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Risk assessment using suprema data∗

Christophette Blanchet-Scalliet† Diana Dorobantu‡ Laura Gay§

Véronique Maume-Deschamps¶ Pierre Ribereau ‖

Abstract
The dynamic of temperatures can be modelled by a mean-reverting process such as an Ornstein-
Uhlenbeck one. In this study, we estimate the parameters of this process thanks to daily observed
suprema of temperatures, which are the only data gathered by some weather stations. The expres-
sion of the cumulative distribution function of the process supremum is obtained. The parameters
are estimated by a least square method quantiles based on this function. Theoretical results, includ-
ing mixing property and consistency of model parameter estimation, are provided. The parameters
estimation will allow us to estimate risk measures, such as the probability of heat wave. Numerical
illustrations are given on simulated data and real ones.
Keywords. Ornstein-Uhlenbeck process, supremum law, parameters estimation, heat wave risk
assessment.

1 Introduction
Forecasting and assessing the risk of heat waves is a crucial public policy stake. It requires measure
tools in order to evaluate the probability of heat waves and their severity. The available information
depends on meteorological stations. Daily extremes (maximum and / or minimum) might be the only
available data. Since temperature does not deviate from its mean level, a mean-reverting process such
as an Ornstein-Uhlenbeck (OU) process is commonly used to model temperature process (see [8], [9]
for example). The authors of [10] and [2] propose to use an ARMA version of the OU process while
[6] propose a fractional Brownian motion (to take into account the long range dependence) instead of
the classical Brownian motion in the OU process.
The main purpose of this paper is to estimate the parameters of this OU process. Estimation of OU
parameters has been done using observations of the process (see [13]) or more recently using hitting
time data in [22] for the neuronal activity. However, weather stations do not record either of these data.
That’s why we propose an estimation based on daily observed suprema of temperatures. Once the
parameter estimation is done, risk measures related to heat waves may be obtained from Monte Carlo
simulations of the dynamic of temperatures with the estimated parameters. For example, we would
like to estimate the probability of heat waves, namely the probability for outdoor air temperature
to exceed a threshold (26.67◦C during 3 days, see [15]) or two thresholds (one during night and one
during day, see [18]). Other interesting measures would be the corresponding expected area over the
threshold or the mean time over the threshold.
Recently, lots of results on the first passage time of the process have been obtained. In [3], different
expressions for the density function of the first hitting time to a fixed level by an OU process are
given. Since hitting time and suprema are related, the cumulative distribution function (cdf) of the
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supremum is obtained.
Unlike classical quantile estimation (such as done in [7] or [23]), we do not use the cdf inverse and
propose though a new approach to estimate the parameters. Thanks to the cdf, we perform a least
square method to estimate the OU parameters.
The paper is organized as follows. In the next section, the estimation problem is presented. Section 3
is concerned with the theoretical tools. Finally, Section 4 is devoted to the numerical illustrations of
the estimation and the related risk measures.

2 Estimation Problem
We suppose that the temperature variations process X = (Xt)t>0 is modelled by a stationary OU
process given by :

dXt = (φ0 − λ0Xt) dt+
√
β0 dBt, X0 ∼ N

(
φ0
λ0
,
β0
2λ0

)
where φ0 ∈ R, λ0, β0 ∈ R∗+, and (Bt)t>0 is a standard Brownian motion1. Suppose that X0 and (Bt)t>0

are independent. We recall that the measure N
(
φ0
λ0
,
β0
2λ0

)
is the stationary measure. This modelling

is reasonable, as, in the applications, we consider observations only from a sub-period of annual ob-
servations (e.g. from summer).
Let us note for s, r ∈ R+, S[s,r[ = sup

s6t<r
Xt, I[s,r[ = inf

s6t<r
Xt and θ0 = (φ0, λ0, β0).

Assume that we observe the suprema on a period [0, T ] with a partition (ti)i>0 of constant step h > 0.
We then have n suprema S[ti−1,ti[ for i ∈ J1, nK on disjoint intervals. Let us remark here that in our
problem of daily observations we will take h = 1.
Classical estimation methods are not well suited for the parameter estimation from the supremum
observations. Indeed, the likelihood maximization requires the probability density function of the
supremum and in order to use quantile methods, one needs to know the supremum’s cdf inverse.
These two functions can only be obtained by numerical approximations that are more time consuming
than numerical methods to get the cdf itself.
This is why we propose to use the cdf of the supremum, denoted F ∗, whose expression is given in
Proposition 3.3.

Let Nq ∈ N∗ and sj , j = 1, . . . , Nq be real numbers. Let us denote F ∗n the empirical distribution
function on the sample S[ti−1,ti[, i = 1, . . . , n.
A natural way to estimate θ0 is to use a least square method by minimizing the sum of squares of the
differences between theoretical and empirical cdf. Then, we want to minimize the following function
Qn :

Qn (θ) =
Nq∑
j=1

[F ∗ (sj , θ, h)− F ∗n(sj)]2

where F ∗(a, θ, h) = P
(
S[0,h[ 6 a

)
and s1, . . . , sNq are real numbers (to be chosen later).

Thus, θ0 is estimated by
θ̂n = (φ̂n, λ̂n, β̂n) = argmin

θ∈R∗+×R
∗
+

Qn (θ) (1)

Remark 2.1. The problem is stated here with suprema but the same reasoning may be applied to the
infima (or both infima and suprema) to deduce the estimation.

3 Theoretical Tools
In this section, we present some useful results to estimate the parameters.

1If β0 = 0, the process is deterministic. If λ0 = 0, then X is a drifted Brownian motion.
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3.1 Cdf of the supremum

To minimize the function Qn, we need to compute the cdf F ∗ of the supremum. Using the hitting
time density for an OU process (see [3]), we can deduce the following result on the conditional cdf.

Proposition 3.1. For x ∈ R, t ∈ R+ and a > x, the cdf F c of the conditional supremum of the OU
process X with parameter θ = (φ, λ, β) ∈ R× R∗+ × R∗+ is given by

F c(a, θ, t, x) = P
(
S[0,t[ 6 a | X0 = x

)
= 1−

∫ tβ

0
e
− λ

2β

[
(a−φλ)2−(x−φλ)2−u

]
a− x√
2πu3

e−
(a−x)2

2u E
[
e−

λ2
2β2
∫ u

0 (rs−a+φ
λ

)2 ds
]

du

where r is a 3-dimensional Bessel bridge over the interval [0, u] between 0 and a− x.
For a 6 x, F c(a, θ, t, x) = 0.

Proof. Let a > x be given and fixed.
Let set Ut = X t

β
− φ

λ
, µ = λ

β
and Wt =

√
βB t

β
(which is thus a standard Brownian motion). Then

the dynamic of (Ut)t>0 is

dUt = −µUt dt+ dWt, U0 = u0 = x− φ

λ
∈ R.

For b > u0, we introduce the first passage time Hb = inf{s > 0;Us = b}.

Since P
(

sup
06u<t

Uu 6 b | X0 = x

)
= P(Hb > t | X0 = x), we have :

P
(
S[0,t[ 6 a | X0 = x

)
= P

(
sup

06u<tβ
Uu 6 a− φ

λ
| X0 = x

)
= P

(
H
a−φ

λ
> tβ | X0 = x

)
.

We conclude using the density fHb of Hb given (in [3]) by :

fHb(u) = e−
µ
2 (b2−u2

0−u) b− u0√
2πu3

e−
(b−u0)2

2u E
[
e
−µ2

2

∫ u
0 (rs−b)2 ds

]
where r is a 3-dimensional Bessel bridge over the interval [0, u] between 0 and b− u0. Then, we have

P
(
S[0,t[ 6 a | X0 = x

)
= 1−

∫ tβ

0
e
− λ

2β

[
(a−φλ)2−(x−φλ)2−u

]
a− x√
2πu3

e−
(a−x)2

2u E
[
e
−λ2
2β2

∫ u
0 (rs−a+φ

λ)2 ds
]

du

with r a 3-dimensional Bessel bridge over the interval [0, u] between 0 and a− x.

Remark 3.2. Similarly, we can obtain the cdf Fc of the conditional infimum of X. For x ∈ R, t ∈ R+,
a < x and θ ∈ R× R∗+ × R∗+, we have

Fc(a, θ, t, x) = P
(
I[0,t[ 6 a | X0 = x

)
=
∫ tβ

0
e
− λ

2β

[
(a−φλ)2−(x−φλ)2−u

]
x− a√
2πu3

e−
(a−x)2

2u E
[
e−

λ2
2β2
∫ u

0 (rs+a−φλ )2 ds
]

du

with r a 3-dimensional Bessel bridge over the interval [0, u] between 0 and x− a.
For x 6 a, Fc(a, θ, t, x) = 0.

Integrating with respect to the law of X0, we can express the cdf F ∗ of the supremum of the OU
process X with parameter θ = (φ, λ, β) ∈ R× R∗+ × R∗+.
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Proposition 3.3. For t ∈ R+ and a ∈ R, the cdf F ∗ is given by

F ∗(a, θ, t) = P
(
S[0,t[ 6 a

)
=
∫ a

−∞
F c(a, θ, t, x) dx

= Φ

a− φ
λ√
β
2λ

− ∫ a

−∞

∫ tβ

0
e
− λ

2β

[
(a−φλ)2+(x−φλ)2−u

]
a− x

π
√

2u3 β
λ

e−
(a−x)2

2u E
[
e−

λ2
2β2
∫ u

0 (rs−a+φ
λ

)2 ds
]

dudx

where r is a 3-dimensional Bessel bridge over the interval [0, u] between 0 and a− x and Φ is the cdf
of the standard normal distribution.

3.2 Mixing property

In order to get statistical properties of estimators, some mixing properties are usually required. Indeed,
statistics beyond independence have received a deep attention from the 90’s. Mixing is used instead of
independence and results such as Laws of Large Numbers or Central Limit Theorems may still hold.
There is a very large literature on that subject and we refer to [5, 11, 25] and the references therein
for definitions and main results.
Roughly speaking, mixing properties of a process (Yt)t∈R quantify the convergence to 0 as r goes to
infinity of

Cov
(
f(Yz1 , . . . , Yzj ), g(Yzj+1 , . . . , Yz`)

)
for f and g in an appropriate class of measurable functions and 0 < z1 < · · · < zj 6 zj+r 6 zj+1 < · · · < z`.
The following proposition means that (S[s,t[)06s<t is exponentially ρ-mixing.

Proposition 3.4 (Mixing property). Let us consider an OU with parameter θ = (φ, λ, β). For any
s, r > 0, for any functions f : C0 ([0, s],R) → R, g : C0 ([s+ r,+∞],R) → R such that f ,g are
square-integrable with respect to the law of S, and for any 0 6 u 6 s 6 s+ r 6 v, we have∣∣∣∣Cov

[
f

((
S[0,u[

)
u6s

)
, g

((
S[s+r,v[

)
v>s+r

)]∣∣∣∣ 6 e−λr
√

Var
[
f

((
S[0,u[

)
u6s

)]
Var

[
g

((
S[s+r,v[

)
v>s+r

)]
Proof. We can easily adapt the proof of Theorem 2.1 in [14] in the one-dimensional case of the OU
process satisfying the equation

dXt = (φ− λXt) dt+
√
β dBt, X0 ∼ N

(
φ

λ
,
β

2λ

)
Then, keeping the notation from [14], one may take ϕ = f ◦ sup and φ = g ◦ sup which are square-
integrable with respect to the law of X by hypothesis.

3.3 Consistency of the estimation

Following the idea of the proof of Theorem II.5.1 in [4], we may prove the consistency of our estimation
of the parameter θ0 provided that the sj , j = 1 , . . . , Nq are chosen such that the function

Ψ : R× R∗+ × R∗+ −→ [0, 1]Nq
θ 7−→ (F ∗(sj , θ, h))j=1,...,Nq

is injective and that the parameter θ belong to a compact subset of R× R∗+ × R∗+.

Proposition 3.5. Consider an OU process with parameters θ0 = (φ0, λ0, β0). Assume that the pa-
rameters θ0 belong to Θ a compact subset of R× R∗+ × R∗+3. For any n ∈ N∗, let θ̂n = (φ̂n, λ̂n, β̂n) be
given by (1). Then, any a.s. limit point θ∗ of (θ̂n)n∈N∗ satisfies Ψ(θ∗) = Ψ(θ0).
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Proof. We adapt the lines of the proof of Theorem II.5.1 in [4] and use the ergodic theorem for mixing
sequences (see [5] e.g.).
We denote

θ̂n = argminθ∈ΘQn(θ).

Since Θ is a compact set, the sequence θ̂n has limit points. Let θ∗ be any limit point of θ̂n. Since no
confusion can be made, and in order to simplify notations, we use F ∗(·, ·) instead of F ∗(·, ·, h) for this
proof. For j = 1, . . . Nq, let εn(sj) = F ∗(sj , θ0)− Fn(sj) we write

Qn(θ) =
Nq∑
j=1

εn(sj)2 +
Nq∑
j=1

(F ∗(sj , θ0)− F ∗(sj , θ))2 − 2
Nq∑
j=1

εn(sj)(F ∗(sj , θ0)− F ∗(sj , θ)). (2)

The ergodic theorem for mixing sequences implies that εn(sj) goes to 0 a.e. as n goes to infinity for
j = 1, . . . , Nq. Now,

Qn(θ̂n) 6 Qn(θ0).

Let nk be a subsequence such that θ̂nk goes to θ∗, using (2), we have

Qnk(θ̂nk) −→
Nq∑
j=1

(F ∗(sj , θ0)− F ∗(sj , θ∗))2 a.e.

and Qn(θ0) −→ 0 a.e. We deduce that

F ∗(sj , θ0)− F ∗(sj , θ∗) = 0, j = 1, . . . , Nq

which gives the announced result.

Remark 3.6. Of course, if the application Ψ is injective, then Proposition 3.5 implies that θ∗ = θ0 and
thus θ̂n goes to θ0 a.s. as n goes to infinity. From some numerical tests, it seems that the injectivity
is satisfied but we were unable to prove it.

4 Numerical Applications
In this section, we want to estimate the parameters, first on some simulated data, and then on real
ones. First of all, we need to implement the cdf of the supremum of the OU process X with 3
parameters.
From now on, to simplify the study and regarding the form of F ∗, we make a new parametrisation
for the optimisation problem (1). Instead of working with θ = (φ, λ, β), we use in an equivalent way2

θ′ =
(
β,
φ

λ
,
λ

β

)
.

Now, functions taking θ for argument are going to be used with θ′ as argument.
We want to make an estimation on real data with daily suprema observations. This is why without
any precisions, h will be equal to 1 for numerical applications in the rest of the paper.

4.1 Cdf Numerical Computation

We describe here the used method for the numerical computation. Contrary to what is written in [3],
the process r is the unique solution of the following SDE ([12])

drs =

− rs
u− s

+ a− x
(u− s) tanh

(
rs(a−x)
u−s

)
ds+ dBs, 0 < s < u, r0 = 0.

Since the process starts from 0 here, the Euler scheme cannot be applied for this SDE. Recall that
the process (rs)s6u with r0 = 0 and ru = a − x and the process (r̃s)s6u defined by r̃s = ru−s with

2Since β 6= 0 and λ 6= 0.
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r̃0 = a − x and r̃u = 0 have same distributions (Exercise XI.3.7 of [24]). Therehence, we can use the
Euler scheme on the switched Bessel bridge (r̃s)s6u which verifies the SDE ([24])

dr̃s =
(
− r̃s
u− s

+ 1
r̃s

)
ds+ dBs, 0 < s < u, r̃0 = a− x.

Finally, the integrals are computed by considering the corresponding Riemann sum and the expectation
by a Monte-Carlo method with M = 10000 simulations.
The code is written in C++ and the evaluation of the function is very long. Consequently, we had to
make a parallel code. Yet, the function "rand" in C++ is not thread safe. Thus, we propose to use the
Mersenne Twister generator for the simulation of the random numbers. With the parallelisation, the
time for one evaluation of the function Qn to be minimized has been divided approximately by 5 but
is still long (around 52 secs for Nq = 4, θ′ = (47.5, 22, 0.02), with a 40 cores machine). The duration
is not a problem since the optimisation needs to be done once and for all.

4.2 Bounding parameters

The problem (1) is solved by an algorithm which performs a Nelder-Mead method. More precisely,
we use optim procedure on the software R. Initial values for the parameters to be optimized over are
required. To set those initial values, we propose to bound each parameter. For each of them, we give
here a lower and an upper bound.
As well as we observe the maxima, suppose we also have the minima : I[ti−1,ti[ (still for (ti)i>0 a
partition of [0, T ] of constant step h > 0). Then, the available quantities for bounding the parameters
are the minima mean, denoted mmin; the maxima mean, denoted mmax; the smallest observed tem-
perature, denoted recmin and the largest one, denoted recmax.
Let us recall the OU process is assumed to be stationary, then we have, for all t > 0,

E[Xt] = φ0
λ0

Var[Xt] = β0
2λ0

The expectation gives us natural bounds for the parameter φ0
λ0

:

mmin 6
φ0
λ0

6 mmax.

Moreover, we have λ0
β0

= 1
2 Var[Xt]

. As for all i,
∣∣∣Xti − X̄

∣∣∣ 6 max (|recmin −mmax| ; |recmax −mmin|),
one may say that it is natural to upper bound the variance by

Var[Xt] 6 (max (|recmin −mmax| ; |recmax −mmin|))2

It then gives us a lower-bound
(
λ

β

)
min

for λ0
β0

.

For the upper-bound, we use Theorem 2.7 of [20]. For all x > 0, we have

px := P
(
S[0,1[ − E

[
S[0,1[

]
> x

)
6 exp

(
−λ0x

2

β0

)
.

Hence
λ0
β0

6
(
λ

β

)
max

= inf
x>0

[− ln(px)
x2

]
.

It remains to find the domain of β0. First of all, β0 > 0.

Since β0 = 〈X〉T
T

, a classical estimator of β0 (see [19]) is β̂0 = 1
T

n−1∑
i=0

(
Xti+1 −Xti

)2.
Then,

β0 6 βmax = 1
T

n−1∑
i=1

max
[(
S[ti,ti+1[ − I[ti−1,ti[

)2
,
(
I[ti,ti+1[ − S[ti−1,ti[

)2
]

Finally, θ̂n = argminθ∈CQn(θ) where C = [0, βmax]×[mmin,mmax]×
[(
λ

β

)
min

,

(
λ

β

)
max

]
⊂ R×R∗+×R∗+
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4.3 Parameters estimation on simulated data

We are going to test our method on simulated data. To choose realistic parameters, we use some
temperatures data. The mean temperature leads us to take φ0

λ0
= 22. Using the difference between

the maximal (respectively minimal) temperature and the mean temperature, we take
√
β0
2λ0

= 5. The

hourly correlation allows us to set λ0 = 0.95 (see e.g. [15] and [6]). Then, θ′0 = (47.5, 22, 0.02).
We made several tests to make a compromise between the algorithm complexity and the precision of
the estimation (with RMSE) which lead us to take Nq = 4 here.
The algorithm is launched on R on 50 samples simulated over T = n = 1000 days for each, with
X0 ∼ N (22, 25). The parameters found minimizing Q1000 are presented in the following boxplots:

Figure 1: Boxplots of the estimated parameters

The median parameters are satisfying. Yet, we observe a big variation in the estimators of β0. It is
confirmed by the relative RMSE which are for β0,

φ0
λ0

and λ0
β0

respectively equal to 0.462, 0.0418 and
0.0932. Better results are obtained if β0 is fixed and performing a 2D-estimation, as in [22]. Indeed,
the relatives RMSE for φ0

λ0
and λ0

β0
are then respectively equal to 0.0107 and 0.0929. It is consistent

with the results in [21] where β0 is assumed to be known.

4.4 Real data

4.4.1 Parameters estimation

In [17], daily temperature dataset in Paris through the ECA&D project is provided (Data and metadata
available at http://www.ecad.eu). This dataset is one of the longest in temperature measurement
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since it begins in 1900 but it records only maximum, minimum and mean daily temperature. In our
application, we study daily summer temperature. In that way, we select maximal and minimal tem-
peratures from 15th of june to the 14th of august (61 days) each year between 1950 and 1984 included,
representing 35 years of records and 2135 days. These years are selected in order to avoid climate
change influence so we can consider the dataset as maximum observations of a stationary process (see
[1]).
When we apply the estimation procedure presented in Section 2, we find θ̂′0 = (34.35, 19.04, 0.02633).
In order to assess the quality of this estimation, we propose to compare some theoretical quantities
with empirical ones. That is done in the next section.

4.4.2 Estimation validation

To verify the estimation, we propose two models validation indicators: : comparison of quantiles and
prediction.

Figure 2: Quantile-Quantile plot

The first thing to check is the match of quantiles. To this aim, we draw a quantile-quantile plot
(see Figure 2). The plotted points fall near the line y = x which indicates that the quantiles of the
theoretical and data distributions agree.
We also want to assess the estimation quality by a prediction method. The estimation ends on the
14/08/1984. We take the mean temperature of the 14/06/1985 as an initial point to simulate processes
on 10 days with the estimated parameters. Then, we make a confidence interval for the maxima over
each of those days and compare it with the real values (between 15/06/1985 and 24/06/1985).

Figure 3: Confidence limits for the maxima between 15/06/1985 and 24/06/1985

We observe that the real values are all in the confidence interval which confirms the pertinence of our
model.
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4.4.3 Risk measures

Let us recall the goal of our study. We want to estimate some risk measures related to heat waves.
Let us note that one may estimate any risk measures of his choice. Indeed, once the minimisation
is performed, we can use a Monte-Carlo method simulating independent processes with estimated
parameters.

A heat wave is classically defined by as a sequence of consecutive days (∆ days) for which the maximum
daily temperature is larger than a high-level threshold (amax) and the minimum daily temperature is
greater than a low level one (amin). Those temperatures thresholds depend on the geographical zone.
As we have daily observations, to simplify the expression, we take ti = i ∈ J0, nK and S[0,1[ is then the
supremum on the first day for example.
We define the two random variables

mS
[i,i+δ[ = min

(
S[i,i+1[, . . . , S[i+δ−1,i+δ[

)
and

mI
[i,i+δ[ = min

(
I[i,i+1[, . . . , I[i+δ−1,i+δ[

)
for δ ∈ J1, n− iK.
Then, we can express the probability of heat wave

P
(
∃i ∈ J0, n− δK, mS

[i,i+δ[ > amax , mI
[i,i+δ[ > amin

)
.

Another interesting measure is the duration of an heat wave. Let us note, when there exists

τin = min{i ∈ J0, n− δK, mS
[i,i+δ[ > amax , mI

[i,i+δ[ > amin}

and
τout = τin + max{δ > ∆, mS

[i,i+δ[ > amax , mI
[i,i+δ[ > amin}.

Then, the mean duration of an heat wave is

E
[
τout − τin | mS

[τin,τout[ > amax , mI
[τin,τout[ > amin

]

We use the markers of Météo France for Paris (see [18]), we take ∆ = 3, amin = 21◦C and amax = 31◦C.
As we want to estimate the measures for a summer, we take n = 61 days. Those measures are calculated
with the estimated parameters on the real data, namely θ̂′0 = (34.35, 19.04, 0.02633)
For the probability of heat waves, the Monte-Carlo is performed with the simulation of 108 years of
61 days and we obtain a probability of 2.57 × 10−2 for a summer. There were 2 heat waves between
1985 to 2011 then a proportion of 7.41 × 10−2. This highlights the deviation of the temperatures in
the last decades, due to climate change ([1]).
With 106 simulations for the Monte-Carlo, we obtain a mean duration for an heat wave of 3.2 days.
The 2 heat waves had lasted respectively 3 and 10 days.

5 Conclusion and and future research directions
In this paper, a new method to estimate the parameters of an OU process is proposed. Indeed, the
proposed method includes a least square estimation based on the suprema observations. To this aim,
the cdf of the suprema of an OU is given and theoretical results, including consistency of model pa-
rameter estimation, are established.
The numerical applications on real and simulated data prove the goodness of the estimation and its
relevance. Risk measures such as the probability of heat wave or the duration of one have been studied
and compared with the reality. The proposed model is also able to predict temperatures for a few
days.
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Some directions for further investigations are summarized as follows. For example, in continuity with
this work, obtaining explicit expressions of risk measures may be interesting in the model. To this
aim, one may know the joint law of the supremum and the process. Moreover, another interesting
estimation for the parameters of the process might be done using Maximum Simulated Likelihood
Estimation (see [16]).
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