
HAL Id: hal-01615265
https://hal.science/hal-01615265

Preprint submitted on 12 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A typing result for trace inclusion (for pair and
symmetric encryption only)

Véronique Cortier, Antoine Dallon, Stéphanie Delaune

To cite this version:
Véronique Cortier, Antoine Dallon, Stéphanie Delaune. A typing result for trace inclusion (for pair
and symmetric encryption only). 2017. �hal-01615265�

https://hal.science/hal-01615265
https://hal.archives-ouvertes.fr

A typing result for trace inclusion

(for pair and symmetric encryption only)

Véronique Cortier Antoine Dallon Stéphanie Delaune

October 12, 2017

Abstract

Privacy-type properties such as vote secrecy, anonymity, or untraceability are typically
expressed using the notion of trace equivalence in a process algebra that models security
protocols. In this paper, we propose some results to reduce the search space when we are
looking for an attack regarding trace equivalence. Our work is strongly inspired from [10],
which establishes that, if there is a witness of non trace equivalence, then there is one that is
well-typed.

Our main contribution is to establish a similar result for trace inclusion. Our motivation
is twofolds: first, this small attack property is needed for proving soundness of the tool
SatEquiv [13]. Second, we revisit the proof in order to simplify it. Specifically, we show two
results. First, if there is a witness of non-inclusion then there is one that is well-typed. We
establish this result by providing a decision procedure for trace inclusion similar to the one
proposed in [10] for trace equivalence. We also show that we can reduce the search space when
considering the notion of static inclusion. Acutally, if there is a witness of static non-inclusion
there is one of a specific shape.

Even if our setting slightly differs from the one considered in [10], our proofs essentially
follow the same ideas than the existing proof for trace equivalence. Nevertheless, we hope
that this proof will be easier to extend to other primitives such as asymmetric encryption or
signatures.

1 Introduction

Privacy properties such as untraceability, vote secrecy, or anonymity are typically expressed as
behavioural equivalence (e.g. [6, 3]). For example, the anonymity of Bob is typically expressed by
the fact that an adversary should not distinguish between the situation where Bob is present and
the situation where Alice is present. Formally, the behaviour of a protocol can be modelled through
a process algebra such as CSP or the pi calculus, enriched with terms to represent cryptographic
messages. Then indistinguishability can be modelled through various behavioural equivalences.
We focus here on trace equivalence, denoted ≈. Checking for privacy then amounts into checking
for trace equivalence between processes, which is of course undecidable in general. Even in the
case of a bounded number of sessions, there are few decidability results and the associated decision
procedures are complex [5, 16, 8].

Our contributions are two simplification results in the same spirit than the one provided in [10].
We reduce the search space for attacks: if there is an attack, then there exists a well-typed attack.
More formally, we show that if there is a witness (i.e. a trace) that P 6⊑ Q then there exists
a witness which is well-typed w.r.t. P provided that P is type-compliant and Q is an action-
deterministic process. We also show that we can reduce the search space for static inclusion: it
is possible to consider only analysis rules. In [10], this result was used to prove that there is a
well-typed attack whenever there is an attack. This is no longer the case here. Instead, the two
results are now independent and of general interest for subsequent results.

1

We only consider processes without replication but the result can be easily extended to pro-
cesses with replications as it was done in [10]. For simplicity, we prove this typing result for the
case of symmetric encryption and concatenation but our goal when designing this new proof is to
extend it to other standard cryptographic primitives.

As already mentionned, our result is actually a variation of the typing result stated and proved
in [10]. We highlight below the main differences between these two results:

1. We consider here a setting that is closer to the one we introduced in [13]. In particular, the
properties of our primitives are reflected through a rewriting system in which reductions can
only occur if subterms are messages.

2. We establish the typing result for trace inclusion instead of trace equivalence and we slightly
modify the algorithm to obtain a complete procedure in that case.

3. We consider processes that are action-deterministic. This is slightly stronger than the notion
of determinacy introduced in [10]. We want to emphasize that the notion of determinacy
used in [10] is actually too weak to ensure the existence of a unique frame ψ in the algorithm
provided in [10]. Such an hypothesis is therefore also needed in [10].

2 Model for security protocols

Security protocols are modelled through a process algebra inspired from [1] that manipulates
terms. Actually, we consider here a variant of the calculus provided in [10].

2.1 Messages

We assume an infinite set N of names, which are used to represent keys and nonces, and two
infinite disjoint sets of variables X and W . The variables in W intuitively refer to variables used
to store messages learnt by the attacker. We consider the following sets of function symbols:

Σc = {senc, 〈 〉} Σd = {sdec, proj1, proj2} Σstd = Σc ∪ Σd

The symbols sdec and senc of arity 2 represent symmetric decryption and encryption. Pairing
is modelled using a symbol of arity 2, denoted 〈 〉, and projection functions are denoted proj1
and proj2. The symbols in Σc are constructors whereas those in Σd are destructors. We further
assume an infinite sets of constant symbols Σ0 to represent atomic data known to the attacker.

Given a set of A of atoms (i.e. names, variables, and constants), and a signature F , we denote
by T (F ,A) the set of terms built from symbols in F , and atoms in A. We denote T0(Σc,A) the
set of terms that only contains atoms in key position. More formally, this set is generated by the
following grammar:

t, t1, t2 := senc(t, a1) | 〈t1, t2〉 | a2 with a1, a2 ∈ A

Terms in T0(Σc,Σ0 ∪ N) are called messages. An attacker builds his own messages by applying
functions to terms he already knows. Formally, a computation done by the attacker is modelled by
a term, called a recipe, built on signature Σstd using (public) constants in Σ0 as well as variables
in W , i.e. a term R ∈ T (Σstd,Σ0 ∪W). Note that such a term does not contain any name.

We denote vars(u) the set of variables that occur in u. The application of a substitution σ
to a term u is written uσ, and we denote dom(σ) its domain. Two terms u1 and u2 are unifiable
when there exists σ such that u1σ = u2σ.

The properties of our primitives are reflected through the following rewriting rules where
reduction only occurs if the variables are instanciated by messages (and atoms in key position).

sdec(senc(x, y), y) → x proj1(〈x, y〉) → x proj2(〈x, y〉) → y

2

More formally, a term u can be rewritten in v if there is a position p in u, and a rewriting rule
g(t1, . . . , tn) → t such that u|p = g(t1, . . . , tn)θ as well as tθ are messages. This assumption slightly
differs from [10]: whenever an inner decryption/projection fails then the overall evaluation fails.
Our rewriting system is convergent, and we denote u↓ the normal form of a given term u.

Example 1. Let s, k ∈ N , and u = senc(s, k). The term sdec(u, k) models the application of the
decryption algorithm on the message u using k. We have that sdec(u, k)↓ = s.

2.2 Protocols

Our process algebra is inspired from the applied pi calculus [1]. We do not consider else branches.
Actually we do not have conditional. Instead, equality tests are performed through pattern-
matching. We do not consider replication wither but our reduction results easily extend to pro-
cesses with replication as explained in [10].

2.2.1 Syntax.

Let Ch be an infinite set of channels. We consider processes built using the following grammar:

P,Q := 0 null process
| in(c, u).P input
| out(c, u).P output
| (P | Q) parallel

where u ∈ T0(Σc,Σ0 ∪ N ∪ X), and c ∈ Ch.

The process 0 does nothing. The process "in(c, u).P" expects a message m of the form u on
channel c and then behaves like Pσ where σ is a substitution such that m = uσ. The process
"out(c, u).P" emits u on channel c, and then behaves like P . The variables that occur in u are
instantiated when the evaluation takes place. The process P | Q runs P and Q in parallel.

For the sake of clarity, we may omit the null process. We also assume that processes are name
and variable distinct, i.e. any name and variable is at most bound once. We write fv (P) for the
set of free variables that occur in P , i.e. the set of variables that are not in the scope of an input.

Definition 1. A protocol P is a process such that P is ground, i.e. fv(P) = ∅; and P is name
and variable distinct.

Example 2. The Otway-Rees protocol [11] is a key distribution protocol using symmetric encryp-
tion and a trusted server. It can be described informally as follows:

1. A→ B : M,A,B, {Na,M,A,B}Kas

2. B → S : M,A,B, {Na,M,A,B}Kas
, {Nb,M,A,B}Kbs

3. S → B : M, {Na,Kab}Kas
, {Nb,Kab}Kbs

4. B → A : M, {Na,Kab}Kas

where {m}k denotes the symmetric encryption of a message m with key k, A and B are agents
trying to authenticate each other, S is a trusted server, Kas (resp. Kbs) is a long term key shared
between A and S (resp. B and S), Na and Nb are nonces generated by A and B, Kab is a session
key generated by S, and M is a session identifier.

We propose a modelling of the Otway-Rees protocol in our formalism. Below, kas, kbs, m, na,
nb, kab are names, whereas a and b are constants from Σ0. We denote by 〈x1, . . . , xn−1, xn〉 the
term 〈x1, 〈. . . 〈xn−1, xn〉〉〉.

POR = PA | PB | PS

where the processes PA, PB, PS are given below.

PA = out(cA, 〈m, a, b, senc(〈na,m, a, b〉, kas)〉).in(cA, 〈m, senc(〈na, xab〉, kas)〉);

PB = in(cB , 〈ym, a, b, yas〉).out(cB , 〈ym, a, b, yas, senc(〈nb, ym, a, b〉, kbs)〉).
in(cB, 〈ym, zas, senc(〈nb, yab〉, kbs)〉).out(cB , 〈ym, zas〉);

PS = in(cS , 〈zm, a, b, senc(〈yna, ym, a, b〉, kas), senc(〈ynb, ym, a, b〉, kbs)).
out(cS , 〈ym, senc(〈yna, kab〉, kas), senc(〈ynb, kab〉, kbs)〉);

3

In (in(c, u).P ∪ P ; φ; σ)
in(c,R)
−−−−→ (P ∪ P ; φ; σ ⊎ σ0) where R is a recipe such that Rφ↓
is a message, and Rφ↓ = (uσ)σ0 for σ0 with dom(σ0) = vars(uσ).

Out (out(c, u).P ∪ P ; φ; σ)
out(c,w)
−−−−−→ (P ∪ P ; φ ∪ {w ⊲ uσ}; σ)

with w a fresh variable from W , and uσ is a message.

Null (0 ∪ P ; φ; σ)
τ
−→ (P ; φ; σ)

Par ((P | Q) ∪ P ; φ; σ)
τ
−→ (P ∪Q ∪ P ; φ; σ)

Figure 1: Semantics for processes

2.2.2 Semantics.

The operational semantics of a process is defined using a relation over configurations. A configu-
ration is a tuple (P ; φ; σ) such that:

• P is a multiset of ground processes.

• φ = {w1 ⊲ m1, . . . ,wn ⊲ mn} is a frame, i.e. a substitution where w1, . . . ,wn are variables in
W , and m1, . . . ,mn are messages.

• σ is a substitution such that dom(σ) ⊆ X , and img(σ) ⊆ T0(Σstd,Σ0 ∪N).

Intuitively, P represents the processes that still remain to be executed; and φ represents the
sequence of messages that have been learnt so far by the attacker. We often write P instead of
(P ; ∅; ∅), and P ∪P instead of {P}∪P . The operational semantics of a process is induced by the

relation
α
−→ over configurations defined in Figure 1.

The first rule (In) allows the attacker to send to some process a term built from publicly
available terms and symbols. The second rule (Out) corresponds to the output of a term by some
process: the corresponding term is added to the frame of the current configuration, which means
that the attacker can now access the sent term. Note that the term is outputted provided that it
is a message. In case the evaluation of the term yields e.g. an encryption with a non atomic key,
the evaluation fails and there is no output. The two remaining rules are quite standard and are
unobservable (τ action) from the point of view of the attacker.

The relation
α1...αn−−−−−→ between configurations (where α1 . . . αn is a sequence of actions) is defined

as the transitive closure of
α
−→. Given a sequence of observable actions tr, we write K

tr
==⇒ K ′ when

there exists a sequence α1 . . . αn such that K
α1...αn−−−−−→ K ′ and tr is obtained from α1 . . . αn by

erasing all occurrences of τ .

Definition 2. Given a configuration K = (P ; φ; σ), we denote trace(K) the set of traces defined
as follows:

trace(K) = {(tr, φ′) | K
tr
==⇒ (P ; φ′; σ′) for some configuration (P ; φ′; σ′)}.

We may note that, by definition of trace(K), trφ↓ only contains terms from T0(Σc,Σ0 ∪ N).

Example 3. Consider the following sequence tr:

tr = out(cA,w1).in(cB ,w1).out(cB ,w2).in(cB, R0).out(cB,w3).in(cA,w3)

where R0 = 〈proj1/5(w2), proj4/5(w2), proj5/5(w2)〉, and proji/5 is used as a shortcut to extract the

ith component of a 5-uplet. This a sequence of actions yields the frame φ defined as follows:

φ = {w1 ⊲ 〈m, a, b, tsenc〉,w2 ⊲ 〈m, a, b, tsenc, senc(〈nb,m, a, b〉, kbs)〉,w3 ⊲ 〈m, tsenc〉}.

where tsenc = senc(〈na,m, a, b〉, kas).

4

We have that (tr, φ) ∈ trace(POR). The first three actions actually correspond to the expected
execution of the protocol. Then, the agent who plays PB accepts as input the message built using
R0, i.e.

u = 〈m, senc(〈na,m, a, b〉, kas), senc(〈nb,m, a, b〉, kbs)〉.

Indeed, this message has the expected form. At this stage, the agent who plays PB is waiting for
a message of the form: u0 = 〈m, zas, senc(〈nb, yab〉, kbs)〉. The substitution σ = {zas ⊲ tsenc, yab ⊲
〈m, a, b〉} is such that u = u0σ. Once this input has been done, a message is outputted (action
out(cB ,w3)) and given as input to PA (action in(cA,w3)).

Note that, at the end of the execution, A and B share a key but it is not the expected one, i.e.
one freshly generated by the trusted server, but 〈m, a, b〉. This execution corresponds to (a variant
of) a known attack on the Otway-Rees protocol [11].

2.3 Action-determinism

As mentioned in introduction, we require processes to be deterministic. We consider a definition
similar to the one introduced in [4]. This condition is actually stronger than the one considered
in [10]. This is actually mandatory to ensure the uniqueness of the frame once a (symbolic) trace
has been fixed. This is therefore a missing assumption of [10].

Definition 3. A configuration K is action-deterministic if whenever K
tr
−→ (P ; φ; σ), and α.P

and β.Q are two elements of P with α, β instructions of the form in(c, u), out(c, u) then either the
underlying channels c differ or the instructions are not of the same nature (that is, α, β are not
both an input, nor both an output).

A protocol P is action-deterministic if K = (P ; ∅; ∅) is action-deterministic.

For such protocols, the attacker knowledge is entirely determined by its interaction with the
protocol.

Lemma 1. Let K be an action-deterministic configuration such that K
tr
==⇒ K1 and K

tr
==⇒ K2 for

some tr, K1 = (P1; φ1; σ1), and K2 = (P2; φ2; σ2). We have that φ1 = φ2.

2.4 Trace equivalence

Intuitively, two protocols are equivalent if they cannot be distinguished by any attacker. Trace
equivalence can be used to formalise many interesting security properties, in particular privacy-
type properties, such as those studied for instance in [6]. We first introduce a notion of intruder’s
knowledge well-suited to cryptographic primitives for which the success of decryption is visible.

Definition 4. Two frames φ1 and φ2 are in static inclusion, written φ1 ⊑s φ2, when we have that
dom(φ1) = dom(φ2), and:

• for any recipe R, we have that Rφ1↓ ∈ T0(Σc,Σ0 ∪ N) implies that Rφ2↓ ∈ T0(Σc,Σ0 ∪ N);
and

• for any recipes R1 and R2 such that R1φ1↓, R2φ1↓ ∈ T0(Σc,Σ0 ∪N), we have that R1φ1↓ =
R2φ1↓ implies R1φ2↓ = R2φ2↓.

They are in static equivalence, written φ1 ∼s φ2, if φ1 ⊑s φ2, and φ2 ⊑s φ1.

Intuitively, two frames are statically equivalent if an attacker cannot see the difference between
the two situations they represent. If some computation fails in φ1 for some recipe R, i.e. Rφ1↓ is
not a message, it should fail in φ2 as well. Moreover, φ1 and φ2 should satisfy the same equalities.
In other words, the ability of the attacker to distinguish whether a recipe R produces a message,
or whether two recipes R1, R2 produce the same message should not depend on the frame.

5

Example 4. Consider φ1 = φ ∪ {w4 ⊲ 〈m, a, b〉}, and φ2 = φ ∪ {w4 ⊲ n} where n is a name. Let
R = proj1(w4). We have that Rφ1↓ = m ∈ T0(Σc,Σ0 ∪N), but Rφ2↓ = proj1(n) /∈ T0(Σc,Σ0 ∪N),
hence φ1 6∼s φ2. This non static equivalence can also be witnessed by considering the recipes R1 =
〈proj1(w3), a, b〉 and R2 = w4. We have that R1φ1↓, R2φ1↓ ∈ T0(Σc,Σ0 ∪N), and R1φ1↓ = R2φ1↓
whereas R1φ2↓ 6= R2φ2↓.

We can now define equivalence for processes. Intuitively, two protocols are trace equivalent if,
however they behave, the resulting sequences of messages observed by the attacker are in static
equivalence.

Definition 5. A protocol P is trace included in a protocol Q, written P ⊑ Q, if for every
(tr, φ) ∈ trace(P), there exists (tr′, φ′) ∈ trace(Q) such that tr = tr′ and φ ⊑s φ

′. The protocols P
and Q are trace equivalent, written P ≈ Q, if P ⊑ Q and Q ⊑ P .

This notion of equivalence does not coincide in general with the usual notion of trace equivalence
e.g. in [9]. It is actually coarser since we simply require the resulting frames to be in static inclusion
(φ ⊑s ψ) instead of static equivalence (φ ∼s ψ). However, these two notions actually coincide
(see [7]) for the class of action-deterministic processes that we consider in this paper.

As illustrated by the following example, restricting messages to only contain atoms in key
position also provides the adversary with more comparison power when variables occurred in key
position in the protocol.

Example 5. Let n, k ∈ N and consider the protocol P = in(c, x).out(c, senc(n, k)) as well as the
protocol Q = in(c, x).out(c, senc(senc(n, x), k)). An attacker may distinguish between P and Q by
sending a non atomic data and observing whether the process can emit. Q will not be able to emit
since its first encryption will fail. This attack would not have been detected if arbitrary terms were
allowed in key position.

Assume given a protocol P and an action-deterministic protocol Q such that P 6⊑ Q. A witness

of non-inclusion is an execution P
tr
−→ (P ;φ;σ) such that:

• either there does not exist φ′ such that (tr, φ′) ∈ trace(Q),

• or such a φ′ exists and φ 6⊑s φ
′.

Note that when a protocol P is action-deterministic, once the sequence tr is fixed, all the frames
reachable through tr are actually equal. This ensures the unicity of φ′, if it exists (see Lemma 1).
Moreover, when the underlying execution is clear from the context, we sometimes simply say that
tr is a witness of non-inclusion.

Example 6. We wish to check strong secrecy of the exchanged key received by the agent A for the
Otway-Rees protocol. A way of doing so is to check that P 1

OR
≈ P 2

OR
where the two protocols are

defined as follows:

• P 1
OR

is as POR but we add the instruction out(cA, xab) at the end of process PA;

• P 2
OR

is as POR but we add the instruction out(cA, n) at the end of process PA.

The idea is to check whether an attacker can see the difference between the session key obtained
by A and a fresh nonce.

As already suggested by the scenario described in Example 3, the secrecy (and so the strong
secrecy) of the key received by A is not preserved. More precisely, consider the sequence tr′ =
tr.out(cA,w4) where tr is as in Example 3. In particular, (tr′, φ1) ∈ trace(P 1

OR
) and (tr′, φ2) ∈

trace(P 2
OR

) with φ1 = φ ∪ {w4 ⊲ 〈m, a, b〉} and φ2 = φ ∪ {w4 ⊲ n}. As described in Example 4,
φ1 6∼s φ2 and thus tr′ is a witness of non-equivalence for P 1

OR
and P 2

OR
. This witness is actually a

variant of a known attack on the Otway-Rees protocol [11].

6

3 Existence of a well-typed witness for an attack

In this section, we present our main contribution: a simplification result that reduces the search
space for attacks. Roughly, when looking for a witness of non-inclusion when checking whether
P ⊑ Q, we can restrict ourselves to consider well-typed executions, i.e. executions of the form

P
tr
−→ (P ;φ;σ) such that σ is well-typed meaning that every variable of its domain has the same

type as its image. This results holds for a general class of typing systems and as soon as the
protocol P is type-compliant and the protocol Q is action-deterministic. We first explain these
hypotheses and then we state our general simplification result (see Theorem 1).

3.1 Type compliance

Our simplification result holds for a general class of typing systems: we simply require that types
are preserved by unification and application of substitutions. These operations are indeed routinely
used in decision procedures.

Definition 6. A typing system is a pair (T , δ) where T is a set of elements called types, and δ
is a function mapping terms t ∈ T (Σc,Σ0 ∪ N ∪ X) to types τ in T such that:

• if t is a term of type τ and σ is a well-typed substitution, i.e. every variable of its domain
has the same type as its image, then tσ is of type τ ,

• for any terms t and t′ with the same type, i.e. δ(t) = δ(t′) and which are unifiable, their
most general unifier (mgu(t, t′)) is well-typed.

We further assume the existence of an infinite number of constants in Σ0 (resp. variables in X ,
names in N) of any type.

A straightforward typing system is when all terms are of a unique type, say Msg. Of course,
our typing result would then be useless to reduce the search space for attacks. Which typing
system shall be used typically depends on the protocols under study.

Our main assumption on the typing of protocols is that any two unifiable encrypted subterms
are of the same type. We write St(t) for the set of (syntactic) subterms of a term t, and ESt(t)
the set of its encrypted subterms. More formally, we define:

ESt(t) = {u ∈ St(t) | u is of the form senc(u1, u2)}.

We extend this notion to sets/sequences of terms, and to protocols as expected.

Definition 7. A protocol P is type-compliant w.r.t. a typing system (T , δ) if for every t, t′ ∈
ESt(P) we have that:

t and t′ unifiable implies that δ(t) = δ(t′).

Consider a protocol P that is type-compliant w.r.t. a typing system (TP , δP), an execution

P
tr
−→ (P ′; φ′; σ′) is well-typed if σ′ is a well-typed substitution. When the underlying execution

is clear from the context, we sometimes say that a trace (tr, φ) ∈ trace(P) is well-typed meaning

that its underlying execution P
tr
−→ (P ; φ; σ) is well-typed.

3.2 Main result

Given a protocol P , we denote ΣP the set of constants from Σ0 that occur in P . We are now
ready to state our main result: if there is an attack, then there is a well-typed attack.

Theorem 1. Let P be a protocol type-compliant w.r.t. (TP , δP) and Q be another protocol that
is action-deterministic. We have that P 6⊑ Q if, and only if, there exists a witness of this non-
inclusion that is well-typed w.r.t. (TP , δP).

This theorem is actually a consequence of the algorithm presented in Section 4 that returns a
well-typed witness of non-inclusion.

7

4 A type preserving decision algorithm for trace inclusion

We provide a procedure that decides whether two processes are in trace inclusion and if not,
returns a well typed witness of non inclusion. One key ingredient of our procedure (described in
Section 4.2) is carefully designed to only allow unification between encrypted subterms. We rely
on two main results.

1. We rely on an existing algorithm for reachability that only performs unification between
encrypted subterms. Most of the existing algorithms (e.g. [15, 12, 17]) were not designed
with such a goal in mind. However, in the case of the algorithm given in [12], it has already
been shown how it can be turned into one that only considers unification between encrypted
subterms [14].

2. We establish that it is actually sufficient to consider unification between encrypted subterms
when dealing with static inclusion.

This approach allows us to provide a well-typed witness of non-inclusion when protocol P is
type-compliant and protocol Q is action-deterministic.

4.1 Some preliminaries

We introduce a special set Σfresh of constants that are fresh and that will be used in our algorithm.
Each constant is either seen as an atom or not. We assume that Σfresh contains an arbitrary
number of atomic (resp. non atomic) constants of any type.

We sometimes write symbolic frame, or symbolic trace to emphasize the fact that those traces
may use constants from Σfresh.

Definition 8. A first-order trace trs is of the form io1(c1, u1) . . . ion(cn, un) where ioi ∈ {in, out},
ci ∈ Ch, and ui ∈ T0(Σstd,Σ0 ∪ N ∪ Σfresh). Moreover, we assume that any constant from Σfresh

occurs first in an input action.
Such a first-order trace trs is valid if for all 1 ≤ i0 ≤ n, whenever, ioi0 = in(ci0 , ui0), we have

that Rφs↓ = ui0 for some R ∈ T (Σstd,Σ0 ∪ W ∪ Σfresh) where φs = {w1 ⊲ ui1 , . . . ,wℓ ⊲ uiℓ} and
i1 . . . iℓ is the increasing sequence of indices that captures all the outputs of terms of the trace trs
up to index i0, i.e. such that {i1, . . . , iℓ} = {j | ioj = out and j ≤ i0}.

Given a protocol P , the set of symbolic traces traces(P) of a protocol P is defined as follows:

traces(P) = {trs | P
trs−→s Q for some Q }

where
trs−−→s is transitive closure of the relation

αs−→s defined below:

(Ins) in(c, u).P ∪ P
in(c,u)
−−−−→s P ∪ P

(Outs) out(c, u).P ∪ P
out(c,u)
−−−−−→s P ∪ P

(Nulls) 0 ∪ P
τ
−→ P

(Pars) P | Q
τ
−→ P ∪Q

Definition 9 (first-order substitution associated to θ through φS). Let φS be a symbolic frame.
Let θ be a substitution from constants of Σfresh to recipes without fresh constants such that the
variables of vars(cθ) are only those that appear before the first occurence of c in φS for each
c ∈ Σfresh. Then we define the first-order substitution λ associated to θ through φS as the only
substitution such that:

• dom(λ) = dom(θ)

• for all c ∈ dom(λ), we have that cλ = (cθ)(φSλ)↓

8

Lemma 2. Let (tr, φ) ∈ trace(P). There exists tr0 ∈ traces(P), (trS , φS) ∈ trace(P), a sub-
stitution σ0 which is the mgu of some pairs of encrypted subterms occurring in tr0, a bijective
mapping ρ from variables in tr0σ0 to fresh constants, and two substitutions θ and λ such that:

1. (tr0σ0)ρ = trSφS↓;

2. (tr0σ0)ρλ = trφ↓;

3. for any x ∈ vars(tr0σ0), we have that xρ is an atomic constant if, and only if xρλ is atomic;

4. dom(θ) = dom(λ) and cθ = Rc for some Rc ∈ T (Σstd,Σ0∪{w1, . . . ,wi}) such that Rcφ↓ = cλ
and i is the number of outputs that occur in (trsσ0)ρ before the first occurrence of an input
that contains the fresh constant c.

5. (trSθ)(φSλ)↓ = trφ↓;

6. for any encrypted subterms t1, t2 occurring in tr0σ0, we have that t1ρλ = t2ρλ implies that
t1 = t2.

Moreover, λ is the first-order substitution associated to θ through φS .

A weaker version of this result (items 1 − 5) can be deduced from the decision procedure
provided in [14] for a slightly different setting. In particular, in [14], they consider non-atomic key.
We explain in Appendix A how to adapt this result in presence of atomic keys, and we show how
to obtain item 6.

4.2 Our algorithm for trace inclusion

Our algorithm A takes as input two protocols P and Q and returns yes when P ⊑ Q; and a
minimal (in term of number of actions) witness tr of non-inclusion otherwise.

Our algorithm A(P,Q). It consists of the following steps starting at level 1 until ℓ where ℓ
denotes the maximal length (i.e. number of actions) of a trace in traces(P). If nothing has been
returned yet (i.e. when the iteration steps for level ℓ has been done), then it returns yes, i.e. P
is trace-included in Q.

Iteration steps for level n:

1. Consider every symbolic trace tr0 ∈ traces(P) of length n.

2. Let σ0 be the most general unifier of some pairs of encrypted subterms occurring in tr0.

3. Let ρ be a bijective renaming mapping variables occurring in tr0σ0 to fresh constants from
Σfresh. The choice of the constant does not matter but we have to consider the case where a
variable is mapped to an atomic constant or a non-atomic constant.

4. Check whether tr0σ0ρ is a valid first-order trace.

5. If so, let (trS , φS) be a lifting of such a valid first-order trace to a second-order trace.

6. Check whether trS passes in Q. If not, return trS .

7. Let ψS be the frame such that (trS , ψS) ∈ trace(Q).

8. Check whether φS ⊑s ψS . If not, return trS .

Note that the underlying execution corresponding to trS is not necessarily uniquely defined
since P is not necessarily action-deterministic, but we refer here to the one that follows the
symbolic execution tr0.

9

4.3 Termination, soundness, and completeness

Deducibility and static inclusion are well known to be decidable for standard primitives. These
two decidability results can easily be adapted in our setting. It is therefore easy to establish
termination.

Proposition 1 (termination). Let P and Q be two protocols such that Q is action-deterministic.
The algorithm A applied on P and Q terminates.

A trace returned by our algorithm is indeed a witness of non-inclusion.

Proposition 2 (soundness). Let P and Q be two protocols such that Q is action-deterministic.
If the algorithm A applied on P and Q returns a witness tr of non-inclusion, then we have that
P 6⊑ Q.

Establishing completeness is more involved and the full proof is provided in Appendix A. The
main difficulty is to ensure that unification performed at step 2 of the algorithm is sufficient to
produce all possible relevant equalities. In particular, regarding static inclusiopn, we have to
ensure that this is sufficient to consider tests R, R′ that reduce to some encrypted subterms. The
fact that we consider only unification between encrypted subterms is a key element for proving
that our algorithm indeed returns a well-typed witness when P is not trace included in Q (cf.
Section 4.4).

Proposition 3 (completeness). Let P and Q be two protocols such that Q is action-deterministic,
and P 6⊑ Q. The algorithm AB applied on P and Q returns a minimal (in term of number of
actions) witness tr of non-inclusion.

4.4 Type-preservation

As the algorithm we presented only relies on unification between encrypted subterms of protocol P ,
and as unifiable encrypted subterms of protocol P have the same type by type compliance we get
the following result.

Theorem 2. Let P be a protocol type-compliant w.r.t. (TP , δP), and Q be another protocol that
is action-deterministic such that P 6⊑ Q. Assume the algorithm A uses a well-typed renaming ρ
at step 3. Then A(P,Q) returns a witness tr of this non-inclusion such that (tr, φ) ∈ trace(P)
for some φ and (tr, φ) is well-typed w.r.t. (TP , δP).

5 An alternative definition of static inclusion

In this section, we propose an alternative definition of static inclusion and we state that this
definition coincides with the original one. The proof of this result can be found in Appendix B.
Note that, as opposed to [10], Theorem 2 is independent of this result.

We define precompact recipe. They are destructor-only recipes that do not produce a pair as
a result.

Definition 10 (precompact). Given a frame φ, a recipe R is said to be φ-precompact if R is
destructor-only, and Rφ↓ is a term in T0(Σc,Σ0 ∪ N) but not a pair.

It allows us to define our new notion of static inclusion. This notion is useful in practice, as
we have to explore less recipes to establish static inclusion between frames.

Definition 11. Two frames φ1 and φ2 are in static inclusion w.r.t. precompact recipes, written
φ1 ⊑′

s φ2, when we have that dom(φ1) = dom(φ2), and:

1. for any φ1-precompact recipe R, we have that Rφ1↓ is an atom implies that Rφ2↓ is an atom;
and

10

2. for any φ1-precompact recipe R, we have that Rφ2↓ ∈ T0(Σc,Σ0 ∪ N); and

3. for any φ1-precompact recipes R1 and R2, we have that R1φ1↓ = R2φ1↓ implies R1φ2↓ =
R2φ2↓.

We can show that the two notions coincide.

Proposition 4. Let φ1 and φ2 be two frames. We have that :

φ1 ⊑s φ2 if, and only if, φ1 ⊑′

s φ2.

6 Conclusion

Our typing result for trace inclusion relies on the design of a new procedure for trace inclusion,
that preserves typing. Actually this procedure is similar to the one provided in [10]. Specifically,
we show that it is sufficient to consider only unification between encrypted (sub)terms. As future
work, we plan to extend this result to additional primitives (asymmetric encryption, signature,
hashes). We hope that the proof we have done here to establish the result for symmetric encryption
and concatenation would be easier to extend than the original proof provided in [10].

11

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In 28th
Symposium on Principles of Programming Languages (POPL’01). ACM Press, 2001.

[2] M. Arapinis and M. Duflot. Bounding messages for free in security protocols - extension to
various security properties. Inf. Comput., 239:182–215, 2014.

[3] M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote electronic voting
protocols in the applied pi-calculus. In 21st IEEE Computer Security Foundations Symposium
(CSF’08), pages 195–209. IEEE Computer Society, 2008.

[4] D. Baelde, S. Delaune, and L. Hirschi. Partial order reduction for security protocols. In Proc.
26th International Conference on Concurrency Theory (CONCUR’15), volume 42 of LIPIcs,
pages 497–510. Leibniz-Zentrum für Informatik, 2015.

[5] M. Baudet. Deciding security of protocols against off-line guessing attacks. In 12th ACM
Conference on Computer and Communications Security (CCS’05). ACM Press, 2005.

[6] M. Bruso, K. Chatzikokolakis, and J. den Hartog. Formal verification of privacy for RFID
systems. In 23rd Computer Security Foundations Symposium (CSF’10), 2010.

[7] R. Chadha, V. Cheval, Ş. Ciobâcă, and S. Kremer. Automated verification of equivalence
properties of cryptographic protocol. ACM Transactions on Computational Logic, 2016. To
appear.

[8] V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence decision: Negative tests
and non-determinism. In 18th ACM Conference on Computer and Communications Security
(CCS’11). ACM.

[9] V. Cheval, V. Cortier, and S. Delaune. Deciding equivalence-based properties using constraint
solving. Theoretical Computer Science, 492:1–39, June 2013.

[10] R. Chrétien, V. Cortier, and S. Delaune. Typing messages for free in security protocols:
the case of equivalence properties. In P. Baldan and D. Gorla, editors, Proceedings of the 25th
International Conference on Concurrency Theory (CONCUR’14), volume 8704 of Lecture
Notes in Computer Science, pages 372–386, Rome, Italy, Sept. 2014. Springer.

[11] J. Clark and J. Jacob. A survey of authentication protocol literature: Version 1.0, 1997.

[12] H. Comon-Lundh, V. Cortier, and E. Zalinescu. Deciding security properties for cryptographic
protocols. Application to key cycles. ACM Transactions on Computational Logic (TOCL),
11(4), 2010.

[13] V. Cortier, A. Dallon, and S. Delaune. Sat-equiv: an efficient tool for equivalence properties.
In Proceedings of the 30th IEEE Computer Security Foundations Symposium (CSF’17), Santa
Barbara, CA, USA, Aug. 2017. IEEE Computer Society Press.

[14] V. Cortier and S. Delaune. Safely composing security protocols. Formal Methods in System
Design, 34(1):1–36, Feb. 2009.

[15] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol
analysis. In 8th ACM Conference on Computer and Communications Security (CCS’01).
ACM Press, 2001.

[16] A. Tiu and J. E. Dawson. Automating open bisimulation checking for the spi calculus. In
23rd IEEE Computer Security Foundations Symposium (CSF’10), pages 307–321, 2010.

[17] A. Tiu, R. Goré, and J. E. Dawson. A proof theoretic analysis of intruder theories. Logical
Methods in Computer Science, 6(3), 2010.

12

A Proof of completeness

We define ⇓ as the normal form associated to the following rewriting rules:

proji(〈x1, x2〉) → xi, and sdec(senc(x, y), z) → x.

A recipe in normal form w.r.t. ⇓ is called without detour.

Our algorithm. It consists of several steps starting at level 1 until ℓ (where ℓ denotes the
maximal length of a trace in traces(P)). If nothing is returned when the iteration steps for level ℓ
has been done, then it returns yes, i.e. P is trace included in Q.

Iteration steps for level n:

1. Consider every symbolic trace tr0 ∈ traces(P) of length n.

2. Let σ0 be the most general unifier of some pairs of encrypted subterms occurring in tr0.

3. Let ρ be a bijective renaming mapping variables occurring in tr0σ0 to fresh constants from
Σfresh. The choice of the constant does not matter but we have to consider the case where a
variable is mapped to an atomic constant or a non-atomic constant.

4. Check whether tr0σ0ρ is a valid first-order trace.

5. If so, let (trS , φS) be a lifting of such a valid first-order trace to a second-order trace.

6. Check whether trS passes in Q. If not, return trS .

7. Let ψS be the frame such that (trS , ψS) ∈ trace(Q).

8. Check whether φS ⊑s ψS . If not, return trS .

Lemma 3. Let φS and θ be as in Definition 9. Then λ is well-defined, and if (cθ)φS↓ is a
message for each c ∈ dom(θ) and an atomic message for each atomic c, then cλ is a message for
each c ∈ dom(λ) and it is an atomic message for each atomic c.

Proof. We will prove by induction on the length of φS that:

• λ is well-defined.

• If (cθ)φS↓ is a message for each c ∈ dom(θ), and if moreover (cθ)φS↓ is an atom for each
atomic c ∈ dom(θ), then:

– cλ is a message for each c ∈ dom(λ).

– (cθ)(φSλ)↓ = (cθ)φS↓λ.

– cλ is an atom for each atomic c.

Base case. We prove the result for an empty φS . The only c ∈ dom(θ) are those such that cθ
has no variable. As φSλ is empty, cλ = (cθ)(φSλ)↓ = cθ↓ is well-defined.

If cθ↓ = (cθ)φS↓ is a message, then cλ = cθ↓ is a message and (cθ)(φSλ)↓ = cθ↓ = (cθ)φS↓λ.
If moreover cθ↓ = (cθ)φS↓ is an atom when c is atomic, then cλ = cθ↓ is an atom.

Inductive case. Assume that we have the result for any symbolic frame of length n, and let φS
be a frame of length n + 1. We call φnS the frame φS cut at its nth value. Then consider a
c ∈ dom(θ). If vars(cθ) ⊆ dom(φnS), then we get that cλ is well-defined by induction hypothesis.
Else, cθ contains the last variable of φS , so c does not occur in φS . So cλ = (cθ)(φSλ)↓ is
well-defined as λ only instantiates the fresh constants at previous steps.

13

Moreover, if (cθ)φS↓ is a message for each c ∈ dom(θ), then for c such that cθ is defined in φnS ,
we have by induction hypothesis that cλ = (cθ)(φSλ)↓ = (cθ)φS↓λ and that it is a message, and
it is atomic if c is atomic. For c such that cθ was not defined in φnS , cλ = (cθ)(φSλ)↓ and in φSλ,
λ only instantiates the fresh constants that occur in φS , that is those that were defined in φnS . So
on those constants c′, c′λ is a message and it is atomic if c′ is atomic. So (cθ)(φSλ)↓ = (cθ)φS↓λ
and cλ is a message if (cθ)φS↓ is a message, it is atomic if c is atomic (as (cθ)φS↓ is atomic and
λ replaces atoms by atoms by induction hypothesis).

It concludes the proof.

Lemma 4. Let φS and θ as in Definition 9. Let λ the first-order substitution associated to θ
through φS. Assume that for any c ∈ dom(λ), cλ is an atom whenever c is atomic. Then for any
recipe R such that RφS↓ is a symbolic message, we have that (Rθ)(φSλ)↓ = (RφS↓)λ.

Proof. Recall that cλ = (cθ)(φSλ)↓ for any c ∈ dom(λ) = dom(θ).
We prove the result by structural induction on R. If R is a w ∈ dom(φS), then wθ = w so (as

cλ is in normal form by the equation we recalled) (wθ)(φSλ)↓ = wφSλ↓ = wφSλ = wφS↓λ which
is the result.

If R is a constant c /∈ dom(λ) = dom(θ), then both sides of the equation equal c.
If R is a constant c ∈ dom(λ) then cλ = (cθ)(φSλ)↓, so RφS↓λ = (Rθ)(φSλ)↓.
If R = f(R1, R2) with f a constructor symbol, then by induction hypothesis

(Rθ)(φSλ)↓ = f((R1θ)(φSλ)↓, (R2θ)(φSλ)↓)

= f(R1φS↓λ,R2φS↓λ)

= RφS↓λ

If R = proji(R
′) and RφS↓ is a symbolic message (in particular R′φS↓ = 〈u1S , u

2
S〉 is a symbolic

message) then by induction hypothesis

(Rθ)(φSλ)↓ = proji((R
′θ)(φSλ)↓)↓

= proji((R
′φS)↓λ)↓

= proji(〈u
1
S , u

2
S〉λ)↓

= u1sλ↓ = RφS↓λ↓ = RφS↓λ

(the last step beeing valid because λ only replaces atoms by atoms by hypothesis).
If R = sdec(R1, R2) and RφS↓ is a symbolic message (in particular R1φS↓ = senc(u1S, u

2
S) and

R2φS↓ = u2S) then

(Rθ)(φSλ)↓ = sdec((R1θ)(φSλ)↓, (R2θ)(φSλ)↓)↓

= sdec((R1φS↓)λ, (R2φS)↓λ)↓

= sdec(senc(u1S , u
2
S)λ, u

2
Sλ)↓ = u1Sλ↓ = RφS↓λ↓ = RφS↓λ

(the last step beeing valid because λ only replaces atoms by atoms by hypothesis and RφS↓ is a
message).

It concludes the induction on R and proves that (Rθ)(φSλ)↓ = (RφS↓)λ.

Lemma 2. Let (tr, φ) ∈ trace(P). There exists tr0 ∈ traces(P), (trS , φS) ∈ trace(P), a sub-
stitution σ0 which is the mgu of some pairs of encrypted subterms occurring in tr0, a bijective
mapping ρ from variables in tr0σ0 to fresh constants, and two substitutions θ and λ such that:

1. (tr0σ0)ρ = trSφS↓;

2. (tr0σ0)ρλ = trφ↓;

3. for any x ∈ vars(tr0σ0), we have that xρ is an atomic constant if, and only if xρλ is atomic;

14

4. dom(θ) = dom(λ) and cθ = Rc for some Rc ∈ T (Σstd,Σ0∪{w1, . . . ,wi}) such that Rcφ↓ = cλ
and i is the number of outputs that occur in (trsσ0)ρ before the first occurrence of an input
that contains the fresh constant c.

5. (trSθ)(φSλ)↓ = trφ↓;

6. for any encrypted subterms t1, t2 occurring in tr0σ0, we have that t1ρλ = t2ρλ implies that
t1 = t2.

Moreover, λ is the first-order substitution associated to θ through φS .

Proof. Let (tr, φ) ∈ trace(P). From [14], we have that there exists tr0 ∈ traces(P), (trS , φS) ∈
trace(P), a substitution σ0 which is the mgu of some pairs of encrypted subterms occurring in tr0,
a bijective mapping ρ from variables in tr0σ0 to fresh constants, and two substitutions θ and λ
such that:

• (tr0σ0)ρ = trSφS↓;

• (tr0σ0)ρλ = trφ↓;

• for any x ∈ vars(tr0σ0), we have that xρ is an atomic constant if, and only if xρλ is atomic;

• dom(θ) = dom(λ) and cθ = Rc for some Rc ∈ T (Σstd,Σ0∪{w1, . . . ,wi}) such that Rcφ↓ = cλ
and i is the number of outputs that occur in (trsσ0)ρ before the first occurrence of an input
that contains the fresh constant c.

• (trSθ)(φSλ)↓ = trφ↓;

Moreover, λ is the first-order substitution associated to θ through φS . However, this result holds
in a slightly different setting. In particular, they consider a more general framework that allows
non-atomic terms in key positions. Actually, it is easy to see that, in case trφ↓ only contains
atomic terms in key position, then trSφS↓ also satisfies this requirement (thanks to items 1 − 3).
The only difficulty comes from the fact that it could be the case that (trSθ)(φSλ)↓ only contains
messages with atomic keys when rewriting is allowed also in presence of terms with non-atomic
keys, and that the rewriting steps can not been done anymore when non-atomic keys are forbidden.
Actually, by choosing recipes without detour this can be avoided.

Then note that in [14], we could have unified all terms t1, t2 in tr0 whose instantiation is equal
in trφ↓ before doing anything else. Then we get that for any encrypted subterms t1, t2 occurring
in tr0, we have that t1σ0ρλ = t2σ0ρλ implies that t1σ0 = t2σ0. But as σ0 is a mgu of equalities
between subterms of tr0, we have that ESt(img(σ0)) ⊆ ESt(tr0)σ0 (a proof of this result is available
in [2] - Lemma 3). Therefore, we have that

ESt(tr0σ0) ⊆ ESt(tr0)σ0 ∪ ESt(img(σ0))
⊆ ESt(tr0)σ0

which concludes the proof.

Lemma 5. Let (trS , ψS) ∈ trace(Q). Let θ be a mapping such that for any (c 7→ Rc) ∈ θ, we have
that c is a fresh constant (c ∈ Σfresh), and Rc is a recipe built from the ouputs which preceded the
introduction of c in trS . Moreover, we assume that RcψS↓ is a message for any c ∈ dom(θ) and
when c is atomic then RcψS↓ is atomic too. We have that (trSθ, ψSλ) ∈ trace(Q) where λ is the
first-order substitution associated to θ through ψS.

Proof. The proof is by induction on the length of the execution. Since (trS , ψS) ∈ trace(Q), we
have that:

(Q; ∅; ∅) = (Q0
S ;ψ

0
S , σ

0
S)

α1

S−−→ . . .
αn

S−−→ (Qn
S ;ψ

n
S ;σ

n
S)

15

with ψn
S = ψS . We are going to show that

(Q; ∅; ∅) = (Q0;ψ0, σ0)
α1

S
θ

−−→ . . .
αn

S
θ

−−→ (Qn;ψn;σn)

where Qi = Qi
S , ψi = ψi

Sλ, and σi = σi
Sλ.

The base case is obvious. Assume we have the result for length n. We have (Qn
S ;ψ

n
S ;σ

n
S) and

(Qn;ψn;σn) such that Qn = Qn
S , ψn = ψn

Sλ, σ
n = σn

Sλ.
Then αn+1

S is either an input or an output. If it is an input, then αn+1
S = in(c, R) for some

symbolic recipe R. So there exists a in(c, u).Qc ∈ Qn
S = Qn such that uσn

S and Rψn
S↓ (ground

term) are unifiable with mgu τ . We have σn+1
S = σn

S ⊎ τ .
But applying Lemma 4 (possible thanks to Lemma 3), we have (Rθ)ψn↓ = (Rψn

S↓)λ = u(σn
S ⊎

τ)λ = (uσn+1
S λ)(τλ).

So:

(Qn;ψn;σn)
in(c,Rθ)
−−−−−→ (Qn+1;ψn+1

S λ;σn+1
S λ)

where Qn = Qn
S, Qn+1 = Qn+1

S , ψn+1 = ψn and ψn+1
S = ψn

S .
Now we can assume that αn+1

S is an output. αn
S = out(c,w). So there exists a out(c, u).Qc ∈

Qn
S = Qn and ψn+1

S = ψn
S ⊎ {w ⊲ uσn

S}.
We have that αn+1

S θ = αn+1
S and ψn+1 = ψn ⊎ {w ⊲ uσn} = ψn+1

S λ by induction hypothesis.
So we deduce that Qn+1 = Qn+1

S , σn+1 = σn = σn
Sλ = σn+1

S λ. We get that σn+1 = σn+1
S λ and

ψn+1 = ψn+1
S λ.

So it allows to conclude the induction on the execution of trS .
Then, from this result, we easily derive the result stated in the lemma.

Before to start the proof of our completeness result, we introduce a measure on recipes.

Our measure on recipes. Before defining our measure, we need to define a multiset associated
to a symbolic frame φS and a recipe R. This multiset is defined inductively as follows:

MultiφS
(w) = {w}

MultiφS
(c) = {c} for any c ∈ Σ0 ⊎ Σfresh.

MultiφS
(sdec(R1, c)) = MultiφS

(R1) when R1φS↓ = senc(_, c) for c ∈ Σfresh.

MultiφS
(sdec(R1, R2)) = MultiφS

(R1) ⊎MultiφS
(R2) otherwise.

MultiφS
(proji(R

′)) = MultiφS
(R′)

MultiφS
(f(R1, R2)) = MultiφS

(R1) ⊎MultiφS
(R2) where f is any constructor.

Given φS a symbolic frame and φ its concretization through θ, i.e. φ = φSλP), and a test T
(i.e. either R ∈ T (Σstd,W ∪ Σ0 ∪Σfresh) or R1 = R2 with R1, R2 ∈ T (Σstd,W ∪ Σ0 ∪Σfresh)) such
that Tθ holds in φ, we consider the measure µ(T) defined as follows (lexicographic order):

• the multiset MultiφS
(R) (resp. MultiφS

(R1) ⊎ MultiφS
(R2)) where constants from Σ0 are

minimal and elements from W ∪Σfresh are ordered following the order in which they appear
in the frame φS .

• the number of constructor symbols from Σc occurring in R (resp. R1 and R2);

• |Rφ↓| (resp. |R1φ↓|+ |R2φ↓|) where |u| is the number of symbols occurring in u.

Proposition 5. Let P and Q be two protocols such that Q is action-deterministic and P 6⊑ Q.
The algorithm applied on P and Q returns a minimal (in term of number of actions) witness tr

of non-inclusion.

16

Proof. Let (tr, φ) ∈ trace(P) be a minimal (in length) witness of non-inclusion. Let n be the length
of this witness. We have that P ⊑n−1 Q.

First, we apply Lemma 2. There exists tr0 ∈ traces(P), (trS , φS) ∈ trace(P), σ0 which is the
mgu of some pairs of encrypted subterms occurring in tr0, a bijective mapping ρ from variables in
tr0σ0 to fresh constants, and two subsitutions θ and λP such that:

• (tr0σ0)ρ = trSφS↓;

• (tr0σ0)ρλP = trφ↓;

• for any x ∈ vars(tr0σ0), we have that xρ is an atomic constant if, and only if xρλP is atomic;

• dom(θ) = dom(λP) and cθ = Rc for some Rc ∈ T (Σstd,Σ0 ∪{w1, . . . ,wi}) such that Rcφ↓ =
cλP and i is the number of outputs that occur in (trsσ0)ρ before the first occurrence of an
input that contains the fresh constant c.

• (trSθ)(φSλP)↓ = trφ↓.

• for any encrypted subterms t1, t2 occurring in tr0, we have that (t1σ0)ρλP = (t2σ0)ρλP
implies that t1σ0 = t2σ0.

Therefore, following our algorithm, we choose σ0 at step 2, and ρ at step 3 accordingly. At
step 4, we know that (tr0σ0)ρ is a valid first-order trace.

At step 5, we choose (tr′S , φ
′

S) a lifting of the valid first-order trace (tr0σ0)ρ. Since this lifting
is not unique, we do not necessarily have that trS = tr′S but we have that φ′S = φS , and (trS =
tr′S)φS↓.

If tr′S does not pass in Q, then it is at its last instruction, as P ⊑n−1 Q and tr′S is a trace of
P . But at step 6 of the algorithm, tr′S is outputed if it does not pass in Q. So we can assume that
tr′S passes in Q. Let ψ′

S be the resulting frame. Thanks to the action-determinism of Q, we have
that φS = φ′S ⊑s ψ

′

S .
We have that tr′SφS↓ = trSφS↓. Since φS ⊑s ψ

′

S , we have also that tr′Sψ
′

S↓ = trSψ
′

S↓, and
therefore trS passes in Q, and the resulting frame ψS is equal to ψ′

S .
We apply Lemma 5 on (trS , ψS) and θ. First, since RcφS↓ is a message and φS ⊑ ψ′

S , we know
that RcψS↓ is a message too. Second, when RcφS↓ is atomic, we know that RcψS↓ is atomic too.
We obtain that (trSθ, ψSλQ) ∈ trace(Q) where λQ is the first-order substitution associated to θ
through ψS .

We have that (trSθ = tr)φ↓ and trSθ leads to the frame ψSλQ in Q. Since P ⊑n−1 Q, we have
that (trSθ = tr)(ψSλQ), and therefore tr passes in Q and the resulting frame is ψ = ψSλQ.

So, we still have that tr is a witness of non-inclusion of length n but by contradiction we assume
that our algorithm returns no witness at iteration n, i.e. φS ⊑s ψS . We have shown that tr passes
in Q and leads to the frame ψ. So, since tr is a witness, it means that φ 6⊑s ψ.

We have that (trS , φS) ∈ trace(P), (trS , ψS) ∈ trace(Q), φSλP = φ, and ψSλQ = ψ.
Moreover, for each recipe c ∈ dom(θ) = dom(λP), cθ is a recipe where only the variables which

preceded the introduction of c in φS occur. cλP is atomic when c is atomic.
Therefore Lemma 4 applies and we have that for each recipe R such that RφS↓ is a symbolic

message, (Rθ)φ↓ = (Rθ)(φSλP)↓ = (RφS↓)λP .
By static equivalence at the previous step (that is from P ⊑n−1 Q) we get that cλQ = (cθ)ψ↓

is an atom whenever cλP = (cθ)φ↓ is an atom, and in particular when c is atomic.
So Lemma 4 applies and we have that for each recipe R such that RψS↓ is a symbolic message,

(Rθ)ψ↓ = (Rθ)(ψSλQ)↓ = (RψS↓)λQ.

We have that φS ⊑s ψS . We have to show that φ ⊑s ψ. To establish this result, we consider a
test T (built on T (Σstd,Σ0 ∪W ∪ Σfresh)) such that Tθ holds in φ. Moreover, we assume that for
all T ′ such that µ(T ′) < µ(T), we have that:

T ′θ holds in φ implies that T ′θ holds in ψ.

17

Now, we prove that Tθ holds in ψ.
A test that holds in φ can have the following form:

1. either a recipe R such that Rφ↓ is a message (resp. atomic message), and we have to establish
that Rψ↓ is a message (resp. atomic message).

2. either two recipes R1 and R2 such that R1φ↓ and R2φ↓ are both messages and R1φ↓ = R2φ↓,
and we have to show that R1ψ↓, R2ψ↓ are both messages, and R1ψ↓ = R2ψ↓.

Case T is a recipe R such that (Rθ)φ↓ is a message (resp. atomic message).
First, we assume that R is not in normal form w.r.t. ⇓. In such a case, we have that R =

R0[sdec(senc(R1, R2), R3)] (the case where R = R0[proji(〈R1, R2〉)] can be done in a similar way),
and since (Rθ)φ↓ is a message, we know that (R2θ)φ↓ and (R3θ)φ↓ are both atomic messages such
that (R2θ)φ↓ = (R3θ)φ↓. Note that either µ(R2 = R3) < µ(R), and thus we have that (R2θ)ψ↓
and (R3θ)ψ↓ are both messages, and (R2θ)ψ↓ = (R3θ)ψ↓. Otherwise, we have that R3 = c and
R2φS↓ = c, and thus (R2 = R3) holds in φS , and therefore (R2 = R3) holds in ψS thanks to our
algorithm. This allows us to conlude that (R2θ = R3θ) holds in φ and also in ψ by Lemma 4.

Let R′ = R0[R1]. We have that (Rθ)φ↓ = (R′θ)φ↓, and (Rθ)ψ↓ = (R′θ)ψ↓. Moreover, we
have that µ(R′) < µ(R). Since (Rθ)φ↓ is a message, then we have that (R′θ)φ↓ is a message too,
and by our induction hypothesis, we know that (R′θ)ψ↓ is a message. This allows us to conclude
that (Rθ)ψ↓ is a message.

Therefore, we know that R is in normal form w.r.t. ⇓. Moreover, by hypothesis, we know that
(Rθ)φ↓ is a message. By structural induction on R, we establish that R is made of constructors on
top of destructors (If there is a destructor on top of a constructor in R, then either the constructor
is in key position, or there is a destructor on an incompatible destructor. In both cases, (Rθ)φ↓
cannot be a message.).

From now on, we assume that R is made of constructors on top of destructors. In case R is of
the form R = senc(R1, R2) (the case where R = 〈R1, R2〉 can be done in a similar way), then we
conclude by applying our induction hypothesis on R1 and R2. Note that (R2θ)φ↓ is atomic, and
therefore by IH (R2θ)ψ↓ is atomic too.

Therefore, we know that R is destructor-only. Assume that RφS↓ is not a message. We
take the smallest subterm R′ of R such that R′φS↓ is not a message. Either R′ = proji(R

′′) or
R′ = sdec(R1, R2) as R is a destructor-only recipe and atomic recipes give messages. Assume
R′ = sdec(R1, R2) (the case where R′ = proji(R

′′) can be done in a similar way).

• If R1φS↓ is not an encryption, then R1φS↓ = c for some fresh constant c. By our algorithm,
we have that R1ψS↓ = c. Therefore by Lemma 4 we have that (R1θ)φ↓ = (cθ)φ and
(R1θ)ψ↓ = (cθ)ψ↓. We consider R0 = R[R1 → cθ]. µ(R0) < µ(R) because R1ψS↓ = c and
c occurs after all variables of cθ by definition of θ, so there is at least one leaf in R1 that
is bigger than any variable of cθ. (R0θ)φ↓ is a message. By IH, (R0θ)ψ↓ is a message, and
since (R1θ = cθ)ψ↓, we have that (Rθ)ψ↓ is a message too.

• If R1φS↓ = senc(u1, u2) and R2φS↓ = v. Note that u2 and v are atoms, i.e. names, constants
from Σ0, or constants from Σfresh. Since, we know that the reduction was not possible at the
symbolic level, it means that either v ∈ Σfresh, or u2 ∈ Σfresh (or both), and u2 6= v.

In case v = c ∈ Σfresh, then we consider R0 = R[R′ → sdec(R1, cθ)], and we have that
µ(R0) < µ(R) since R2φS↓ leads to a fresh constant c meaning that either R2 = c or R2

contains some w bigger than all the w occurring in cθ. We know that (R2 = c)φS , and
(R2θ)φ↓ = (cθ)φ↓ by Lemma 4. Thus, we have that (R0θ)φ↓ is a message, and therefore
thanks to our IH we have that (R0θ)ψ↓ is a message. Now, thanks to our algorithm, we
have that (R2 = c)ψS and (R2θ)ψ↓ = (cθ)ψ↓ by Lemma 4. This allows us to conclude that
(Rθ)ψ↓ is a message.

Now, we consider the case where u2 = c ∈ Σfresh, and we can assume that v 6∈ Σfresh. Let
R0 = R[sdec(R1, R2) → sdec(R1, c)]. We have that µ(R0) < µ(R) since c does not contribute

18

to the measure as opposed to R2. We know that sdec(R1, c)φS↓ is a message. Therefore,
we have that sdec(R1θ, cθ)φ↓ is a message and we have that (cθ = R2θ)φ. We have that
µ(cθ = R2) < µ(R). Therefore (cθ = R2θ)ψ, and this allows us to conclude.

Therefore, we know that RφS↓ is a message. Thanks to our algorithm, we know that RψS↓ is
a message too, and thus (Rθ)ψ↓ is a message too, as (Rθ)ψ↓ = (RψS↓)λQ, and λQ only replace
atomic fresh constants by atoms.

Note that, in case (Rθ)φ↓ is an atomic message, the proof follows that same lines, and we
should be able to conclude that (Rθ)ψ↓ is atomic too.

In the case where (Rθ)φ↓ is an atomic message, (RφS)↓ is an atomic message as it is a message
(see case message) and (Rθ)φ↓ = (RφS↓)λP by Lemma 4. So by our algorithm, RψS↓ is an atomic
message. By Lemma 4, (Rθ)ψ↓ = (RψS↓)λQ. If RψS↓ /∈ Σfresh, then (Rθ)ψ↓ = RψS↓ is an atomic
message.

If RψS↓ = c ∈ Σfresh, then c is an atomic fresh constant by our algorithm. We have shown that
λQ replaces atoms by atoms, so cλQ = (cθ)ψ↓ is atomic. It concludes the case of atomic messages.

Case T is a test R = R′ such that (Rθ)φ↓, (R′θ)↓ are both messages, and (Rθ)φ↓ = (R′θ)φ↓.
If R or R′ is not in normal form, then in the message-test case, we have shown that (R⇓θ)φ↓ =

(Rθ)φ↓ and that R⇓ is smaller than R so by minimality it is impossible. Now we know that both
recipes are constructor on top of destructor. But each head constructor has to be the same both
sides, so we can remove it until there is no more constructor one side. Therefore we can assume
that say R′ is a destructor recipe.

In case (R′θ)φ↓ = 〈u1, u2〉. Let R′

l = proj1(R
′) and R′

r = proj2(R
′). Assuming that R is

not destructor-only, we have that R = 〈R1, R2〉 where R1, R2 are made of constructors on top of
destructors. We have that R1 = R′

l and R2 = R′
r are tests smaller than the original one such

that (R1θ)φ↓ = (R′

lθ)φ↓ and (R2θ)φ↓ = (R′
rθ)φ↓. We can transfer them in ψ. We obtain that

(R1θ)ψ↓ = (R′

lθ)ψ↓ and (R2θ)ψ↓ = (R′
rθ)ψ↓, and we conclude that (Rθ)ψ↓ = (R′θ)ψ↓.

A similar reasoning holds when (R′θ)φ↓ = senc(u1, u2) and assuming that R is not destructor-
only. We can replace the constructor senc on top of R by a destructor in the other side of the
equality test. The last component of our measure (at least) will decrease.

Therefore, we know that both R and R′ are destructor only. Similar to the previous case (case
message), we deduce that RφS↓ and R′φS↓ are messages.

In case RφS↓ = c ∈ Σfresh then let R0 = cθ. We have that (Rθ)φ↓ = (cθ)φ↓ = (R0θ)φ↓, and
therefore R0 = R′ is a test such that (R0θ)φ↓ = (R′θ)φ↓ that holds in φ and µ(R0 = R′) < µ(R =
R′). Therefore, by IH, we have that (R0θ)ψ↓ = (R′θ)ψ↓. Note that RψS↓ = c (thanks to our
algorithm), and therefore (Rθ)ψ↓ = (cθ)ψ↓. This allows us to conclude.

Now, we assume that neither RφS↓, nor R′φS↓ leads to a constant from Σfresh. Therefore either
both are constants from Σ0 or names from N . In such a case, we have that RφS↓ = R′φS↓ (else
by Lemma 4 we would have Rφ↓ 6= R′φ↓). They lead necessarily to the same constant or name.
Therefore, thanks to our algorithm, we know that RψS↓ = R′ψS↓, and thus (Rθ)ψ↓ = (R′θ)ψ↓ as
(Rθ)ψ↓ = (RψS↓)λQ and (R′θ)ψ↓ = (R′ψS↓)λQ by Lemma 4.

Otherwise, RφS↓ and R′φS↓ both pairs 〈u1, u2〉 (resp. 〈u′1, u
′
2〉) or both ciphertexts senc(u1, u2)

(resp. senc(u′1, u
′
2)).

In case RφS↓ = 〈u1, u2〉 and R′φS↓ = 〈u′1, u
′
2〉, we consider Rl = proj1(R), Rr = proj2(R)

(similarly we defined R′

l and R′
r). We have that (Rlθ)φ↓ = (R′

lθ)φ↓ (resp. (Rrθ)φ↓ = (R′
rθ)φ↓)

Since those tests are smaller than R = R′, thanks to our induction hypothesis, we deduce that
(Rlθ)ψ↓ = (R′

lθ)ψ↓ and (Rrθ)ψ↓ = (R′
rθ)ψ↓. Therefore, we conclude that (Rθ)ψ↓ = (R′θ)ψ↓.

Now, it remains the case where RφS↓ = senc(u1, u2) and R′φS↓ = senc(u′1, u
′
2). Since R and

R′ are destructor-only, we know that senc(u1, u2) and senc(u′1, u
′
2) are encrypted subterms from

φS . Since senc(u1, u2)λP = senc(u′1, u
′
2)λP (the equality holds in φ), we know that senc(u1, u2) =

senc(u′1, u
′
2) (see sixth item of Lemma 2). Therefore, we have that RψS↓ = R′ψS↓, and thus

(Rθ)ψ↓ = (R′θ)ψ↓.

19

B An alternative definition of static inclusion

The purpose of this section is to show that we can consider the alternative Definition 11 of static
inclusion instead of the usual one given in Definition 4, as stated in Section 5.

Before proving the main result of this section (Proposition 4), we start by introducing the
notion of a recipe without detour, and we prove a property on such recipes that will be useful
later on.

Lemma 6. Let φ be a frame, and R be a recipe without detour. If Rφ↓ is a message, then R is a
simple recipe, i.e. a recipe made of constructors on top of destructors.

Proof. We show this result by structural induction on R.

Base case: R = w for some w ∈ dom(φ). In such a case, the result trivially holds.

Inductive cases: R = f(R1, R2) with f ∈ {senc, 〈 〉}. Since Rφ↓ is a message, we have that
R1φ↓ and R2φ↓ are both messages. We apply our induction hypothesis, and we conclude that R1

(resp. R2) are made of constructors on top of destructors, and this allows us to conclude that
R = f(R1, R2) is also made of constructors on top of destructors.

Now, we consider the case where R = sdec(R1, R2). We have that R1φ↓ = senc(u1, u2) and
R2φ↓ = u2 for some messages u1 and u2. We apply our induction hypothesis on R1, and R2.
Moreover, since u2 is an atom (key position), we have that R2 is destructor-only. Now, to conclude,
it remains to show that R1 is destructor-only. Assume by contradiction that R1 is not destructor-
only, it means that R1 starts with the symbol senc, and this will contradict the fact that R is
without detour. The case where R = proji(R

′) (with i ∈ {1, 2}) can be done in a similar way. This
allows us to conclude.

Proposition 4. Let φ1 and φ2 be two frames. We have that :

φ1 ⊑s φ2 if, and only if, φ1 ⊑′

s φ2.

Proof. We show the two implications separately.
(⇒) The implication φ1 ⊑s φ2 ⇒ φ1 ⊑′

s φ2 is easy. The only non trivial part is to establish that
item 1 from Definition 11 holds. Let R be a φ1-precompact recipe such that Rφ1↓ is an atom.
Let R′ = senc(R,R). We have that R′φ1↓ ∈ T0(Σc,Σ0 ∪ N). Therefore, relying on the fact that
φ1 ⊑s φ2, we deduce that R′φ2↓ ∈ T0(Σc,Σ0 ∪N). This implies that Rφ2↓ is an atom since Rφ2↓
occurs in key position, and this allows us to conclude.

(⇐) We now want to establish that φ1 ⊑′
s φ2 ⇒ φ1 ⊑s φ2. We show that all the tests can be

transfered from φ1 to φ2. A test is either a recipe R or a pair (R1, R2) of two recipes. In order to
define our measure, we consider:

1. the number of steps needed to reduce R (resp. both R1 and R2) to their normal form using
the following rewriting rules, and considering an innermost derivation:

sdec(senc(x, y), z) ⇒ x proj1(〈x, y〉) ⇒ x proj2(〈x, y〉) ⇒ y

2. the number of constructor symbols involved in R (resp. both R1 and R2)

3. the number of pair symbols at top level in Rφ1↓ (resp in R1φ1↓ = R2φ1↓).

We then consider the lexicographic order.

We now distinguish two cases following the definition of static equivalence.

Case 1: Let R be a recipe such that Rφ1↓ is a message. We have to show that Rφ2↓ is a message.

First, we assume thatR can be reduced using one of the rule given above (say sdec(senc(x, y), z) ⇒
x, the other cases being similar), and we consider an innermost redex. Therefore, we have that

20

R = C[sdec(senc(R1, R2), R3)], and we consider R′ = C[R1]. We know that Rφ1↓ is a message,
and thus we have that Riφ1↓ is a message (i ∈ {1, 2, 3}). Moreover, we have that R2φ1↓ = R3φ1↓.
According to our measure, the test R2 = R3 is smaller than R, thus we have that R2φ2↓ and
R3φ2↓ are both messages, and R2φ2↓ = R3φ2↓. We have also that R′ = C[R1] is smaller than R.
Thus, we have that R′φ2↓ is a message. Therefore, we have that

Rφ2↓ = C[sdec(senc(R1, R2), R3)]φ2↓ = C[R1]φ2↓ = R′φ2↓.

This allows us to conclude that Rφ2↓ is a message.

Now, we assume that R can not be reduced using one of the three rules above. We have that
R is a recipe without detour. Since Rφ1↓ is a message, thanks to Lemma 6, we know that R is a
simple recipe. Let R = C[R1, . . . , Rn]. In such a case, we have that Rφ1↓ = C[R1φ1↓, . . . , Rnφ1↓],
and therefore, we know that Riφ1↓ (i ∈ {1, . . . , n}) are messages (and actually there are atoms
when they occur in key position). Assuming that C is not empty, we have that Ri (i ∈ {1, . . . , n})
are smaller than R, and we deduce that Riφ2↓ (i ∈ {1, . . . , n}) are messages (and actually atoms
when they occur in key position). Therefore, we deduce that Rφ2↓ = C[R1φ2↓, . . . , Rnφ2↓] is a
message.

Now, we assume that C is empty. In such a case, we have that R is destructor-only. We
know that Rφ1↓ is a message. In case this message is not a pair, we therefore have that R
is φ1-precompact and, since φ1 ⊑′

s φ2, we deduce that Rφ2↓ is a message. Now, assume that
Rφ1↓ = 〈u1, u2〉. Let R1 = proj1(R) and R2 = proj2(R). We have that R1 (resp. R2) is smaller
than R, and Riφ1↓ (i ∈ {1, 2}) is a message. Therefore, we can apply our induction hypothesis and
we conclude that Riφ2↓ (i ∈ {1, 2}) is a message. Therefore, we have that Rφ2↓ = 〈R1φ2↓, R2φ2↓〉
is a message.

Case 2: Let R and R′ be two recipes such that Rφ1↓ and R′φ1↓ are messages, and Rφ1↓ = R′φ1↓.

First, in case R (resp. R′) can be reduced using one of the rule given above, we can apply the
same reasoning as before to build a recipe R (smaller than R) such that Rφ2↓ = Rφ2↓. Since the
test R = R′ is smaller than R = R′, we have that Rφ2↓ = R′φ2↓. This allows us to conclude that
Rφ2↓ = R′φ2↓.

Now, we assume that R and R′ can not be reduced using oneof the three rules above. We
have that R and R′ are recipes without detour. Since Rφ1↓ (resp. R′φ1↓) is a message, thanks
to Lemma 6, we know that R (resp. R′) is a simple recipe. Let R = C[R1, . . . , Rn] and
R′ = C′[R′

1, . . . , R
′

n′]. In such a case, we have that Rφ1↓ = C[R1φ1↓, . . . , Rnφ1↓] and R′φ1↓ =
C′[R′

1φ1↓, R
′

n′φ1↓]. Assuming that C and C′ are not empty, we have that C = f(C1, C2) and
C′ = f′(C′

1, C
′
2), and actually f = f′. Therefore, we have that

C1[R1, . . . , Rn] = C′
1[R

′
1, . . . , R

′

n′] (resp. C2[R1, . . . , Rn] = C′
2[R

′
1, . . . , R

′

n′])

is a test that holds in φ1 (both are smaller that R = R′). We deduce that Ci[R1φ2↓, . . . , Rnφ2↓] =
C′

i[R
′
1φ2↓, . . . , R

′

n′φ2↓] with i ∈ {1, 2}. This allows us to conclude that C[R1φ2↓, . . . , Rnφ2↓] =
C′[R′

1φ2↓, . . . , R
′

n′φ2↓], i.e. Rφ2↓ = R′φ2↓.

Now, we assume that C is empty. In such a case, we have that R is destructor-only. In case
Rφ1↓ = 〈u1, u2〉. Let Rl = proj1(R) and Rr = proj2(R). We have that Rl (resp. Rr) is smaller
than R, and Rlφ1↓ and Rrφ1↓ are both messages. Since Rφ1↓ = R′φ1↓ = 〈u1, u2〉, we consider
two cases:

1. R′ is destructor-only (and C′ is empty). In such a case, letR′

l = proj1(R
′) and R′

r = proj2(R
′).

We have that R′

l (resp. R′
r) is smaller than R′, and R′

lφ1↓ = u1 and R′
rφ1↓ = u2 are both

messages. Therefore, we have that Rl = R′

l (resp. Rr = R′
r) is a test that holds in φ1

and that is smaller than R = R′, and this allows us to conclude that Rlφ2↓ = R′

lφ2↓ (resp.
Rrφ2↓ = R′

rφ2↓), and thus Rφ2↓ = R′φ2↓.

21

2. C′ = 〈C′

l , C
′
r〉. In such a case, we have thatRl = C′

l [R
′
1, . . . , R

′

n′] (resp. Rr = C′
r[R

′
1, . . . , R

′

n′])
is a test that holds in φ1 and that is smaller than R = R′. Therefore, we have that
Rlφ2↓ = C′

l [R
′
1φ2↓, . . . , R

′

n′φ2↓] and Rrφ2↓ = C′
r[R

′
1φ2↓, . . . , R

′

n′φ2↓]. This allows us to
conclude that 〈Rl, Rr〉 = 〈C′

l [R
′
1, . . . , R

′

n′], C′
r[R

′
1, . . . , R

′

n′]〉 is a test that holds in φ2. There-
fore, we have that Rφ2↓ = R′φ2↓.

Now, it remains to consider the case where Rφ1↓ is not a pair, i.e. Rφ1↓ is either an atom or
a ciphertext. In case Rφ1↓ is an atom, then R′φ1↓ is an atom too, and relying on our induction
hypothesis, we have that both R and R′ are destructor-only, and we conclude relying on our
hypothesis, i.e. φ1 ⊑′

s φ2. Now, assume that Rφ1↓ = senc(u1, u2). In case both C and C′ are
empty, then we easily conclude relying on our hypothesis since R and R′ are φ1-precompact recipes.
Therefore, we assume that R′ = senc(R′

1, R
′
2). In such a case, we consider the test sdec(R,R′

2) = R′
1

which is smaller than R = R′ and that holds in φ1. Hence, we have that sdec(R,R′
2) = R′

1 holds
in φ2, and this allows us to conclude that Rφ2↓ = senc(R′

1, R
′
2)φ2↓ = R′φ2↓.

22

