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Abstract Complex media have gained interest in microwave

andmillimeter-wave devices. They display some interesting char-

acteristics such as, for instance, tunability and controlled filtering

capacity. However, such media are generally very complex as

they can be fully nonhomogeneous; frequency dependent, aniso-

tropic, time dependent, or chiral. This requires simulation tech-

niques capable of solving Maxwell’s equations accounting for

suchmedia. Also, apart comparisonwith rather difficult measure-

ment, canonical solutions are not available for validation. In this

paper, the concept of transformation optics (TO) is presented as a

systematic tool to construct computational problems involving

complex media for which the analytical solution is known.

Several examples are shown for validation of a new

transmission-line matrix (TLM) cell that model complex media.

Keywords Transformation optics . Complex linear media .

Coordinate transformation . Transmission linematrixmethod

(TLM) . Full-wavemethods

1 Introduction

Simple electrodynamic problem usually includes media that

are defined by three electromagnetic parameters, namely, per-

mittivity, permeability, and conductivity; all of them are pos-

itive constant scalars [1]. However, if any of these parameters

violate the above assumption, the material is said to be com-

plex. The complexity of the linear medium can manifest itself

by possessing one or more properties such as inhomogeneity,

dispersion, anisotropy, chirality, time varying, etc. [2].

An important issue that appears once we develop an

electromagnetic (EM) simulator that can handle such

complex media is to test and validate this solver. This

can be a very difficult task due to the lack of analytical

canonical examples that include general complex media

in the literature.

In this paper, we present the concept of transformation optics

as a systematic procedure for constructing computational prob-

lems including linear complex media, for which the analytical

solutions are known. This technique is based on transforming a

computational problem including simple media in an original

computational coordinate system, into a new computational

problem including complex media in a new coordinate system.

In Section 2, we present the mathematical basis of this ap-

proach. In Section 3, we present three numerical experiments

for computational domains containing complex media to show

the validity of the TLM model [3] for complex media. For

comparison, analytical solutions are considered as references.

2 Mathematical model

2.1 Evolution equations for complex linear media

Maxwell’s equations for general linear dispersive media

which can be written in time domain as [2, 3]:
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where χe and χm are the electric and magnetic susceptibility

tensors, respectively, σe; σm are the electric and magnetic

conductivities tensors, ξ and ζ are the chirality (the electro-

magneto coupling factors [3]) tensors, respectively, and * is

the time domain convolution process.

2.2 Mapping computational problems between different

coordinate systems

Transformation optics is a collection of theory that gov-

erns the mapping of computational problems in one do-

main (with specific coordinate system) into another one

in a different coordinate system [4, 5]. This provides us

with mathematical tools to study the same computation-

al problem in different coordinate systems. However,

any change in the coordinate system will directly impact

on the media properties inside the computational domain

as shown in Fig. 1.

In general, after applying the coordinate transformation ϕ,

two impacts on the original computational domain occur:

The geometry changes according to the map of coordinate

transformation ϕ.

The material property tensors are modified according to the

Jacobian Λ of the transformation ϕ as presented in Table 1.

3 Results and discussions

In this section, we present three numerical experiments to

show the validity of our approach where we used TLM nu-

merical method to do the simulations. In all experiments, we

show the results of the problem in the original computational

domain, the transformed domain, and compare with the ana-

lytical solutions.

3.1 Rotation of a PEC cylindrical cavity

In this example, we exploit the previously mentioned

procedure to create an example of a structure that

contains anisotropic media with non-diagonal tensor.

The analytical solution of this example is already

known and will be used for comparisons with numerical

results obtained by an electromagnetic solver developed

on TLM [3].

Initially, we consider a perfectly conducting (PEC) cylin-

drical cavity of radius 18 mm and height of 6 mm filled by an

anisotropic medium defined by the following constitutive pa-

rameters:

εr ¼
εx 0 0

0 εy 0

0 0 εz

0

@

1

A ; μr ¼
μx 0 0

0 μy 0

0 0 μz

0

@

1

A ð2Þ

Now, one applies the following coordinate transformation

(rotation around the z-axis):

x
0

y
0

z
0

0

@

1

A ¼
cos ϕð Þ −sin ϕð Þ 0

sin ϕð Þ cos ϕð Þ 0

0 0 1

0

@

1

A

x

y

z

0

@

1

A ð3Þ

According to the rules of Table 1, one can obtain the per-

mittivity and permeability expression in the new coordinate

system:

ε ¼
cos2 ϕð Þ εx þ sin2 ϕð Þ εy sin ϕð Þcos ϕð Þεy−sin ϕð Þcos ϕð Þεx 0

sin ϕð Þcos ϕð Þεy−sin ϕð Þcos ϕð Þεx sin2 ϕð Þ εx þ cos2 ϕð Þ εy 0

0 0 εz

0

@

1

A

ð4aÞ

μ ¼
cos2 ϕð Þ μx þ sin2 ϕð Þ μy sin ϕð Þcos ϕð Þμy−sin ϕð Þcos ϕð Þμx 0

sin ϕð Þcos ϕð Þμy−sin ϕð Þcos ϕð Þμx sin2 ϕð Þ μx þ cos2 ϕð Þ μy 0

0 0 μz

0

@

1

A

ð4bÞ

In reality, nothing has changed (just rotating the cylinder

around its axis). However, if one looks from the new coordi-

nate system perspective, it is possible to use the new material

properties (4a) and (4b) and maintain the same geometry (be-

cause of its invariance with the ϕ angle).

Fig. 1 Mapping between

different coordinate systems
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As an example, we assume that the cylindrical cavity

is filled by an anisotropic medium with the following

diagonal tensors (original state before rotation):

εr ¼
3 0 0

0 1 0

0 0 2

0

@

1

A ; μr ¼
3 0 0

0 1 0

0 0 2

0

@

1

A ð5Þ

In this experiment, we used a regular mesh with cu-

bic cells. To maintain a negligible level of numerical

dispersion, we used the cell size Δl = 0.3 mm (λ0/50)

which provides a sufficiently fine discretization to min-

imize the stair-case effect and to maintain a negligible

level of dispersion. To limit the cylinder volume, we

used PEC cubic cells at its boundaries. Consequently,

the time step used was Δt = 0.5 ps. For time excitation,

one applied a delta Dirac’s function at a random point

inside the cavity with a polarization in z-direction, and

we ran the experiment for 20,000 iterations until the

modes were established. Note that in the original sys-

tem, cylinder rotations do not change the mode reso-

nance values. Thus, resonant frequencies are computed

analytically for reference and with the TLM as Λ is the

identity matrix for 0° angle only in the original domain.

However, if the resonance values are constant with the

rotation angle, Λ differs from identity matrix for other

angles in the transformed domain. Also, note that exci-

tations are also transformed according to Table 1.

However, it is not relevant for eigenvalue problems as

modes are independent on the excitation as long as they

can be excited.

Table 2 shows a comparison of the first resonant modes for

different rotation angles as compared to the analytical solution

known for the cavity filled by the medium characterized by

tensors in (5).

As we can see, results produced by the TLM solver are

very accurate. Hence, these results validate that the solver is

working correctly in case of non-diagonal tensor of an aniso-

tropic media.

3.2 Deformation of a PEC spherical resonator

In this numerical experiment, we use TO to verify again the

accuracy of the TLM model for another complex media.

Consider the conducting sphere of radius 15 cm, as shown

in Fig. 2a, filled by a simple nonmagnetic dielectric with

εr = 2.0.

Now, we assume that the sphere is deformed to the

ellipsoid shown in Fig. 2b according to the following

coordinate transformation:

x
0

y
0

z
0

0

@

1

A

→

2x

y

z

0

@

1

A ð6Þ

Table 1 Transformation optic

formulas Computational domain quantity Original coordinate

system (x1, x2, x3)

Transformed coordinate system (x1
′ , x2

′ , x3
′ )

Position of a point (x1, x2, x3) ϕ(x1, x2, x3) = (x1
′ , x2

′ , x3
′ )

Permittivity tensor
ε
¼
r εr

¼0

¼ Λt εr
¼

0

Λ=det Λð Þ

Permeability tensor
μ
¼

r μr

¼
0

¼ Λtμ
¼

0

rΛ=det Λð Þ

Conductivity
σ
¼
r σr

¼0

¼ σr

¼
Λt εr

¼

Λ=det Λð Þ

Electric current density
J
!

J
!0

¼ Λt J
!
=det Λð Þ

Electric charge density ρev ρev
′ = ρev/det(Λ)

Electric field
E
!

E
!′

¼ Λ
t

E
!

Magnetic field
H
!

H
!0

¼ Λ
t

H
!

Table 2 Resonant frequencies for the first 4 modes with angles of

rotation

Resonance

mode

Rotational

angle

0° 30° 45° 60° 90°

Relative Error%

First mode 0.023 0.093 0.37 0.265 0.230

Second mode 0.109 0.563 0.647 0.395 0.059

Third mode 0.084 0.240 0.305 0.305 0.045

Fourth mode 0.011 0.094 0.063 0.063 0.011
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This coordinate transformation modifies the material prop-

erties as shown in Table 1. Hence, the permittivity and perme-

ability tensors become, respectively:

εr
¼
0

¼
4 0 0

0 1 0

0 0 1

0

@

1

A ; μr

¼
0

¼
2 0 0

0 1=2 0

0 0 1=2

0

@

1

A ð7Þ

If we simulate an ellipsoid filled by this anisotropic (both

dielectric and magnetic) material, we should get the same

resonant frequencies as the original problem of the sphere

before the deformation.

To perform the numerical experiments for both the ellipti-

cal and the spherical cavities described above, we used regular

mesh of cubic cells. To maintain a negligible level of numer-

ical dispersion, the cell size is Δl = 3.3 mm which is equiv-

alent to 23 cells per wavelength with εr = 2.0 (relative error

less than 1.0 % according to [6]). Moreover, this fine

discretization was necessary to reduce the stair-case approxi-

mation for both structures. Note that a more complex proce-

dure can be carried out to optimize the maximum cell size to

be used for the transformed sphere anisotropic medium [6, 7].

However, for the purpose of this paper, it is not necessary.

Thus, we used a finer mesh than necessary to make sure that

dispersion is negligible in both systems. The corresponding

time steps we used were 5.49 and 2.772 ps for the spherical

and the elliptical cavities, respectively. The time excitation

applied was a delta function at a random point inside the

cavity with a polarization in z-direction, and we run the

experiment for 6000 iterations until the modes were

established. The number of cells we used for the spherical

cavity experiment was 753,571 cells and 1,507,142 cells for

the elliptical one.

Table 3 shows a comparison between the numerical results

of resonant frequencies calculated for the sphere filled by the

isotropic media, the ellipsoid filled by the anisotropic media,

and the analytical solution (of the spherical resonator) [8]. We

can observe some very good matching between the three

cases. This shows the validity of the TLM solver when dealing

with anisotropic media.

3.3 Shrinking a dielectric slab in a parallel plate

waveguide

In this numerical experiment shown in Fig. 3a, b, we compute

the reflection and transmission coefficients from a lossless

dielectric slab in a parallel-plate waveguide. In both cases,

dielectric slab was excited by a TEM plane wave. To obtain

a perfect plane wave, the computational domain was terminat-

ed by two parallel PECwalls from the top and bottom and two

parallel PMC walls at both sides. This will ensure a TEM

mode of propagation and generate a one-dimensional electro-

magnetic problem.

In the first scenario, we performed a numerical experiment

with a simple nonmagnetic dielectric layer of permittivity ε
¼
r

¼ 10:0 I
¼
3 and thickness d = 10.0 cm (Fig. 3a). Then, we

applied the TO coordinate transformation in which we shrink

Fig. 2 a spherical PEC resonator

filled by an isotropic dielectric, b

elliptical PEC resonator filled by

an anisotropic dielectric medium

Table 3 Comparison between

spherical and elliptical resonators

with the analytical solution

Resonant

modes

Elliptical

resonator

(GHz)

Relative

error%

Spherical

resonator

(GHz)

Relative

error%

Analytical

solution

(GHz)

First mode 1.329 0.24 1.321 0.36 1.3258

Second mode 1.866 0.21 1.863 0.37 1.8699

Third mode 2.184 0.60 2.172 0.05 2.1709

Fourth mode 2.399 0.16 2.390 0.54 2.4029

Fifth mode 2.810 0.91 2.791 0.23 2.7846
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only the dielectric layer to d/2 = 5.0 cm (Fig. 3b). This results

in a new computational domain in which the dielectric layer

has permittivity and permeability given by:

εr
¼
0

¼
20 0 0

0 20 0

0 0 5

0

@

1

A ; μr

¼
0

¼

2 0 0

0 2 0

0 0 1
.

2

0

@

1

A ð8Þ

In this numerical experiment, we used regular mesh

of cubic cells. To maintain a negligible level of numer-

ical dispersion, we used the cell size to be Δl = 5 mm,

which is equivalent to 27 cells per wavelength in the

isotropic medium of the original domain before transfor-

mation. Consequently, the time step we used is

Δt = 4.0 ps. The time excitation was a modulated

Gaussian pulse at center frequency fo = 0.5 GHz and

parameters σ = 30Δt and to = 300Δt. The experiment

was performed for 9000 iterations until the all the fields

vanished from the computational domain.

Figures 4 and 5 show the reflection and transmission coef-

ficients, respectively, over the frequency range from 250 to

700 MHz. As expected, we can see some good matching

between both TLM simulations (the original and transformed

domain) with the analytical solution [9]:

S11 ¼
Z in−Zo

Z in þ Zo

ð9aÞ

Fig. 3 Scattering problem in

parallel plate waveguide, a

original computational domain

with simple media, b transformed

computational domain with

complex media

Fig. 4 Reflection coefficient: a

comparison between analytical

solution and TLM algorithm for

both original computational

domain and transformed domain
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where the input impedance is defined as:

Z in ¼ Zo

ffiffiffiffiffi

μr

εr

r 1þ

ffiffiffiffiffi

μr

εr

r

jtan βdð Þ

ffiffiffiffiffi

μr

εr

r

þ jtan βdð Þ

0

B

B

B

@

1

C

C

C

A

ð9bÞ

where Zo is the wave impedance in free space,μr and εr are the

permeability and permittivity of the dielectric slab in the orig-

inal domain (Fig. 3a), β is the wave number inside the isotro-

pic dielectric slab, and d is the thickness of the dielectric slab

shown in Fig. 3a.

We can notice that the results obtained in the transformed

domain have some higher (but still very small) discrepancy

with the analytical solution than the results obtained in the

original domain. This observation is expected since we used

the same cell size for both original and transformed domains.

In fact, the anisotropic media [6, 7] acquire higher dispersion

characteristics than isotropic media. Finally, one can conclude

that these results validate the solver correct functionality for

media having diagonal tensors constitutive parameters. They

also validate the approach using TO.

4 Conclusion

A systematic procedure based on transformation optics was

presented that allows one to construct computational problems

that include complex media for which we know the analytical

solution. This procedure was tested with several cases and

allowed us to validate the numerical model under consider-

ation (TLM model in our case). In all experiments that have

been presented, fine meshes were used to ensure minimal

dispersion for both domains. More complicated coordinate

transformations can be used to obtain more complex media

properties, for instance, one can use time-varying coordinate

systems to obtain dispersive media.
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