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Abstract. We study the problem of aggregating metadata about the
validity and/or completeness, with respect to given topics, of informa-
tion provided by multiple sources. For a given topic, the validity level
reflects the certainty that the information stored is true. The complete-
ness level of a source on a given topic reflects the certainty that a piece
of information that is not stored is false. We propose a modeling based
on possibility theory which allows the fusion of such multi-source infor-
mation into a graded belief base.

1 Introduction and Related Work

The relation between beliefs and knowledge plays a central role in epistemology.
Much of epistemology revolves around questions about when and how our beliefs
are justified or qualify as knowledge [19]. Without taking a position in this de-
bate, in this paper, we will use the term knowledge when referring to information
provided by an information source, but we will use the term beliefs to refer to a
(possibly partial, incomplete, or uncertain) representation of reality obtained by
combining information provided by one or more sources with metadata about
its validity and completeness.

The problem of representing validity and completeness of information stored
in databases has started drawing attention many years ago. For example, we can
consider the model of database integrity proposed by Motro [17] and the work
by Demolombe [8] who used modal logic for representing information stored
in relational databases. Our aim is to consider validity and completeness in
more general knowledge bases (KBs) in which the closed world assumption is
not made. Therefore, a mechanism for representing uncertainty in the beliefs
induced by KBs fed by sources which can provide invalid and/or incomplete
pieces of information is needed.

Cholvy [6] uses the theory of evidence for proposing an interesting way to
compute the extent to which an agent should believe a new piece of information
provided by an imperfect information source. A difference with respect to our



work is that we explicitly associate these metadata concerning validity and com-
pleteness to topics and this allows us to describe these metadata for a source at
a finer grain.

Bacchus et al. [3] proposed the “random worlds” method, an approach for
inducing degrees of belief from KBs fed with different types of information like
statistical correlations, physical laws, default rules, etc. They apply the principle
of indifference and, therefore, all the possible worlds derived from the agent’s KB
are equally probable. The uncertainty about information is directly represented
in the KB (as statistical information, defeasible information and so on), not as
metadata.

We consider a possibilistic representation of beliefs to take uncertainty into
account. We assume the beliefs of an agent come from various information
sources, which may be more or less reliable (this has to do with information
validity) and more or less exhaustive (this has to do with completeness). The
validity level reflects the certainty that the information an agent stores on a
given topic is true, while the completeness level reflects the certainty that, on a
given topic, a missing piece of information is false.

The goal of our model is to support inferences, thus to answer queries, by
providing a weighted summary of the different (and possibly conflicting) opinions
of the available sources. An important point in our framework is that we provide
the user (requestor) with the different answers that can be obtained from the
information system in case of conflict. The user must then be aware of which
sources give which answer to his/her query, and with which certainty degree.

We adapt and extend the formalism by Dubois and Prade [12] for complete-
ness and validity of databases, to reason about the beliefs (opinions) of a source.
We give a possibilistic reasoning algorithm for those beliefs, whose complexity is
in the same class as reasoning on a crisp KB and less expensive than reasoning
on a general possibilistic belief base. Furthermore, we combine this solution with
a multi-source generalization of possibilistic logic [9] to summarize and reason
about the different (and possibly conflicting) beliefs of the sources.

The paper is organized as follows: the next section states the problem we
study; Section 3 gives then some background about the formal tools we use.
Section 4 explains how a gradual set of beliefs can be constructed from validity
and completeness metadata. Section 5 exploits multi-source possibilistic logic to
merge beliefs from multiple sources. Section 7 concludes the paper.

2 Problem Statement

The problem we study can be schematically depicted as in Figure 1. We are
given n KBs Ki,..., K,, fed by n imperfect, independent information sources
81, ..,8n, about which two kinds of metadata are known: for each topic, on the
one hand, we know to what degree a source s; provides valid information. On
the other hand, we know to what degree information provided by source s; is
complete. Here, we use the term knowledge base to mean a (possibly noisy and
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Fig. 1. A schematic illustration of an abstract information system, consisting of n
knowledge bases K; fed by n independent information sources s;, with metadata about
their validity and completeness, whence a possibility distribution 7; and a correspond-
ing possibilistic belief base B; are constructed and used to answer queries.

incomplete) collection of facts, for which the open world assumption (OWA)
holds. We answer two important questions:

1. How can the facts contained in each KB K; be combined with metadata
about the validity and completeness of its source s; to construct a gradual
belief base B; taking the uncertainty of K; (due to its imperfection) into
account?

2. How can the n belief bases be used to answer queries while merging (possibly
conflicting) information coming from the n sources?

The former is a problem of metadata aggregation, whereas the latter is a problem
of information (or, more properly, belief) fusion. We argue that possibility theory
provides suitable tools to solve both problems.

To illustrate our proposal, we will use simple examples inspired, much like
in [8], by an air travel planning application. One might suppose that some of the
KBs in the system would be fed with flight information directly by an airline
and some by an airport, each source being more authoritative about information
which falls directly under its control and less for other information.

3 Background

3.1 Knowledge Representation Language

For the sake of simplicity, we base our treatment on a decidable fragment of pure
(i.e., without function symbols and identity) first-order predicate logic, namely
the Schonfinkel-Bernays class of first-order formulas [5].

Definition 1 (Language L£). Let Lor be the set of quantifier-free formulas
inductively defined as follows:



— a term is either a variable or a constant (including literals denoting numbers,
times, character strings, etc.);

— if P is an n-ary predicate symbol and ty, ..., t, are terms, then P(t1,...,t,)
is an (atomic) formula and P(ty,...,t,) € Lor;
-1, Te EQF

—if ¢ € LgF, then ¢ € LoF;
—if ¢, € Lor then p AN € Lor and ¢V ¢ € LgF.

L is the smallest language such that Lor C L and, if ¢ € Lor and x1,...,Tp,
Y1, .-, Yn are variables, then

dzq ... e, VY1 .. Vyed € L.

A variable x is free in formula ¢ if it is not quantified; otherwise it is bound. A
formula without free variables is closed. A formula with free variables is open.
A formula not containing variables is ground.

The semantics of £ can be defined as follows:

Definition 2. The Herbrand base of L is the set Hy of all ground atoms in L.
An interpretation (or model) is a function T : Hy — {0,1}, which can also be
viewed as a subset of the Herbrand base, T C H (the set of all atoms ¢ such
that ¢ = 1). We denote 2 = 2H= the set of all interpretations.

We observe that H. is finite, because there are no function symbols in L.

Definition 3 (Satisfaction). Let P be an n-ary predicate, ¢,v € L closed
formulas and Z an interpretation of Hy:

- ':I T and l;éz J_,‘

— E1 P(t1,...,tn) if and only if P(t1,...,tn) € L;

— Bz ¢ if and only if 1 ¢;

- Bz ¢ A if and only if Bz ¢ and 1 ¢;

— Fz ¢V if and only if Fz ¢ or [z ;5

Ez Vao(x) if and only if =z &(c) for all constant c;
Ez Jxg(x) if and only if =1 ¢(c) for some constant c.

An open formula ¢(x1,...,x,) is satisfied by T iff =7 Vo1 .. Ve, d(xy, ..., xn).

It is a well-known result that the satisfiability of the formulas of £, besides
being decidable, is in the NEXPTIME-complete complexity class [15].

We impose the restriction that only ground formulas of Lo without negation
and disjunction (which we shall call facts) can be stored in a KB (one does not
usually say, when stating facts, things like “Tom is not from NY” or “Tom is
from NY or LA”). We denote such restricted language Leact.

Notice that, by Definition 2, the three languages L.t C Lo C L share the
same identical Herbrand base H..

Definition 4. Let ¢,v € L: ¢ = ¢ if and only if, for allT C Hy, if E1 ¢, then
also =1 .



L may be viewed as an abstraction of popular ways to encode information
used in state-of-the-art technologies, such as relational databases, datalog, and
RDF + OWL.

Ezxample 1. The set of facts S C Liact,

S=1{  Flight(AF1680), Origin(AF1680, CDG), Dest(AF1680, LHR),
Depart(AF1680, 07:25), Arrival(AF1680,07:45), Airline(AF1680, AF) }

describes a morning flight connecting Paris Charles de Gaulle to London Heathrow.
Formula ¢ = 3z(Flight(x) A Origin(z, CDG) A Dest(z, LHR)) states that there is a
flight connecting those two airports.

3.2 Possibility Theory and Possibilistic Logic

Possibility theory [11] is a mathematical theory of uncertainty that relies upon
fuzzy set theory [20], in that the (fuzzy) set of possible values for a variable of
interest is used to describe the uncertainty as to its precise value. At the semantic
level, the membership function of such set, w, is called a possibility distribution
and its range is [0, 1]. By convention, w(Z) = 1 means that it is totally possible
for Z to be the real world, 0 < 7(Z) < 1 means that Z is only somehow possible,
while 7(Z) = 0 means that Z is ruled out. A possibility distribution 7 is said to
be normalized if there exists at least one interpretation Zy such that w(Zy) = 1.

Definition 5. (Possibility and Necessity Measures) A possibility distribution
induces a possibility measure and its dual necessity measure, denoted by II and
N respectively. Both measures apply to a classical set of interpretation S C (2
and are defined as follows:

I(S) = maxw(Z); (1)
N(S)=1-1II(S) = rIneig{l —7(2)}. (2)

In words, IT(S) expresses to what extent S is consistent with the available
knowledge. Conversely, N(S) expresses to what extent S is entailed by the avail-
able knowledge. Among the properties of IT and N induced by a normalized
possibility distribution on a finite universe of discourse {2, we can mention, for
all subsets S C (2:

1. I1(S) = 1 — N(S) (duality);
2. NS)>0=1I(S)=1; II(S)<1= N(S)=0.

Possibilistic logic [10] has been originally motivated by the need to manipu-
late syntactic expressions of the form (¢, «), where ¢ is a classical logic formula,
and « is a certainty level, with the intended semantics that N(¢) > a, where N
is a necessity measure.

A possibilistic belief base B is a set {(¢;,®;)}i=1,...m of possibilistic logic
formulas. Clearly, B can be layered into a set of nested classical bases B, = {¢; |



(¢s,;) € B and o > a} such that B, C Bg if @ > . Proving syntactically
B I (¢,«) amounts to proceeding by refutation and proving B U {(—¢,1)} F
(L, @) by repeated application of the resolution rule (=¢ V1, @), (¢pVv,B) F (Y V
v, min(q, 3)). Moreover, B - (¢, «) if and only if B, F ¢ and a > inc(B), where
inc(B) is the inconsistency level of B defined as inc(B) = max{a | BF (L, a)}.
It can be shown that inc(B) = 0 iff By is consistent, with By = {¢; | (¢4, ;) €
B}. Thus reasoning from a possibilistic base just amounts to reasoning classically
with subparts of the base whose formulas are strictly above the certainty level.

A possibilistic belief base B = {(¢s, @;)}i=1,...m encodes the constraints
N(¢;) > «;. B is thus semantically associated with a possibility distribution
[10]

m5(Z) = i_rlninm max(¢?, 1 — ay),

where ¢7 = 1 if Z is a model of ¢;, and ¢ = 0 otherwise; mp is the largest
possibility distribution, i.e., the least specific distribution assigning the largest
possibility levels in agreement with the constraints N(¢;) > a; fori =1,...,m.
The distribution 7 rank-orders the interpretations Z of the language induced
by the ¢;’s according to their plausibility on the basis of the strength of the
pieces of information in B. If the set of formulas By is consistent, then the
distribution 7 g is normalized. The semantic entailment is defined by B = (¢, «)
ift VI, 75 (Z) < m{(¢,a)}(Z)- Reasoning by refutation in propositional possibilistic
logic is sound and complete, applying the syntactic resolution rule. Namely, it
can be shown that B = (¢, «) iff B+ (¢, ) and inc(B) = 1 — maxz wp(Z).

Algorithms for reasoning in possibilistic logic and an analysis of their com-
plexity, which is similar to the one of classical logic, multiplied by the logarithm
of the number of levels used in the necessity scale, can be found in [14].

4 Representing and Reasoning with Validity and
Completeness

When dealing with relational databases, only the statements explicitly present
in the database are considered as true (valid). The others are considered as
false—the closed world assumption (CWA). When dealing with more general
knowledge bases, i.e., sets of logical formulas, from which other formulas can be
deduced, the true statements are those explicitly represented in the KB, plus
those which can be inferred thanks to a reasoner. However, due to the OWA,
we cannot suppose that statements that cannot be inferred are false—the truth
status of some statements may be unknown in case of incomplete knowledge. In
fact, insofar as for any formula ¢ we have a tool to decide if ¢ can be inferred and
if =¢ can be inferred, CWA makes no sense since when neither ¢ nor —¢ can be
inferred, CWA would lead to a contradiction, unless we put syntatic restrictions
on ¢, e.g., ~¢ cannot be expressed in the language.

In this section, we recall the notions of validity and completeness for dealing
with relational databases [8,12] and adapt them to the more general case of a



KB. We treat validity and completeness of information at the fine grain of a
topic, defined as follows.

Definition 6. (Topic) Given a formula ¢ € Lgor without negation, the topic
T(¢) is the set of all the ground formulas that can be obtained by substituting all
the free variables in ¢ with all possible constants.

Ezxample 2. The topic of “all flights departing from Heathrow” may be described
by the open formula Origin(z, LHR).

Let 7 be the set of topics and let K be a KB of formulas in L¢.ct. In practice,
K is a conjunction of ground atoms in H.

Unlike for databases, in the case of a general KB, the OWA holds and log-
ical inferences can be performed. Therefore, we must think in terms of logical
entailment of formulas.

Ezxample 3. Assume the following KB is given:

K = {Flight(AF1680), Origin(AF1680, CDG), Dest(AF1680, LHR), Airline(AF1680, AF)}
then K & 3Jz(Flight(z) A Airline(z, AF)) (there is a flight operated by AF), but
K £ J2Vy(—Flight(y) V Airline(y, z)) (all flights are operated by one airline), be-
cause one cannot logically rule out other facts not contained in K (K is not
complete), such as, for instance, Flight(BA303) and Airline(BA303,BA).

In absolute terms, the notions of validity and completeness of a KB K with
respect to a topic may be defined as follows:

— K is valid with respect to a topic iff, for every formula ¢ in that topic, K | ¢
implies that ¢ is indeed true;

— K is complete with respect to a topic iff, for every formula 1 in that topic,
K B~ 4 implies that ¢ is false.

A formula may be believed to different degrees. We suppose that these degrees
depend on both the degree of completeness of the set of facts contained in K and
on their validity, which depends on the reliability (or trustworthiness) or even
safety [7] of their information source. For example, information related to an Air
France flight should be complete if the source is the Air France carrier itself.
However, the completeness could be lesser if the source is a private travel agency
with a partial coverage about the current flights from the different companies
including those of Air France. Similarly, the degree of trust to be associated
with information fed by a clerk should be less than the one to be associated with
information fed by a supervisor. Still, we would like to emphasize that the way in
which such degrees are obtained is out of the scope of this paper. A good source
in the literature about trust can be, for example, [16], for a computational view
of trust.

We assume that metadata about validity and completeness of information
stored in K is given in the form of two functions, Val and Comp, which associate
a degree of validity and completenes, respectively, to each topic.



Definition 7. Let Val : T — [0,1] be such that, for all T € T, Val(T) is the
degree to which K contains valid information about topic T, which means, for

all formulas ¢ such that K = ¢ and ¢ € T, N(¢) > Val(T).

Definition 8. Let Comp : T — [0, 1] be such that, for all T € T, Comp(T)
is the degree to which K contains complete information about topic T, which
means, for all formulas ¢ such that K ¢ and ¢ € T, II(p) <1 — Comp(T).

In practice, the Val and Comp functions may be implemented efficiently
by a hash table having the formulas representing the topics as keys; a missing
key would imply a degree of zero. Now, K plus the metadata provided by Val
and Comp allow us to compute the degree of possibility and necessity for any
arbitrary formulas ¢ and 1 as follows:

11°(¢) = min 1~ Comp(T), if K 1 6 (3)
N* () = max Val(T), if K = . (4)

Notice that I~ and NT are associated to two distinct possibility distributions
7T (the least specific distribution induced by the necessity measure of Equa-
tion 4) and 7~ (the least specific distribution induced by the possibility mea-
sure of Equation 3). We now show that if K is consistent, intersecting 7+ and
7~ yields a normalized possibility distribution 7, for all models Z, of the form
7(Z) = min{7*(Z), 7 (Z)}, such that there is a single model Z* with = (Z*) = 1.
We recall that normalization is the equivalent, within possibilistic logic, of con-
sistency in crisp logic.

Let B a hypothetical possibilistic belief base corresponding to it. We now
prove that such a possibility distribution exists and is normalized.

Let H be the Herbrand base constructed over £ and 2 = 2H< be the set
of all interpretations. A possibilistic data base K+ will be a collection of pairs
(gi, Vi) made of ground atoms g; € Hx C H., and necessity levels obtained from
validity degrees as per Equation 4). The uncertain completeness assumptions
comes down to the assumption of another (virtual) data base K~ containing
a collection of pairs (—g;, ;) made of all ground atoms g; € H that do not
appear in KT, and necessity levels obtained from completeness degrees as per
Equation 3).

Theorem 1. There exists a normalized possibility distribution m: 2 — [0,1] of
the form n(Z) = min{n*(Z), 7~ (Z)}, such that there is a single model T* with
w(Z*) = 1, inducing the possibility and necessity measures of Equations 8 and 4.

Proof. As K contains only positive ground atoms g; € Hg, it is consistent. So
the possibility distribution 7 induced by K™ is normalised. Let K be a cut of
K. Its set of models is rectangular in the sense that it is of the form A,,>49;.
The set of models of possibility 1 corresponds to the largest conjunction. Likewise
we can consider K~ that contains only negative ground atoms —g;, g; € Hk, and
is thus consistent as well. Let K be a cut of K. Its set of models is rectangular



in the sense that it is of the form Ay, >q7g;. It is clear that everything behaves
as if the actual base were K+ U K~. As it contains all literals in the negative
or positive form only once, there is a model with positive necessity, namely,
Ngier+9i \ Ng,ex——9; With necessity at least min(ming, g+ v; ming, c - —k;.
Hence the possibility of this model is 1, and is unique since there can be at
most one model with positive necessity. The least specific possibility distribution
induced by K+ U K~ obviously enforces the original necessity degrees as all
formulas in K+ U K~ are logically independent from one another.

Given that such 7 exists, it is not important to know it or to represent one of
its corresponding possibilistic bases B explicitly, since K, its associated metadata
Val and Comp, together with a classical reasoner are enough to compute any
possibilistic inference, as shown by the following algorithm:

Algorithm 1 (Inference from B).

Input: K C Leet: a KB; ¢ € L: a formula;
Output: N(¢).
1: a<+0
2: if K | ¢ then
3 forTeT do
if $ € T and o < Val(T) then
a « Val(T)
else if K }£ —¢ then
for T € T do
if -¢ € T and a < Comp(T') then
9: a < Comp(T)
10: return o.

Property 1 Algorithm 1 is correct (i.e., it computes N(¢)).

Proof. If K = ¢, Equation 4 is applied; otherwise, Equation 3 together with
duality: N(¢) = 1 — II(—9).

Property 2 The cost of Algorithm 1 is two classical inferences.

Proof. Algorithm 1 needs to execute at most two classical inferences: the one
in Line 2 and, in case K £~ ¢, the one in Line 6. Checking whether a formula
belongs in a topic can be done in a purely syntactic fashion (linear in the length
of ¢) and its cost is thus negligible.

FEzxzample 4. Let K be the same as in the previous example, with the following
metadata:

T Val(T')|Comp(T)
Origin(z, y) e B
Airline(z, AF)| ~ 0




There are four constants in K (AF, AF1680, CDG, and LHR) and four predicates:
Flight(-), Airline(-,-), Dest(,-), and Origin(:,-). Since there is no typing of the
constants in £, we thus construct the Herbrand base

Hx ={ Flight(AF), ..., Flight(LHR),
Airline(AF, AF), ..., Airline(LHR, LHR),
Dest(AF, AF), ..., Dest(LHR,LHR),
Origin(AF, AF), ..., Origin(LHR,LHR) },
with |Hg|| = 52, which gives ||2|| = ||2¥x || = 2°2 ~ 4.5 - 10'® interpretations.

However, we do not need to explicitly construct 7w over such an impossibly huge
domain. By applying Algorithm 1, we can easily compute, for instance:

N (Origin(AF1680, CDG)) = a,

N (~Origin(AF1680, CDG)) = 0,

N (Airline(AF1680, AF)) = ~,

N (—Airline(AF1680, AF)) = 0,

N (3z(Flight(x) A Origin(z, LHR))) = 0,

N (Vz(—Flight(z) V =Origin(z, LHR))) = .

5 Merging Beliefs from Multiple Sources

Information is provided by different sources. So we need not only to keep track
of the certainty levels of the pieces of information, but also of their sources [9].
Keeping track of sources is especially important, in case of conflicting informa-
tion, to be able to report which sources support what opinions and thus give
the user the elements required for a choice. This is why we need a multi-source
generalization of possibilistic logic, like the one proposed in [9] and further devel-
oped in [4], to combine and reason about the belief bases obtained, as explained
in the previous section, by taking the validity and completeness metadata of the
source into account.

We shall denote the set of all the sources in the system by S.

A multi-source possibilistic logic formula is a pair (¢, F'), where ¢ is a logical
formula, and F C S is a fuzzy subset of the set of the sources in the system,
i.e., F belongs to the complete distributive lattice L = [0, 1]%, equipped with the
max-based union U, min-based intersection N, and, if we consider another fuzzy
set G C 8, the inclusion FF C G < Va € S, F(a) < G(a).

The intended meaning of a formula (¢, F) is that formula ¢ is believed by
a source a at least to degree F'(a). Each source believing ¢ somehow belongs
to the fuzzy set F. The certainty of ¢, say C(¢), is then given by the maximal
degree of belief in ¢ associated to the sources in F', which believe ¢ to some
extent, and, for any source a € S, we have that C(¢) > F(a) (a believes that ¢
is true at least at degree F'(a)). Formulas of the form (¢, ) are not written (the
system only considers the formulas which are somehow believed by at least one
source).

Ezample 5. Assume there are three sources, S = {a, b, ¢}, where a is Air France,
b is British Airways, and c is the Charles de Gaulle airport. Now, let their belief
bases be:



¢ F(a)| F(b)[F(c)
Dest(AF1680,LHR) |1 [0 |0.8
Depart(AF1680,06:25)[0 0.5 [0
Depart(AF1680,07:25) |1 0 1
Arrival(AF1680,07:45)|1 0.5 |0

Let us consider the particular fuzzy sets of sources of the form F = «/A,

defined as 0.1] N
a€(0,1], ifac€ A
e Pt

They correspond to a subset A of sources having the same lower bound « on
the certainty level of some considered formula. The following equivalence holds
between possibilistic logic bases:

{(¢,a/A),(¢,8/B)} = {(¢,(a/A) U (8/B))}. (5)
Ezample 6. We will thus have:

(Dest(AF1680, LHR), (1/{a})U(0.8/{c})), Depart(AF1680,06:25),0.5/{b}),
Depart(AF1680,07:25),1/{a, c}), Arrival(AF1680, 07:45), (1/{a})uU(0.5/{b})),
Arrival(AF1680, 08:45),0.8/{c})

A multi-source possibilistic base (which, in the context of this paper, repre-
sents a summary of the opinions of multiple sources) is defined as a finite set
(i.e., a conjunction) of multi-source possibilistic formulas.

Inference in multi-source possibilistic logic proceeds by refutation, as in
standard possibilistic logic: given a base B = {(¢;, ®i/Ai)}i=1,....m, proving
B + (¢, F) amounts to proving B U {(—¢,S)} F (L, F) by repeated applica-
tion of the equivalence of Equation 5 and of the resolution rule

(-PVQ,a/A),(PV R,5/B)
(QV R,min(a, 8)/(ANB))

(6)

The semantics of the multi-source possibilistic logic may be given in terms
of a generalization of possibility theory based on a fuzzy-set-valued possibility
distribution 7 : £ — [0,1]5. In the context of this work, {2 = 2H<. The fuzzy-
set-valued possibility distribution 7 associates to every interpretation Z a fuzzy
set of sources for which Z is possible; (w(Z)) (a) is the degree to which source
a deems T possible. Distribution 7 is normalized if 37y € 2 : 7(Zy) = S. This
means that the sources are collectively consistent since there exists at least one
interpretation that all sources find fully possible. There exists another, weaker
form of normalization for such a distribution, which only expresses that the
sources are individually consistent, namely: (J;., 7(Z) = S. For instance, the
multi-source possibilistic base B = {(¢, 1/A), (=¢,1/A)}, where A = S\ 4, is
clearly not collectively consistent, but it is individually consistent. Indeed here
there is partition of the sources into two subsets, those in A that support ¢ and
those in A that support —¢.



The relevant possibility and necessity measures may be defined as follows:
for all formulas ¢,

m(¢)= | (@), N(¢)=()=D. (7)
Zen TeR
=) I~

The distribution associated with base B = {(¢, i /A4;) }i=1....m 18

S, FTEdL A Adm:
() = m (1 —ai)/A; U A;, otherwise.
i:TEd;

This reflects the fact that if a source in A; believes with certainty «; that ¢; is
true, such a source can find possible an interpretation that violates ¢; only at a
level that is upper bounded by 1 — «;. Multiple source possibilistic logic is sound
and complete for refutation, with respect to the above semantics [9].

We have now all the formal tools needed to solve the belief fusion problem
of providing a coherent answer to queries in presence of possibly conflicting
beliefs. The model we propose can process queries which take the form of a
formula ¢ € L. If ¢ is closed, then the expected answer is just the fuzzy set of
sources according to which ¢ holds. If ¢ is open, the expected answer is a list
of substitutions of its free variables, annotated with the fuzzy set of the sources
that support it.

To answer a query, the answers provided by the n belief bases are aggregated
in a multi-source possibilistic base B = {(¢;, &;/A4;)}i=1,... m, which is then used
to compile the answer.

Ezample 7. Continuing the previous example, the result of query Dest(z, LHR) A
Depart(x, y) A Arrival(z, z) requesting all flights with destination London Heath-
row, together with their departure and arrival times, would be

x y |z |F(a)|F(b)|F(c)
AF1680(7:25|7:45|1 0 0
AF1680|7:25(8:45|0 0 0.8

or, in a more synthetic form,

T y |z F
AF1680(7:25|7:45| 1/{a}
AF1680(7:25|8:45|0.8/{c}

The result of query JxDest(x, LHR) A Arrival(z, 8:45) asking whether a flight
exists with destination London Heathrow arriving at 8:45, would be, in synthetic
form, 0.8/{c}.

6 Related Work

Our proposal fills a gap at the intersection of two fields of in- vestigation, namely
distributed information systems and possibilistic logic.



The problem of reasoning about validity and complete- ness in relational
databases was first addressed by Demolombe [8] in the setting of modal logic.

Recent work on collaborative access control in distributed datalog [1] shares
some common intuitions and concerns with our model. However, this approach,
which is based on provenance calculus [13], does not handle uncertainty (al-
though probabibistic c-tables are also encompassed by provenance calculus).
The approach proposed in the present paper is anyway more in the spirit of
possibilistic c-tables, which have been recently introduced in [18].

Finally, the idea of associating subsets of sources as supporting arguments to
answers has been suggested in [2] in the context of numerical information fusion.

7 Conclusion

We have presented a solution to construct a possibilistic belief base from a crisp
knowledge base using topical validity and completeness metadata. The main re-
sult is that possibilistic inferences from such belief base can be performed at the
cost of two classical inferences, which is less than the cost of inference on a gen-
eral possibilistic belief base. Furthermore, our solution can be straightforwardly
adapted to KB representation standards like datalog and RDF + OWL.

We have also shown how to exploit the expressive power of multi-source
possibilistic logic to provide the user with a comprehensive logical summary of
the different opinions held by the sources. Nevertheless, it is likely that a user
might be happier with receiving less detailed information in response to her
queries. We see basically two directions that might be followed to alleviate the
cognitive load for the end user:

— give the user the option of specifying a maximum number k of answers, to be
used to select only the £ most certain answers according to their supporting
sources, so that each answer be simply annotated with a crisp set of sources
that support it;

— if a taxonomy of sources is available (e.g., based on their sector, geographical
location, etc.), the sets of sources supporting an answer could be “linguis-
tically synthesized” (in the sense of Zadeh’s [21]) by categorical labels, like
“all the airlines based in the UK” or “most airport operators”, which are
certainly easier to understand and process than extensive lists of sources.
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