
HAL Id: hal-01615424
https://hal.science/hal-01615424v1

Submitted on 12 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient tracking of a growing number of experts
Jaouad Mourtada, Odalric-Ambrym Maillard

To cite this version:
Jaouad Mourtada, Odalric-Ambrym Maillard. Efficient tracking of a growing number of experts.
Algorithmic Learning Theory, Oct 2017, Tokyo, Japan. pp.1 - 23. �hal-01615424�

https://hal.science/hal-01615424v1
https://hal.archives-ouvertes.fr


Journal of Machine Learning Research 76:1–23, 2017 Algorithmic Learning Theory 2017

Efficient tracking of a growing number of experts

Jaouad Mourtada JAOUAD.MOURTADA@POLYTECHNIQUE.EDU
Centre de Mathématiques Appliquées
École Polytechnique
91128 Palaiseau, France

Odalric-Ambrym Maillard ODALRIC.MAILLARD@INRIA.FR

Inria Lille - Nord Europe
59650 Villeneuve d’Ascq, France

Editors: Steve Hanneke and Lev Reyzin

Abstract
We consider a variation on the problem of prediction with expert advice, where new forecasters
that were unknown until then may appear at each round. As often in prediction with expert advice,
designing an algorithm that achieves near-optimal regret guarantees is straightforward, using ag-
gregation of experts. However, when the comparison class is sufficiently rich, for instance when the
best expert and the set of experts itself changes over time, such strategies naively require to maintain
a prohibitive number of weights (typically exponential with the time horizon). By contrast, design-
ing strategies that both achieve a near-optimal regret and maintain a reasonable number of weights
is highly non-trivial. We consider three increasingly challenging objectives (simple regret, shifting
regret and sparse shifting regret) that extend existing notions defined for a fixed expert ensemble;
in each case, we design strategies that achieve tight regret bounds, adaptive to the parameters of
the comparison class, while being computationally inexpensive. Moreover, our algorithms are any-
time, agnostic to the number of incoming experts and completely parameter-free. Such remarkable
results are made possible thanks to two simple but highly effective recipes: first the “abstention
trick” that comes from the specialist framework and enables to handle the least challenging notions
of regret, but is limited when addressing more sophisticated objectives. Second, the “muting trick”
that we introduce to give more flexibility. We show how to combine these two tricks in order to
handle the most challenging class of comparison strategies.
Keywords: Online learning; Prediction with expert advice; Shifting regret; Anytime strategies.

1. Introduction
Aggregation of experts is a well-established framework in machine learning (Cesa-Bianchi and
Lugosi, 2006; Vovk, 1998; Györfi et al., 1999; Haussler et al., 1998), that provides a sound strategy
to combine the forecasts of many different sources. This is classically considered in the sequential
prediction setting, where at each time step, a learner receives the predictions of experts, uses them
to provide his own forecast, and then observes the true value of the signal, which determines his
loss and those of the experts. The goal is then to minimize the regret of the learner, which is defined
as the difference between his cumulated loss and that of the best expert (or combination thereof), no
matter what the experts’ predictions or the values of the signal are.

A standard assumption in the existing literature is that the set of experts is known before the
beginning of the game. In many situations, however, it is desirable to add more and more fore-
casters over time. For instance, in a non-stationary setting one could add new experts trained on a
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fraction of the signal, possibly combined with change point detection. Even in a stationary setting,
a growing number of increasingly complex models enables to account for increasingly subtle prop-
erties of the signal without having to include them from the start, which can be needlessly costly
computationally (as complex models, which take more time to fit, are not helpful in the first rounds)
or even intractable in the case of an infinite number of models with no closed form expression. Ad-
ditionally, in many realistic situations some completely novel experts may appear in an unpredicted
way (possibly due to innovation, the discovery of better algorithms or the availability of new data),
and one would want a way to safely incorporate them to the aggregation procedure.

In this paper, we study how to amend aggregation of experts strategies in order to incorporate
novel experts that may be added on the fly at any time step. Importantly, since we do not know in
advance when new experts are made available, we put a strong emphasis on anytime strategies, that
do not assume the time horizon is finite and known. Likewise, our algorithms should be agnostic
to the total number of experts available at a given time. Three notions of regret of increasing
complexity will be defined for growing expert sets, that extend existing notions to a growing expert
set. Besides comparing against the best expert, it is natural in a growing experts setting to track the
best expert; furthermore, when the number of experts gets large, it becomes profitable to track the
best expert in a small pool of good experts. For each notion, we propose corresponding algorithms
with tight regret bounds. As is often the case in structured aggregation of experts, the key difficulty
is typically not to derive the regret bounds, but to obtain efficient algorithms. All our methods
exhibit minimal time and space requirements that are linear in the number of present experts.

Related work. This work builds on the setting of prediction with expert advice (Cesa-Bianchi
and Lugosi, 2006; Vovk, 1998; Herbster and Warmuth, 1998) that originates from the work on
universal prediction (Ryabko, 1984, 1988; Merhav and Feder, 1998; Györfi et al., 1999). We make
use of the notion of specialists (Freund et al., 1997; Chernov and Vovk, 2009) and its application
to sleeping experts (Koolen et al., 2012), as well as the corresponding standard extensions (Fixed
Share, Mixing Past Posteriors) of basic strategies to the problem of tracking the best expert (Herbster
and Warmuth, 1998; Koolen and de Rooij, 2013; Bousquet and Warmuth, 2002); see also Willems
(1996); Shamir and Merhav (1999) for related work in the context of lossless compression. Note
that, due to its versatility, aggregation of experts has been adapted successfully to a number of
applications (Monteleoni et al., 2011; McQuade and Monteleoni, 2012; Stoltz, 2010). It should be
noted that the literature on prediction with expert advice is split in two categories: the first one
focuses on exp-concave loss functions, whereas the second studies convex bounded losses. While
our work belongs to the first category, it should be possible to transport our regret bounds to the
convex bounded case by using time-varying learning rates, as done e.g. by Hazan and Seshadhri
(2009) and Gyorgy et al. (2012). In this case, the growing body of work on the automatic tuning
of the learning rate (de Rooij et al., 2014; Koolen et al., 2014) as well as alternative aggregation
schemes (Wintenberger, 2017; Koolen and van Erven, 2015; Luo and Schapire, 2015) might open
the path for even further improvements.

The use of a growing expert ensemble was already proposed by Györfi et al. (1999) in the context
of sequentially predicting an ergodic stationary time series, where new higher order Markov experts
were introduced at exponentially increasing times (and the weights were reset as uniform); since
consistency was the core focus of the paper, this simple “doubling trick” could be used, something
we cannot afford when new experts arrive more regularly. Closer to our approach, growing expert
ensembles have been considered in contexts where the underlying signal may be non-stationary, see
e.g. Hazan and Seshadhri (2009); Shalizi et al. (2011). Of special interest to our problem is Shal-
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izi et al. (2011), which considers the particular case when one new expert is introduced every τ
time steps, and propose a variant of the Fixed Share (FS) algorithm analogous to our Growing-
MarkovHedge algorithm. However, their algorithms depend on parameters which have to be tuned
depending on the parameters of the comparison class, whereas our algorithms are parameter-free
and do not assume the prior knowledge of the comparison class. Moreover, we introduce several
other algorithms tailored to different notions of regret; in particular, we address the problem of com-
paring to sequences of experts that alternate between a small number of experts, a refinement that is
crucial when the total set of experts grows, and has not been obtained previously in this context.

Another related setting is that of “branching experts” considered by Gofer et al. (2013), where
each incumbent expert is split into several experts that may diverge later on. Their results include a
regret bound in terms of the number of leading experts (whose cumulated loss was minimal at some
point). Our approach differs in that it does not assume such a tree-like structure: a new entering
forecaster is not assumed to be associated to an incumbent expert. More importantly, while Gofer
et al. (2013) compare to the leaders in terms of cumulated loss (since the beginning of the game),
our methods compete instead with sequences of experts that perform well on some periods, but can
predict arbitrarily bad on others; this is harder, since the loss of the optimal sequence of experts can
be significantly smaller than that of the best expert.

Outline. Our paper is organized as follows. After introducing the setting, notations and the dif-
ferent comparison classes, we provide in Section 2 an overview of our results, stated in less general
but more directly interpretable forms. Then, Section 3 introduces the exponential weights algorithm
and its regret, a classical preliminary result that will be used throughout the text. Sections 4, 5
and 6 form the core of this paper, and have the same structure: a generic result is first stated in the
case of a fixed set of experts, before being turned into a strategy in the growing experts framework.
Section 4 starts with the related specialist setting and adapts the algorithm into an anytime growing
experts algorithm, with a more general formulation and regret bound involving unnormalized pri-
ors. Section 5 proposes an alternative approach, which casts the growing experts problem as one
of competing against sequences of experts; this approach proves more flexible and general for our
task, but perhaps surprisingly we can also recover algorithms that are essentially equivalent to the
aggregation of growing experts with an unnormalized prior. Finally, the two approaches are com-
bined in Section 6 in the context of sleeping experts, where we reinterpret the algorithm of Koolen
et al. (2012) and extend it to more general priors before adapting it to the growing experts setting.

2. Overview of the results
Our work is framed in the classical setting of prediction with expert advice (Vovk, 1998; Cesa-
Bianchi and Lugosi, 2006), which we adapt to account for a growing number of experts. The
problem is characterized by its loss function ` : X × Y → R, where X is a convex prediction
space, and Y is the signal space.

Let Mt be the total number of experts at time t, and mt = Mt−Mt−1 be the number of experts
introduced at time t. We index experts by their entry order, so that expert i is the ith introduced
expert and denote τi = min{t > 1 : i 6 Mt} its entry time (the time at which it is introduced).
We say we are in the fixed expert set case when Mt = M for every t > 1 and in the growing
experts setting otherwise. At each step t > 1, the experts i = 1, . . . ,Mt output their predictions
xi,t ∈ X , which the learner uses to build xt ∈ X ; then, the environment decides the value of the
signal yt ∈ Y , which sets the losses `t = `(xt, yt) of the learner and `i,t = `(xi,t, yt) of the experts.
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Notations. Let PM be the probability simplex, i.e. the set of probability measures over the
set of experts {1, . . . ,M}. We denote by ∆(· ‖ ·) the Kullback-Leibler divergence, defined for
u,v ∈PM by ∆(u ‖v) =

∑M
i=1 ui log ui

vi
> 0.

Loss function. Throughout this text, we make the following standard assumption1 on the loss
function (Cesa-Bianchi and Lugosi, 2006).
Assumption 1 The loss function ` is η-exp-concave for some η > 0, in the sense that exp(−η `(·, y))
is concave on X for every observation y ∈ Y . This is equivalent to the inequality

`

(
M∑
i=1

vi xi, y

)
6 −1

η
log

M∑
i=1

vi e
−η `(xi,y) (1)

for every y ∈ Y , x = (xi)16i6M ∈X M and v = (vi)16i6M ∈PM .
Remark 1 An important example in the case when X is the set of probability measures over Y is
the logarithmic or self-information loss `(x, y) = − log x({y}) for which the inequality holds with
η = 1, and is actually an equality. Another example of special interest is the quadratic loss on a
bounded interval: indeed, for X = Y = [a, b] ⊂ R, `(x, y) = (x− y)2 is 1

2(b−a)2
-exp-concave.

Several notions of regret can be considered in the growing expert setting. We review here
three of them, each corresponding to a specific comparison class; we show the kind of bounds that
our algorithms achieve, to illustrate the more general results stated in the subsequent sections. We
provide more uniform bounds in Appendix E, and compare them with information-theoretic bounds.

Constant experts. Since the experts only output predictions after their entry time, it is natural
to consider the regret with respect to each expert i > 1 over its time of activity, namely the quantity

T∑
t=τi

(`t − `i,t) (2)

for every T > τi. Note that this is equivalent to controlling (2) for every T > 1 and i 6 MT .
Algorithm GrowingHedge is particularly relevant in this context; with the choice of (unnormalized)
prior weights πi = 1

τimτi
, it achieves the following regret bound: for every T > 1 and i 6MT ,

T∑
t=τi

(`t − `i,t) 6
1

η
logmτi +

1

η
log τi +

1

η
log(1 + log T ) . (3)

This bound has the merit of being simple, virtually independent of T and independent of the num-
ber of experts (mt)t>τi added after i. Several other instantiations of the general regret bound of
GrowingHedge (Theorem 3) are given in Section 4.2.

Sequences of experts. Another way to study growing expert sets is to view them through
the lens of sequences of experts. Given a sequence of experts iT = (i1, . . . , iT ), we measure the
performance of a learning algorithm against it in terms of the cumulative regret:

LT − LT (iT ) =
T∑
t=1

`t −
T∑
t=1

`it,t , (4)

In order to derive meaningful regret bounds, some constraints have to be imposed on the compar-
ison sequence; hence, we consider in the sequel different types of comparison classes that lead to
different notions of regret, from the least to the most challenging one:

1. This could be readily replaced (up to some cosmetic changes in the statements and their proofs) by the more general
η-mixability condition (Vovk, 1998), that allows to use higher learning rates η for some loss functions (such as the
square loss, but not the logarithmic loss) by using more sophisticated combination functions.
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(a) Sequences of fresh experts. These are admissible sequences of experts iT , in the sense that
it 6 Mt for 1 6 t 6 T (so that `it,t is always well-defined) that only switch to fresh (newly
entered) experts, i.e. if it 6= it−1, then Mt−1 + 1 6 it 6 Mt. More precisely, for each σ =

(σ1, . . . , σk) with 1 < σ1 < · · · < σk 6 T , S
(f)
T (σ) denotes the set of sequences of fresh

experts whose only shifts occur at times σ1, . . . , σk. Both the switch times σ and the number
of shifts k are assumed to be unknown, although to obtain controlled regret one typically needs
k � T . Comparing to sequences of fresh experts is essentially equivalent to comparing against
constant experts; algorithms GrowingHedge and FreshMarkovHedge with πi = 1

mτi
achieve, for

every T > 1, k 6 T − 1 and σ = (σj)16j6k (Theorems 3 and 6):

LT − inf
iT∈S

(f)
T (σ)

LT (iT ) 6
1

η

{
logm1 +

k∑
j=1

(logmσj + log σj) + log T

}
(5)

In particular, the regret with respect to any sequence of fresh experts with k shifts is bounded by
1
η ((k + 1) log max16t6T mt + (k + 1) log T ).

(b) Arbitrary admissible sequences of experts. Like before, these are admissible sequences of
experts that are piecewise constant with a typically small number of shifts k, except that shifts
to incumbent (previously introduced) experts it 6 Mt−1 are now authorized. Specifically, given
σ0 = (σ0

1, . . . , σ
0
k0

) and σ1 = (σ1
1, . . . , σ

1
k1

), we denote by S
(a)
T (σ0;σ1) the class of admissible

sequences whose switches to fresh (resp. incumbent) experts occur only at times σ0
1 < · · · < σ0

k0

(resp. σ1
1 < · · · < σ1

k1
). By Theorem 7, algorithm GrowingMarkovHedge with πi = 1

mτi
and

αt = 1
t satisfies, for every T > 1, k0, k1 with k0 + k1 6 T − 1 and σ0,σ1:

LT − inf
iT∈S

(a)
T (σ0;σ1)

LT (iT ) 6
1

η

{
logm1 +

k∑
j=1

(logmσj + log σj) +

k1∑
j=1

log σ1
j + 2 log T

}
(6)

where k = k0 + k1 and σ1 < · · · < σk denote all shifts (either in σ0 or in σ1). Note that the upper
bound (6) may be further relaxed as 1

η ((k + 1) log max16t6T mt + (k0 + 2k1 + 2) log T ).

(c) Sparse sequences of experts. These are admissible sequences iT of experts that are additionally
sparse, in the sense that they alternate between a small number n � MT of experts; again, n may
be unknown in advance. Denoting S

(s)
T (σ, E) the class of sequences with shifts in σ and taking

values in the subset of experts E = {e1, . . . , en}, algorithm GrowingSleepingMarkovHedge with
πi = 1

τimτi
and αt = βt = 1

t achieves, for every T > 1, E ⊂ {1, . . . ,MT } and σ,

LT − inf
iT∈S

(s)
T (σ,E)

LT (iT ) 6
1

η

n∑
p=1

(
log τep + log

mτep

n

)
+

1

η
n log(2T ) +

2

η

k∑
j=1

log σj . (7)

In particular, the regret with respect to every admissible sequence of T experts with at most k shifts
and taking at most n values is bounded by 1

η

(
n log

max16t6T mt
n + 2n log(

√
2T ) + 2k log T

)
.

The main results of this text are Theorem 7, a powerful parameter-free generalization of (Shalizi
et al., 2011, Theorem 2), and Theorem 9, which adapts results of Bousquet and Warmuth (2002);
Koolen et al. (2012) to sequentially incoming forecasters, and has no precedent in this context.
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3. Preliminary: the exponential weights algorithm
First, we introduce the simple but fundamental exponential weights or Hedge algorithm (Vovk,
1998; Cesa-Bianchi and Lugosi, 2006), designed to control the regret LT − Li,T =

∑T
t=1 `t −∑T

t=1 `i,t for a fixed set of experts {1, . . . ,M}. The algorithm depends on a prior distribution
π ∈PM on the experts and predicts as

xt =

∑M
i=1wi,t xi,t∑M
i=1wi,t

with wi,t = πi e
−ηLi,t−1 . (8)

Equivalently, it forecasts xt =
∑M

i=1 vi,t xi,t, where the weights vt ∈PM are sequentially updated
in the following way: v1 = π and, after each round t > 1, vt+1 is set to the posterior distribution
vmt of vt given the losses (`i,t)16i6M , defined by

vmi,t =
vi,t e

−η `i,t∑M
j=1 vj,t e

−η `j,t
. (9)

All subsequent regret bounds will rely on the following standard regret bound (see Appendix A), by
reducing complex forecasting strategies to the aggregation of experts under a suitable prior.

Proposition 1 (Cesa-Bianchi and Lugosi (2006, Corollary 3.1)) Irrespective of the values of the
signal and the experts’ predictions, the exponential weights algorithm (8) with prior π achieves

LT − Li,T 6
1

η
log

1

πi
(10)

for each i = 1, . . . ,M and T > 1. More generally, for each probability vector u ∈PM ,

LT −
M∑
i=1

ui Li,T 6
1

η
∆(u ‖π) . (11)

Choosing a uniform prior π = 1
M 1 yields an at most 1

η logM regret with respect to the best expert.

4. Growing experts and specialists: the “abstention trick”
A natural idea to tackle the problem of a growing number of experts is to cast it in the related setting
of specialists, introduced by Freund et al. (1997). We present the specialist setting and the related
“specialist trick” identified by Chernov and Vovk (2009) (which we will call the “abstention trick”),
which enables to convert any expert aggregation algorithm into a specialist aggregation algorithm.
These ideas are then applied to the growing expert ensemble setting, which allows us to control the
regret with respect to constant experts of equation (2); a refinement is introduced along the way, the
use of unnormalized priors, that gives more flexibility to the algorithm and its regret bounds.

4.1. Specialists and their aggregation
In the specialist setting, we have access to specialists i ∈ {1, . . . ,M} that only output predictions
at certain steps, while refraining from predicting the rest of the time. In other words, at each step
t > 1, only a subset At ⊂ {1, . . . ,M} of active experts output a prediction xi,t ∈X .

In order to adapt any expert aggregation strategy to the specialists setting, a crucial idea due
to Chernov and Vovk (2009) is to “complete” the specialists’ predictions by attributing to inactive
specialists i 6∈ At a forecast equal to that of the aggregating algorithm. Although this seems circular,
it can be made precise by observing that the only way to simultaneously satisfy the conditions
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xt =

M∑
i=1

vi,t xi,t and xi,t = xt for any i 6∈ At (12)

is to take xt = xi,t =

∑
i∈At vi,t xi,t∑
i∈At vi,t

for i 6∈ At . (13)

We call this technique the “abstention trick”, since it consists in attributing to inactive specialists a
forecast that will not affect the voting outcome. In the case of the exponential weights algorithm,
this leads to the specialist aggregation algorithm with prior π, which forecasts

xt =

∑
i∈At wi,t xi,t∑
i∈At wi,t

with wi,t = πi e
−ηLi,t−1 , (14)

where we denote, for each specialist i and t > 1, Li,t :=
∑

s6t : i∈As `i,s +
∑

s6t : i 6∈As `s.

Remark 2 The exp-concavity inequality e−η `t >
∑M

i=1 vi,t e
−η `i,t shows that vi,t+1 > vi,t for any

i 6∈ At. In the case of the logarithmic loss, for η = 1 this inequality becomes an equality, thus the
weights of inactive specialists remain unchanged: vi,t+1 = vi,t.

Since the specialist aggregation consists of the exponential weights on the extended predictions (13),
and since for this extension one has

∑T
t=1(`t− `i,t) =

∑
t6T : i∈At(`t− `i,t), Proposition 1 implies:

Proposition 2 (Freund et al. (1997, Theorem 1)) The specialist aggregation with priorπ achieves
the following regret bound: for each specialist i and every T > 1,∑

t6T : i∈At

(`t − `i,t) 6
1

η
log

1

πi
. (15)

Moreover, for each probability vector u ∈PM ,
M∑
i=1

ui
∑

t6T : i∈At

(`t − `i,t) 6
1

η
∆(u ‖π) .

Remark 3 Note that the sets At of active specialists do not need to be known in advance.

4.2. Adaptation to growing expert ensembles: GrowingHedge
Growing experts can naturally be seen as specialists, by setting At := {1, . . . ,Mt}; moreover,
through this equivalence, the quantity controlled by Proposition 2 is precisely the regret (2) with
respect to constant experts. In order to apply the results on specialist aggregation to the growing
expert setting, it remains to specify exactly which total set of specialists is considered.

Fixed time horizon. In the simplest case when both the time horizon T and the eventual number
of experts MT are known, the eventual set of experts (at time T ) is known, and we can take the
finite specialist set to be {1, . . . ,MT }. Therefore, given any probability vector π = (π1, . . . , πMT

),
we can use the aggregation of specialists, with the regret bound (15). In particular, the choice of
πi = 1

MT
for i = 1, . . . ,MT yields the uniform regret bound 1

η logMT .

Anytime algorithm, normalized prior. The fixed horizon approach is somewhat unsatisfactory,
since we are typically interested in algorithms that are anytime and agnostic to Mt. To achieve this
goal, a better choice is to take the infinite set of specialists N∗. Crucially, the aggregation of this
infinite number of specialists can be implemented in finite time, by introducing the weight of an
expert only when it enters. Given a probability vector π = (πi)i>1 on N∗, this leads to the anytime

7
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strategy GrowingHedge described below. A straightforward adaptation of Propositions 1 and 2 to a
countably infinite set of experts shows that this strategy achieves, now for every T > 1 and i 6MT ,
the regret bound (15). However, we are constrained by the fact that π must be a probability on N∗.

Anytime algorithm, unnormalized prior. We now turn to the most general analysis, which
subsumes and improves the previous two. Now, we let π = (πi)i>1 denote a sequence of arbitrary
positive weights, that are no longer assumed to sum to 1. These weights do not need to be set in
advance: the weight πi can be chosen when expert i enters, so that at this step τi, (mt)t6τi and
(Mt)t6τi are known, even if they were unknown at the beginning; in particular, πi may depend on
these quantities. We now consider the anytime algorithm GrowingHedge.

Algorithm 1 GrowingHedge — Anytime aggregation of growing experts
1: Parameters: Learning rate η > 0, weights on the experts π = (πi)i>1.
2: Initialization: Set wi,1 = πi for i = 1, . . . ,M1.
3: for t = 1, 2, . . . do
4: Receive predictions (x1,1, . . . , xMt,t) ∈X Mt from the experts, and predict

xt =

∑Mt
i=1wi,t xi,t∑Mt
i=1wi,t

. (16)

5: Observe yt ∈ Y , and derive the losses `t = `(xt, yt) and `i,t = `(xi,t, yt).
6: Update the weights by wi,t+1 = wi,t e

−η `i,t for i = 1, . . . ,Mt. Moreover, introduce the
weights wi,t+1 = πi e

−η Lt for Mt + 1 6 i 6Mt+1.
7: end for

Theorem 3 Let π = (πi)i>1 be an arbitrary sequence of positive weights. Then, algorithm Grow-
ingHedge achieves the following regret bound: for every T > 1 and i 6MT ,

T∑
t=τi

(`t − `i,t) 6
1

η
log

(
1

πi

MT∑
j=1

πj

)
. (17)

Additionally, its time and space complexity at each step t > 1 is O(Mt).

We provide the proof of Theorem 3 in Appendix B. Let us now discuss a few choices of priors, with
the corresponding regret bounds (17) (omitting the 1

η factor).

• With πi = 1, we get logMT , but now with an anytime algorithm. Since
∑M

i=1
1
i 6 1 +∑M

i=2

∫ i
i−1

dx
x = 1 + logM , the choice of πi = 1

i yields log i+ log(1 + logMT ).
• The above bounds depend on the index i > 1, and hence arbitrarily distinguish experts entered

at the same time. More natural bounds would only depend on the entry time τi, which is achievable
since πi can be chosen when i enters, and thus depend on τi. Setting2 πi = 1

mτi
ντi , where ν =

(νt)t>1 is a positive sequence set in advance, we get

logmτi + log
1

ντi
+ log

T∑
t=1

νt . (18)

Amongst the many possible choices for νt, one may consider νt = 1 for which (18) becomes
logmτi + log T , while νt = 1

t yields the improved bound logmτi + log τi + log(1 + log T ). Note

2. In fact, this can be slightly refined when mt = 0 for most steps t. In this case, denoting for t > 1: s(t) = |{t′ 6 t |
mt′ > 1}|, we can take πi = 1

s(τi)mτi
and get a regret bound 1

η
{logmτi + log s(τi) + log(1 + log s(T ))}.

8
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that neither choice is summable, and that a choice of summable weights (e.g. νt = t−α, α > 1 or
νt = 1

t log2(t+1)
) generally leads to worse or less interpretable bounds. The first choice (νt = 1) is

simple, while the second one (νt = 1/t) trade-offs simplicity and quality of the bound.
• Another option is to set πi = υτi , where υ = (υt)t>1 is an arbitrary sequence set in advance.

The bound becomes
log

1

υτi
+ log

T∑
t=1

mtυt (19)

which is more regular than the bound (18) whenmt alternates between small and large values, since
it depends on a cumulated quantity instead of just mτi . For υt = 1 (i.e. πi = 1) this is just logMT .
Alternatively, for υt = 1

t this becomes log τi + log
∑T

t=1
mt
t .

Regret against sequences of fresh experts. Theorem 3 provides a regret bound against any
static expert, i.e. any constant choice of expert, albeit in a growing experts setting. However,
this means that the regret is controlled only on the period [[τi, T ]] when the expert actually emits
predictions. An alternative way to state Theorem 3 is in terms of sequences of fresh experts. Indeed,
Theorem 3 implies that, for every sequence of fresh experts iT with switching times σ1 < · · · < σk
(with the additional conventions σ0 := 1 and σk+1 := T + 1), algorithm GrowingHedge achieves:

LT − LT (iT ) =

k∑
j=0

σj+1−1∑
t=σj

(`t − `iσj ) 6
1

η

k∑
j=0

log
ΠMσj+1−1

πiσj
(20)

since σj = τiσj , and where we denote ΠM =
∑M

i=1 πi for each M > 1. Taking πi = 1, this bound

reduces to 1
η

∑k
j=0 logMσj+1−1 6 1

η (k + 1) logMT . Taking πi = 1/mτi , so that ΠMt = t, and
further bounding ΠMσj+1−1 = σj+1 − 1 6 σj+1 for 0 6 j 6 k−1 and ΠMσk+1−1 = T , we recover
the bound (5) stated in the overview.

5. Growing experts and sequences of experts: the “muting trick”
Algorithm GrowingHedge, based on the specialist viewpoint, guarantees good regret bounds against
fresh sequences of experts and admits an efficient implementation. Instead of comparing only
against fresh sequences of experts, it may be preferable to target arbitrary admissible sequences
of experts, that contain transitions to incumbent experts; this could be beneficial when some experts
start predicting well after a few rounds. A natural approach consists in applying the abstention trick
to algorithms for a fixed expert set that target arbitrary sequences of experts (such as Fixed Share,
see Appendix C). As it turns out, such an approach would require to maintain weights for unentered
experts (which may be in unknown, even infinite, number in an anytime setting): the fact that one
could obtain an efficient algorithm such as GrowingHedge was specific to the exponential weights
algorithm, and does not extend to more sophisticated algorithms that perform weight sharing.

In this section, we adopt a “dual” point of view, which proves more flexible. Indeed, in the
growing expert ensemble setting, there are two ways to cope with the fact that some experts’ pre-
dictions are undefined at each step. The abstention trick amounts to attributing predictions to the
experts which have not entered yet, so that they do not affect the learner’s forecast. Another option
is to design a prior on sequences of experts so that the weight of unentered experts is 0, and hence
their predictions are irrelevant3; we call this the “muting trick”.

3. In this case, the learner’s predictions do not depend on the way we complete the experts’ predictions, so the algorithm
may be defined even when experts with zero weight do not output predictions.

9
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After reviewing the well-known setting of aggregation of sequences of experts for a fixed set of
experts (Section 5.1) and presenting the generic algorithm MarkovHedge with its regret bound, we
adapt it to the growing experts setting by providing FreshMarkovHedge (Section 5.2) and Growing-
MarkovHedge (Section 5.3), that compete respectively with fresh and arbitrary sequences.

5.1. Aggregating sequences of experts
The problem of controlling the regret with respect to sequences of experts, known as tracking the
best expert, was introduced by Herbster and Warmuth (1998), who proposed the simple Fixed Share
algorithm with good regret guarantees. A key fact, first recognized by Vovk (1999), is that Fixed
Share, and in fact many other weight sharing algorithms (Koolen and de Rooij, 2008, 2013), can be
interpreted as the exponential weights on sequences of experts under a suitable prior. We will state
this result in the general form of Lemma 4, which implies the regret bound of Proposition 5.

Markov prior. If iT = (i1, . . . , iT ) is a finite sequence of experts, its predictions up to time
T are derived from those of the base experts i ∈ {1, . . . ,M} in the following way: xt(iT ) = xit,t
for 1 6 t 6 T . Given a prior distribution π = (π(iT ))iT , we could in principle consider the expo-
nentially weighted aggregation of sequences under this prior; however, such an algorithm would be
intractable even for moderately low values of T , since it would require to store and update O(MT )
weights. Fortunately, when π(i1, . . . , iT ) = θ1(i1) θ2(i2 | i1) · · · θT (iT | iT−1) is a Markov proba-
bility distribution with initial measure θ1 and transition matrices θt, 2 6 t 6 T , the exponentially
weighted aggregation under the prior π collapses to the efficient algorithm MarkovHedge.

Algorithm 2 MarkovHedge — Aggregation of sequences of experts under a Markov prior
1: Parameters: Learning rate η > 0, initial weights θ1 = (θ1(i))16i6M , and transition probabili-

ties θt =
(
θt(i | j)

)
16i,j6M for all t > 2.

2: Initialization: Set v1 = θ1.
3: for t = 1, 2, . . . do
4: Receive predictions xt ∈X M from the experts, and predict xt = vt · xt.
5: Observe yt ∈ Y , then derive the losses `t = `(xt, yt) and `i,t = `(xi,t, yt) and the posteriors

vmi,t =
vi,t e

−η `i,t∑M
j=1 vj,t e

−η `j,t
. (21)

6: Update the weights by vt+1 = θt+1 v
m
t , i.e.

vi,t+1 =

M∑
j=1

θt+1(i | j) vmj,t . (22)
7: end for

Remark 4 Algorithm MarkovHedge only requires to store and update O(M) weights. Due to the
matrix product (22), the update may take a O(M2) time; however, all the transition matrices we
consider lead to a simple update in O(M) time.

Lemma 4 For every T > 1, the forecasts of algorithm MarkovHedge coincide up to time T with
those of the exponential aggregation of finite sequences of experts iT = (i1, . . . , iT ) under the
Markov prior with initial distribution θ1 and transition matrices θ2, . . . ,θT .

Lemma 4 – proven in Appendix C – and Proposition 1 directly imply the following regret bound.

10
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Proposition 5 Algorithm MarkovHedge, with initial distribution θ1 and transition matrices θt,
guarantees the following regret bound: for every T > 1 and any sequence of experts (i1, . . . , iT ),

T∑
t=1

`t −
T∑
t=1

`it,t 6
1

η
log

1

θ1(i1)
+

1

η

T∑
t=2

log
1

θt(it | it−1)
. (23)

It is worth noting that the transition probabilities θt only intervene at step t in algorithm MarkovHedge,
and hence they can be chosen at this time.

Notable examples. In Appendix C, we discuss particular instances of MarkovHedge that lead to
well-known algorithms (such as Fixed Share), and recover their regret bounds using Proposition 5.

5.2. Application to sequences of fresh experts

We now explain how to specify the generic algorithm MarkovHedge in order to adapt it to the
growing experts setting. This adaptation relies on the “muting trick”: to obtain a strategy which is
well-defined for growing experts, one has to ensure that experts who do not predict have zero weight,
which amounts to saying that all weight is put to admissible sequences of experts. Importantly, this
is possible even when the numbers Mt are not known from the beginning, since the transition
matrices θt can be chosen at time t, when Mt is revealed.

We start in this section by designing an algorithm FreshMarkovHedge that compares to se-
quences of fresh experts; to achieve this, it is natural to design a prior that assigns full probability
to sequences of fresh experts. It turns out that we can recover an algorithm similar to the algo-
rithm GrowingHedge, with the same regret guarantees, through this seemingly different viewpoint.

Let π = (πi)i>1 be an unnormalized prior as in Section 4.2. For each M > 1, we denote
ΠM =

∑M
i=1 πi. We consider the following transition matrices θt in strategy MarkovHedge:

θ1(i) =
πi

ΠM1

1i6M1 ; θt+1(i | j) =
ΠMt

ΠMt+1

1i=j +
πi

ΠMt+1

1Mt+16i6Mt+1 (24)

for every i > 1, t > 1 and j ∈ {1, . . . ,Mt}. The other transition probabilities θt+1(i | j) for
j > Mt are irrelevant; indeed, a simple induction shows that vj,t = 0 for every j > Mt, so that the
instantiation of algorithm MarkovHedge with the transition probabilities (24) leads to the forecasts

xt =

Mt∑
i=1

vi,t xi,t (25)

(which do not depend on the undefined prediction of the experts i > Mt) where the weights
(vi,t)16i6Mt are recursively defined by vi,1 = πi

ΠM1
(1 6 i 6M1) and the update

vi,t+1 =
ΠMt

ΠMt+1

vmi,t (1 6 i 6Mt) ; vi,t+1 =
πi

ΠMt+1

(Mt + 1 6 i 6Mt+1) , (26)

where we set vmi,t =
vi,t e

−η `i,t∑Mt
j=1 vj,t e

−η `j,t
for 1 6 i 6Mt. We call this algorithm FreshMarkovHedge.

Theorem 6 Algorithm FreshMarkovHedge using weights π achieves the following regret bound:
for every T >1 and sequence of fresh experts iT =(i1, . . . , iT ) with shifts at times σ=(σ1, . . . , σk),

LT − LT (iT ) 6
1

η

k∑
j=0

log
1

πiσj
+

1

η

k∑
j=1

log ΠMσj−1 +
1

η
log ΠMT

. (27)

11
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Additionally, the time and space complexity of the algorithm at each time step t > 1 is O(Mt).

Proof For any sequence of fresh experts iT ∈ S
(f)
T (σ), replacing in the bound (23) of Proposition 5

the conditional probabilities θt+1(it+1 | it) by their values (defined by (24)), we get

LT − LT (iT ) 6
1

η

k∑
j=0

log

(
1

πiσj
ΠMσj

)
+

σj+1−1∑
t=σj+1

log
ΠMt

ΠMt−1

 =
1

η

k∑
j=0

log
ΠMσj+1−1

πiσj

which is precisely the desired bound (27).

Remark 5 The regret bound (27) of the FreshMarkovHedge algorithm against sequences of fresh
experts is exactly the same as the one of the GrowingHedge algorithm (20). This is not a coin-
cidence: the two algorithms are almost identical, except that expert i is introduced with a weight
πi/(

∑Mτi
i=1 πi) by FreshMarkovHedge and πie−η Lτi−1/(

∑Mτi
j=1 πje

−η Lj,τi−1) by GrowingHedge. In
the case of the logarithmic loss (with η = 1), these two weights are equal (see Remark 2), and hence
the strategies GrowingHedge and FreshMarkovHedge coincide.

5.3. Regret against arbitrary sequences of experts
We now consider the more ambitious objective of comparing to arbitrary admissible sequences of
experts. This can be done by using another choice of transition matrices, which puts all the weight
to admissible sequences of experts (and not just sequences of fresh experts).

Algorithm GrowingMarkovHedge instantiates MarkovHedge on the transition matrices

θ1(i) =
πi

ΠM1

1i6M1 ; θt+1(i | j) = αt+1
πi

ΠMt+1

+ (1− αt+1) θ
(f)
t+1(i | j) (28)

where θ(f)
t denote the transition matrices of algorithm FreshMarkovHedge. As before, this leads

to a well-defined growing experts algorithm which predicts xt =
∑Mt

i=1 vi,t xi,t, where the weights
(vi,t)16i6Mt are recursively defined by vi,1 = πi

ΠM1
(1 6 i 6M1) and the update

vi,t+1 = (1−αt+1)
ΠMt

ΠMt+1

vmi,t+αt+1
πi

ΠMt+1

(1 6 i 6Mt) ; vi,t+1 =
πi

ΠMt+1

(Mt+1 6 i 6Mt+1) ,

(29)
where again vmi,t =

vi,t e
−η `i,t∑Mt

j=1 vj,t e
−η `j,t

for 1 6 i 6Mt. In this case, Proposition 5 yields:

Theorem 7 Algorithm GrowingMarkovHedge based on the weights π and parameters (αt)t>2

achieves the following regret bound: for every T > 1, and every admissible sequence of experts
iT = (i1, . . . , iT ) with shifts at times σ = (σ1, . . . , σk),

LT − LT (iT ) 6
1

η


k∑
j=0

log
ΠMσj+1−1

πiσj
+

k1∑
j=1

log
1

ασ1
j

+
∑

26t6T : t6∈σ
log

1

1− αt

 . (30)

where σ0 = (σ0
1, . . . , σ

0
k0

) (resp. σ1 = (σ1
1, . . . , σ

1
k1

)) denotes the shifts to fresh (resp. incumbent)
experts, with k = k0 + k1. Moreover, it has a O(Mt) time and space complexity at each step t > 1.

Remark 6 Note that by choosing αt = 1
t , we have, since 1

1−1/t = t
t−1 ,

k1∑
j=1

log
1

ασ1
j

+
∑

26t6T : t6∈σ
log

1

1− αt
6

k1∑
j=1

log σ1
j +

T∑
t=2

log
t

t− 1
=

k1∑
j=1

log σ1
j + log T .

12
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Additionally, by setting πi = 1 the bound (30) becomes 1
η (
∑k

j=0 logMσj+1−1 +
∑k1

j=1 log σ1
j +

log T ), which is lower than 1
η (k+ 1) logMT + 1

η (k1 + 1) log T . We can also recover the bound (6)

by setting πi = 1
τimτi

, since in this case we have ΠMσj+1−1 6 ΠMT
6
∑T

t=1
1
t 6 1 + log T .

6. Combining growing experts and sequences of sleeping experts
Sections 4 and 5 studied the problem of growing experts using tools from two different settings
(specialists and sequences of experts). Drawing on ideas from Koolen et al. (2012), we show in this
section how to combine these two frameworks, in order to address the more challenging problem
of controlling the regret with respect to sparse sequences of experts in the growing experts setting.
Note that the refinement to sparse sequences of experts is particularly relevant in the context of a
growing experts ensemble, since in this context the total number of experts will typically be large.

6.1. Sleeping experts: generic result
The problem of comparing to sparse sequences of experts, or tracking a small pool of experts, is a
refinement on the problem of tracking the best expert. The seminal paper (Bousquet and Warmuth,
2002) proposed an ad-hoc strategy with essentially optimal regret bounds, the Mixing Past Posteri-
ors (MPP) algorithm (see also Cesa-Bianchi et al. (2012)). A full “bayesian” interpretation of this
algorithm in terms of the aggregation of “sleeping experts” was given by Koolen et al. (2012), which
enabled the authors to propose a more efficient alternative. Here, by reinterpreting this construction,
we propose a more general algorithm and regret bound (Proposition 8); this extension will be crucial
to adapt this strategy to the growing experts setting (Section 6.2).

Given a fixed set of experts {1, . . . ,M}, we call sleeping expert a couple (i, a) ∈ {1, . . . ,M}×
{0, 1}; we endow the set of sleeping experts with a specialist structure by deciding that (i, a)
is active if and only if a = 1, and that xt(i, 1) := xi,t is the prediction of expert i. A key
insight from Koolen et al. (2012) is to decompose the regret with respect to a sparse sequence
iT = (i1, . . . , iT ) of experts, taking values in the set {ep | 1 6 p 6 n}, in the following way:
T∑
t=1

(`t−`it,t) =
n∑
p=1

∑
t6T : it=ep

(`t−`ep,t) =
n∑
p=1

T∑
t=1

(`t−`t(ep, ap,t)) = n
∑
ιT

u(ιT )(LT−LT (ιT ))

where ap,t := 1it=ep , and u is the probability distribution on the sequences ιT of sleeping experts
which is uniform on the n sequences ιTp = (ep, ap,t)16t6T , p = 1, . . . , n. Note that in the second
equality we used the “abstention trick”, which attributes to inactive sleeping experts (ep, 0) the
prediction xt of the algorithm.

We can now aggregate sequences of sleeping experts under a Markov prior, given initial weights
θ1(i, a) and transition probabilities θt+1(it+1, at+1 | it, at), recalling that θt can be chosen at step
t. For convenience, we restrict here to transitions that only occur between sleeping experts (i, a)
with the same base expert, and denote θi,t(a | b) = θt(i, a | i, b) for a, b ∈ {0, 1}. This leads to the
algorithm SleepingMarkovHedge.

Remark 7 The structure of our prior is slightly more general than the one used by Koolen et al.
(2012), which considered priors on couples (i, aT ) with an independence structure: π(i, aT ) =
π(i)π(aT ), with π(aT ) a Markov distribution, which amounts to saying that the transition prob-
abilities θi,t(a | b) could not depend on i. This additional flexibility will enable in Section 6.2 the
“muting trick”, which allows to convert SleepingMarkovHedge to the growing experts setting.
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Additionally, allowing transitions between sleeping experts (i, 1) and (j, 1) for i 6= j may be
interesting in its own right, e.g. if one seeks to control at the same time the regret with respect to
sparse and non-sparse sequences of experts.

Algorithm 3 SleepingMarkovHedge: sequences of sleeping experts under a Markov chain prior
1: Parameters: Learning rate η > 0, (normalized) prior π on the experts, initial wake/sleep

probabilities θi,1(a), transition probabilities θi,t =
(
θi,t(a | b)

)
a,b∈{0,1} for t > 2, 1 6 i 6M .

2: Initialization: Set v1(i, a) = πi θi,1(a) for i = 1, . . . ,M and a ∈ {0, 1}.
3: for t = 1, 2, . . . do
4: Receive predictions xt ∈X M from the experts, and predict

xt =

∑M
i=1 vt(i, 1)xi,t∑M
i=1 vt(i, 1)

. (31)

5: Observe yt ∈ Y , then derive the losses `t(i, 0) = `t = `(xt, yt), `t(i, 1) = `i,t = `(xi,t, yt)
and the posteriors

vmt (i, a) =
vt(i, a) e−η `t(i,a)∑

i′,a′ vt(i
′, a′) e−η `t(i′,a′)

. (32)

6: Update the weights by
vt+1(i, a) =

∑
b∈{0,1}

θi,t+1(a | b) vmt (i, b) . (33)

7: end for

Proposition 8 Strategy SleepingMarkovHedge guarantees the following regret bound: for each
sequence iT of experts taking values in the pool {ep | 1 6 p 6 n}, denoting ap,t = 1it=ep

LT − LT (iT ) 6
1

η

n∑
p=1

(
log

1/n

πep
+ log

1

θep,1(ap,1)
+

T∑
t=2

log
1

θep,t(ap,t | ap,t−1)

)
. (34)

The proof of Proposition 8 is given in Appendix D.

6.2. Sparse shifting regret for growing experts

We show here how to instantiate algorithm SleepingMarkovHedge in order to adapt it to the growing
experts setting. Again, we use a “muting trick” which attributes a zero weight to experts that have
not entered.

Let us consider prior weights π = (πi)i>1 on the experts, which may be unnormalized and
chosen at entry time. Let αt, βt ∈ (0, 1) for t > 2. We set θi,1(1) = 1

2 for i = 1, . . . ,M1 and 0 oth-
erwise; moreover, for every t > 1, we take θi,t+1(1 | ·) = 0 for i > Mt+1 (recall that θi,t+1 can be
chosen at step t+ 1), θi,t+1(1 | ·) = 1

2 if Mt + 1 6 i 6Mt+1, and for i 6Mt: θi,t+1(0 | 1) = αt+1,
θi,t+1(1 | 0) = βt+1. The algorithm obtained with these choices, which we call GrowingSleeping-
MarkovHedge, is well-defined and predicts xt = (

∑Mt
i=1 vt(i, 1)xi,t)/(

∑Mt
i=1 vt(i, 1)), where the

weights (vt(i, a))16i6Mt, a∈{0,1} are defined by v1(i, a) = 1
2 πi (1 6 i 6M1) and by the update

vt+1(i, a) =
∑

b∈{0,1}

θi,t+1(a | b) vmt (i, b) (1 6 i 6Mt) ; vt+1(i, a) =
1

2
πi (Mt + 1 6 i 6Mt+1) ,

with vmt (i, a) = vt(i, a) e−η `t(i,a)/
∑Mt

i=1

∑
a′∈{0,1} vt(i

′, a′) e−η `t(i
′,a′) for 1 6 i 6Mt.
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Theorem 9 Algorithm GrowingSleepingMarkovHedge guarantees the following: for each T > 1
and any sequence iT of experts taking values in the pool {ep | 1 6 p 6 n}, denoting ap,t = 1it=ep

LT − LT (iT ) 6
1

η

n∑
p=1

log
ΠMT

/n

πep
+

1

η
n log 2 +

1

η

T∑
t=2

[
log

1

1− αt
+ (n− 1) log

1

1− βt

]

+
1

η

k∑
j=1

(
log

1

ασj
+ log

1

βσj

)
(35)

where σ = σ1 < · · · < σk denote the shifting times of iT . Moreover, the algorithm has a O(Mt)
time and space complexity at step t, for every t > 1.

In particular, Theorem 9 enables to recover the bound (7) for αt = βt = 1
t and πi = 1

τimτi
.

Proof Note that algorithm GrowingSleepingMarkovHedge is invariant under any change of prior
π ← λπ due to the renormalisation in the formula defining xt. In particular, setting λ = 1/ΠMT

,
we see that it coincides up to time T with algorithm SleepingMarkovHedge with set of experts
{1, . . . ,MT } and (normalized) prior weights πi/ΠMT

. The bound (35) is now a consequence of the
general regret bound (34), by substituting for the values of θi,t+1.

Conclusion. In this paper, we extended aggregation of experts to the growing expert setting, where
novel experts are made available at any time. In this context when the set of experts itself varies, it is
natural to seek to track the best expert; different comparison classes of increasing complexity were
considered. In order to obtain efficient algorithms with a per-round complexity linear in the current
number of experts, we started with generic reformulation of existing algorithms for fixed expert set,
and identified two orthogonal techniques (the “abstention trick” from the specialist literature, and
the “muting trick”) to adapt them to sequentially incoming forecasters. Combined with a proper
tuning of the parameters of the prior, this enabled us to obtain tight regret bounds, adaptive to the
parameters of the comparison class. Along the way, we recovered several key results from the
literature as special case of our analysis, in a somewhat unified approach.

Although we considered the exp-concave assumption to avoid distracting the reader from the
main challenges of the growing expert setting, extending our results to the bounded convex case
in which the parameter η needs to be adaptively tuned seems possible and is left for future work.
In addition, building on the recent work of Jun et al. (2017) might bring further improvements in
this case. Another natural extension of our work would be to address the same questions in the
framework of online convex optimization (Shalev-Shwartz, 2012; Hazan, 2016), when the gradient
of the loss function is made available at each time step.

Acknowledgments

This work has been supported by the French Agence Nationale de la Recherche (ANR), under
grant ANR-16- CE40-0002 (project BADASS), and Inria. JM acknowledges support from École
Polytechnique fund raising – Data Science Initiative.

References

Olivier Bousquet and Manfred K. Warmuth. Tracking a small set of experts by mixing past posteri-
ors. The Journal of Machine Learning Research, 3:363–396, 2002.

15



MOURTADA MAILLARD

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge University
Press, Cambridge, New York, USA, 2006.

Nicolò Cesa-Bianchi, Pierre Gaillard, Gábor Lugosi, and Gilles Stoltz. Mirror descent meets fixed
share (and feels no regret). In Advances in Neural Information Processing Systems 25, pages
980–988. Curran Associates, Inc., 2012.

Alexey Chernov and Vladimir Vovk. Prediction with expert evaluators’ advice. In Proceedings of
the 20th international conference on Algorithmic learning theory, ALT ’09, pages 8–22, Berlin,
Heidelberg, 2009. Springer-Verlag.

Steven de Rooij, Tim van Erven, Peter Grünwald, and Wouter M. Koolen. Follow the leader if you
can, hedge if you must. Journal of Machine Learning Research, 15:1281–1316, 2014.

Yoav Freund, Robert E. Schapire, Yoram Singer, and Manfred K. Warmuth. Using and combining
predictors that specialize. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing (STOC), pages 334–343, 1997.

Eyal Gofer, Nicolò Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. Regret minimization for
branching experts. In Proceedings of the 26th Annual Conference on Learning Theory (COLT),
pages 618–638, 2013.

László Györfi, Gábor Lugosi, and Gustáv Morvai. A simple randomized algorithm for sequential
prediction of ergodic time series. IEEE Transactions on Information Theory, 45(7):2642–2650,
1999.

András Gyorgy, Tamás Linder, and Gábor Lugosi. Efficient tracking of large classes of experts.
IEEE Transactions on Information Theory, 58(11):6709–6725, 2012.

David Haussler, Jyrki Kivinen, and Manfred K. Warmuth. Sequential prediction of individual se-
quences under general loss functions. IEEE Transactions on Information Theory, 44(5):1906–
1925, 1998.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization,
2(3-4):157–325, 2016.

Elad Hazan and Comandur Seshadhri. Efficient learning algorithms for changing environments. In
Proceedings of the 26th annual international conference on machine learning, ICML ’09, pages
393–400, 2009.

Mark Herbster and Manfred K. Warmuth. Tracking the best expert. Machine Learning, 32(2):
151–178, August 1998.

Kwang-Sung Jun, Francesco Orabona, Stephen Wright, and Rebecca Willett. Improved Strongly
Adaptive Online Learning using Coin Betting. In Proceedings of the 20th International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), volume 54, pages 943–951, 2017.

Wouter M. Koolen and Steven de Rooij. Combining expert advice efficiently. In Proceedings of the
21st Annual Conference on Learning Theory (COLT), pages 275–286, 2008.

16



EFFICIENT TRACKING OF A GROWING NUMBER OF EXPERTS

Wouter M. Koolen and Steven de Rooij. Universal codes from switching strategies. IEEE Transac-
tions on Information Theory, 59(11):7168–7185, November 2013.

Wouter M. Koolen and Tim van Erven. Second-order quantile methods for experts and combinato-
rial games. In Proceedings of the 28th Annual Conference on Learning Theory (COLT), pages
1155–75, 2015.

Wouter M. Koolen, Dmitry Adamskiy, and Manfred K. Warmuth. Putting bayes to sleep. In Ad-
vances in Neural Information Processing Systems 25, pages 135–143. Curran Associates, Inc.,
2012.

Wouter M. Koolen, Tim van Erven, and Peter Grünwald. Learning the learning rate for prediction
with expert advice. In Advances in Neural Information Processing Systems 27, pages 2294–2302.
Curran Associates, Inc., 2014.

Haipeng Luo and Robert E. Schapire. Achieving all with no parameters: Adaptive normalhedge.
In Proceedings of the 28th Annual Conference on Learning Theory (COLT), pages 1286–1304,
2015.

Scott McQuade and Claire Monteleoni. Global climate model tracking using geospatial neighbor-
hoods. In AAAI, 2012.

Neri Merhav and Meir Feder. Universal prediction. IEEE Transactions on Information Theory, 44:
2124–2147, 1998.

Claire Monteleoni, Gavin A Schmidt, Shailesh Saroha, and Eva Asplund. Tracking climate models.
Statistical Analysis and Data Mining, 4(4):372–392, 2011.

Boris Y. Ryabko. Twice-universal coding. Problems of information transmission, 20(3):173–177,
1984.

Boris Y. Ryabko. Prediction of random sequences and universal coding. Problems of information
transmission, 24(2):87–96, 1988.

Shai Shalev-Shwartz. Online learning and online convex optimization. Found. Trends Mach. Learn.,
4(2):107–194, February 2012.

Cosma Rohilla Shalizi, Abigail Z. Jacobs, Kristina Lisa Klinkner, and Aaron Clauset. Adapting to
non-stationarity with growing expert ensembles. arXiv preprint arXiv:1103.0949, 2011.

Gil Shamir and Neri Merhav. Low-complexity sequential lossless coding for piecewise-stationary
memoryless sources. IEEE transactions on information theory, 45(5):1498–1519, 1999.

Gilles Stoltz. Agrégation séquentielle de prédicteurs : méthodologie générale et applications à la
prévision de la qualité de l’air et à celle de la consommation électrique. Journal de la Société
Française de Statistique, 151(2):66–106, 2010.

Vladimir Vovk. A game of prediction with expert advice. Journal of Computer and System Sciences,
56(2):153–173, 1998.

17



MOURTADA MAILLARD

Vladimir Vovk. Derandomizing stochastic prediction strategies. Machine Learning, 35(3):247–282,
1999.

Frans M. J. Willems. Coding for a binary independent piecewise-identically-distributed source.
IEEE transactions on information theory, 42(6):2210–2217, 1996.

Olivier Wintenberger. Optimal learning with Bernstein online aggregation. Machine Learning, 106
(1):119–141, 2017.

Appendix A. Proof of Proposition 1

Proof Since the loss function is η-exp-concave and xt =
∑M

i=1 vi,t xi,t, we have

e−η `(xt,yt) >
M∑
i=1

vi,t e
−η `(xi,t,yt), i.e. `t 6 −

1

η
log

(
M∑
i=1

vi,t e
−η `i,t

)
.

This yields, introducing the posterior weights vmi,t defined by (9),

`t − `i,t 6 −
1

η
log

 M∑
j=1

vj,t e
−η `j,t

− `i,t =
1

η
log

(
e−η `i,t∑M

j=1 vj,t e
−η `j,t

)
=

1

η
log

vmi,t
vi,t

.

Now recalling that the exponentially weighted average forecaster uses vt+1 = vmt , this writes:
`t − `i,t 6 1

η log
vi,t+1

vi,t
which, summing over t = 1, . . . , T , yields LT − Li,T 6 1

η log
vi,T+1

vi,1
. Since

vi,1 = πi and vi,T+1 6 1, this proves (10); moreover, noting that log
vi,T+1

vi,1
= log ui

vi,1
− log ui

vi,T+1
,

this implies
M∑
i=1

ui (LT − Li,T ) 6
1

η

M∑
i=1

ui log
vi,T+1

vi,1
=

1

η

(
∆(u ‖v1)−∆(u ‖vT+1)

)
,

which establishes (11) since v1 = π and ∆(u ‖vT+1) > 0.

Remark 8 We can recover the bound (10) from inequality (11) by considering u = δi. Conversely,
inequality (10) implies, by convex combination,

LT −
M∑
i=1

ui Li,T 6
1

η

M∑
i=1

ui log
1

πi
;

inequality (11) is actually an improvement on this bound, which replaces the terms log 1
πi

by log ui
πi

.
Following Koolen et al. (2012), this refinement is used in Section 6.1 to obtain a tighter regret bound.

Appendix B. Proof of Theorem 3

Theorem 3 is in fact a corollary of the more general Proposition 10, valid in the specialist setting.

Proposition 10 Assume we are given a set M of specialists, as well as a positive weight function
π : M → R∗+. Assume that, at each time step t > 1, the set At of active specialists is finite. Then,
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denoting A6t =
⋃

16s6tAs, the aggregation of specialists4

xt =

∑
i∈At π(i) e−η Li,t−1 xi,t∑
i∈At π(i) e−η Li,t−1

(36)

achieves the following regret bound: for each T > 1 and i ∈M , we have∑
t6T : i∈At

(`t − `i,t) 6
1

η
log

(
1

π(i)

∑
j∈A6T

π(j)

)
. (37)

Proof of Proposition 10 Fix T > 1, and denote ΠT :=
∑

i∈A6T
π(i). For t = 1, . . . , T , the

forecast (36) may be rewritten as

xt =

∑
i∈At

π(i)
ΠT

e−η Li,t−1 xi,t∑
i∈At

π(i)
ΠT

e−η Li,t−1

which corresponds precisely to the aggregation of the set of specialists A6T with prior weights
π(i)/ΠT and active specialists At ⊂ A6T (up to time T ). (37) now follows from Proposition 2.

Proof of Theorem 3 It suffices to notice that the weights of GrowingHedge are, for i 6 Mt,
wi,t = πi e

−ηLi,t−1 with Li,t−1 = Lτi−1 +
∑t

s=τi
`i,s; hence, the forecasts of GrowingHedge are

those of equation (36), and we can apply Proposition 10.

Appendix C. Proof of Lemma 4 and instantiations of algorithm MarkovHedge

Proof of Lemma 4 Denote, for each t > 1, πt(i1, . . . , it) = θ1(i1) θ2(i2 | i1) · · · θt(it | it−1).
Let T > 1 be arbitrary. We need to show that the predictions xt of the exponentially weighted
aggregation of sequences of experts iT under the prior πT at times t = 1, . . . , T coincide with those
of algorithm MarkovHedge.

First note that, by definition and since Lt−1(iT ) =
∑t−1

s=1 `is,s =: Lt−1(it−1) does not depend
on iTt = (it, . . . , iT ), we have for 1 6 t 6 T

xt =

∑
iT π

T (iT ) e−η Lt−1(iT ) xt(i
T )∑

iT π
T (iT ) e−η Lt−1(iT )

=

∑
it,iTt+1

πT (it, iTt+1) e−η Lt−1(it−1) xit,t∑
it,iTt+1

πT (it, iTt+1) e−η Lt−1(it−1)

=
(?)

∑
it π

t(it) e−η Lt−1(it−1) xit,t∑
it π

t(it) e−η Lt−1(it−1)
=

∑
it−1,i π

t(it−1, i) e−η Lt−1(it−1) xi,t∑
it−1,i π

t(it−1, i) e−η Lt−1(it−1)

where (?) is a consequence of the identity
∑

iTt+1
πT (it, iTt+1) = πt(it). Hence, denoting wt(it) :=

πt(it) e−ηLt−1(it−1), we have

xt =

∑
i

∑
it−1 wt(i

t−1, i)xi,t∑
i

∑
it−1 wt(it−1, i)

=

∑M
i=1wi,t xi,t∑M
i=1wi,t

=
M∑
i=1

vi,t xi,t

where we set wi,t :=
∑

it−1 πt(it−1, i) e−ηLt−1(it−1) and vi,t := wi,t/
(∑M

j=1wj,t
)
. To conclude the

proof, it remains to show that the weights vt are those computed by algorithm MarkovHedge.

4. Denoting, as in equation (14), Li,t =
∑
s6t : i∈As `i,s +

∑
s6t : i6∈As `s for each specialist i and t > 1.
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We proceed by induction on t > 1. For t = 1, we have for every i = 1, . . . ,M , wi,1 = w1(i) =
π1(i) = θ1(i) and hence vi,1 = θ1(i), i.e. v1 = θ1. Moreover, for every t > 1, the identity
πt+1(it+1) = πt(it) θt+1(it+1 | it) implies

wt+1(it+1) = πt+1(it+1) e−ηLt(i
t)

= θt+1(it+1 | it)πt(it) e−ηLt−1(it−1) e−η `it,t

= θt+1(it+1 | it)wt(it) e−η `it,t

i.e., for every i, j and it−1, wt+1(it−1, j, i) = θt+1(i | j)wt(it−1, j) e−η `j,t . Summing over it−1 and
j, this yields:

wi,t+1 =

M∑
j=1

θt+1(i | j)wj,t e−η `j,t . (38)

Summing (38) over i = 1, . . . ,M gives
∑M

i=1wi,t+1 =
∑M

j=1wj,t e
−η `j,t (since

∑M
i=1 θt+1(i | j) = 1)

and therefore

vi,t+1 =
wi,t+1∑M
j=1wj,t+1

=

∑M
j=1 θt+1(i | j)wj,t e−η `j,t∑M

j=1wj,t e
−η `j,t

=

∑M
j=1 θt+1(i | j) vj,t e−η `j,t∑M

j=1 vj,t e
−η `j,t

=

M∑
j=1

θt+1(i | j) vmj,t

where vmt is the posterior distribution, defined by equation (9). This corresponds precisely to the
update of the MarkovHedge algorithm, which completes the proof.

We now instantiate the generic algorithm MarkovHedge and Proposition 5 on specific choices
of prior weights and transition probabilities. This enables to recover a number of results from the
literature. For concreteness, we take θ1 = 1

M 1.

Corollary 11 (Fixed share) Setting θt(i | j) = (1 − α)1i=j + α 1
M with α ∈ (0, 1), this leads to

the Fixed-Share algorithm of Herbster and Warmuth (1998) with update vt+1 = (1−α)vmt +α 1
M 1

and regret bound
T∑
t=1

`t −
T∑
t=1

`it,t 6
k + 1

η
logM +

k

η
log

1

α
+
T − k − 1

η
log

1

1− α
, (39)

where k = k(iT ) denotes the number of shifts, 1 < σ1 < · · · < σk 6 T these shifts (such that
iσj 6= iσj−1) and σ0 = 1. When T and k are fixed and known, this bound is minimized by choosing
α = k

T−1 and becomes, denotingH(p) = −p log p− (1−p) log(1−p) the binary entropy function,

k + 1

η
logM +

T − 1

η
H
( k

T − 1

)
6
k + 1

η
logM +

k

η
log

T − 1

k
+
k

η
. (40)

Remark 9 The quantity of equation (40), i.e. the bound on the regret of fully tuned Fixed Share
algorithm, is essentially equal to the optimal bound 1

η log
(
T−1
k

)
Mk+1 ≈ k+1

η logM + k
η log T−1

k ,
obtained by aggregating all sequences of experts with at most k shifts (which would require to
maintain a prohibitively large number of weights).

Corollary 12 (Decreasing share) Consider the special case of algorithm MarkovHedge where
θt(i | j) = (1 − αt)1i=j + αt

M , so that the update becomes vt+1 = (1 − αt+1)vmt + αt+1

M 1. For
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every T > 1, 0 6 k 6 T , and every sequence of experts iT = (i1, . . . , iT ) with k shifts at times
σ1 < · · · < σk,

T∑
t=1

`t −
T∑
t=1

`it,t 6
k + 1

η
logM +

1

η

k∑
j=1

log
1

ασj
+

1

η

T∑
t=2

log
1

1− αt
(41)

In the special case5 when αt = 1
t , this bound becomes, for every T , k and iT :

T∑
t=1

`t −
T∑
t=1

`it,t 6
k + 1

η
logM +

1

η

k∑
j=1

log σj +
1

η
log T 6

k + 1

η
logM +

k + 1

η
log T . (42)

Remark 10 The result of Corollary 12 is worth emphasizing: at no computational overhead, the
use of decreasing transition probabilities gives a bound essentially in 1

η (k + 1) logM + 1
ηk log T

valid for every T and k, which is close to the bound 1
η (k+1) logM+ 1

ηk log T
k one gets by optimally

tuning α as a function of T and k in the Fixed Share algorithm, particularly when k � T (in this
latter case of rare shifts, the first, sharper bound of equation (42) is even more appealing).

Proof of corollaries 11 and 12 We consider the Decreasing Share algorithm, with time-varying
transition probabilities αt ∈ (0, 1) (the Fixed Share algorithm corresponds to the special case αt =
α). Let iT = (i1, . . . , iT ) be a sequence of experts with shifts at times σ1 < · · · < σk. By
Proposition 5, we have

T∑
t=1

`t −
T∑
t=1

`it,t 6
1

η
log

1

1/M
+

1

η

k∑
j=1

log
1

ασj/M
+

1

η

∑
t6=σj

log
1

1− ασj + ασj/M

6
k + 1

η
logM +

1

η

k∑
j=1

log
1

ασj
+

1

η

∑
t6=σj

log
1

1− ασj

Corollary 11 directly follows by taking αt = α in the above inequality, whereas the bound (41) of
Corollary 12 is obtained by bounding

∑
t6=σj log 1

1−αt 6
∑T

t=2 log 1
1−αt . In the case when αt = 1

t ,
we recover (42) by substituting for αt and noting that

T∑
t=2

log
1

1− 1/t
=

T∑
t=2

log
t

t− 1
= log T . (43)

Appendix D. Proof of Proposition 8

Proof Since xt(i, 1) = xi,t and xt(i, 0) = xt, equation (31) implies that the forecast xt of Sleep-
ingMarkovHedge satisfies:

xt =

M∑
i=1

∑
a∈{0,1}

vt(i, a)xt(i, a) .

Hence, SleepingMarkovHedge reduces to algorithm MarkovHedge over the sleeping experts, i.e.
(by Lemma 4, up to time T ) to the exponentially weighted aggregation of sequences of sleeping

5. Which we consider because of the simplicity of the bound as well as its proof, involving a telescoping simplification;
it is akin to Theorem 10 of Koolen and de Rooij (2013), which uses αt = 1− e−c/t.
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experts under the Markov prior π((i, at)16t6T ) = θi,1(a1)
∏T
t=2 θi,t(at | at−1) (and 0 for other

sequences). Hence, if u is the uniform probability on the n sequences (ep, ap,t)16t6T , 1 6 p 6 n,
we have by Proposition 1:∑

ιT

u(ι) (LT − LT (ιT )) 6
1

η
∆(u ‖π) =

1

η

1

n

n∑
p=1

log
1/n

π((ep, ap,t)16t6T )
(44)

As shown in the reformulation of the regret with respect to sparse sequences of experts of Sec-
tion 6.1, the left hand side of equation (44) equals 1

n(LT − LT (iT )). The desired regret bound (34)
follows by substituting for π in the right-hand side.

Appendix E. Uniform bounds and optimality

In this section, we provide simple bounds derived from Theorems 3, 6, 7 and 9 that are not quite
as adaptive to the parameters of the comparison class as the ones provided in Section 2, but are
more uniform and hence more interpretable. We then discuss the optimality of these bounds, by
relating them either to theoretical lower bounds or to information-theoretic upper bounds (obtained
by naively aggregating all elements of the comparison class, which is computationally prohibitive).

Constant experts Consider the algorithm GrowingHedge with the uniform (unnormalized)
prior: πi = 1 for each i > 1. By Theorem 3, this algorithm achieves the regret bound

1

η
logMT

with respect to each constant expert.

This regret bound cannot be improved in general: indeed, consider the logarithmic loss on N∗,
defined by `(x, y) = − log x(y) for every y ∈ N∗ and every probability distribution x on N∗. Fix
T > 1, and consider the sequence yt = xi,t = 1 (1 6 t < T , 1 6 i 6 Mt) and yt ∈ {1, . . . ,MT }
and xi,T = i for i = 1, . . . ,MT . For each i = 1, . . . ,MT , we have sup16i6MT

(LT − Li,T ) =

sup16i6MT
− log xt(yt)

xi,t(yt)
= − log xt(yt). Now whatever xt is, there exists yt ∈ {1, . . . ,MT } such

that xt(yt) 6 1
MT

(since xt sums to 1). Since yt is picked by an adversary after xt is chosen, the
adversary can always ensure a regret of at least logMT .

Fresh sequences of experts By Theorems 3 and 6, algorithms GrowingHedge and Fresh-
MarkovHedge with a uniform prior (πi = 1 for each i > 1) achieve the regret bound

LT − LT (iT ) 6
1

η

k∑
j=1

logMσj−1 +
1

η
logMT

for every sequence iT of fresh experts with shifts at times σ = (σ1, . . . , σk). By the same argument
as above, this bound cannot be improved in general.

Arbitrary admissible sequences of experts By Theorem 7, algorithm GrowingMarkovHedge
with uniform prior π and transition probabilities αt = 1

t achieves, for every admissible sequence iT

LT−LT (iT ) 6
1

η

k∑
j=0

logMσj+1−1+
1

η

k1∑
j=1

log σ1
j +

1

η
log T 6

1

η
(k+1) logMT +

1

η
(k1+1) log T .
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where σ0 = (σ0
1, . . . , σ

0
k0

) (resp. σ1 = (σ1
1, . . . , σ

1
k1

)) denotes the shifts to fresh (resp. incumbent)
experts, with k = k0 + k1.

This simple bound is close to the information-theoretic bound obtained by aggregating all ad-
missible sequences of experts: indeed, the number of such sequences is bounded by (with equality
if MT = M1) Mk+1

T

(
T−1
k1

)
(an admissible sequence is determined by its switches to fresh experts –

at most Mk0+1
T possibilities – and its switches to incumbent experts – at most Mk1

T possibilities for
the choices of the experts, and at most

(
T−1
k1

)
choices for the switches to incumbent experts). The

regret bound corresponding to the aggregation of this large expert class is therefore of order

1

η
logMk+1

T

(
T − 1

k1

)
≈ 1

η
(k + 1) logMT +

1

η
k1 log

T − 1

k1
,

which is close to the bound of GrowingHedge, especially if k1 � T .

Sparse admissible sequences Finally, Theorem 9 implies that algorithm GrowingSleeping-
MarkovHedge, with uniform weights π and transition probabilities αt = βt = 1

t log t , has a regret
bound of

LT − LT (iT ) 6
1

η
n log

MT

n
+

1

η
n(log 2 + cT log log T ) +

2

η
k log T +

1

η
2k log log T .

for any sparse admissible sequence iT with at most k shifts and taking values in a pool of n experts,
where cT := (log log T )−1

∑T
t=2 log 1

1−αt −→T→∞ 1. Again, for k � T , this is close to the
information-theoretic upper bound obtained by aggregating all sparse sequences with k shifts in a
pool of n experts, of approximately n log MT

n +(k+1) log n+k log T
k . The main difference, namely

the doubling of the term k log T in the regret bound of GrowingSleepingMarkovHedge, is not spe-
cific to the growing experts setting, and also appears in the context of a fixed set of experts (Bousquet
and Warmuth, 2002; Koolen et al., 2012).
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