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Abstract

The mixed finite element method for the Poisson problem with the Raviart-Thomas elements of low-
level can be interpreted as a finite volume method with a non-local gradient. In this contribution,
we propose a variant of Petrov-Galerkin type for this problem to ensure a local computation of
the gradient at the interfaces of the elements. The shape functions are the Raviart-Thomas finite
elements. Our goal is to define test functions that are in duality with these shape functions:
Precisely, the shape and test functions will be asked to satisfy a L2-orthogonality property. The
general theory of Babuška brings necessary and sufficient stability conditions for a Petrov-Galerkin
mixed problem to be convergent. We propose specific constraints for the dual test functions in order
to ensure stability. With this choice, we prove that the mixed Petrov-Galerkin scheme is identical
to the four point finite volumes scheme of Herbin, and to the mass lumping approach developed by
Baranger, Maitre and Oudin. Finally, we construct a family of dual test functions that satisfy the
stability conditions. Convergence is proven with the usual techniques of mixed finite elements.

Résumé
Rappelons que la méthode mixte de Raviart-Thomas avec des éléments finis de bas degré peut
s’interpréter comme une méthode de volumes finis avec un calcul non local du gradient dans le cas
du problème de Poisson. Dans cette contribution, nous proposons une variante de type Petrov-
Galerkin afin d’assurer un calcul local du gradient aux interfaces des éléments. Il s’agit d’expliciter
des fonctions test duales de l’élément fini de Raviart-Thomas. La théorie générale de Babuška
permet de garantir des conditions de stabilité nécessaires et suffisantes pour qu’un problème mixte
de Petrov-Galerkin conduise à une approximation convergente. Nous proposons des contraintes
spécifiques sur les fonctions test duales afin de garantir la stabilité. Avec ce choix, nous montrons
que le schéma mixte de Petrov-Galerkin obtenu est identique au schéma de volumes finis à quatre
points de Herbin et à l’approche par condensation de masse développée par Baranger, Maitre et
Oudin. Enfin, nous construisons une famille de fonctions test duales qui rendent le schéma stable
et nous montrons la convergence avec les méthodes usuelles d’éléments finis mixtes.
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Introduction

Finite volume methods are very popular for the approximation of conservation laws. The
unknowns are mean values of conserved quantities in a given family of cells, also named
“control volumes”. These mean values are linked together by numerical fluxes. The fluxes
are defined and computed on interfaces between two control volumes. They are defined with
the help of cell values on each side of the interface. For hyperbolic problems, the computation
of fluxes is obtained by linear or nonlinear interpolation (see e.g. Godunov et al. [17]).

This paper addresses the question of flux computation for second order elliptic problems.
To fix the ideas, we restrict ourselves to the Laplace operator. The computation of flux is
held by differentiation: the interface flux must be an approximation of the normal derivative
of the unknown function at the interface between two control volumes. Observe that for
problems involving both advection and diffusion, the method of Spaling and Patankar [23]
define a combination of interpolation for the advective part and derivation for the diffusive
part.

The well known two point flux approximation (see Faille, Gallouët and Herbin [15, 18])
is based on a finite difference formula applied to two scalar unknowns on each side of the
interface. These unknowns are ordered in the normal direction of the interface considering
a Voronoi dual mesh of the original mesh, [31]. When the mesh does not satisfy the Voronoi
condition, the normal direction of the interface does not coincide with the direction of the
centres of the cells. The tangential component of the gradient needs to be introduced. We
refer to the “diamond scheme” proposed by Noh in [22] in 1964 for triangular meshes and
analysed by Coudière, Vila and Villedieu [7]. The computation of diffusive interface gradients
for hexahedral meshes was studied by Kershaw [20], Pert [24] and Faille [14]. An extension
of the finite volume method with duality between cells and vertices has also been proposed
by Hermeline [19] and Domelevo and Omnes [8].

The finite volume method has been originally proposed as a numerical method [23, 28].
Gallouët et al. (see e.g. [13]) proposed a mathematical framework for the analysis of finite
volume methods based on a discrete functional approach. Even if the method is non con-
sistent in the sense of finite differences, they proved convergence. Nevertheless, a natural
question is the reconstruction of a discrete gradient from the interface fluxes. This question
has been first considered for interfaces with normal direction different to the direction of the
neighbour nodes by [22, 20, 24, 14]. From a mathematical point of view, a natural condition
is the existence of the divergence of the discrete gradient. How to impose the condition
that the discrete gradient belongs to the space H(div). If this mathematical condition is
satisfied, it is natural to consider mixed formulations. After the pioneering work of Fraeijs
de Veubeke [16], mixed finite elements for two-dimensional space were introduced by Raviart
and Thomas [26] in 1977. They will be denoted as “RT” finite elements in this contribution.
The discrete flux is a function of its mean values on all the edges of the mesh. Then, the
discrete gradient built from the RT mixed finite element, is non local. This is not suitable
for the discretisation of a differentiation operator that is essentially local. In their contribu-
tion [3], Baranger, Maitre and Oudin proposed a mass lumping of the RT mass matrix to
overcome this difficulty. With this approach, the interface flux is reduced to a true two-point
formula.
Our purpose is to build a discrete gradient with a local computation on the mesh interfaces
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that is conformal in H(div). The main idea is to choose a test function space that is or-
thogonal with the shape functions, i.e. in duality with the Raviart-Thomas space. With a
Petrov-Galerkin approach the spaces of the shape and test functions are different. It is now
possible to insert duality between the shape and test functions and then to recover a local
definition of the discrete gradient, as we proposed previously in the one-dimensional case [9].
The stability analysis of the mixed finite element method emphasises the “inf-sup” condition
[21, 2, 5]. In his fundamental contribution, Babuška [2] gives general inf-sup conditions for
mixed Petrov-Galerkin (introduced in [25]) formulation. The inf-sup condition guides the
construction of the dual space.

In this contribution we extend the Petrov-Galerkin formulation to two-dimensional space
dimension with Raviart-Thomas shape functions. In section 1, we introduce notations and
general backgrounds. The discrete gradient is presented in section 2. Dual Raviart-Thomas
test functions for the Petrov-Galerkin formulation of Poisson equation are proposed in section
3. In section 4, we retrieve the four point finite volume scheme of Herbin [18] for a specific
choice of the dual test functions. Section 5 is devoted to the stability and convergence
analysis in Sobolev spaces with standard finite element methods.

1 Background and notations

In the sequel, Ω ⊂ R2 is an open bounded convex with a polygonal boundary. The spaces
L2(Ω), H1

0(Ω) and H(div,Ω) are considered, see e.g. [27]. The L2-scalar products on L2(Ω)
and on [L2(Ω)]

2
are similarly denoted (·, ·)0.

Meshes

K

θK,i

nK,i

WK,i

aK,i

Figure 1: Mesh notations for a triangle K ∈ T 2

A conformal triangle mesh T of Ω is considered, in the sense of Ciarlet in [6]. The angle,
vertex, edge and triangle sets of T are respectively denoted T −1, T 0, T 1 and T 2. The area
of K ∈ T 2 and the length of a ∈ T 1 are denoted |K| and |a|.

Let K ∈ T 2. Its three edges, vertexes and angles are respectively denoted aK,i, WK,i and
θK,i, (for 1 ≤ i ≤ 3) in such a way that WK,i and θK,i are opposite to aK,i (see figure 1). The
unit normal to aK,i pointing outwards K is denoted nK,i. The local scalar products on K
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θa,K

na

K L

a

a

naK

Na

Sa

Wa

Ea

∂Ω

a ∈ T 1
i , ∂

ca = (K,L)

Wa

θa,L

a ∈ T 1
b , ∂

ca = (K)

Figure 2: Mesh notations for an internal edge (left) and for a boundary edge (right)

are introduced as, for fi ∈ L2(Ω) or pi ∈ [L2(Ω)]
2
:

(f1, f2)0,K =

∫
K

f1f2 dx or (p1, p2)0,K =

∫
K

p1 · p2 dx .

Let a ∈ T 1. One of its two unit normal is chosen and denoted na. This sets an orientation
for a. Let Sa, Na be the two vertexes of a, ordered so that (na, SaNa) has a direct orientation.
The sets T 1

i and T 1
b of the internal and boundary edges respectively are defined as,

T 1
b =

{
a ∈ T 1, a ⊂ ∂Ω

}
, T 1

i = T 1\T 1
b .

Let a ∈ T 1
i . Its coboundary ∂ca is made of the unique ordered pair K, L ∈ T 2 so that

a ⊂ ∂K ∩∂L and so that na points from K towards L. In such a case the following notation
will be used:

a ∈ T 1
i , ∂

ca = (K,L)

and we will denote Wa (resp. Ea) the vertex of K (resp. L) opposite to a (see figure 2).
Let a ∈ T 1

b : na is assumed to point towards the outside of Ω. Its coboundary is made of a
single K ∈ T 2 so that a ⊂ ∂K, which situation is denoted as follows:

a ∈ T 1
b , ∂

ca = (K)

and we will denote Wa the vertex of K opposite to a. If a ∈ T 1 is an edge of K ∈ T 2, the
angle of K opposite to a is denoted θa,K .

Finite element spaces

Relatively to a mesh T are defined the spaces P 0 and RT . The space of piecewise constant
functions on the mesh is denoted by P 0 subspace of L2(Ω). The classical basis of P 0 is made
of the indicators 1lK for K ∈ T 2. To u ∈ P 0 is associated the vector (uK)K∈T 2 so that
u =

∑
K∈T 2 uK 1lK . The space of Raviart-Thomas of order 0 introduced in [26] is denoted


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by RT and is a subspace of H(div,Ω). It is recalled that p ∈ RT if and only if p ∈ H(div,Ω)
and for all K ∈ T 2, p(x) = αK + βKx, for x ∈ K, where αK ∈ R2 and βK ∈ R are two
constants. An element p ∈ RT is uniquely determined by its fluxes pa :=

∫
a
p · nads for

a ∈ T 1. The classical basis {ϕa, a ∈ T 1} of RT is so that
∫
b
ϕa · nb ds = δab for all b ∈ T 1

and with δab the Kronecker symbol. Then to p ∈ RT is associated its flux vector (pa)a∈T 1 so
that, p =

∑
a∈T 1 paϕa.

The local Raviart-Thomas basis functions are defined, for K ∈ T 2 and i = 1, 2, 3, by:

ϕK,i(x) =
1

4|K|
∇|x−WK,i|2 on K and ϕK,i = 0 otherwise. (1)

With that definition:

ϕa = ϕK,i − ϕL,j if a ∈ T 1
i , ∂

ca = (K,L) and a = aK,i = aL,j

ϕa = ϕK,i if a ∈ T 1
b , ∂

ca = (K) and a = aK,i
. (2)

The support of the RT basis functions is supp(ϕa) = K ∪ L if a ∈ T 1
i , ∂

ca = (K,L) or
supp(ϕa) = K in case a ∈ T 1

b , ∂
ca = (K). This provides a second way to decompose

p ∈ RT as,

p =
∑
K∈T 2

3∑
i=1

pK,i ϕK,i,

where pK,i = εpa if a = aK,i with ε = na ·nK,i = ±1. For simplicity we will denote ϕK,a = ϕK,i
for a ∈ T 1 such that a ⊂ K and a = aK,i. The divergence operator div : RT → P 0 is given
by,

div p =
∑
K∈T 2

(div p)K 1lK , (div p)K =
1

|K|

3∑
1=1

pK,i. (3)

2 Discrete gradient

The two unbounded operators, ∇ : L2(Ω) ⊃ H1
0(Ω) → [L2(Ω)]

2
and div : [L2(Ω)]

2 ⊃
H(div,Ω) → L2(Ω) together satisfy the Green formula: for u ∈ H1

0(Ω) and p ∈ H(div,Ω):
(∇u, p)0 = −(u, div p)0. Identifying L2(Ω) and [L2(Ω)]

2
with their topological dual spaces

using the L2-scalar product yields the following property,

∇ = − div?,

that is a weak definition of the gradient on H1
0(Ω).

Consider a mesh of the domain and the associated spaces P 0 and RT as defined in section 1.
We want to define a discrete gradient : ∇T : P 0 → RT , based on a similar weak formulation.
Starting from the divergence operator div : RT → P 0, one can define div? : (P 0)

′ → (RT )′ ,
between the algebraic dual spaces of P 0 and RT . The classical basis for P 0 is orthogonal for
the L2-scalar product. Thus, P 0 is identified with its algebraic dual (P 0)

′
. On the contrary,

the Raviart-Thomas basis {ϕa, a ∈ T 1} of RT is not orthogonal. For this reason, a general
identification process of (RT )′ to a space RT ? = Span (ϕ?a, a ∈ T 1) is studied. We want it
to satisfy,

ϕ?a ∈ H(div,Ω), (ϕ?a, ϕa)0 6= 0, (4)


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so that RT ? ⊂ H(div,Ω), together with the orthogonality property,

(ϕ?a, ϕb)0 = 0 for a, b ∈ T 1, a 6= b. (5)

The discrete gradient is defined with the diagram,

RT
div−−−→ P 0

Π

y yid
RT ? ←−−−

div?
P 0

, ∇T = −Π−1 ◦ div? : P 0 → RT, (6)

where Π : RT → RT ? is the projection defined by Πϕa = ϕ?a for any a ∈ T 1.

Various choices for RT ? are possible. The first choice is to set RT ? = RT , and therefore to
build {ϕ?a, a ∈ T 1} with a Gram-Schmidt orthogonalisation process on the Raviart-Thomas
basis. Such a choice has an important drawback. The dual base function ϕ?a does not
conserve a support located around the edge a. The discrete gradient matrix will be a full
matrix related with the Raviart-Thomas mass matrix inverse. This is not relevant with the
definition of the original gradient operator that is local in space. This choice corresponds
to the classical mixed finite element discrete gradient that is known to be associated with
a full matrix [26]. In order to overcome this problem, Baranger, Maitre and Oudin [3] have
proposed to lump the mass matrix of the mixed finite element method. They obtain a
discrete local gradient. Other methods have been proposed by Thomas-Trujillo [30, 29], by
Noh [22], and analysed by Coudière, Vila and Villedieu [7]. Another approach is to add
unknowns at the vertices, as developed by Hermeline [19] and Domelevo-Omnes [8].
A second choice, initially proposed by Dubois and co-workers [9, 10, 4, 11], is investigated
in this paper. The goal is to search for a dual basis satisfying equation (4) and in addition
to the orthogonality property (5), the localisation constraint,

∀ a ∈ T 1, supp(ϕ?a) ⊂ supp(ϕa), (7)

in order to impose locality to the discrete gradient. We observe that due to the H(div)-
conformity, we have continuity of the normal component on the boundary of the co-boundary
of the edge a:

ϕ?a · nb = 0 if a 6= b ∈ T 1. (8)

With such a constraint (7) the discrete gradient of u ∈ P 0 will be defined on each edge
a ∈ T 1 only from the two values of u on each side of a (as detailed in proposition 1). In
this context it is no longer asked to have ϕ?a ∈ RT so that RT 6= RT ?: thus, this is a
Petrov-Galerkin discrete formalism.

3 Raviart-Thomas dual basis

Definition 1. (ϕ?a)a∈T 1 is said to be a Raviart-Thomas dual basis if it satisfies (4), the or-
thogonality condition (5), the localisation condition (7) and the following flux normalisation
condition:

∀ a, b ∈ T 1,

∫
b

ϕ?a · nb ds = δab, (9)


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as for the Raviart-Thomas basis functions ϕa, see section 1.
In such a case, RT ? = Span(ϕ?a, a ∈ T 1) is the associated Raviart-Thomas dual space,
Π : ϕa ∈ RT 7→ ϕ?a ∈ RT ? the projection onto RT ? and ∇T = −Π−1 div? : P 0 → RT the
associated discrete gradient, as described in diagram (6).

3.1 Computation of the discrete gradient

Proposition 1. Let (ϕ?a)a∈T 1 be a Raviart-Thomas dual basis. The discrete gradient is
given for u ∈ P 0, by the relation ∇T u =

∑
a∈T 1 paϕa with,

if a ∈ T 1
i , ∂

ca = (K,L), pa =
uL − uK
(ϕa, ϕ?a)0

if a ∈ T 1
b , ∂

ca = (K), pa =
−uK

(ϕa, ϕ?a)0

. (10)

The formulation of the discrete gradient only depends on the coefficients (ϕ?a, ϕa)0. The
discretisation of the Poisson equation (see the next subsection) also only depends on these
coefficients.
The result of the localisation condition (7) is, as expected, a local discrete gradient: its value
on an edge a ∈ T 1 only depends on the values of the scalar function u on each sides of a.
The discrete gradient on the external edges expresses a homogeneous Dirichlet boundary
condition. At the continuous level, the gradient defined on the domain H1

0(Ω) is the adjoint
of the divergence operator on the domain H(div,Ω). That property is implicitly recovered
at the discrete level. This is consistent since the discrete gradient is the adjoint of the
divergence on the domain RT .

Proof. Condition (9) leads to

∫
b

ϕ?a · nb ds =

∫
b

ϕa · nb ds, for any a, b ∈ T 1. Then the

divergence theorem implies that

∀ p ∈ RT, ∀ K ∈ T 2,

∫
K

div p dx =

∫
K

div(Πp) dx ,

and so proves

∀ (u, p) ∈ P 0 ×RT, (div p, u)0 = (div(Πp), u)0. (11)

Let us prove that,

∀ u ∈ P 0, ∀ q ∈ RT ?, (∇T u, q)0 = −(u, div q)0. (12)

From property (5) one can check that,

∀ q1, q2 ∈ RT ?, (Π−1q1, q2)0 = (q1,Π
−1q2)0 .

Now consider u ∈ P 0 and q ∈ RT ?. We have with (11),

(u, div q)0 = (u, div(Π−1q))0 = (div? u,Π−1q)0 = (Π−1
(
div? u

)
, q)0,


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which gives (12) by definition of the discrete gradient.
We can now prove (10). Let u ∈ P 0 and p = ∇T u ∈ RT that we decompose as

∇T u =
∑
a∈T 1

paϕa. For any a ∈ T 1, with (5),

(
∇T u, ϕ?a

)
0
= pa

(
ϕa, ϕ

?
a

)
0
,

and meanwhile with equation (12) and (11) successively,(
∇T u, ϕ?a

)
0
= −

(
u, divϕ?a

)
0
= −

(
u, divϕa

)
0
.

Finally, divϕa is explicitly given by,

if a ∈ T 1
i , ∂

ca = (K,L) : divϕa =
1

|K|
1lK −

1

|L|
1lL, (13)

if a ∈ T 1
b , ∂

ca = (K) : divϕa =
1

|K|
1lK .

This yields relations (10). �

3.2 Petrov-Galerkin discretisation of the Poisson problem

Consider the following Poisson problem on Ω,

−∆u = f ∈ L2(Ω), u = 0 on ∂Ω. (14)

Consider a mesh T and a Raviart-Thomas dual basis (ϕ?a)a∈T 1 as in definition 1 leading to
the space RT ?. Let us denote V = P 0×RT and V ? = P 0×RT ?. The mixed Petrov-Galerkin
discretisation of equation (14) is: find (u, p) ∈ V so that,

∀ (v, q) ∈ V ?, (p, q)0 + (u, div q)0 = 0 and − (div p, v)0 = (f, v)0. (15)

The mixed Petrov-Galerkin discrete problem (15) reformulates as: find (u, p) ∈ V so that,

∀ (v, q) ∈ V ?, Z
(
(u, p), (v, q)

)
= −(f, v)0.

where the bilinear form Z is defined for (u, p) ∈ V and (v, q) ∈ V ? by,

Z
(
(u, p), (v, q)

)
≡ (u, div q)0 + (p, q)0 + (div p, v)0. (16)

Proposition 2 (Solution of the mixed discrete problem). The pair (u, p) ∈ V is a solution
of problem (15) if and only if

∇T u = p, − div(∇T u) = fT , (17)

where fT ∈ P 0 is the projection of f , defined by,

fT =
∑
K∈T 2

fK 1lK , fK =
1

|K|

∫
K

f dx.

If (ϕa, ϕ
?
a) > 0 for all a ∈ T 1, then problem (15) has a unique solution.


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Proposition 2 shows an equivalence between the mixed Petrov-Galerkin discrete prob-
lem (15) and the discrete problem (17). Problem (17) actually is a finite volume problem.
Precisely, with (10), it becomes: find u ∈ P 0 so that, for all K ∈ T 2:∑

a∈T 1
i , ∂

ca=(K,L)

uL − uK
(ϕ?a, ϕa)0

+
∑

a∈T 1
b , ∂

ca=(K)

−uK
(ϕ?a, ϕa)0

= |K|fK .

It is interesting to notice that this problem only involves the coefficients (ϕ?a, ϕa)0 that are
going to be computed later.

Proof. Let u ∈ P 0, denote p = ∇T u ∈ RT and assume that div p = fT . Then using relation
(12), equation (15) clearly holds.
Conversely, consider (u, p) ∈ V a solution of problem (15). Relation (12) implies that
p = ∇T u, as a result, − div(∇T u) = fT .

We assume that (ϕa, ϕ
?
a) > 0 for all a ∈ T 1 and prove existence and uniqueness. It suffices

to prove that u = 0 is the unique solution when fT = 0. In such a case, div(∇T u) = 0, and
using successively (11) and (12):

0 = −(div(∇T u), u)0 = −(div(Π∇T u), u)0

= (Π∇T u,∇T u)0

=
∑
a∈T 1

p2
a(ϕa, ϕ

?
a).

As a result pa = 0 for all a ∈ T 1 and p = ∇T u = 0. From (15) it follows that for all q ∈ RT ?
we have (u, div q)0 = 0. Thus with (11) we also have (u, div q)0 = 0 for all q ∈ RT . Since
div(RT ) = P 0 it follows that u = 0. �

4 Retrieving the four point finite volume scheme

In this section we present sufficient conditions for the construction of Raviart-Thomas dual
basis. These conditions will allow to compute the coefficients (ϕ?a, ϕa)0. We start by intro-
ducing the normal flux g on the edges, and the divergence of the dual basis δK on K ∈ T 2.
Let g : (0, 1)→ R be a continuous function so that,∫ 1

0

g ds = 1,

∫ 1

0

g(s)s2 ds = 0, g(0) = 0 and g(s) = g(1− s). (18)

On a mesh T are defined gK,i : aK,i → R for K ∈ T 2 and i = 1, 2, 3 as,

gK,i(x) = g(s)/|aK,i| for x = sSK,i + (1− s)NK,i. (19)

For K ∈ T 2 is denoted δK : K → R a function that satisfies,∫
K

δK dx = 1 and

∫
K

δK(x)|x−WK,i|2 dx = 0 for i = 1, 2, 3. (20)


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To a family (ϕ?K,i) of functions on Ω for K ∈ T 2 and for i = 1, 2, 3 is associated the
family (ϕ?a)a∈T 1 so that,

ϕ?a = ϕ?K,i − ϕ?L,j if a ∈ T 1
i , ∂

ca = (K,L) and a = aK,i = aL,j

ϕ?a = ϕ?K,i if a ∈ T 1
b , ∂

ca = (K) and a = aK,i.
(21)

This is the same correspondence as in (2) between the Raviart-Thomas local basis functions
(ϕK,i) and the Raviart-Thomas basis functions (ϕa)a∈T 1 . Similarly, we will denote ϕ?K,a =
ϕ?K,i for a ∈ T 1 such that a ⊂ K and a = aK,i.

Theorem 1. Assume that the mesh angles θ ∈ T −1 satisfy 0 < θ < π/2. Consider a family
(ϕ?K,i)K∈T 2, i=1, 2, 3 of local basis functions on Ω that satisfy

suppϕ?K,i ⊂ K (22)

and independently on i,

divϕ?K,i = δK , on K. (23)

On ∂K, the normal component is given by

ϕ?K,i · nK =

{
gK,i on aK,i

0 otherwise
, (24)

where gK,i and δK satisfy equations (18), (19) and (20).
Let (ϕ?a)a∈T 1 be constructed from the local basis functions (ϕ?K,i)K,i with equation (21). Then
(ϕ?a)a∈T 1 is a Raviart-Thomas dual basis as defined in definition 1. Moreover, the coefficients
(ϕ?a, ϕa)0 only depend on the mesh T geometry,

a ∈ T 1
i , ∂

ca = (K,L) ⇒ (ϕ?a, ϕa)0 = (cotan θa,K + cotan θa,L) /2,

a ∈ T 1
b , ∂

ca = (K) ⇒ (ϕ?a, ϕa)0 = cotan θa,K/2 .
(25)

Notations are recalled on figure 3. We will also denote ga,K = gK,i for a ∈ T 1 such that
a ⊂ K and a = aK,i.

Figure 3: Co-boundary of the edge a ∈ T 1.
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Corollary 1. The mixed Petrov-Galerkin discrete problem (17) for the Laplace equation
(14) coincides with the four point finite volume scheme defined and analysed in Herbin [18].
Moreover, if the mesh angles θ ∈ T −1 satisfy 0 < θ < π/2, then with (25), (ϕ?a, ϕa)0 > 0.
Proposition 2 ensures the existence and uniqueness of the solution to the discrete problem.

Therefore, the Raviart-Thomas dual basis does not need to be constructed. Whatever
are δK and g that satisfy equations (18), (19) and (20), the coefficients (ϕ?a, ϕa)0 will be
unchanged. They only depend on the mesh geometry and are given by equation (25). Prac-
tically, this means that neither the (ϕ?a)a∈T 1 nor δK and g need to be computed. Such a dual
basis will be explicitly computed in section 5.1. The numerical scheme will always coincide
with the four point volume scheme. Finally, this theorem provides a new point of view for
the understanding and analysis of finite volume methods.
Theorem 1 gives sufficient conditions in order to build Raviart-Thomas dual basis. In the
sequel we will focus on such Raviart-Thomas dual basis, though more general ones may exist:
this will not be discussed in this paper.

Proof of theorem 1. Consider as in theorem 1 a family (ϕ?K,i)K∈T 2, i=1, 2, 3 that satisfy, (22),
(23) and (24) for δK and gK,i such that the assumptions (18), (19) and (20) are true. Let
(ϕ?a)a∈T 1 be constructed from the local basis functions (ϕ?K,i)K,i with equation (21).

Let us first prove that (ϕ?a)a∈T 1 is a Raviart-Thomas dual basis as in definition 1. Consider
an internal edge a ∈ T 1, a = (K|L). With (24), we have suppϕ?a = K ∪ L and relation (7)
holds. With (21), ϕ?a |K = ϕ?K,a ∈ H(div, K), ϕ?a |L = −ϕ?L,a ∈ H(div, L). The normal flux

ϕ?a · na is continuous across a = K ∩ L since gK,a = gL,a and with (24). Moreover, ϕ?a · n = 0
on the boundary of K ∪ L due to (24). Therefore ϕ?a belongs to H(div,Ω). With formula
(25) and the angle condition made in theorem 1, (ϕa, ϕ

?
a)0 6= 0 and so (4) holds.

Consider two distinct edges a, b ∈ T 1. If a and b are not two edges of a same triangle
K ∈ T 2, then ϕ?a and ϕb have distinct supports so that (ϕ?a, ϕb)0 = 0. If a and b are two
edges of K ∈ T 2, then (ϕ?a, ϕb)0 =

∫
K
ϕ?a · ϕb dx. With the definition (1) of the local RT

basis functions and using the Green formula,

±4|K|(ϕ?a, ϕb)0 = −
∫
K

divϕ?a |x−WK,b|2 dx+

∫
∂K

ϕ?a · n|s−WK,b|2 ds

= −
∫
K

δK |x−WK,b|2 dx+

∫ 1

0

g(s) s2 ds,

using (23), (24) and the fact that WK,b is opposite to b and so is a vertex of a. This implies
the orthogonality condition (5) with the assumptions in (18) and (20).
It remains to prove (9). In the case where a, b ∈ T 1 are two distinct edges,

∫
b
ϕ?a · nb ds = 0.

Assume that a ∈ T 1 is an edge of K ∈ T 2. We have na = εnK,a with ε = ±1. With relation
(24) and the divergence formula,∫

a

ϕ?a · na ds =

∫
a

(εϕ?K,a) · (εnK,a) ds =

∫
∂K

ϕ?K,a · n ds =

∫
K

divϕ?K,a dx.

This ensures that
∫
a
ϕ?a · na ds = 1 with relation (23) and the first assumption in (20). We

successively proved (4), (5), (7) and (9) and then (ϕ?a)a∈T 1 is a Raviart-Thomas dual basis.
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Let us now prove (25). Let a ∈ T 1 an internal edge with the notations in figure 3. The
Raviart-Thomas basis function ϕa has its support in K ∪ L, so that

(ϕ?a, ϕa)0 =

∫
K

ϕ?a · ϕa dx+

∫
L

ϕ?a · ϕa dx.

With the local decompositions (2) and (21) we have,

(ϕ?a, ϕa)0 =

∫
K

ϕ?K,a · ϕK,a dx+

∫
L

ϕ?L,a · ϕL,a dx .

By relation (1), W being the opposite vertex to the edge a in the triangle K,

4|K|
∫
K

ϕ?K,a · ϕK,a dx =

∫
K

ϕ?K,a∇|x−W |2 dx

= −
∫
K

divϕ?K,a |x−W |2 dx+

∫
∂K

ϕ?K,a · nK |x−W |2 dσ.

By hypothesis (23) and (24), and using (20),

4|K|
∫
K

ϕ?K,a · ϕK,a dx =

∫
K

δK |x−W |2 dx+

∫
a

gK,a |x−W |2 dσ =

∫
a

gK,a |x−W |2 dσ.

Let H be the orthogonal projection of the point W on the edge a. We have |x − W |2 =

WH2 + |x−H|2 and with (18) and (19),
∫
a
gK,a dσ = |a|

∫ 1

0
g(s)/|a| ds = 1 and so,

4|K|
∫
K

ϕ?K,a · ϕK,a dx = WH2 +

∫
a

gK,a|x−H|2 dσ.

Let s and s? respectively be the curvilinear coordinates of x and H on a with origin S, then

4|K|
∫
K

ϕ?K,a · ϕK,a dx = WH2 + |a|2
∫ 1

0

(s? − s)2g(s)ds.

The assumptions in (18) on g imply that 2
∫ 1

0
g(s)sds = 1. By expanding (s? − s)2 =

s2 − 2ss? + s? 2 we get,
∫ 1

0
(s? − s)2g(s)ds = s? 2 − s?. It follows that,

4|K|
∫
K

ϕ?K,a · ϕK,a dx = WH2 +
(
|a|s?

)(
|a|(s? − 1)

)
= WH2 +

−→
SH ·

−−→
NH

=
−−→
WS ·

−−→
WN.

Some trigonometry results in K leads to sin θK,a = 2|K|
WS·WN

. As a result,

4|K|
∫
K

ϕ?K,a · ϕK,a dx = 2|K| cotan θK,a,

this gives (25). �





Raviart-Thomas finite elements of Petrov-Galerkin type

5 Stability and convergence

In this section we develop a specific choice of dual basis functions. We provide for that choice
technical estimates and prove a theorem of stability and convergence. With theorem 1, this
leads to an error estimate for the four point finite volume scheme. We begin with the main
result in theorem 2. Theorem 3 provides a methodology in order to get the inf-sup stability
conditions. The inf-sup conditions need technical results that are proved in subsections 5.1
to 5.2. We will need the following angle condition.
Angle assumption. Let θ? and θ? chosen such that

0 < θ? < θ? < π/2 (26)

We consider meshes T such that all the angles of the mesh are bounded from below and
above by θ? and θ? respectively:

∀ θ ∈ T −1, θ? ≤ θ ≤ θ?. (27)

With that angle condition, the coefficients (ϕa, ϕ
?
a) in (25) are strictly positive. With propo-

sition 2 this ensures the existence and uniqueness for the solution (uT , pT ) of the mixed
Petrov-Galerkin discrete problem (15).

Theorem 2 (Error estimates). We suppose that f ∈ H1(Ω). Under the angle hypotheses
(26) and (27), there exists a constant C independent on T satisfying (27) and independent on
f so that the solution (uT , pT ) of the mixed Petrov-Galerkin discrete problem (15) satisfies,

‖uT ‖0 + ‖pT ‖H(div,Ω) ≤ C‖f‖0.

Let u be the exact solution to problem (14) and p = ∇u the gradient, the following error
estimates holds,

‖u− uT ‖0 + ‖p− pT ‖H(div,Ω) ≤ ChT ‖f‖1, (28)

with hT the maximal size of the edges of the mesh.

Proof. We prove that the unique solution of the mixed Petrov-Galerkin (15) continuously
depends on the data f . The bilinear form Z defined in (16) is continuous, with a continuity
constant M independent on the mesh T ,

|Z(ξ, η)| ≤ M ‖ξ‖L2×Hdiv
‖η‖L2×Hdiv

, ∀ ξ ∈ V, η ∈ V ?.

The following uniform inf-sup stability condition: there exists a constant β > 0 independent
on T such that,

∀ ξ ∈ V, so that ‖ξ‖L2×Hdiv
= 1, ∃ η ∈ V ?, ‖η‖L2×Hdiv

≤ 1 and Z(ξ, η) ≥ β, (29)

is proven in theorem 3 under some conditions. Moreover, the two spaces V and V ? have
the same dimension. Then the Babuška theorem in [2], also valid for Petrov-Galerkin mixed
formulation, applies. The unique solution ξT = (uT , pT ) of the discrete scheme (15) satisfies
the error estimates, and

‖ξ − ξT ‖L2×Hdiv
≤
(

1 +
M

β

)
inf
ζ∈V
‖ξ − ζ‖L2×Hdiv

,
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with ξ = (u, p), u the exact solution to the Poisson problem (14) and p = ∇u. In our case,
this formulation is equivalent to

‖u− uT ‖0 + ‖p− pT ‖H(div,Ω) ≤ C
(

inf
v∈P 0

‖u− v‖0 + inf
q∈RT

‖p− q‖H(div,Ω)

)
(30)

for a constant C = 1 + M
β

dependant of T only through the lowest and the highest angles θ?
and θ?. With the interpolation operators Π0 : L2(Ω)→ P 0 and ΠRT : H1(Ω)2 → RT 0

‖u− uT ‖0 + ‖ p− pT ‖H(div,Ω) ≤ C
(
‖u− Π0u ‖0 + ‖ p− ΠRTp ‖H(div,Ω)

)
.

On the other hand the interpolation errors are established by Raviart and Thomas [26] for
the operator ΠRT:

‖u− Π0u ‖0 ≤ hT ‖u ‖1, ‖ p− ΠRTp ‖0 ≤ hT ‖p ‖1, ‖ div
(
p− ΠRTp

)
‖0 ≤ hT ‖ div p ‖1.

Then ,
‖u− uT ‖0 + ‖ p− pT ‖H(div,Ω) ≤ C hT

(
‖u ‖1 + ‖p ‖1 + ‖ div p ‖1

)
.

Since −∆u = f in Ω, with f ∈ H1(Ω) and Ω convex, then u ∈ H2(Ω) and ‖u‖2 ≤ c‖f‖0.
Moreover p = ∇u and div p = −f leads to

‖u− uT ‖0 + ‖ p− pT ‖H(div,Ω) ≤ C hT
(
2‖f ‖0 + ‖f ‖1

)
.

Finally, we get
‖u− uT ‖0 + ‖ p− pT ‖H(div,Ω) ≤ C hT ‖ f ‖1 ,

that is exactly (28). �

Theorem 3 (Abstract stability conditions). Assume that the projection Π : RT → RT ?,
such that Πϕa = ϕ?a in diagram (6) satisfies, for any p ∈ RT :

(p,Πp)0 ≥ A ‖p‖2
0, (H1)

‖Πp‖0 ≤ B ‖p‖0, (H2)

(div p, div Πp)0 ≥ C ‖ div p‖2
0, (H3)

‖ div Πp‖0 ≤ D ‖ div p‖0 (H4)

where A, B, C, D > 0 are constants independent on T . Then the uniform discrete inf-sup
condition (29) holds: there exists a constant β > 0 independent on T such that,

∀ ξ ∈ V, so that ‖ξ‖L2×Hdiv
= 1, ∃ η ∈ V ?, ‖η‖L2×Hdiv

≤ 1 and Z(ξ, η) ≥ β.

This result has been proposed by Dubois in [10]. For the completeness of this contribu-
tion, the proof (presented in the preprint [11]) is detailed in Annex A.

In order to prove the conditions (H1), (H2), (H3) and (H4), one needs some technical
lemmas on some estimations of the dual basis functions so that theorem 3 holds. It is the
goal of the next subsections.
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5.1 A specific Raviart-Thomas dual basis

Choice of the divergence

For K a given triangle of T 2, we propose a choice for the divergence δK of the dual basis
functions ϕ?K,i, 1 ≤ i ≤ 3 in (23). We know from (20) that this function has to be L2(K)-
orthogonal to the three following functions: |x −WK,i|2 for i =1, 2, 3 and that its integral
over K is equal to 1. We propose to choose δK as the solution of the least-square problem:
minimise

∫
K
δ2
K dx with the constraints in (20). It is well-known that the solution belongs

to the four dimensional space EK = Span (1lK , |x−WK,i|2, 1 ≤ i ≤ 3) and is obtained by
the inversion of an appropriate Gram matrix.

Lemma 1. For the above construction of δK , we have the following estimation:

|K|
∫
K

δ2
K dx ≤ ν, with ν =

8 · 35 · 23

5

1

tan4 θ?
.

The proof of this result is technical and has been obtained with the help of a formal
calculus software. It is detailed in Annex C.

Choice of the flux on the boundary of the triangle

A continuous function g : (0, 1) → R satisfying the conditions (18) can be chosen as the
following polynomial:

g(s) = 30s (s− 1) (21s2 − 21s+ 4). (31)

Construction of the Raviart-Thomas dual basis

Figure 4: Affine mapping FK,a between the reference triangle K̂ and the given triangle K.

For a triangle K and an edge a of K, we construct now a possible choice of the dual function
ϕ?K,a satisfying (22), (23) and (24). Let FK,a be an affine function that maps the reference

triangle K̂ into the triangle K such that the edge â ≡ [0, 1]× {0} is transformed into the

given edge a ⊂ ∂K. Then the mapping K̂ 3 x̂ 7−→ x = FK,a(x̂) ∈ K is one to one. We

define x = FK,a(x̂) for any x̂ ∈ K̂ and the right hand side δ̃K(x̂) = 2 |K| δK(x). With g

defined in (31), let us define ĝ ∈ H1/2(∂K̂) according to
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ĝ :=

{
g on â = [0, 1]× {0}
0 elsewhere on ∂K̂ .

Since

∫
K̂

δ̃K dx = 1 =

∫
∂K̂

ĝ dγ, the inhomogeneous Neumann problem

∆ζK = δ̃K in K̂ ,
∂ζK
∂n

= ĝ on ∂K̂ (32)

is well posed. The dual function ϕ?K,a is defined according to

ϕ?K,a(x) =
1

det(dFK,a)
dFK,a ∇̂ζK . (33)

These so-defined functions satisfy the hypotheses (22), (23) and (24) of theorem 1. Let us
now estimate their L2-norm.

L2-norm of the Raviart-Thomas dual basis

An upper bound on the L2 norm of the Raviart-Thomas dual basis will be needed in order
to prove the stability conditions in theorem 3. This bound is given in lemma 3. It only
involves the mesh minimal angle θ?.

Lemma 2. For K ∈ T 2 and a ∈ T 1, a ⊂ ∂K, we have

‖ϕ?K, a‖0K ≤ µ?

where µ? is essentially a function of the smallest angle θ? of the triangulation.

Proof. Since the reference triangle K̂ is convex and ĝ ∈ H1/2(∂K̂), the solution ζK of the

Neumann problem (32) satisfies the regularity property (see for example [1]) ζK ∈ H2(K̂),
continuously to the data:

‖ζK‖2,K̂ ≤ CK̂

(
‖δ̃K‖0,K̂ + ‖ĝ‖1/2, ∂K̂

)
.

Moreover thanks to lemma 1,

‖δ̃K‖2
0,K̂

=

∫
K̂

δ̃K
2

dx̂ =

∫
K

(2|K|δK)2 1

det(dFK,a)
dx = 2 |K|

∫
K

δ2
K dx ≤ 2 ν

and then

‖∇̂ζK‖0,K̂ ≤ CK̂

(√
2ν + ‖ĝ‖1/2, ∂K̂

)
.

Since the dual function ϕ?K,a is defined by (33) and ‖dFK,a‖2 ≤ 8|K|
sin θ?

from direct geometrical
computations on the triangle K, we obtain

‖ϕ?K,a‖2
0,K ≤

( 1

2 |K|

)2 ( 8 |K|
sin θ?

)
‖∇̂ζK‖2

0,K̂
(2 |K|) .

Then ‖ϕ?K,a‖2
0,K ≤ (µ?)2 , with (µ?)2 =

4

sin θ?
C2
K̂

(√
2ν + ‖ĝ‖1/2, ∂K̂

)2

. �
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Lemma 3. For K ∈ T 2 and q ∈ RT ?:

‖Πq‖2
0,K ≤ 3(µ?)2

3∑
i=1

q2
K,i .

Proof. We have for a triangle K, Πq =
3∑
i=1

qK,iϕ
?
K,i , and so, using the Cauchy-Schwarz

inequality

‖Πq‖2
0,K =

∑
1≤i,j≤3

qK,iqK,j(ϕ
?
K,i, ϕ

?
K,j)0,K ≤

( 3∑
i=1

|qK,i| ‖ϕ?K,i‖0,K

)2

.

Then lemma 2, leads to ‖Πq‖2
0,K ≤ (µ?)2

( 3∑
i=1

|qK,i|
)2

≤ 3(µ?)2

3∑
i=1

q2
K,i . �

5.2 Local Raviart-Thomas mass matrix

The proof of the stability conditions in theorem 3 involves lower and upper bounds of the
eigenvalues of the local Raviart-Thomas mass matrix. We will need the following result
proved in Annex B.

Lemma 4. For p ∈ RT and K ∈ T 2:

λ?

3∑
i=1

p2
K,i ≤ ‖p‖2

0,K ≤ λ?
3∑
i=1

p2
K,i,

for two constants λ? and λ? only depending on θ? in (26),

λ? =
tan2 θ?

48
, λ? =

5

4 tan θ?
.

5.3 The hypotheses of theorem 3 are satisfied

Let us finally prove that the conditions (H1), (H2), (H3) and (H4) of theorem 3 hold. The
proof relies on lemma 4, lemma 3 and lemma 1 involving the mesh independent constants
λ?, λ

?, µ? and ν. In the following, p denotes an element of RT and K a fixed mesh triangle.

It is recalled that on K, p =
3∑
i=1

pK,i ϕK,i.

Condition (H1). Using the orthogonality property (5), and relation (25) successively, leads
to

(Πp, p)0,K =
3∑
i=1

p2
K,i (ϕ

?
K,i, ϕK,i)0,K =

1

2

3∑
i=1

p2
K,i cotan θK,i ≥

1

2
cotan θ?

3∑
1=1

p2
K,i.

Lemma 4 gives a lower bound,
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(Πp, p)0,K ≥
cotan θ?

2λ?
‖p‖2

0,K .

Summation over all K ∈ T 2 gives (H1) with,

A =
cotan θ?

2λ?
=

2

5
cotan θ? tan θ?.

Condition (H2). Using successively lemma 3 and lemma 4 we get,

‖Πp‖2
0,K ≤ 3(µ?)2

3∑
i=1

p2
K,i ≤

3(µ?)2

λ?
‖p‖2

0,K .

With the values of λ? and of µ? given in lemma 4 and lemma 3 this implies (H2) with,

B =

√
3(µ?)2

λ?
=

12

tan θ?
µ?.

Condition (H3). Relation (11) induces (div Πp, div p)0,K = ‖ div p‖2
0,K since div p is a

constant on K, and as a result inequality (H3) indeed is an equality with

C = 1.

Condition (H4). With equation (3) we get ‖ div p‖2
0,K =

(∑3
1=1 pK,i

)2
/|K| and with con-

dition (23), div Πp = δK(x)
∑3

1=1 pK,i. Therefore we get,

‖ div Πp‖2
0,K =

∫
K

δ2
K dx

(
3∑

1=1

pK,i

)2

= |K|
∫
K

δ2
K dx ‖ div p‖2

0,K .

Condition (H4) follows from lemma 1, with

D =
√
ν, ν =

8 35 23

5

1

tan4 θ?
.

Conclusion

We have established that it is possible to explicit dual test functions of the low degree Raviart-
Thomas finite element. With these dual functions, we can interpret the associated Petrov-
Galerkin mixed finite element method as a finite volume method for the Poisson problem.
Specific constraints for the dual test functions enforce stability. Then the convergence can be
established with the usual methods of mixed finite elements. This work can be extended in
a several different directions. Our analysis for the Laplace equation is also a priori valid for
three space dimensions. Moreover, the extension of the scheme to equations with tensorial
coefficients is also possible in principle. We are naturally interested in considering finite
elements for higher degree.

Annex A: proof of theorem 3

In this section, we consider meshes T that satisfy the angle conditions (27) parametrised by
the pair 0 < θ? < θ? < π

2
. We suppose that the interpolation operator Π defined in section
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1 by Π : RT −→ RT ? with Πϕa = ϕ?a satisfies the following properties: there exist four
positive constants A, B, C and D only depending on θ? and θ? such that for all q ∈ RT

(q,Πq) ≥ A ‖q‖2
0 , (34)

‖Πq‖0 ≤ B ‖q‖0 , (35)

(div q, div Πq)0 ≥ C ‖ div q‖2
0 , (36)

‖ div Πq‖0 ≤ D ‖ div q‖0 . (37)

Let us first prove the following proposition relative to the lifting of scalar fields.

Proposition 3 (Divergence lifting of scalar fields). Under the previous hypotheses (34),
(35), (36) and (37), there exists some strictly positive constant F that only depends of the
minimal and maximal angles θ? and θ? such that for any mesh T and for any scalar field u
constant in each element K of T , (u ∈ P 0), there exists some vector field q ∈ RT ?, such
that

‖ q ‖Hdiv
≤ F ‖ u ‖0 (38)

(u , div q )0 ≥ ‖ u ‖2
0 . (39)

Proof. Let u ∈ P 0 be a discrete scalar function supposed to be constant in each triangle
K of the mesh T . Let ψ ∈ H1

0(Ω) be the variational solution of the Poisson problem

∆ψ = u in Ω , ψ = 0 on ∂Ω . (40)

Since Ω is convex, the solution ψ of the problem (40) belongs to the space H2(Ω) and there
exists some constant G > 0 that only depends on Ω such that

‖ ψ ‖2 ≤ G ‖ u ‖0 .

Then the field ∇ψ belongs to the space H1(Ω) × H1(Ω). It is in consequence possible to
interpolate this field in a continuous way (see e.g. Roberts and Thomas [12]) in the space
H(div, Ω) with the help of the fluxes on the edges:

pa =

∫
a

∂ψ

∂na
dγ , p =

∑
a∈T 1

pa ϕa ∈ RT .

Then there exists a constant L > 0 such that

‖ p ‖Hdiv
≤ L ‖ u ‖0 . (41)

The two fields div p and u are constant in each element K of the mesh T . Moreover, we
have: ∫

K

div p dx =

∫
∂K

p · n dγ =

∫
∂K

∂ψ

∂n
dγ =

∫
K

∆ψ dx =

∫
K

u dx .

Then we have exactly, div p = u in Ω because this relation is a consequence of the above
property for the mean values.
Let now Π p be the interpolate of p in the “dual space” RT ? and q = 1

C
Π p,

q =
1

C
Π p =

1

C

∑
a∈T 1

pa ϕ
?
a with Π p =

∑
a∈T 1

pa ϕ
?
a.
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We have as a consequence of (36) and div p = u that,

(u , div q )0 =
1

C
( div p , div Π p ) ≥ ‖ div p ‖2

0 = ‖ u ‖2
0

that establishes (39). Moreover, we have due to equations (35), (37) and (41):

‖ q ‖0 =
1

C
‖ Π p ‖0≤

B

C
‖ p ‖0≤

BL

C
‖ u ‖0 ,

‖ div q ‖0 =
1

C
‖ div Π p ‖0≤

D

C
‖ div p ‖0 =

D

C
‖ u ‖0 .

Then the two above inequalities establish the estimate (38) with F = 1
C

√
B2L2 +D2 and

the proposition is proven. �

Proof of theorem 3

We suppose that the dual Raviart-Thomas basis satisfies the Hypothesis (34) to (37). We
introduce the constant F > 0 such that (38) and (39) are realised for some vector field
q̃ ∈ RT ? for any u ∈ P 0:

‖ q̃ ‖Hdiv
≤ F ‖ u ‖0 and (u , div q̃ )0 ≥ ‖ u ‖2

0 . (42)

• We set a =
1

2

(√
4 + F 2 − F

)
, b =

A

D +
√
B2 +D2

with the constants F , A, B and

D introduced in (42), (34), (35) and (37) respectively. We choose the constant β of the
inf-sup condition{

∃ β > 0 , , ∀ ξ ∈ P 0 ×RT such that ‖ ξ ‖L2×Hdiv
= 1 ,

∃ η ∈ P 0 ×RT ? , ‖ η ‖L2×Hdiv
≤ 1 and Z(ξ, η) ≥ β

(43)

according to

β =
b a2

1 + 2 a b
. (44)

We set
α ≡ a− β = a

1 + a b

1 + 2 a b
> 0 . (45)

Then we have after an elementary algebra: aF + a2 = 1. In consequence,

(α + β)F + α2 + β2 ≤ 1 (46)

because (α + β)F + α2 + β2 ≤ (α + β)F + (α + β)2 = 1. Moreover,

β ≤ b α2 (47)

thanks to the relations (44) and (45):

β − b α2 =
1

(1 + 2 a b)2

[
b a2 (1 + 2 a b)− b a2 (1 + a b)2

]
= − a4 b3

(1 + 2 a b)2
.

• Consider now ξ ≡ (u, p) satisfying the hypothesis of unity norm in the product space:

‖ ξ ‖L2×Hdiv
≡ ‖ u ‖2

0
+ ‖ p ‖2

0
+ ‖ div p ‖2

0
= 1 . (48)
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Then at last one of these terms is not too small and due to the three terms that arise in
relation (48), the proof is divided into three parts.

(i) If the condition ‖ div p ‖
0
≥ β is satisfied, we set

v =
div p

‖ div p ‖
0

, q = 0 , η = (v, q) .

Then, ‖ div v ‖
0

= 1 and ‖ η ‖
0
≤ 1 . Moreover

Z(ξ, η) = ( div p , v )0 = ‖ div p ‖
0
≥ β

and the relation (43) is satisfied in this particular case.

(ii) If the conditions ‖ div p ‖
0
≤ β and ‖ p ‖

0
≥ α are satisfied, we set

v = 0 , q =
1√

B2 +D2
Π p , η = (v, q) .

We check that ‖η‖L2×Hdiv
≤ 1:

‖η‖2
L2×Hdiv

= ‖ q ‖2

0
+ ‖ div q ‖2

0
≤ 1

B2 +D2

(
B2 ‖ p ‖2

0
+D2 ‖ div p ‖2

0

)
≤ ‖ p ‖2

0
+ ‖ div p ‖2

0
≤ ‖ξ‖2

L2×Hdiv
= 1.

Then

Z(ξ, η) = (p, q)0 + (u, div q)0 ≥
1√

B2 +D2

(
(p, Π p)0− ‖ u ‖0

‖ div Π p ‖
0

)
.

Moreover ‖ u ‖
0
≤ 1, then

Z(ξ, η) ≥ 1√
B2 +D2

(
A ‖ p ‖2

0
−D ‖ div p ‖

0

)
≥ 1√

B2 +D2

(
A ‖ p ‖2

0
−Dβ

)
≥ β

because the inequality
(
D+
√
B2 +D2

)
β ≤ Aα2 is exactly the inequality (47). Then the

relation (43) is satisfied in this second case.

(iii) If the last conditions ‖ div p ‖
0
≤ β and ‖ p ‖

0
≤ α are satisfied, we first remark that

the first component u has a norm bounded below: from (46),

0 < aF = (α + β)F ≤ 1− α2 − β2 ≤ 1− ‖ p ‖2

0
− ‖ div p ‖2

0
= ‖ u ‖2

0
.

Then we set,
v = 0 , q =

1

F
q̃ , η = (v, q) ,

with a discrete vector field q̃ satisfying the inequalities (42). Then,

Z(ξ, η) = (u, div q)0 + (p, q)0 =
1

F

(
(u, div q̃)0 + (p, q̃)0

)
≥ 1

F
‖ u ‖2

0
− 1

F
‖ p ‖

0
‖ q̃ ‖Hdiv

≥ 1

F
‖ u ‖2

0
−α ‖ u ‖

0
due to (42)

≥ β due to (46).

We have the following inequalities:

‖ u ‖
0
α + β ≤ α + β ≤ 1

F

(
1− α2 − β2

)
=

1

F
‖ u ‖2

0
.

Then the relation (43) is satisfied in this third case and the proof is completed. �
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Annex B: proof of lemma 4

We first recall the statement of lemma 4.

Lemma 4. For p ∈ RT and K ∈ T 2:

λ?

3∑
i=1

p2
K,i ≤ ‖p‖2

0,K ≤ λ?
3∑
i=1

p2
K,i,

for two constants λ? and λ? only depending on θ? in (26),

λ? =
tan2 θ?

48
, λ? =

5

4 tan θ?
.

The following technical result will be necessary for the proof of lemma 4.

Lemma 5. The gyration radius of a triangle K is defined as, ρK = 1
|K|

∫
K
|X −G|2, with G

the barycentre of the triangle K. It satisfies,

1

6
≤ ρ2

K

|K|
≤ 1

3 tan θ?
.

Proof. Let Ai and ai, 1=1, 2, 3, be respectively the three vertices and edges of the triangle
K. One can check that: 36 ρ2

K =
∑3

i=1 |AiAi+1|2 =
∑3

i=1 |ai|2.
On one hand, |K| ≤ 1

2
|AiAj||AiAk| ≤ 1

4

(
|AiAj|2 + |AiAk|2

)
for any 1 ≤ i, j, k ≤ 3 and

i 6= j, i 6= k and k 6= j. Then 3|K| ≤ 1
2

∑3
i=1 |AiAi+1|2 = 18 ρ2

K , that gives the lower bound.
On the other hand, using the definition of the tangent, |K| ≥ 1

4
|ai|2 tan θ?, for 1 ≤ i ≤ 3.

Then 3|K| ≥ 1
4

tan θ?
∑3

1=1 |ai|2 = 9
(
tan θ?

)
ρ2
K , that gives the upper bound. �

Proof of lemma 4

For a triangle K, the local RT mass matrix is GK := [(ϕK,i, ϕK,j)0,K ]1≤i,j≤3. Explicit com-
putation obtained by Baranger-Maitre-Oudin in [3] gives some properties on the gyration
radius:

3∑
i=1

cotan θi = 9
ρ2
K

|K|
(49)

where θi are the angles of the triangle K. And lead to information on the Raviart-Thomas
basis as follows:

‖ϕK,i‖2
0,K =

1

6
cotan θi +

3

4

ρ2
K

|K|

(ϕK,i, ϕK,j)0,K =
1

4

ρ2
K

|K|
− 1

9

(
cotan θi + cotan θj −

cotan θk
2

)
= −3

4

ρ2
K

|K|
+

cotan θk
6

(50)

where k is the third index of the triangle K (k 6= i, j, 1 ≤ i, j , k ≤ 3).

Derivation of λ?. The triangle K ∈ T 2 is fixed and p ∈ RT rewrites p =
3∑
i=1

pK,iϕK,i


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on K. One can easily prove that,

‖p‖2
0,K ≤ tr(GK)

3∑
i=1

p2
K,i, where tr(GK) =

3∑
i=1

‖ϕK,i‖2
0,K is the trace of GK .

With the property (50), tr(GK) = 15
4|K|ρ

2
K . This leads to the value of λ? thanks to lemma 5.

Derivation of λ?. In order to compute λ?, we want to minimise the smallest eigenvalues
of the Gram matrix GK . The characteristic polynomial is given by

P (λ) = − det(λI −GK) = −[λ3 − tr(GK)λ2 +Rλ− detGK ]

where R :=
∑3

i=1Ri with Ri := ‖ϕi‖2
0‖ϕi+1‖2

0− (ϕi, ϕi+1)2
0,K with the usual notation if i = 3,

ϕi+1 = ϕ1. Since P (λ) is of degree 3 with positive eigenvalues, the smallest eigenvalues λ?
is such that λ? ≥ det(GK)

R
. As GK is a Gram matrix, the determinant of GK is the square of

the volume of the basis function:

det(GK) = vol(ϕ1, ϕ2, ϕ3)2.

We expand each basis function on the orthogonal basis made of the three vector fields:−→
i ,
−→
j , x−G. Then the volume can be computed via a 3 by 3 elementary determinant. This

leads to

det(GK) =
ρ2
K

16|K|
.

The explicit computation of Ri with help of (50) leads to

Ri =
1

36
cotan θi cotan θi+1 +

1

8
(cotan θi + cotan θi+1)

ρ2
K

|K|
− cotan θi+2

36
+

cotan θi+2

4

ρ2
K

|K|
.

Using the geometric property that
3∑
i=1

cotan θi cotan θi+1 = 1 and the previous property (49)

the summation gives

R =
3∑
i=1

Ri =
1

12
+

9

4

ρ4
K

|K|2
.

Then using lemma 5 we get R ≤ 1

4 tan2 θ?
+

1

12
and, one can conclude that

λ? ≥
tan2 θ?

8 (tan2 θ? + 3)
≥ tan2 θ?

48
since θ? ≤ π

3
. �

Annex C: proof of lemma 1

We express the function δK as a linear combination of the functions 1lK and |x−WK,i|2, for
1 ≤ i ≤ 3. Thanks to the conditions (20), we solve formally a 4 by 4 linear system (with
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the help of a formal calculus software) in order to explicit the components. We can then
compute the integral I given by,

I = |K|
∫
K

δ2
K dx.

The result is a symmetric function of the length |ai| of the three edges of the triangle K. It
is a ratio of two homogeneous polynomials of degree 12. More precisely I reads,

I =
1

128

N

|K|4D
,

where N and D respectively are homogeneous polynomials of degree 12 and 4. The exact
expressions of D and N are,

D =
7

4
σ4 −

1

2
Σ2,2,0, (51)

N = 9σ12 − 15 Σ10,2,0 + 15 Σ8,4,0 − 33 Σ8,2,2 − 18 Σ6,6,0 + 48 Σ6,4,2 + 558$4, (52)

with the following definitions,

Σn,m,p ≡
∑
i 6=j 6=k

|ai|n |aj|m |ak|p , $ ≡ |a1| |a2| |a3| = Σ1,1,1 ,

and where σp is the sum of of the three edges length |aj| to the power p:

σp ≡
3∑
j=1

|aj|p .

The lemma 1 states an upper bound of I. To prove it, we look for an upper bound of N and
a lower bound of D.
The denominator D in (51) is the difference of two positive expressions. We remark that,

σ2
2 =

(
a2

1 + a2
2 + a2

3

)2
= σ4 + 2 Σ2,2,0.

We have on one hand,
σ4 = σ2

2 − 2 Σ2,2,0 , (53)
and on the other hand a2

i a
2
j ≤ 1

2

(
a4
i + a4

j

)
. Then by summation

Σ2,2,0 ≤ σ4 . (54)

In the expression of D in (51), we split the term relative to σ4 into two parts:

D = ασ4 + β σ4 −
1

2
Σ2,2,0 , with α + β =

7

4
.

Then thanks to (53),

D = α
(
σ2

2 − 2 Σ2,2,0

)
+ β σ4 − 1

2
Σ2,2,0 = ασ2

2 + β σ4 −
(
2α + 1

2

)
Σ2,2,0

≥ ασ2
2 +

[
β −

(
2α + 1

2

)]
Σ2,2,0 due to (54).

We force the relation β −
(
2α + 1

2

)
= 0. Then 3 β = 7

2
+ 1

2
= 4 and α = 7

4
− 4

3
= 5

12
> 0.

We deduce the lower bound,
D ≥ 5

12
σ2

2 . (55)
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We give now an upper bound of the numerator N given in (52). We remark that the

expression σ3
2 ≡

(
a2

1 +a2
2 +a2

3

)3
contains 27 terms. After an elementary calculus we obtain,

σ3
2 = σ6 + 3 Σ4,2,0 + 6$2 . (56)

In an analogous way,
σ3

4 = σ12 + 3 Σ8,4,0 + 6$4 . (57)

We can now bound the numerator N :

N ≤ 9σ12 + 15 Σ8,4,0 + 48 Σ6,4,2 + 558$4

= 4 σ12 + 5
(
σ12 + 3 Σ8,4,0 + 6$4

)
+ 48$2 Σ4,2,0 + 528$4

= 4 σ12 + 5σ3
4 + 16$2

(
3 Σ4,2,0 + 6$2

)
+ 432$4 due to (57)

≤ 4σ12 + 5σ3
4 + 16$2 σ3

2 + 24$4 + 408$4 due to (56)

≤ 4 (σ12 + 6$4) + 5 σ3
4 + 16

6
σ6

2 + 408$4 due to (56)

≤ 9σ3
4 + 16

6
σ6

2 + 408
36
σ6

2 due to (53)

≤
(
9 + 8

3
+ 34

3

)
σ6

2 due to (57)

and finally,
N ≤ 23σ6

2 . (58)

We observe that the upper bound (58) is clearly not optimal! We then combine the definition
(51) and inequalities (55) and (58):

I ≤ 1

128

23σ6
2

5
12
σ2

2

1

|K|4
≤ 3 . 23

5 . 32

( σ2

|K|

)4

.

We use that 36 ρ2
K =

∑3
i=1 |ai|2 = σ2 and the lemma 5 to get,

σ2

|K|
≤ 12

tan θ?
.

It follows that I ≤ 3 . 23 . 124

5 . 2 . 42

( 1

tan θ?

)4

, so ending the proof of lemma 1. �
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