
restriction and the final proof looks deceptively easy. This concentration result is novel.
-Cone covering and dimension K In Lai (1988), the author analyzed a boundary crossing
problem first in the case of exponential families of dimension 1, and then sketch the analysis
for exponential families of dimension K and for the intersection with one cone. However the
complete result was nowhere stated explicitly. Actually, the initial proof from Lai (1988)
restricted to a cone, which greatly simplifies the result. In order to obtain the full-blown
results, valid in dimension K for the unrestricted event, we introduce a cone covering of the
space. This seemingly novel (although not very fancy) idea enables to get a final result that
only depends on the cone-covering number of the space. It required careful considerations
and simplifications of the initial steps from Lai (1988). Along the way, we made explicit
the sketch of proof provided in Lai (1988) for the dimension K.
-Corollaries and ratios The final key idea that should be credited to T.L. Lai is about
the fine tuning of the final bound resulting from the two change of measures, the application
of concentration and the peeling argument. Indeed these steps lead to a sum of terms, say∑I

i=0 si that should be studied and depends on a few free parameters. This correspond,
with our rewriting and modifications, to the statement of Theorem 19. Here the brilliant
idea of T.L. Lai, that we separate from the proof of Theorem 19 and use in the proof of
Corollaries 22 and 23 is to bound the ratios of si+1/si for small values of i and the ratio
si/si+1 for large values of i separately (instead of resorting, for instance to a sum-integral
comparison lemma). A careful study of these terms enable to improve the initial scaling
and allow for smaller values of ξ, up to K/2− 1, while alternative approaches seem unable
to go below K/2 + 1. Nevertheless, in our quest to obtain explicit bounds valid not-only
asymptotically but also in finite time, this step is quite delicate, since a naive approach
requires huge values for t before the asymptotic regimes kick-in. By refining the initial
proof strategy of Lai (1988), we obtain a result valid for all t for the setting of Corollary 22
and for all ”reasonably”4 large t in the more challenging setting of Corollary 23.

Conclusion In this work that should be considered as a tribute to the contributions of
T.L. Lai, we shed light on a beautiful and seemingly forgotten result from Lai (1988), that we
modernized into a fully non-asymptotic statement, with explicit constants; it can be directly
used, for instance, for the regret analysis of multi-armed bandits strategies. Interestingly,
the final results, whose roots are thirty-years old, show that the existing analysis of KL-ucb
that was only stated for exponential families of dimension 1 and discrete distributions lead
to a sub-optimal constraints on the tuning of the threshold function f , can be extended
to work with exponential families of arbitrary dimension K and even for the thresholding
term of the KL-ucb+ strategy, whose analysis was left open.

This proof technique is mostly based on a change-of-measure argument, like the lower
bounds for the analysis of sequential decision making strategies and in stark contrast with
other key results in the literature (Honda and Takemura (2010); Maillard et al. (2011);
Cappé et al. (2013)). Also, we believe and hope that the novel writing of this proof technique
will greatly benefit the community working on boundary crossing probabilities, sequential
design of experiments as well as stochastic decision making strategies.

4. We require t to be at least about 102 times some problem-dependent constant, against a factor that
could be e15 in the initial analysis.
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Appendix A. Notations

K ∈ N Dimension of the exponential family
Θ ⊂ RK Parameter set, see Theorem 19
Θρ ⊂ RK Enlarged parameter set, see Definition 13

ψ Log-partition function of the exponential family
Bψ Bregman divergence of the exponential family
Vρ, vρ Largest and smallest values of the eigenvalues of the Hessian on Θρ, see Definition 13
θ? Parameter of the distribution generating the observed samples

θ̂n Empirical parameter built from n observations

F̂n ∈ RK Empirical mean of the F (Xi), i 6 n, see Section 3.3
f Threshold function

µ? ∈ R Mean of the distribution with parameter θ?

ε > 0 Shift from the mean
n ∈ N Index referring to a number of samples
p ∈ [0, 1] Angle aperture of the cone
η ∈ [0, 1] Repulsive parameter for cone covering.

Appendix B. Analysis of boundary crossing probabilities: proof of
Theorem 19

In this section5, we closely follow the proof technique used in Lai (1988) for the proof of
Theorem 18, in order to prove the result of Theorem 19. We precise further the constants,
remove the cone restriction on the parameter and modify the original proof to be fully
non-asymptotic which, using the technique of Lai (1988), forces us to make some parts of
the proof a little more accurate.

Let us recall that we consider Θ and ρ such that θ? ∈ Θρ ⊂ Θ̊I . The proof is divided in
four main steps that we briefly present here for clarity:

In Section B.1, we take care of the random number of pulls of the arm by a peeling
argument. Simultaneously, we introduce a covering of the space with (affine) cones, which
enables to later use arguments from proof of Theorem 18.

In Section B.2, we proceed with the first change of measure argument: taking advantage
of the gap between µ? and µ? − ε, we move from a concentration argument around θ? to
one around a shifted point θ? −∆c.

In Section B.3, we localize the empirical parameter θ̂n and make use of the second change
of measure, this time to a mixture of measures, following Lai (1988). Even though we follow
the same high level idea, we modified the original proof in order to better handle the cone
covering, and also make all quantities explicit.

In Section B.4, we apply a concentration of measure argument. This part requires a
specific care since this is the core of the finite-time result. An important complication
comes from the ”boundary” of the parameter set, and was not explicitly controlled in the
original proof from Lai (1988). A very careful analysis enables to obtain the finite-time
concentration result without further restriction.

We finally combine all these steps in Sections B.5.
5. The content of this supplementary material is made available on ArXiv.
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B.1. Peeling and covering

In this section, we want to control the random number of pulls N(t) ∈ [1, t] and to this
end we use a standard peeling argument, considering maximum concentration inequalities
on time intervals [bi, bi+1] for some b > 1. Likewise, since the term K(Π(ν̂,n), µ?−ε) can
be seen as an infimum of some quantity over the set of parameters Θ, we use a covering of
Θ in order to reduce the control of the desired quantity to that of each cell of the cover.
Formally, we show that

Lemma 28 (Peeling and cone covering decomposition) For all β, η ∈ (0, 1), b >
1

Pθ?
{ ⋃

16n6t

θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ? − ε) > f(t/n)/n
}

6
dlogb(βt+β)e−2∑

i=0

Cp,η,K∑
c=1

Pθ?
{ bi+1−1⋃

n=bi

Ec,p(n, t)
}

+

Cp,η,K∑
c=1

Pθ?
{ t⋃
n=bdlogb(βt+β)e−1

Ec,p(n, t)
}
,

where the event Ec,p(n, t) is defined by

Ec,p(n, t)
def
=

{
θ̂n ∈ Θρ ∩ F̂n ∈ Cp(θ?c ) ∩ Bψ(θ̂n, θ

?
c ) >

f(t/n)

n

}
. (4)

The points (θ?c )c6Cp,η,K such that θ?c /∈ B2(θ?, ηρε), parameterize a minimal covering of
∇ψ(Θρ\B2(θ?, ρε)) with cones Cp(θ?c ) := Cp(∇ψ(θ?c ); θ

?−θ?c ) (That is ∇ψ(Θρ\B2(θ?, ρε))⊂
Cp,η,K⋃
c=1

Cp(θ?c )), where Cp(y; ∆) =

{
y′ ∈RK : 〈y′−y,∆〉 > p‖y′−y‖‖∆‖

}
. For all η < 1,

Cp,η,K is of order (1− p)−K ; Cp,η,1 = 2 and Cp,η,K →∞ when η → 1.

Peeling Let us introduce an increasing sequence {ni}i∈N such that n0 = 1 < n1 < · · · <
nIt = t+ 1 for some It ∈ N?. Then by a simple union bound it holds for any event En

Pθ?
{ ⋃

16n6t

En

}
6

It−1∑
i=0

Pθ?
{ ⋃
ni6n<ni+1

En

}
.

We apply this simple result to the following sequence, defined for some b > 1 and
β ∈ (0, 1) by

ni =

{
bi if i < It

def
= dlogb(βt+ β)e

t+ 1 if i = It ,

(this is indeed a valid sequence since nIt−1 6 blogb(βt+β) = β(t + 1) < t + 1 = nIt), and to
the event

En
def
=

{
θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ? − ε) > f(t/n)/n

}
.

Covering We now make the Kullback-Leibler projection explicit, and remark that in
case of a regular family, it holds that

K(Π(ν̂n), µ? − ε) = inf

{
Bψ(θ̂n, θ

? −∆) : θ? −∆ ∈ ΘD, µθ?−∆ > µ
? − ε

}
,
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where θ̂n ∈ ΘD is any point such that F̂n = ∇ψ(θ̂n). This rewriting makes appear explicitly
a shift from θ? to another point θ? − ∆. For this reason, it is natural to study the link
between Bψ(θ̂n, θ

?) and Bψ(θ̂n, θ
?−∆). Immediate computations show that for any ∆ such

that θ? −∆ ∈ ΘD it holds

Bψ(θ̂n, θ
? −∆) = ψ(θ? −∆)− ψ(θ̂n)− 〈θ? −∆− θ̂n,∇ψ(θ̂n)〉

= ψ(θ?)− ψ(θ̂n)− 〈θ? − θ̂n,∇ψ(θ̂n)〉+ ψ(θ? −∆)− ψ(θ?) + 〈∆,∇ψ(θ̂n)〉
= Bψ(θ̂n, θ

?) + ψ(θ? −∆)− ψ(θ?) + 〈∆,∇ψ(θ̂n)〉
= Bψ(θ̂n, θ

?)−Bψ(θ? −∆, θ?)− 〈∆,∇ψ(θ? −∆)− F̂n〉︸ ︷︷ ︸
shift

. (5)

With this equality, the Kullback-Leibler projection can be rewritten to make appear an
infimum over the shift term only. In order to control the second part of the shift term
we localize it thanks to a cone covering of ∇ψ(ΘD). More precisely, on the event En, we
know that θ̂n /∈ B2(θ?, ρε). Indeed, for all θ ∈ B2(θ?, ρε) ∩ ΘD, µθ > µ? − ε, and thus
K(νθ, µ

? − ε) = 0. It is thus natural to build a covering of ∇ψ(Θρ \ B2(θ?, ρε)). Formally,
for a given p ∈ [0, 1] and a base point y ∈ Y, let us introduce the cone

Cp(y; ∆) =

{
y′ ∈ RK : 〈∆, y′ − y〉 > p‖∆‖‖y′ − y‖

}
.

We then associate to each θ ∈ Θρ a cone defined by Cp(θ) = Cp(∇ψ(θ), θ? − θ). Now for a
given p, let (θ?c )c=1,...,Cp,η,K be a set of points corresponding to a minimal covering of the
set ∇ψ(Θρ \ B2(θ?, ρε)), in the sense that

∇ψ(Θρ \ B2(θ?, ρε)) ⊂
Cp,η,K⋃
c=1

Cp(θ?c ) with minimal Cp,η,K ∈ N ,

constrained to be outside the ball B2(θ?, ηρε), that is θ?c /∈ B2(θ?, ηρε) for each c. It can
be readily checked that by minimality of the size of the covering Cp,η,K , it must be that
θ?c ∈ Θρ ∩ B2(θ?, ρε). More precisely, when p < 1, then ∆c = θ? − θ?c is such that ρε − ‖∆c‖
is positive and away from 0. Also, we have by property of B2(θ?, ρε) that µθ?c > µ

?− ε, and
by the constraint that ‖∆c‖ > ηρε.

The size of the covering Cp,η,K depends on the angle separation p, the ambient dimension
K, and the repulsive parameter η. For instance it can be checked that Cp,η,1 = 2 for all
p ∈ (0, 1] and η < 1. In higher dimension, Cp,η,K typically scales as (1− p)−K and blows up
when p→ 1. It also blows up when η → 1. It is now natural to introduce the decomposition

Ec,p(n, t)
def
=

{
θ̂n ∈ Θρ ∩ F̂n ∈ Cp(θ?c ) ∩ Bψ(θ̂n, θ

?
c ) >

f(t/n)

n

}
. (6)

Using this notation, we deduce that for all β ∈ (0, 1), b > 1 (we recall that It = dlogb(βt+
β)e),

Pθ?
{ ⋃

16n6t

θ̂n∈Θρ ∩ K(Π(ν̂n), µ?−ε) > f(t/n)/n
}
6
It−1∑
i=0

Cp,η,K∑
c=1

Pθ?
{ ⋃
ni6n<ni+1

Ec,p(n, t)
}
.
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B.2. Change of measure

In this section, we focus on one event Ec,p(n, t). The idea is to take advantage of the gap
between µ? and µ? − ε, that allows to shift from θ? to some of the θ?c from the cover.
The key observation is to control the change of measure from θ? to each θ?c . Note that
θ?c ∈ (Θρ ∩ B2(θ?c , ρε)) \ B2(θ?c , ηρε) and that µθ?c > µ

? − ε. We show that

Lemma 29 (Change of measure) If n → nf(t/n) is non-decreasing, then for any
increasing sequence {ni}i>0 of non-negative integers it holds

Pθ?
{ni+1−1⋃

n=ni

Ec,p(n, t)
}
6 exp

(
− niα2 − χ

√
nif(t/ni)

)
Pθ?c
{ni+1−1⋃

n=ni

Ec,p(n, t)
}

where α = α(p, η, ε) = ηρε
√
vρ/2 and χ = pηρε

√
2v2
ρ/Vρ.

Proof : For any event measurable E, we have by absolute continuity that

Pθ?
{
E
}

=

∫
E

dPθ?
dPθ?c

dPθ?c .

We thus bound the ratio which, in the case of E = {
⋃
ni6n<ni+1

Ec,p(n, t)}, leads to∫
E

dPθ?
dPθ?c

dPθ?c =

∫
E

Πn
k=1νθ?(Xk)

Πn
k=1νθ?c (Xk)

dPθ?c

=

∫
E

exp

(
n〈θ? − θ?c , F̂n〉 − n

(
ψ(θ?)− ψ(θ?c )

))
dPθ?c

=

∫
E

exp

(
− n〈∆c,∇ψ(θ?c )− F̂n〉 − nBψ(θ?c , θ

?)

)
dPθ?c , (7)

where ∆c = θ?− θ?c . Note that this rewriting makes appear the same term as the shift term
appearing in (5). Now, we remark that since θ?c ∈ Θρ by construction, then under the event
Ec,p(n, t) it holds by convexity of Θρ and elementary Taylor approximation

−〈∆c,∇ψ(θ?c )− F̂n〉 6 −p‖∆c‖‖∇ψ(θ?c )− F̂n‖
6 −p‖∆c‖vρ‖θ̂?n − θ?c‖

6 −p‖∆c‖cvρ

√
2

Vρ
Bψ(θ̂n, θ?c )

6 −pηρεvρ

√
2f(t/n)

Vρn
. (8)

where we used the fact that ‖∆c‖ > ηρε. On the other hand, it also holds that

−Bψ(θ?c , θ
?) 6 −1

2
vρ‖∆c‖2 6 −

1

2
vρη

2ρ2
ε . (9)

To conclude the proof we plug-in (8) and (9) into (7). Then, it remains to use that n > bi

together with the fact that n 7→ nf(t/n) is non decreasing. �
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B.3. Localized change of measure

In this section, we decompose further the event of interest in Pθ?c
{⋃

ni6n<ni+1
Ec,p(n, t)

}
in

order to apply some concentration of measure argument. In particular, since by construction

F̂n ∈ Cp(θ?c )⇔ 〈∆c,∇ψ(θ?c )− F̂n〉 > p‖∆c‖‖∇ψ(θ?c )− F̂n‖ ,

it is then natural to control ‖∇ψ(θ?c )−F̂n‖. This is what we call localization. More precisely,
we introduce for any sequence {εt,i,c}t,i of positive values, the following decomposition

Pθ?c
{ ⋃
ni6n<ni+1

Ec,p(n, t)
}
6 Pθ?c

{ ⋃
ni6n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ?c )− F̂n‖ < εt,i,c

}
+Pθ?c

{ ⋃
ni6n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ?c )−F̂n‖ > εt,i,c
}
.(10)

We handle the first term in (10) by another change of measure argument that we detail
below, and the second term thanks to a concentration of measure argument that we detail
in section B.4. We will show more precisely that

Lemma 30 (Change of measure) For any sequence of positive values {εt,i,c}i>0, it
holds

Pθ?c
{ ⋃
ni6n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n)−∇ψ(θ?c )‖ < εt,i,c

}
6 αρ,p exp

(
− f

( t

ni+1−1

))
min

{
ρ2v2

ρ, ε̃
2
t,i,c,

(K + 2)v2
ρ

K(ni+1 − 1)Vρ

}−K/2
ε̃Kt,i,c .

Here ε̃t,i,c = min{εt,i,c,Diam
(
∇ψ(Θρ) ∩ Cp(θ?c )

)
} and αρ,p = 2

ωp,K−2

ωp′,K−2

(
Vρ
v2ρ

)K/2(
Vρ
vρ

)K
where p′ > max{p, 2√

5
}, with ωp,K =

∫ 1
p

√
1− z2Kdz for K > 0 and wp,−1 = 1.

Let us recall that Ec,p(n, t) = {θ̂n∈Θρ ∩ F̂n∈Cp(θ?c ) ∩ nBψ(θ̂n, θ
?
c ) > f(t/n)}.

The idea is to go from θ?c to the measure that corresponds to the mixture of all the θ′ in

the shrink ball B = Θρ∩∇ψ−1
(
Cp(θ?c )∩B2(∇ψ(θ?c ), εt,i,c)

)
where B2(y, r)

def
=
{
y′ ∈ RK ; ‖y−

y′‖ 6 r
}

. This makes sense since, on the one hand, under Ec,p(n, t), ∇ψ(θ̂n) ∈ Cp(θ?c ), and

on the other hand, ‖∇ψ(θ̂n)−∇ψ(θ?c )‖ 6 εt,i,c. For convenience, let us introduce the event
of interest

Ω =
{ ⋃
ni6n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n)−∇ψ(θ?c )‖ 6 εt,i,c
}
.

We use the following change of measure

dPθ?c =
dPθ?c
dQB

dQB ,
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where QB(Ω)
def
=
∫
θ′∈B Pθ′

{
Ω
}
dθ′ is the mixture of all distributions with parameter in B.

The proof technique consists now in bounding the ratio by some quantity not depending on
the event Ω.

∫
Ω

dPθ
dQB

dQB =

∫
Ω

[∫
θ′∈B

Πn
k=1νθ′(Xk)

Πn
k=1νθ(Xk)

dθ′

]−1

dQB

=

∫
Ω

[∫
θ′∈B

exp

(
n〈θ′ − θ, F̂n〉 − n

(
ψ(θ′)− ψ(θ)

))
dθ′

]−1

dQB .

It is now convenient to remark that the term in the exponent can be rewritten in terms of
Bregman divergence: by elementary substitution of the definition of the divergence and of
∇ψ(θ̂n) = F̂n, it holds

〈θ′ − θ, F̂n〉 −
(
ψ(θ′)− ψ(θ)) = Bψ(θ̂n, θ)− Bψ(θ̂n, θ

′) .

Thus, the previous likelihood ratio simplifies as follows

dPθ
dQB

=

[∫
θ′∈B

exp

(
nBψ(θ̂n, θ)− nBψ(θ̂n, θ

′)

)
dθ′

]−1

6

[∫
θ′∈B

exp

(
f(t/n)− nBψ(θ̂n, θ

′)dθ′

]−1

= exp

(
− f(t/n)

)[∫
θ′∈B

exp

(
− nBψ(θ̂n, θ

′)

)
dx

]−1

,

where we note that both θ′ and θ̂n belong to Θρ.

The next step is to consider a set B′ ⊂ B that contains θ̂n. For each such set, and the
upper bound Bψ(θ̂n, θ

′) 6 Vρ
2v2ρ
‖∇ψ(θ̂n)−∇ψ(θ′)‖2, we now obtain

dPθ
dQB

(a)

6 exp

(
− f(t/n)

)[∫
θ′∈B′

exp

(
− nVρ

2v2
ρ

‖∇ψ(θ̂n)−∇ψ(θ′)‖2
)
dθ′

]−1

(b)
= exp

(
− f(t/n)

)[∫
y∈∇ψ(B′)

exp

(
−nVρ

2v2
ρ

‖∇ψ(θ̂n)−y‖2
)
|det(∇2ψ−1(y))|dy

]−1

(c)

6 exp

(
− f(t/n)

)[∫
y∈∇ψ(B′)

exp

(
−nVρ

2v2
ρ

‖∇ψ(θ̂n)−y‖2
)
dy

]−1

V K
ρ .

In this derivation, (a) holds by positivity of exp and the inclusion B′ ⊂ B, (b) follows by
a change of parameter argument and (c) is obtained by controlling the determinant (in
dimension K) of the Hessian, whose highest eigenvalue is Vρ.
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In order to identify a good candidate for the set B′ let us now study the set B. A first
remark is that θ?c plays a central role in B: It is not difficult to show that, by construction
of B,

∇ψ−1

(
∇ψ(θ?c ) + B2(0,min{vρρ, εt,i,c}) ∩ Cp(0; ∆c)

)
⊂ B .

Indeed, if θ′ belongs to the set on the left hand side, then it must satisfy on the one hand
∇ψ(θ′) ∈ ∇ψ(θ?c )+B2(0, vρρ). This implies that θ′ ∈ B2(θ?c , ρ) ⊂ Θρ (this last inclusion is by
construction of Θ). On the other hand, it satisfies ∇ψ(θ′) ∈ ∇ψ(θ?c )+B2(0, εt,i,c)∩Cp(0,∆c).
These two properties show that such a θ′ belongs to B.

Thus, a natural candidate B′ should satisfy ∇ψ(B′)⊂∇ψ(θ?c ) +B2(0, r̃)∩Cp(0;∆c), with
r̃=min{vρρ, εt,i,c}. It is then natural to look for B′ in the form ∇ψ−1(∇ψ(θ?c )+B2(0, r̃)∩D),
where D ⊂ Cp(0; ∆c) is a sub-cone of Cp(0; ∆c) with base point 0. In this case, the previous
derivation simplifies into

dPθ
dQB

6 exp

(
− f(t/n)

)[∫
y∈B2(0,r̃)∩D

exp

(
−C‖yn−y‖2

)
dy

]−1

V K
ρ ,

where yn = ∇ψ(θ̂n)−∇ψ(θ?c ) ∈ B2(0, r̃) ∩D and C =
nVρ
2v2ρ

. Cases of special interest for the

set D are such that the value of the function g : y 7→
∫
y′∈B2(0,r̃)∩D exp

(
−C‖y−y′‖2

)
dy′, for

y ∈ B2(0, r̃) ∩D is minimal at the base point 0. Indeed this enables to derive the following
bound

dPθ
dQB

6 exp

(
− f(t/n)

)[∫
y∈B2(0,min{vρρ,εt,i,c})∩D

exp

(
− nVρ

2v2
ρ

‖y‖2
)
dy

]−1

V K
ρ

(d)
= exp

(
− f(t/n)

)[∫
y∈B2(0,rρ)∩D

exp

(
− n‖y‖2

)
dy

]−1(
V 2
ρ

2v2
ρ

)K
,

where (d) follows from another change of parameter argument, with rρ =
√

Vρ
2v2ρ

min{vρρ, εt,i,c}
combined with isotropy of the Euclidean norm (the right hand side of (d) no longer depends
on the random direction ∆n), plus the fact that the sub-cone D is invariant by rescaling.
We recognize here a Gaussian integral on B2(0, rρ) ∩D that can be bounded explicitly (see
below).

Following this reasoning, we are now ready to specify the set D. Let D = Cp′(0; ∆n) ⊂
Cp(0; ∆c) be a sub-cone where p′ > p (remember that the larger p, the more acute is a

cone) and ∆n is chosen such that ∇ψ(θ̂n) ∈ ∇ψ(θ?c ) +D (there always exists such a cone).
It thus remains to specify p′. A study of the function g (defined above) on the domain
B2(0, r̃) ∩ Cp′(0; ∆n) reveals that it is minimal at point 0 provided that p′ is not too small,
more precisely provided that p′ > 2/

√
5. The intuitive reasons are that the points that

contribute most to the integral belong to the set B2(y, r) ∩ B2(0, r̃) ∩ D for small values of
r, that this set has lowest volume (the map y → |B2(y, r) ∩ B2(0, r̃) ∩ D| is minimal) when
y ∈ ∂B2(0, r̃) ∩ ∂D and that y = 0 is a minimizer amongst these point provided that p′ is
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not too small. More formally, the function g rewrites

g(y) =

∫ ∞
r=0

e−Cr
2 |S2(y, r) ∩ B2(0, r̃) ∩ D|dr ,

from which we see that a minimal y should be such that the spherical section |S2(y, r) ∩
B2(0, r̃) ∩ D| is minimal for small values of r (note also that C = O(n)). Then, since
B = B2(0, r̃)∩D is a convex set, the sections |S2(y, r)∩B2(0, r̃)∩D| are of minimal size for
points y ∈ B that are extremal, in the sense that y satisfies B ⊂ B2(y,Diam(B)). In order
to choose p′ and fully specify D, we finally use the following lemma:

Lemma 31 Let Cp′ = {y′ : 〈y′,∆〉 > p′‖y′‖‖∆‖} be a cone with base point 0 and define
B = B2(0, r) ∩ Cp′. Provided that p′ > 2/

√
5, then the set of extremal points {y ∈ B : B ⊂

B2(y,Diam(B))} reduces to {0}.

Proof : First, let us note that the boundary of the convex set B is supported by the
union of the base point 0 and the set ∂B2(0, r̃)∩∂D. Since this set is a sphere in dimension

K− 1 with radius

√
1−p′2
p r̃, all its points are at distance at most 2

√
1−p′2
p′ r̃ from each other.

Now they are also at distance exactly r̃ from the base point 0. Thus, when 2

√
1−p′2
p′ r̃ < r̃,

that is p′ > 2/
√

5, then 0 is the unique point that satisfies B ⊂ B2(y,Diam(B)). �

We now summarize the previous steps. So far, we have proved the following upper
bound

Pθ?c
{

Ω
}

6 max
ni6n<ni+1

exp

(
−f(t/n)

)[∫
y∈B2(0,rρ)∩Cp′ (0;1)

exp
(
−n‖y‖2

)
dy

]−1(
V 2
ρ

2v2
ρ

)K∫
θ′∈B

Pθ′
{
Ω
}
dθ′

6 exp

(
−f(t/(ni+1−1))

)[∫
y∈B2(0,rρ)∩Cp′ (0;1)

exp
(
−(ni+1−1)‖y‖2

)
dy

]−1(
Vρ
2v2
ρ

)K
V K
ρ |B| .

where |B| denotes the volume of B, rρ =
√

Vρ
2v2ρ

min{vρρ, εt,i,c} and for p′ > max{p, 2/
√

5},
We remark that by definition of B, it holds

|B| 6 sup
θ∈Θρ

det(∇2ψ−1(θ))|B2(0, εt,i,c) ∩ Cp(0; 1)|

6 v−Kρ |B2(0, εt,i,c) ∩ Cp(0; 1)| .

Thus, it remains to analyze the volume and the Gaussian integral of B2(0, εt,i,c)∩Cp(0; 1).
To do so, we use the following result from elementary geometry, whose proof is given in
Appendix D:
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Lemma 32 For all ε, ε′ > 0, p, p′ ∈ [0, 1] and all K > 1 the following equality and
inequality hold

|B2(0, ε) ∩ Cp(0; 1)|∫
B2(0,ε′)∩Cp′ (0;1) e

−‖y‖2/2dy
=
ωp,K−2

ωp′,K−2

∫ ε
0 r

K−1dr∫ ε′
0 e−r2/2rK−1dr

62
ωp,K−2

ωp′,K−2

(
ε

min{ε′,
√

1+2/K}

)K
,

where ωp,K−2 =
∫ 1
p

√
1− z2K−2

dz for K > 2 and using the convention that ωp,−1 = 1.

Applying this Lemma, and introducing rρ =
√

Vρ
2v2ρ

min{vρρ, εt,i,c}, we obtain that

Pθ?c
{

Ω
}

is

6 e
−f
(

t
ni+1−1

) (
Vρ
2v2ρ

)K(
Vρ
vρ

)K
|B2(0, εt,i,c) ∩ Cp(0; 1)|∫

y∈B2(0,rρ)∩Cp′ (0;1) exp
(
−(ni+1−1)‖y‖2

)
dy

= e
−f
(

t
ni+1−1

)(
Vρ
v2
ρ

)K(Vρ
vρ

)K
(ni+1−1)K/2

|B2(0, εt,i,c) ∩ Cp(0; 1)|∫
y∈B2(0,

√
2(ni+1−1)rρ)∩Cp′ (0;1)

exp
(
−‖y‖2/2

)
dy

6 2
ωp,K−2

ωp′,K−2
e
−f
(

t
ni+1−1

)(
Vρ
v2
ρ

)K(Vρ
vρ

)K
(ni+1−1)K/2

(
εt,i,c

min{
√

2(ni+1−1)rρ,
√

1+2/K}

)K

= 2
ωp,K−2

ωp′,K−2
e
−f
(

t
ni+1−1

)(
Vρ
v2
ρ

)K(Vρ
vρ

)K( ε2
t,i,c

min{v2
ρρ

2, ε2
t,i,c,

(K+2)v2ρ
KVρ(ni+1−1)}

)K/2(Vρ
v2
ρ

)−K/2

= 2
ωp,K−2

ωp′,K−2

(
Vρ
v2
ρ

)K/2(Vρ
vρ

)K
e
−f
(

t
ni+1−1

)
min

{
v2
ρρ

2, ε2
t,i,c,

(K + 2)v2
ρ

KVρ(ni+1−1)

}−K/2
εKt,i,c .

This concludes the proof of Lemma 30.

B.4. Concentration of measure

In this section, we focus on the second term in (10), that is Pθ?c
{⋃ni+1−1

n=ni
Ec,p(n, t)∩‖∇ψ(θ?c )−

F̂n‖> εt,i,c
}

. In this term, εt,i,c should be considered as decreasing fast to 0 with i, and

slowly increasing with t. Note that by definition ∇ψ(θ̂n) = F̂n = 1
n

∑n
i=1 F (Xi) ∈ RK is an

empirical mean with mean given by ∇ψ(θ?c ) ∈ RK and covariance matrix 1
n∇

2ψ(θ?c ). We
thus resort to a concentration of measure argument.

Lemma 33 (Concentration of measure) Let εmax
c = Diam(∇ψ(Θρ∩Cc,p)) where

we introduced the projected cone Cc,p = {θ∈Θ : 〈 ∆c
‖∆c‖ ,

∇ψ(θ?c )−∇ψ(θ)
‖∇ψ(θ?c )−∇ψ(θ)‖〉 > p}. Then, for

all εt,i,c, it holds

Pθ?c
{ni+1−1⋃

n=ni

Ec,p(n, t)∩‖∇ψ(θ̂n)−∇ψ(θ?c )‖>εt,i,c
}
6exp

(
−

n2
i pε

2
t,i,c

2Vρ(ni+1−1)

)
I{εt,i,c6εc}.

25



Maillard

Proof : Note that by definition if εt,i,c > εmax
c , then

Pθ?c
{ ⋃
ni6n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n)−∇ψ(θ?c )‖ > εt,i,c
}

= 0 .

We thus restrict to the case when εt,i,c 6 εmax
c , or equivalently, replace εt,i,c by the quantity

ε̃t,i,c = min{εt,i,c, εmax
c }. Now, by definition of the event Ec,p(n, t), we have the rewriting

Pθ?c
{ ⋃
ni6n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n)−∇ψ(θ?c )‖ > ε̃t,i,c
}

6 Pθ?c
{ ⋃
ni6n<ni+1

θ̂n ∈ Θρ ∩ 〈
∆c

‖∆c‖
,∇ψ(θ?c )−∇ψ(θ̂n)〉 > pε̃t,i,c

}

6 Pθ?c
{ ni+1−1⋃

n=ni

〈 ∆c

‖∆c‖
,

n∑
i=1

(
∇ψ(θ?c )− F (Xi)

)
〉 > pniε̃t,i,c

}
.

Applying on both side of the inequality the function x 7→ exp(λx), for a deterministic λ > 0,
it comes

Pθ?c
{ ⋃
ni6n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n)−∇ψ(θ?c )‖ > ε̃t,i,c
}

(a)

6 Pθ?c
{ ni+1−1⋃

n=ni

exp

( n∑
i=1

〈 λ∆c

‖∆c‖
,∇ψ(θ?c )− F (Xi)〉

)
> exp

(
λpniε̃t,i,c

)}

= Pθ?c
{ni+1−1⋃
n=ni

exp

( n∑
i=1

〈λ∆c

‖∆c‖
,∇ψ(θ?c )−F (Xi)〉−

λ2(ni+1−1)

2
Vρ

)
>

exp
(
λpniε̃t,i,c−

λ2(ni+1−1)

2
Vρ

)}
6 Pθ?c

{ ni+1−1⋃
n=ni

exp

( n∑
i=1

〈 λ∆c

‖∆c‖
,∇ψ(θ?c )−F (Xi)〉 −

λ2n

2
Vρ

)
>

exp
(
λpniε̃t,i,c−

λ2(ni+1−1)

2
Vρ

)}
.

Now we recognize that the sequence {Wn(λ)}n>0, whereWn(λ) = exp

(∑n
i=1〈

λ∆c
‖∆c‖ ,∇ψ(θ?c )−

F (Xi)〉 − nλ
2Vρ
2

))
is a non-negative super-martingale provided that λ is not too large. In-

deed, provided that θ?c − λ∆c
‖∆c‖ ∈ Θρ it holds

Eθ?c

[
exp

( n∑
i=1

λ〈 ∆c

‖∆c‖
,∇ψ(θ?c )− F (Xi)〉 −

λ2nVρ
2

))∣∣∣∣Hn−1

]

6 exp

( n−1∑
i=1

λ〈 ∆c

‖∆c‖
,∇ψ(θ?c )−F (Xi)〉−(n−1)

λ2Vρ
2

)
×Eθ?c

[
exp

(
λ〈 ∆c

‖∆c‖
,∇ψ(θ?c )−F (Xn)〉−λ

2Vρ
2

)∣∣∣∣Hn−1

]
︸ ︷︷ ︸

61

,
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that is E
[
Wn(e, λ)

∣∣∣∣Hn−1

]
6 Wn−1(e, λ). Thus, we apply Doob’s maximal inequality for

non-negative super-martingale and deduce that

Pθ?c
{ ⋃
ni6n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n)−∇ψ(θ?c )‖ > ε̃t,i,c
}

6 Pθ?c
{

max
ni6n<ni+1

Wn(λ) > exp

(
λpniε̃t,i,c − λ2(ni+1−1)Vρ/2

)}
6 Eθ?c [Wni(λ)] exp

(
− λpniε̃t,i,c + λ2(ni+1−1)Vρ/2

)
6 exp

(
− λpniε̃t,i,c + λ2(ni+1−1)Vρ/2

)
.

Optimizing over λ gives λ=λ? =
nipε̃t,i,c

(ni+1−1)Vρ
, which yields the conditionθ?c−

nipε̃t,i,c
(ni+1−1)Vρ‖∆c‖∆c∈

Θρ. At this point, it is convenient to introduce the quantity

λc = argmax{λ : θ?c − λ
∆c

‖∆c‖
∈ Θρ ∩ Cc,p} .

Indeed, it suffices to show that λ? 6 λc to ensure that the condition is satisfied. It is now not
difficult to relate λc to εmax

c : Indeed, any θλ = θ?c−λ ∆c
‖∆c‖ that maximizes ‖∇ψ(θ?c )−∇ψ(θλ)‖

and belongs to Θρ must satisfy

〈 ∆c

‖∆c‖
,∇ψ(θ?c )−∇ψ(θλ)〉 > pεc

on the one hand, and on the other hand, since θ?c , θλ ∈ Θρ,

〈 ∆c

‖∆c‖
,∇ψ(θ?c )−∇ψ(θλ)〉 6 Vρ‖

∆c

‖∆c‖
‖‖θ?c − θλ‖ = Vρλ .

Combining these two inequalities, we deduce that λc > pεmax
c /Vρ. Thus, using that

ni/(ni+1−1) 6 1 and ε̃t,i,c 6 εmax
c , we deduce that λ? =

nipε̃t,i,c
(ni+1−1)Vρ

6 pεc
Vρ
6 λc is indeed

satisfied. We then get without further restriction

Pθ?c
{ ⋃
ni6n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n)−∇ψ(θ?c )‖>εt,i,c
}
6exp

(
−

n2
i pε

2
t,i,c

2Vρ(ni+1−1)

)
I{εt,i,c6εc} .

�

B.5. Combining the different steps

In this part, we recap what we have shown so far. Combining the peeling, change of measure,
localization and concentration of measure steps of the four previous sections, we have shown
that for all {εt,i,c}t,i, then

[1]
def
= Pθ?

{ ⋃
16n6t

θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ? − ε) > f(t/n)/n
}

6

Cp,η,K∑
c=1

It−1∑
i=0

exp

(
− niα2 − χ

√
nif(t/ni)

)
︸ ︷︷ ︸

change of measure

[
exp

(
−

n2
i pε

2
t,i,c

2Vρ(ni+1−1)

)
I{εt,i,c 6 εc}︸ ︷︷ ︸

concentration

+αp,K exp
(
−f
( t

ni+1−1

))
min

{
ρ2v2

ρ, ε
2
t,i,c,

(K + 2)v2
ρ

K(ni+1−1)Vρ

}−K/2
εKt,i,c︸ ︷︷ ︸

localization + change of measure

]
,
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where we recall that α = α(p, η, ε) = ηρε
√
vρ/2 and that the definition of ni is

ni =

{
bi if i < It

def
= dlogb(βt+ β)e

t+ 1 if i = It .

A simple rewriting leads to the form

[1] 6

Cp,η,K∑
c=1

It−1∑
i=0

exp

(
− niα2 − χ

√
nif(t/ni)

)[
αp,K exp

(
− f

( t

ni+1−1

))
×

max
{εt,i,c
ρvρ

, 1,

√
(ni+1−1)Vρ

1+2/K

εt,i,c
vρ

}K
+ exp

(
−

n2
i pε

2
t,i,c

2Vρ(ni+1−1)

)
I{εt,i,c 6 εc}

]
,

which suggests we use εt,i,c =

√
2Vρ(ni+1−1)f(t/(ni+1−1))

pn2
i

. Replacing this term in the above

expression, we obtain

[1] 6
It−1∑
i=0

exp

(
− niα2 − χ

√
nif(t/ni)− f(t/(ni+1−1))

)
f(t/(ni+1−1))K/2 ×

Cp,η,K

(
αp,K max

{ 2Vρ
pρ2v2

ρb
i−1

, 1,
b2V 2

ρ

pv2
ρ(

1
2 + 1

K )

}K/2
+ 1
)
.

At this point, using the somewhat crude lower bound bi > 1 it is convenient to introduce
the constant

C(K, ρ, p, b, η) = Cp,η,K

(
αp,K max

{ 2bVρ
pρ2v2

ρ

, 1,
b2V 2

ρ

pv2
ρ(

1
2 + 1

K )

}K/2
+ 1
)
,

which leads to the final bound

Pθ?
{ ⋃

16n6t

θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ? − ε) > f(t/n)/n
}

6 C(K, ρ, p, b, η)

It−1∑
i=0

exp

(
− niα2 − χ

√
nif(t/ni)− f(t/(ni+1−1))

)
f(t/(ni+1−1))K/2 .

Appendix C. Fine-tuned upper bounds

In this section, we study the behavior of the bound obtained in Theorem 19 as a function
of t, for a specific choice of function f , namely f(x) = log(x) + ξ log log x, and prove
corollary 22 and corollary 23, using a fine-tuning of the remaining free quantities. This
tuning is not completely trivial, as a naive tuning yields the condition that ξ > K/2 + 1
to ensure that the final bound is o(1/t), while proceeding with some more care enables to
show that ξ > K/2− 1 is enough. Let us recall that f is non-decreasing only for x > e−ξ.
We thus restrict to t > e−ξ in corollary 22 that uses the threshold f(t), and to ξ > 0 in
corollary 23 that uses the threshold function f(t/n). In the sequel, we use the short-hand
notation C in order to replace C(K, ρ, p, b, η).
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C.1. Proof of Corollary 22

As a warming-up, we start by the boundary crossing probability involving f(t) instead of
f(t/n). Indeed, controlling the boundary crossing probability with term f(t/n) is more
challenging. Although we focused so far on the boundary crossing probability with term
f(t/n), the previous proof directly applies to the case when f(t) is considered. In particular,
the result of Theorem 19 holds also when all the terms f(t/n), f(t/bi), f(t/bi+1) are replaced
with f(t).

With the choice f(x) = log(x) + ξ log log x, which is non-increasing on the set of x such
that ξ > − log(x), Theorem 19 specifies for all b > 1, p, q, η ∈ (0, 1), to

Pθ?
{ ⋃

16n<t

θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ? − ε) > f(t)/n
}

6 C

dlogb(qt)e−1∑
i=0

exp

(
− α2bi − χ

√
bif(t)

)
e−f(t)f(t)K/2

=
C

t

[dlogb(qt)e−1∑
i=0

e−α
2bi−χ
√
bif(t)︸ ︷︷ ︸

si

]
log(t)K/2−ξ

(
1+ξ

log log(t)

log(t)

)K/2
.

In order to study the sum S =
∑dlogb(qt)e−1

i=0 si we provide two strategies. First, a direct
upper bound gives S 6 dlogb(qt)e 6 logb(qt) + 1. Thus, setting q = 1 and b = 2 we obtain

Pθ?
{ ⋃

16n<t

θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ? − ε) > f(t)/n
}

6
C

t

(
1 + ξ

log log(t)

log(t)︸ ︷︷ ︸
o(1)

)K/2
log(t)−ξ+K/2(log2(t) + 1) .

This term is thus o(1/t) whenever ξ > K/2 + 1 and O(1/t) when ξ = K/2 + 1. We now
show that a more careful analysis leads to a similar behavior even for smaller values of ξ.
Indeed, let us note that for all i > 0, it holds by definition

si+1

si
= exp

[
− χbi/2(b1/2 − 1)f(t)1/2 − α2bi(b− 1)

]
6 exp

[
− χ(b1/2 − 1)f(t)1/2

]
.

Since f(t) > 1, if we set b = d(1+ log(1+χ)
χ )2e, which belongs to (1, 4] for all χ > 0, we obtain

that si+1/si 6 1
1+χ . Thus, we deduce that

S 6 s0

∞∑
i=0

(1 + χ)−i = s0
1 + χ

χ
=

1 + χ

χ
exp(−α2 − χ

√
f(t)) .

Thus, S is asymptotically o(1), and we deduce that Pθ?
{⋃

16n<t θ̂n ∈ Θρ∩K(Π(ν̂n), µ?−

ε) > f(t)/n
}

= o(1/t) beyond the condition ξ > K/2+1. It is interesting to note that due to

the term −χ
√
f(t) in the exponent, and owing to the fact that α

√
log(t)−β log log(t)→∞

for all positive α and all β, we actually have the stronger property that S log(t)−ξ+K/2 = o(1)
for all ξ (using α = χ and β = K/2− ξ). However, since this asymptotic regime may take
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a massive amount of time to kick-in when α/β < 1/2 we do not advise to take ξ smaller

than K/2− 2χ. All in all, we obtain, for C = C(K, b, ρ, p, η) with b = d(1 + log(1+χ)
χ )2e 6 4,

Pθ?
{ ⋃

16n<t

θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ? − ε) > f(t)/n
}

6
C(1 + χ)

tχ

(
1 + ξ

log log(t)

log(t)

)K/2
log(t)−ξ+K/2 exp(−χ

√
log(t) + ξ log log(t)) .

C.2. Proof of Corollary 23

Let us now focus on the proof of Corollary 23 involving the threshold f(t/n). We consider
the choice f(x) = log(x) + ξ log log x, which is non-increasing on the set of x such that
ξ > − log(x). When x = t/n and n is about t − O(log(t)), ensuring this monotonicity
property means that we require ξ to dominate log(1 − O(log(t)/t)), that is ξ > 0. Now,
following the result of Theorem 19, we thus obtain for all b > 1, p, q, η ∈ (0, 1),

Pθ?
{ ⋃

16n<t̂

θn∈Θρ ∩ K(Π(ν̂n), µ?−ε) > f(t/n)/n
}
6 Cexp

(
−α

2q

b
t−χ

√
tqf(b/q)

b

)

+ C

dlogb(qt)e−2∑
i=0

exp

(
−α2bi −χ

√
bif(t/bi)−f(t/(bi+1−1))

)
f
( t

bi+1−1

)K
2

= Cexp

(
−α

2q

b
t−χ

√
tqf(b/q)

b

)

+ C

dlogb(qt)e−2∑
i=0

e−α
2bi−χ
√
bif(t/bi)

(bi+1−1

t

)
log
( t

bi+1−1

)K/2−ξ
︸ ︷︷ ︸

si

(
1+ξ

loglog
(

t
bi+1−1

)
log
(

t
(bi+1−1)

)
︸ ︷︷ ︸

o(1)

)K
2

. (11)

We thus study the sum S =
∑dlogb(qt)e−2

i=0 si. To this end, let us first study the term si.
Since i 7→ log(t/bi+1) is a decreasing function of i, it holds for any index i0 ∈ N that

si 6



(
bi+1

t

)
log
(

t
b−1

)−ξ+K/2
if ξ 6 K/2, i 6 i0,(

bi+1

t

)
log
(

t
bi0+1−1

)−ξ+K/2
if ξ > K/2, i 6 i0,

exp(−χ
√
bif(t/bi))

(
bi+1

t

)
log
(

t
bi0+1−1

)−ξ+K/2
if ξ 6 K/2, i > i0,

exp(−χ
√
bif(t/bi))

(
bi+1

t

)
log
(

1
q

)−ξ+K/2
if ξ > K/2, i > i0.

Small values of i We start by handling the terms corresponding to small values of i 6
i0, for some i0 to be chosen. In that case, we note that ri = bi+1

t satisfies ri−1/ri = 1/b < 1
and thus

i0∑
i=0

si 6 si0

∞∑
i=0

(1/b)i =
bsi0
b− 1

,

30



Boundary Crossing

from which we deduce that

i0∑
i=0

si 6


(
bbi0+1

t(b−1)

)
log
(

t
bi0+1

)K/2−ξ
if ξ > K/2(

bbi0+1

t(b−1)

)
log
(

t
b−1

)K/2−ξ
if ξ 6 K/2 .

Following Lai (1988), in order to ensure that this quantity is summable in t, it is convenient
to define i0 as

i0 = blogb(t0)c where t0 =
1

c log(ct)η
,

for η > K/2− ξ and a positive constant c. Indeed in that case when i0 > 0 we obtain the
bounds6

i0∑
i=0

si 6
b2

(b− 1)ct log(tc)η
×

{
log(tc log(tc)η/b)K/2−ξ if ξ > K/2

log(t/(b−1))K/2−ξ if ξ 6 K/2 .

We easily see that this is o(1/t) both when ξ > K/2 and when ξ 6 K/2, by construction
of η. Note that η can further be chosen to be equal to 0 when ξ > K/2. The value of c is
fixed by looking at what happens for larger values of i > i0. We note that the initial proof
of Lai (1988) uses the value η = 1.

Large values of i We now consider the terms of the sum S corresponding to large
values i > i0 and thus focus on the term s′i = exp(−χ

√
bi log(t/bi))bi+1, and better on the

following ratio

s′i+1

s′i
= b exp

[
− χbi/2

(
b1/2 log

( t

bib

)1/2
− log

( t
bi

)1/2
)]

.

Remarking that this ratio is a non increasing function of i, we upper bound it by replacing
i with either i0 + 1 or 0. Using that bi0+1 6 t0 we thus obtain,

s′i+1

s′i
6


b exp

[
−
√

χ2

c

(√
b log

(
tc log(tc)η/b

)
log(tc)η −

√
log(tc log(tc)η)

log(tc)η

)]
if i0 > 0

b exp

[
− χ

(√
b log

(
t/b
)
−
√

log(t)

)]
else.

Since we would like this ratio to be less than 1 for all (large enough) t, we readily see from
this expression that this excludes the cases when η > 1: the term in the ineer brackets
converges to 0 in such cases, and thus the ratio is asymptotically upper bounded by b > 1.
Thus we impose that η 6 1, that is ξ > K/2− 1.

For the critical value η = 1 it is then natural to study the term
√

b log(x log(x)/b)
log(x) −√

log(x log(x))
log(x) . First, when b = 4, this quantity is larger than 1/2 for x > 8.2. Then, it

can be checked that 4 exp(−1
2

√
χ2/c) < 1 if c > χ2/(2 log(4))2. These two conditions show

6. This is also valid when i0 < 0 since the sum is equal to 0 in that case.
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that, provided that t > 8.2(2 log(4))2χ−2 ' 63χ−2, then
s′i+1

s′i
< 1. Now, in order to get a

ratio
s′i+1

s′i
that is away from 1, we target the bound

s′i+1

s′i
< b/(b+ 1). This can be achieved

by requiring that t > 8.2(2 log(5))2χ−2 ' 85χ−2 by setting c = χ2/(2 log(5))2. Eventually,
we obtain for b = 4 and t > 85χ−2 the bound

It−2∑
i=i0+1

s′i 6 s′i0+1

It−2∑
i=i0+1

(b/(b+ 1))i−i0−1 6 s′i0+1(b+ 1)

6 (b+ 1) exp

[
− χ

√
bt0 log(t/bt0)

]
b2t0 6 b

2(b+ 1)t0 .

Remark 34 Another notable value is η = 0. A similar study than the previous one shows
that for b = 3.5, the term

√
b log(x/b)−

√
log(x) is larger than 1/2 for x > 12, which entails

that
s′i+1

s′i
< b/(b+ 1) provided that t > 12(2 log(3.5))2χ−2 ' 76χ−2.

Plugging-in the definition of t0, and since bi0+1 6 bt0, we obtain if i0 > 0, and for
b = 4, c = χ2/(2 log(5))2,

It−2∑
i=i0+1

si 6

{
b2(b+1)
tc log(tc) log(1/q)K/2−ξ if ξ > K/2
b2(b+1)
tc log(tc) log(t c log(tc)

b−c log(tc))K/2−ξ if ξ ∈ [K/2− 1,K/2] .
(12)

It remains to handle the case when i0 < 0. Note that this case only happens for t large
enough so that t > c−1e

1
bc . The later quantity may be huge since 1/bc = log(5)2χ−2 is

possibly large when χ is close to 0. In that case, we directly control
∑It−2

i=0 si. We control
the ratio s′i+1/s

′
i by b/(b+ 1/2) provided that√

b log(t/b)−
√

log(t) >
log(b+ 1/2)

χ
,where b = 4 .

Thus, if we define tχ to be the smallest such t, then when t > c−1e
1
bc and provided that

t > tχ, the bound of (12) remains valid for the sum S, up to replacing b2(b + 1) with

2b2(b+ 1/2) and log(t c log(tc)
b−c log(tc)) with log(t/(b− 1)). The later constraint t > tχ is satisfied

as soon as 4 log(5)2χ−2eχ
−2 log(5)2 > tχ which is generally satisfied for χ not too large.

Final control on S We can now control the term S by combining the two bounds for
large and small i. We get for c = χ2/(2 log(4.5))2 and b = 4, and provided that t > 85χ−2

and t 6 χ−2 exp
(
χ−2 log(4.5)2

)
4 log(4.5)2

, the following bound

S6
b

ct log(tc)

{
b

(b−1) log(tc log(tc)/b)
K
2
−ξ + b(b+1) log(1/q)

K
2
−ξ if ξ > K/2

b
(b−1) log(t/(b−1))

K
2
−ξ + b(b+1) log(t c log(tc)

b−c log(tc))
K
2
−ξ if ξ ∈ [K/2−1,K/2] .

(13)

Further, for larger values of t, t > χ−2 exp
(
χ−2 log(4.5)2

)
4 log(4.5)2

, then

S 6
2b2(b+ 1/2)

ct log(tc)

{
log(1/q)K/2−ξ if ξ > K/2

log(t/(b− 1))K/2−ξ if ξ ∈ [K/2− 1,K/2] .
(14)
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Concluding step In this final step, we now gather equation (11) together with the pre-
vious bounds (13), (14) on S. We obtain that for all p, q, η ∈ (0, 1)

Pθ?
{ ⋃

16n<t

θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ? − ε) > f(t/n)/n
}

6 C(K, ρ, p, b, η)

(
e−

α2qt
b
−
√
χ2tqf(b/q)

b +S(1 + ξ)K/2
)
.

where we recall the definition of the constants α = ηρε
√
vρ/2, χ = pηρε

√
2v2
ρ/Vρ.

When ξ ∈ [K/2−1,K/2], one can then choose q = 1. When ξ > K/2, there is a trade-off
in q, since the first term (the exponential) is decreasing with q while the second term is
increasing with q. For instance choosing q = exp(−κ−1/η), where η = ξ −K/2 and κ > 0
leads to log(1/q)K/2−ξ = κ. When b = 4, simply choosing q = 0.8 gives the final bound
after some cosmetic simplifications.

Appendix D. Technical details

Lemma 32 For all ε, ε′ > 0, p, p′ ∈ [0, 1] and all K > 1 the following equality holds

|B2(0, ε) ∩ Cp(0; 1)|∫
B2(0,ε′)∩Cp′ (0;1) e

−‖y‖2/2dy
=

ωp,K−2

ωp′,K−2

∫ ε
0 r

K−1dr∫ ε′
0 e−r2/2rK−1dr

,

where ωp,K−2 =
∫ 1
p

√
1− z2K−2

dz for K > 2 and using the convention that ωp,−1 = 1.
Further,

|B2(0, ε) ∩ Cp(0; 1)|∫
B2(0,ε′)∩Cp′ (0;1) e

−‖y‖2/2dy
6 2

ωp,K−2

ωp′,K−2

(
ε

min{ε′,
√

1 + 2/K}

)K
.

Proof of Lemma 32: First of all, let us remark that provided that K > 2, then

|B2(0, ε) ∩ Cp(0; 1)| =

∫ ε

0
|{y ∈ RK : 〈y,1〉 > rp, ‖y‖ = r}|dr

=

∫ ε

0

∫ r

rp
|{y ∈ RK : y1 = z, ‖y‖ = r}|dzdr

=

∫ ε

0

∫ r

rp
|{y ∈ RK−1 : ‖y‖ =

√
r2 − z2}|dzdr

=

∫ ε

0
rK−1

∫ 1

p

√
1− z2

K−2
|SK−1|dzdr .

where SK−1 ⊂ RK−1 is the K−2 dimensional unit sphere of RK−1. Let us recall that when

K = 2, we get |SK−1| = 2. For convenience, let us denote ωp,K−2 =
∫ 1
p

√
1− z2K−2

dz.
Then, for K > 2,

|B2(0, ε) ∩ Cp(0; 1)| = |SK−1|
∫ ε

0
rK−1ωp,K−2dr .

For K = 1, |B2(0, ε) ∩ Cp(0; 1)| = ε. Likewise, we obtain, following the same steps that∫
B2(0,ε)∩Cp(0;1)

e−‖y‖
2/2dy = |SK−1|

∫ ε

0
e−r

2/2rK−1ωp,K−2dr .
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We obtain the first part of the lemma by combining the two previous equalities. For the
second part, we use the inequality e−x > 1− x, which gives∫ ε

0
e−r

2/2rK−1dr >
∫ ε

0
rK−1 − 1

2
rK+1dr = εK

( 1

K
− ε2

2(K + 2)

)
.

Thus, whenever ε2 < (K + 2)/K, we obtain∫ ε

0
e−r

2/2rK−1dr >
εK

2K
.

On the other hand, if ε2 > (K + 2)/K, then∫ ε

0
e−r

2/2rK−1dr >
∫ (K+2)/K

0
e−r

2/2rK−1dr >

√
1 + 2/K

K

2K
.

Thus, in all cases, the integral is larger than
min{ε,

√
1+2/K}K

2K ; we conclude by simple algebra.
�

Proof of Lemma 6: The first part of this lemma for KL-ucb is proved in Cappé et al.
(2013). The second part that is about KL-ucb+ can be proved straightforwardly following
the very same lines. We thus only provide the main steps here for clarity: We start by
introducing a small ε > 0 that satisfies ε < min{µ?−µa , a ∈ A\ {a?} }, and then consider
the following inclusion of events:{

at+1 = a
}
⊆
{
µ? − ε < Ua(t) and at+1 = a

}
∪
{
µ? − ε > Ua?(t)

}
;

indeed, on the event
{
at+1 = a

}
∩
{
µ? − ε < Ua?(t)

}
, we have, µ? − ε < Ua?(t) 6 Ua(t)

(where the last inequality is by definition of the strategy). Moreover, let us note that{
µ?−ε<Ua(t)

}
⊆
{
∃ν ′∈D : E(ν ′)>µ?−ε and Na(t)Ka

(
Πa(ν̂a,Na(t)), µ

?−ε
)
6f(t/Na(t))

}
,

and
{
µ?−ε>Ua?(t)

}
⊆
{
∃ν ′∈D : Na?(t)Ka?

(
Πa?(ν̂a?,Na? (t)), µ

?−ε
)
>f(t/Na?(t))

}
,

since Ka is a non-decreasing function in its second argument and Ka
(
ν,E(ν)

)
= 0 for all

distributions ν. Therefore, this simple remark leads us to the following decomposition

E
[
NT (a)

]
6 1 +

T−1∑
t=|A|

P
{
Na?(t) Ka?

(
Πa?(ν̂a?,Na? (t)), µ

? − ε
)
> f(t/Na?(t))

}

+

T−1∑
t=|A|

P
{
Na(t) Ka

(
Πa(ν̂a,Na(t)), µ

? − ε
)
6 f(t/Na(t)) and at+1 = a

}
.

The remaining steps of the proof of the result from Cappé et al. (2013), equation (10) can
now be straightforwardly modified to work with f(t/Na(t)) instead of f(t), thus concluding
this proof. �
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