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AN OVERVIEW OF THREE PSEUDOSPECTRAL METHODS FOR
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PROBLEMS
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An overview is presented of three different pseudospectral methods based on collocation at
Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL)
points. For each of the schemes presented here, (1) the state at the final time can be expressed
in terms of a quadrature rule associated with the collocation points, (2) the state at the initial
time is approximated by interpolation, and (3) the control and the state are approximated
at the collocation points. The LG-based and LGR-based schemes presented here employ
polynomials to approximate the state that are the same degree as the number of collocation
points. In the corresponding LGL scheme, the state approximation is a polynomial that is one
degree lower than the number of collocation points. Each of these scheme can be expressed
in either a differential or an integral formulation. The LG and LGR differentiation and inte-
gration matrices are invertible, and the differential and integral versions are equivalent. The
LGL differentiation matrix is singular and the equivalence between the differential and in-
tegral version is lost. For each scheme, the transformation between the KKT multipliers of
the discrete nonlinear programming problem and costates of the continuous optimal control
problem is developed. The LGL collocation is the only scheme for which the differentiation
matrices for the state and the costate dynamics are the same. Two examples are used to assess
the accuracy and features of each collocation scheme.

INTRODUCTION

Over the last decade, pseudospectral methods have risen to prominence in the numerical solution of optimal
control problems.1–12 Pseudospectral methods are a class ofdirect collocationwhere the optimal control
problem is transcribed to a nonlinear programming problem (NLP) by parameterizing the state and control
using global polynomials and collocating the differential-algebraic equations using nodes obtained from a
Gaussian quadrature. It is noted that some researchers prefer the termorthogonal collocation,13–15 but the
terms pseudospectral and orthogonal collocation have the same meaning.

The three most commonly used sets of collocation points areLegendre-Gauss(LG), Legendre-Gauss-
Radau(LGR), andLegendre-Gauss-Lobatto(LGL) points. These three sets of points are obtained from the
roots of a Legendre polynomial and/or linear combinations of a Legendre polynomial and its derivatives. All
three sets of points are defined on the domain[−1, 1], but differ significantly in that the LG points include
neitherof the endpoints, the LGR points includeoneof the endpoints, and the LGL points includeboth

∗ResearchAssociate, Institute for Human and Machine Cognition, Pensacola, FL 32502. E-mail: divyagarg2002@ufl.edu
†Ph.D. Student, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611-
6250. E-mail: mpatterson@ufl.edu.

‡Professor, Dept. of Mathematics. University of Florida, Gainesville, FL 32611. E-mail: hager@math.ufl.edu.
§Assistant Professor, Dept. of Mechanical and Aerospace Engineering. University of Florida, Gainesville, FL 32611. E-mail: anil-
vrao@ufl.edu. Corresponding Author.

¶Senior Member of the Technical Staff, GN&C Systems Division, The Charles Stark Draper Laboratory, Inc., 555 Technology Square,
Cambridge, MA, 02139-3563. E-mail: dbenson@draper.com.

‖GN&C Engineer, Blue Origin, LLC., Kent, WA 98032. E-mail: ghuntington@blue.aero.

1



of the endpoints. In addition, the LGR points are asymmetric relative to the origin and are not unique in
that they can be defined using either the initial point or the terminal point. In recent years, the two most
well documented pseudospectral methods are theLobatto pseudospectral method1, 3 (LPM) and theGauss
pseudospectral method.6–8, 16, 17 In addition, an LGR collocation method for the special case of infinite-
horizon optimal control problems has been discussed in Ref. 10 while theRadau pseudospectral methodhas
been developed in Ref. 11 for the case of general finite-horizonandinfinite-horizon problems. Upon cursory
examination it may appear as if LG, LGR, and LGL points are essentially similar, with only minor differences
due to the fact that each set of nodes is a different form of Gaussian quadrature. In this paper we provide an
overview of using LG, LGR, and LGL points for the numerical solution of optimal control problems.

In the overview presented here, the components of the state are approximated by a Lagrange polynomial
expansion, and the system dynamics is enforced at the collocation points. After forming the first-order
optimality conditions for the discrete problem, we introduce a transformed adjoint variable, and a transformed
optimality system, which we show is a pseudospectral scheme applied to the costate equation. We show that
the LG and LGR differentiation matrices are non-square and full rank while the LGL differentiation matrix
is square and singular. As a consequence, the LG and LGR scheme can be written in an equivalent form
involving an integration matrix rather than a differentiation matrix. Finally, three examples are studied in
detail that provide the key characteristics of each pseudospectral scheme.

This paper is organized as follows. First we describe the basics of collocation at the nodes associated with
the different forms of Gaussian quadrature. We then describe the LG, LGR, and LGL schemes. Next, we
discuss our rationale for unifying these schemes into a single framework for solving optimal control problems
using pseudospectral methods. Finally, we give numerical examples and conclusions.

LG, LGR, AND LGL COLLOCATION POINTS

The LG, LGR, and LGL collocation points lie on the open intervalτ ∈ (−1, 1), the half open interval
τ ∈ [−1, 1) or τ ∈ (−1, 1], and the closed intervalτ ∈ [−1, 1], respectively. A depiction of these three sets
of collocation points is shown in Fig. 1 where it is seen that the LG points contain neither−1 or 1, the LGR
points contain onlyoneof the points−1 or 1 (in this case, the point−1), and the LGL points containboth−1
and 1. DenotingN as the number of collocation points andPN (τ) as theN th-degree Legendre polynomial,
the LG points are the roots ofPN (τ), the LGR points are the roots ofPN−1(τ)+PN (τ), and the LGL points
are the roots ofṖN−1(τ) together with the points−1 and 1:

LG: Roots obtained fromPN (τ)
LGR: Roots obtained fromPN−1(τ) + PN (τ)

LGL: Roots obtained fromṖN−1(τ) together with the points−1 and 1

It is seen from Fig. 1 that the LG and LGL points are symmetric about the origin whereas the LGR points
are asymmetric. In addition, the LGR points are not unique in that two sets of points exist (one including the
point−1 and the other including the point 1). The LGR points that include the terminal endpoint are often
called theflippedLGR points. In this paper we use the flipped LGR points, while Ref. 11 uses the standard
set of LGR points.

Notation. Throughout the paper, we employ the following notation.AT denotes the transpose of a matrix
A. Given two matricesA andB of the same dimensions,〈A,B〉 is their dot product:

〈A,B〉 = traceATB.

WhenA andB are vectors, this is the usual vector inner product. Iff : R
n → R

m, then∇f is them by
n matrix whosei-th row is∇fi. In particular, the gradient of a scalar-valued function is a row vector. If
φ : R

m×n → R andX is anm by n matrix, then∇φ denotes them by n matrix whose(i, j) element is

(∇φ(X))ij =
∂φ(X)

∂Xij

.

Generally, a single subscript attached to a matrix denotes a row of the matrix. ThusXi is the i-th row of
X. The only exception is the differentiation matrixD where subscripts are used to denotecolumns. We also
employ MATLAB submatrix notation:Di:j represents the submatrix ofD formed by columnsi throughj.
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Figure 1: Schematic Showing the Differences Between LGL, LGR, and LG Collocation Points.

Expository ApproachTo simplify the exposition, we focus on an unconstrained control problem on the
time intervalτ ∈ [−1, +1] with terminal cost. Note that the time interval can be transformed from[−1, 1] to
the time interval[t0, tf ] via the affine transformation

t =
tf − t0

2
τ +

tf + t0
2

.

The goal is to determine the statex(τ) ∈ R
n and the controlu(τ) ∈ R

m which minimize the Mayer cost
functional

Φ(x(1)), (1)

subject to the constraints
dx

dτ
= f(x(τ),u(τ)), x(−1) = x0, (2)

where f : R
n × R

m → R
n, andx0 is the initial condition, which we assume is given.

COLLOCATION AT LG, LGR, AND LGL POINTS

In this section we provide an overview of solving optimal control problems using collocation at Legendre-
Gauss (LG), Legendre-Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL) points. In order to provide
consistent terminology,N is always the number ofcollocation pointsfor a particular scheme, and these
collocation points are labeledτ1, . . . , τN . Using this convention, for LG, neither endpointτ0 = −1 or
τN+1 = +1 is collocated, for LGR, the initial pointτ0 = −1 is uncollocated, while for LGL, both the initial
pointτ1 = −1 and the terminal pointτN = +1 are collocated. Although both the LG and LGR schemes have
noncollocated endpoint(s),we still approximate the state at these endpoints as explained below. The LG and
LGR schemes considered in this paper differ from those considered in Ref. 18. For the LG scheme, Ref. 18
imposes the initial condition at the collocation pointτ1 > −1, while the terminal constraint is imposed at
τN < +1. It is shown in Ref. 18 that these modifications to the boundary conditions lead to a divergent
numerical scheme.

Collocation at Legendre-Gauss (LG) Points

Consider collocation at theN LG points. Each component of the statex is approximated by a polynomial
of degree at mostN . Let Li(τ), (i = 0, . . . , N), be a basis of Lagrange polynomials given by

Li(τ) =

N
∏

j=0

j 6=i

τ − τj

τi − τj

, (i = 0, . . . , N). (3)
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Thejth component of the state is approximated by a series of the form

xN
j (τ) =

N
∑

i=0

xijLi(τ). (4)

Notice that this series includes the Lagrange polynomial associated with the pointτ0 = −1, which is not a
collocation point. Differentiating the series and evaluating at thekth collocation point,τk, gives

ẋN
j (τk) =

N
∑

i=0

xij L̇i(τk) =

N
∑

i=0

Dkixij , Dki = L̇i(τk). (5)

TheN × (N + 1) non-squarematrix D is called theGauss Pseudospectral differentiation matrix. Let X
denote the matrix formed from the coefficientsxij in (4). With this notation,DX is anN by n matrix and
(5) can be written

ẋN
j (τi) = (DX)ij . (6)

Let XLG andULG beN by n andN by m matrices respectively withxLG
ij anduLG

ij the discrete approxima-
tions to thejth component of the state and control, respectively, evaluated at theith LG point:

xLG

ij ≈ xLG

j (τi) and uLG

ij ≈ uLG

j (τi), 1 ≤ i ≤ N.

For the matricesX, XLG, andULG (and later for the matrices of Lagrange multipliers) subscripts are used to
denote rows of the matrix (e.g.,Xi is theith row of X). This row contains the components of the discrete
approximation tox(τi). LetF(XLG,ULG) denote anN by n matrix whose(i, j) element is given by

Fij(X,U) = fj(Xi,Ui), 1 ≤ i ≤ N, 1 ≤ j ≤ n. (7)

Collocating the dynamics at theN LG points, we have

DX = F(XLG,ULG) (8)

Let XN+1 be the value of the state approximated atτN+1 = +1:

XN+1,j = xN
j (1)

By the fundamental theorem of calculus,

XN+1,j = xN
j (1) = xN

j (−1) +

∫ +1

−1

ẋN
j (τ)dτ. (9)

Let wk, 1 ≤ k ≤ N , be the LG quadrature coefficients. SincexN
j has degree at mostN , ẋN

j has degree at
mostN − 1. By (6) and by the exactness of LG quadrature,

∫ +1

−1

ẋN
j (τ)dτ =

N
∑

i=1

wiẋ
N
j (τi) =

N
∑

i=1

wi(DX)ij . (10)

SubstitutingxN
j (−1) = X0,j in (9) and combining with (8) and (10), we deduce that

XN+1 = X0 + wTDX = wTF(XLG,ULG). (11)

With this background, the discrete nonlinear programming problem (NLP) using LG points is the follow-
ing:

minimize Φ(XN+1)

subject to DX = F(XLG,ULG),
XN+1 = X0 + wTF(XLG,ULG),

X0 = x0,

(12)

where the state initial conditionx0 is a row vector. It is seen that the NLP of (12) includes variables for the
stateX0 at the initial point (τ = −1), the stateXi, 1 ≤ i ≤ N at theN LG points, and the stateXN+1 at the
terminal point (τ = +1); the NLP also includes variables for the controlUi, 1 ≤ i ≤ N , at theN LG points.
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We now develop the first-order optimality conditions for (12), also called as the KKT conditions of the
NLP. LetΛLG denote theN by n matrix of Lagrange multipliers associated with the system dynamics (8), let
ΛN+1 denote the1 by n vector of multipliers associated with the equation (11) forXN+1, and letµ be the
1 by n row vector of Lagrange multipliers associated with the initial condition. The KKT conditions of the
NLP of (12) are given as

ΛN+1 = ∇XΦ(XN+1)

DT
1:NΛLG = ∇X〈ΛLG + wΛN+1,F(XLG,ULG)〉

µ = ΛN+1 − DT
0ΛLG

∇U 〈Λj , f(Xj ,Uj)〉 + wj∇U 〈ΛN+1, f(Xj ,Uj〉 = 0 1 ≤ j ≤ N

(13)

whereL is the Lagrangian of the NLP of (12), i.e.,

L(ΛLG,ΛN+1, µ,X,XN+1,U
LG) = Φ(XN+1) + 〈ΛLG,F(XLG,ULG) − DX〉

+ 〈ΛN+1,w
TF(XLG,ULG) + X0 − XN+1〉 + 〈µ,x0 − X0〉.

andD0 is the initial column ofD. It is noted that theN × N matrix D1:N is nonsingular (see Ref. 19 for
details).

Transformed Adjoint System Using LG CollocationAnalogous to Ref. 20, we now reformulate the KKT
conditions of the NLP given in (12) so that they become a discretization of the first-order optimality conditions
for the continuous control problem (1)–(2). The quadrature weightswi, 1 ≤ i ≤ N , associated with the LG
points have the property that

∫ 1

−1

p(τ)dτ =

N
∑

i=1

wip(τi)

for all polynomialsp of degree at most2N − 1. Let λ be anN by n matrix with i-th row

λi = Λi/wi + ΛN+1. (14)

Furthermore, for use in the discussion that follows, let

λN+1 = ΛN+1. (15)

Finally, letλ0 be defined as
λ0 = ΛN+1 − DT

0 ΛLG. (16)

In order to connect the discrete costate equations to the continuous costate equations, we employ anN by
N + 1 matrixD†, which is a modified version ofD, defined as follows:

D†
ij = −

wj

wi

Dji, (i, j) = 1, . . . , N, (17)

D†
i,N+1 = −

N
∑

j=1

D†
ij , i = 1, . . . , N (18)

We now develop another equation forλ0 by manipulating (16). We know that the components of the vector
D1 are the derivatives at the collocation points of the polynomial whose value is 1 atτi, 0 ≤ i ≤ N . This
polynomial is simply the constant 1, whose derivative is 0 everywhere. Hence, we haveD1 = 0, which
implies that

D0 = −

N
∑

j=1

Dj . (19)

In other words,D0 is a linear combination of the columns ofD1:N . Returning to the definition ofλ0 in (16),
we obtain

λ0 = ΛN+1 −

N
∑

i=1

ΛiDi0 = ΛN+1 +

N
∑

i=1

N
∑

j=1

ΛiDij (20)

= ΛN+1 −
N

∑

i=1

N
∑

j=1

ΛiD
†
ji

wj

wi

= ΛN+1 −
N

∑

i=1

N
∑

j=1

wj(λi − λN+1)D
†
ji (21)

= λN+1 +

N
∑

j=1

wj∇X〈λj , f(Xj ,Uj)〉, (22)
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In summary, the transformed KKT conditions are the following (see Ref. 19 for details of the derivation):

λ0 = µ, (23)

λN+1 = ∇XΦ(XN+1), (24)

D
†
1:Nλ + D

†
N+1λN+1 = −∇X〈λ,F(XLG,ULG)〉, (25)

λ0 = λN+1 +

N
∑

j=1

wj∇X〈λj , f(Xj ,Uj)〉, (26)

0 = ∇U 〈λ,F(XLG,ULG)〉. (27)

(28)

We now compare the transformed KKT conditions for the discrete control problem (the pseudospectral
scheme) to the first-order optimality condition for the continuous control problem (1)–(2):

λ(−1) = µ (29)

λ(1) = ∇Φ(x(1)) (30)

λ̇(t) = −∇x〈λ(t), f(x(t),u(t))〉 (31)

0 = ∇u〈λ(t), f(x(t),u(t))〉 (32)

Observe that transformed variablesλ0 andλN+1 satisfy exactly the same conditions as the continuous costate
λ(t) evaluated at the endpoints. Also, the discrete and continuous necessary condition for the control have
exactly the same structure. In the discrete optimality system, the equation (26) represents a quadrature ap-
proximation to the integral over[−1, 1] of the adjoint equation. The connection between the discrete costate
dynamics (25) and the continuous costate dynamics is less obvious. It is noted that the the system (25) is a
pseudospectral scheme for the costate equation (see Ref. 19 for details).

Thus the transformed KKT conditions are related to a pseudospectral discretization of the continuous
costate equation. Furthermore, the differentiation matrices of the state and costate discretizations are based
on the derivatives of polynomials of degreeN . Note that eitherD orD† operate on polynomial values to give
the derivative at the collocation points. However,D operates on the polynomial valuesp(τi), 0 ≤ i ≤ N ,
while D† operates on the polynomial valuesp(τi), 1 ≤ i ≤ N + 1.

Integral Formulation Using LG CollocationWe will now show that the LG pseudospectral discretization
of the state equation has an equivalent integrated formulation. First, using (19), we have

D0 = −D1:N1, (33)

where1 is a column vector of all ones. Multiplying (33) byD−1
1:N gives

D−1
1:ND0 = −1. (34)

Let p be any polynomial of degree at mostN . By the construction of theN × (N + 1) matrixD, we have
Dp = ṗ where

pi = p(τi), 0 ≤ i ≤ N,
ṗi = ṗ(τi), 1 ≤ i ≤ N.

(35)

Multiplying the identityṗ = Dp = D0p0 + D1:Np1:N by D−1
1:N and utilizing (34) gives

pi = p0 +
(

D−1
1:N ṗ

)

i
, 1 ≤ i ≤ N (36)

Next, we obtain a different expression forpi − p0 based on the integration of the interpolant of the derivative.
Let L†

j be the Lagrange interpolation polynomials associated with the collocation points:

L†
j =

N
∏

i=1

i6=j

τ − τi

τj − τi

, j = 1, . . . , N. (37)

Notice that the Lagrange polynomialsLj defined in (3) have degreeN since the product starts ati = 0, while
the polynomialsL†

j have degreeN − 1 since the product starts withi = 1.
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Sinceṗ is a polynomial of degree at mostN−1, it canbe interpolated exactly by the Lagrange polynomials
L†

j:

ṗ =

N
∑

j=1

ṗjL
†
j(τ) (38)

Integratingṗ from−1 to τi, we obtain

p(τi) = p(−1) +

N
∑

j=1

ṗjAij , Aij =

∫ τi

−1

L†
j(τ)dτ, 1 ≤ i ≤ N. (39)

Utilizing the notation (35), we have

pi = p0 + (Aṗ)i , 1 ≤ i ≤ N. (40)

The relations (36) and (40) are satisfied for any polynomial of degree at mostN . We equate (36) and (40) to
obtain

Aṗ = D−1
1:N ṗ.

Chooseṗ from the columns of the identity matrix to deduce thatA = D−1
1:N . The dynamics of system (12)

can be rewritten as
D1:NXLG = F(XLG,ULG) − D0x0. (41)

Multiply (41) by A = D−1
1:N and utilize (34) to obtain

Xi = X0 + AiF(XLG,ULG), 1 ≤ i ≤ N, (42)

whereAi is theith row ofA = D−1
1:N . Hence, the differential form of the state equationDX = F(XLG,ULG)

is equivalent to the integrated form (42), where the elements ofA are the integrals of the Lagrange basisL†
j

defined in (37), while the elements ofD in the differential form are the derivatives of the Lagrange basisLi

defined in (5). Combining (42) and (11), the integral form of LG collocation can be written as

Y = 1X0 + ÃF(XLG,ULG), (43)

where

Y =

[

XLG

XN+1

]

and Ã =

[

A

wT

]

. (44)

In other words, the integral form of LG collocation provides an approximation to the state at each of the LG
pointsplusthe terminal point.

To summarize, the approximation to the dynamics given in (42) is in the form of a globalimplicit integra-
tion methodwhile the differential formDX = F(XLG,ULG) is in the form of apseudospectral method. The
fact that either the integral or the differential form can be used shows that the LG collocation method derived
in this paper can be thought of aseithera global implicit integration methodor a pseudospectral method. In
particular, using the pseudospectral form of LG collocation results in a system of equations that hasno loss
of information from the integral form (because the matrixD1:N is nonsingular). We call the differential form
of LG collocation derived in this paper theGauss pseudospectral method.∗

Collocation at Legendre-Gauss-Radau (LGR) Points

The theory in this section follows from the theory for Radau collocation developed in Ref. 11; the only
difference is that in Ref. 11, we focused on the Radau points that includeτ1 = −1, while here we consider
the flipped set of Radau points which includesτN = 1. These Radau schemes are fundamentally different
from those presented in either Ref. 10 or Ref. 18. The scheme in Ref. 10 utilizes a polynomial of degree 1
lower than the degree that we use. By increasing the degree of the polynomial, we are able to approximate the
state at both endpoints. The Radau scheme in Ref. 18 imposes the state endpoint constraints at the collocation
points; in Ref. 18 it is shown that this strategy for imposing the endpoint constraints leads to a divergence
scheme.

∗The equivalence between the integral and derivative forms of LG collocation derived in this paper can also be found in Ref. 6.
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Consider now collocation using theN backward LGR collocation pointsτ1, τ2, . . ., τN on the interval
[−1, 1], with τ1 > −1 andτN = +1. As with the LG scheme, we introduce an additional noncollocated
pointτ0 = −1 which is used to describe the approximation to the state variable atτ = −1. Exactly as we did
for LG points, each component of the state is approximated by a Lagrange polynomial expansion of the form
(4). Again, the discrete system dynamics has the formDX = F(XLGR,ULGR). The fundamental difference
between LG and LGR collocation is thatτN = +1 is included in the LGR collocation points. Hence, we do
not need to develop a quadrature approximation to the state at the endpoint. Hence, the NLP associated with
the backward LGR points has the simplified form

minimize Φ(XN ) subject to DX = F(XLGR,ULGR), X0 = x0. (45)

Next, the Lagrangian of the NLP of (45) is

L(ΛLGR, µ,X,ULGR) = Φ(XN ) + 〈ΛLGR,F(XLGR,ULGR) − DX〉 + 〈µ,x0 − X0〉,

whereΛLGR is anN by n matrix of Lagrange multipliers associated with the system dynamics andµ is a
1 by n row vector of Lagrange multipliers associated with the initial condition. The KKT conditions of the
backward LGR collocation are obtained by differentiating the Lagrangian with respect to the state and control
variables and are given as follows (see Ref. 19 for details):

∇Φ(XN ) + ∇X〈ΛN f(XN ,UN )〉 = DT
NΛLGR

∑N

i=1 DijΛi = ∇X〈Λjf(Xj ,Uj)〉, 1 ≤ j ≤ N − 1

µ = −DT
0ΛLGR

∇U 〈Λj , f(Xj ,Uj)〉 = 0

(46)

Transformed Adjoint System Using LGR CollocationAnalogous to the results given in Ref. 11, the trans-
formed adjoint variables corresponding to Radau collocation can be expressed in terms of theN by n matrix
λ with i-th row

λi = Λi/wi, (47)

and the row vector
λ0 = −DT

0ΛLGR. (48)

Herew is the vector of LGR collocation weights. LetD† be anN by N matrix defined as follows:

D†
NN = −DNN +

1

wN

and D†
ij = −

wj

wi

Dji otherwise. (49)

Using the transformations of (47) and (48), together withD†, we obtain the following transformed KKT
conditions for the backward LGR discretization (see Ref. 11 for details):

λ0 = µ, (50)

λ0 −
N

∑

i=1

wi∇X〈λi, f(Xi,Ui)〉 = ∇Φ(XN ), (51)

D†λ = −∇X〈λ,F(XLGR,ULGR)〉 +
1

wN

eN(λN −∇Φ(XN )), (52)

0 = ∇U 〈λ,F(XLGR,ULGR)〉. (53)

Observe that the discrete and continuous necessary condition for the control (compare (32) and (53)) have
exactly the same structure. Moreover, the transformed variableλ0 satisfies exactly the same condition (50)
as the continuous costateλ(−1) in (29). The summation in (51) approximates the integral ofλ̇ over the
interval[−1, 1]. Hence, the left side of (51) approximatesλ(1), which corresponds toλN , and the condition
(51) is a subtle way of enforcing the equality∇Φ(XN ) = λN , in an approximate sense. Moreover, if
∇Φ(XN ) = λN , then last term in the discrete dynamics (52) vanishes. Finally, as has been shown in
Ref. 11, the system (52), with the last term dropped, is a pseudospectral scheme for the costate equation.
More precisely, ifp is a polynomial of degree at mostN − 1 andpj = p(τj), 1 ≤ j ≤ N , then

(D†p)i = ṗ(τi), 1 ≤ i ≤ N (p of degree≤ N − 1).

Thus we have shown that the transformed KKT conditions are related to a pseudospectral discretization of the
continuous costate equation. However, the differentiation matrixD† in the costate discretization is connected
with the derivatives of polynomials of degree at mostN − 1, while the differentiation matrix in the state
discretization is based on the derivatives of polynomials of degreeN .
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Integral Formulation Using LGR CollocationThe equivalent integral formulation for LGR collocation
has exactly the same form as that of LG collocation; namely,

Xi = X0 + AiF(XLGR,ULGR), 1 ≤ i ≤ N, (54)

whereAi is theith row ofA = D−1
1:N . Hence, the differential form of the state equationDX = F(XLGR,ULGR)

is equivalent to the integrated form (54), where the elements ofA are integrals of the Lagrange basis func-
tionsL†

j defined in (37) while the elements ofD in the differential form are the derivatives of the Lagrange
basis functionLi defined in (5).

Summarizing, the approximation to the dynamics given in (54) is in the form of a globalimplicit integra-
tion methodwhile the differential approximationDX = F(XLGR,ULGR) is in the form of apseudospectral
method. The fact that either the integral or the differential form can be used shows that the LGR collocation
method can be thought of aseithera global implicit integration methodor a pseudospectral method. In par-
ticular, using the pseudospectral form of LGR collocation results in a system of equations that is equivalent to
the integral form (because the matrixD1:N is nonsingular). We call the differential form of LGR collocation
theRadau pseudospectral method. For more details concerning the analysis of LGR collocation, see Ref. 11.

Collocation at Legendre-Gauss-Lobatto (LGL) Points

Consider now collocation using theN LGL collocation points. Unlike either Gauss or Radau collocation,
where additional nodes were introduced at the endpoints, there is no need for additional nodes with LGL
since the endpoint−1 and+1 are collocation points; hence, the state at the endpoints naturally appear in the
discrete problem. Each component of the statex is approximated by a polynomial of degree at mostN . Let
L†

i , i = 1, . . . , N , be the Lagrange basis associated with the collocation points, which were introduced in
(37). Thejth component of the state is approximated by a series of the form1, 3

xN
j (τ) =

N
∑

i=1

xijL
†
i (τ). (55)

Differentiating the series and evaluating at the collocation pointτk gives1, 3

ẋN
j (τk) =

N
∑

i=1

xij L̇
†
i (τk) =

N
∑

i=1

Dkixij , Dki = L̇†
i (τk). (56)

TheN by N squarematrix D is called theLobatto Pseudospectral differentiation matrix. It has one row
for each collocation point; thejth column contains the derivative of the Lagrange polynomialL†

i evaluated
at each of the collocation points. LetXLGL denote the matrix formed from the coefficientsxij in (55). The
discrete optimization problem has the form

minimize Φ(XN ) subject to DXLGL = F(XLGL,ULGL), X1 = x0. (57)

Notice that the structure of the discrete problem (57) for LGL collocation is the same as that for LGR collo-
cation in (45).

We now develop the first-order optimality conditions for (57). These can be found in a more general
context in Ref. 3. The system dynamics in (57) is composed ofNn equations. LetΛLGL denote theN by
n matrix of Lagrange multipliers associated with the system dynamics, and letµ be a 1 byn row vector of
Lagrange multipliers associated with the initial condition. The Lagrangian associated with (57) is

L(ΛLGL, µ,XLGL,ULGL) = Φ(XN ) + 〈ΛLGL,F(XLGL,ULGL) − DXLGL〉 + 〈µ,x0 − X1〉.

The KKT conditions of the NLP are obtained by differentiatingL with respect to each component ofXLGL

andULGL and are given as follows:

∇XΦ(XN ) =
∑N

i=1 DiNΛi −∇X〈ΛN , f(XN ,UN )〉
∑N

i=1 DijΛi = ∇X〈Λj , f(Xj ,Uj)〉, 2 ≤ j ≤ N − 1
∑N

i=1 Di1Λi = ∇X〈Λ1, f(X1,U1)〉 − µ

∇U 〈Λj , f(Xj ,Uj)〉 = 0

(58)
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Note thatF(XLGL,ULGL), the right side vector evaluated at the collocation points, depends upon bothX1

andXN .

The costate equations can then be rewritten

∇〈Λ1, f(X1,U1)〉 − DT

1 ΛLGL = µ, (59)

DT

NΛLGL −∇X〈ΛN , f(XN ,UN )〉 = ∇XΦ(XN ) (60)

DT

2:N−1Λ2:N−1 = ∇X〈Λ2:N−1,F(X2:N−1,U2:N−1)〉 (61)

Note that theN by N Lobatto differentiation matrix issingularsinceD1 = 0.

Transformed Adjoint System for LGL CollocationUsing an approach nearly identical to that used for
LGR collocation, the KKT conditions of the NLP are now reformulated so that they become a discretization
of the first-order optimality conditions for the continuous control problem (1)–(2). Letwi, 1 ≤ i ≤ N , be the
quadrature weights associated with the LGL points; the transformed adjoint is theN by n matrix λ defined
by3

λi = Λi/wi. (62)

Let D† be theN by N matrix defined as follows:

D†
ii = Dii, 2 ≤ i ≤ N − 1

D†
11 = −D11 −

1
w1

D†
NN = −DNN + 1

wN

D†
ij = −

wj

wi
Dji, 1 ≤ i, j ≤ N, (i 6= j)

(63)

The substitutions (62) and (63) in (60)–(61) lead to the following transformed costate equation:

D†λ = −∇X〈λ,F(XLGL,ULGL)〉 +
1

w1
e1(µ − λ1) +

1

wN

eN (λN −∇XΦ(XN )), (64)

wheree1 andeN are the first and last columns of theN × N identity matrix. Finally, dividing the last
equation in (58) bywj yields

∇U 〈λ,F(XLGL,ULGL)〉 = 0. (65)

Observe that the continuous and discrete control necessary conditions (32) and (65) again have the same
structure. The discrete and continuous adjoint, however, seem to satisfy quite different conditions. The
continuous endpoint conditions (29) and (30) are not present in the discrete system (64). As it turns out, the
matrixD† is a differentiation matrix connected with the quadrature points (see Ref. 19 for details). Note that
LGL collocation is the only one of the three schemes for whichD = D†. This observation has also been
made in Refs. 21 and 22.

Integral Formulation Using LGL CollocationAn integral analogue of LGL collocation can be developed
as follows: Given a polynomialp of degree at mostN − 1, its derivativeṗ is a polynomial of degree at most
N − 2. Hence,ṗ can be interpolated exactly by the Lagrange polynomialsL†

j defined in (37):

ṗ(τ) =
N

∑

j=1

ṗjL
†
j(τ), ṗj = ṗ(τj)

Again, we integrate from−1 to τi to obtain the relation

p(τi) = p(−1) +

N
∑

j=1

ṗjAij , Aij =

∫ τi

−1

L†
j(τ) dτ, 2 ≤ i ≤ N. (66)

If this is applied to each component of the state variable, then we have

Xi = X0 + AiF(XLGL,ULGL), 2 ≤ i ≤ N, (67)

whereAi is thei-th row ofA. Note, though, that this integrated scheme is not equivalent to the original LGL
collocation system, it is simply a different discrete scheme. In fact, the original LGL discrete system contains
N equations, one equation for each collocation point while (67) representsN − 1 equations.
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COMPARISON OF LG, LGR, AND LGL COLLOCATION

With each of the collocation schemes, the state at the final time is approximated by a quadrature rule
associated with the collocation points. For LG collocation, this quadrature rule is embedded in the constraint

XN+1 = X0 + wT

LGF(XLG,ULG). (68)

HereXN+1 andX0 are the approximations to the state atτ = +1 andτ = −1 respectively, andwT
LG

F(XLG,ULG)
is a quadrature approximation to the integral

∫ +1

−1

ẋ(t) dt.

Now consider the Lobatto differentiation matrixDLGL and the corresponding quadrature weightwLGL. By
the exactness of the LGL quadrature rule, we have

(wT

LGLD
LGL)j =

∫ +1

−1

L̇†
j(t) dt =







−1 for i = 1,
0 for 2 ≤ i ≤ N − 1,

+1 for i = N.

Hence, multiplying each side of the LGL state equationDXLGL = F(XLGL,ULGL) by wT

LGL
yields the

identity
XN = X1 + wT

LGLF(XLGL,ULGL). (69)

For Lobatto collocation,XN andX1 correspond to the state atτ = +1 andτ = −1 respectively. Hence, the
Lobatto identity (69) is analogous to the Gauss identity (68).

Finally, let us consider the LGR collocation scheme. Since the Lagrange polynomials in (3) start from
i = 0, it follows that for the Radau differentiation matrixDLGR and the corresponding quadrature weights
wLGR, we have

(wT

LGRD
LGR)j =

∫ +1

−1

L̇j(t); dt =







−1 for i = 0,
0 for 1 ≤ i ≤ N − 1,

+1 for i = N.

As a result, multiplying each side of the LGR state equationDXLGR = F(XLGR,ULGR) by wT

LGR
yields the

identity
XN = X0 + wT

LGRF(XLGR,ULGR). (70)

For Radau collocation,XN andX0 correspond to the state atτ = +1 andτ = −1 respectively. Hence,
each collocation scheme ultimately leads to a state approximation at the terminal time based on the scheme’s
quadrature rule [see (68)–(70)].

With each of the schemes, the initial state is introduced in the discretization through interpolation. In
particular, for either LG or LGR collocation, the initial value of the state variable appears as the coefficient
of L0 in the expansion (4). HereL0 is the Lagrange basis function associated with the noncollocated point
τ0 = −1. For LGL collocation, the initial value of the state appears as the coefficient ofL†

1 in (55). In
this case,L†

1 is the Lagrange basis function associated with the collocated Lobatto pointτ1 = −1. Figure 2
provides a schematic showing how the three pseudospectral schemes use collocation and interpolation points.

Another interesting feature of the three pseudospectral schemes concerns the discrete mapping from the
control to the state. To illustrate this feature, consider the simple scalar dynamics

ẋ = u. (71)

With either the LG or LGR scheme, the dynamics is approximated by

D0x0 + D1:NX1:N = U, (72)

whereD is the GPM/RPM differentiation matrix andD0 is the first column ofD. We showed thatD1:N was
invertible, andD−1

1:ND0 = −1. Hence, we have

X1:N = 1x0 + D−1
1:NU.
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Figure 2: Schematic Providing a Visualization of How the Interpolation and Collocation Points are Utilized
in the GPM, RPM, and LPM.

This shows that there is a unique state associated with each choice for the control, provided the initial condi-
tion x0 is given.

For the Lobatto scheme, the dynamics is approximated by

DLPMX1:N = U, (73)

where we recall that the matrixDLPM is square andsingular. Thus, the state is not uniquely determined by
the control. In fact, the equation (73) only has a solution whenU lies in the column space ofDLPM. Hence,
for GPM or RPM, the map from control to state is one-to-one and onto. For LPM, the map from control to
state is only defined when the control is orthogonal to the null space of(DLPM)T. In general, for nonlinear
dynamics, with GPM or RPM, it may be possible to solve for the state in terms of the control and eliminate
the state from the problem. With LPM, the representation of the state in terms of the control becomes more
complex due to the singularity of the differentiation matrix.

In addition to the properties of the discretized dynamic constraints, the three pseudospectral schemes treat
the costate endpoint conditions quite differently. For LG collocation, the endpoint conditions appear explic-
itly in the transformed adjoint conditions (23) and (24). For LGR collocation, the initial condition appears
explicitly in (50) while the terminal condition appears in the approximate form (51). For LGL collocation,
the boundary conditions are embedded inside the costate dynamics (64).

EXAMPLES

In this section we consider two examples using the aforementioned GPM, RPM, and LPM. The first exam-
ple has an analytic solution, thus providing the ability to perform an error and convergence analysis for the
GPM, RPM, and LPM. The second example is a space flight application that has been studied extensively in
the literature (see Ref. 23).

Example 1

Consider the following optimal control problem.

min J = −y(tf) s.t.

{

ẏ = −y + yu − u2

y(0) = 1
(74)

wheretf = 5. The optimal solution to this problem is

y∗(t) = 4/(1 + 3 exp(t))
λ∗

y(t) = − exp(2 ln(1 + 3 exp(t)) − t)/(exp(−5) + 6 + 9 exp(5))

u∗(t) = y∗(t)/2
(75)
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The optimal control problem given in (74) was solved using the GPM, RPM,and LPM for theN ranging
from five to 30 by steps of five using the NLP solver SNOPT with optimality and feasibility tolerances of
10−15 and2 × 10−15, respectively. For each method, the initial guess was the exact solution. We compute
theL∞ errors in state, costate, and control at the approximation points (i.e., collocation points for the control
and collocation pointsplusnoncollocated endpoints for the state and costate). Figs. 3a–3c show the base 10
logarithm of theL∞-norm errors for the state, control, and costate, respectively. First, it is seen in Fig. 3a
that the state error using either the GPM or RPM is approximately two to four orders of magnitude smaller
than the state error for LPM forN ≤ 15. In Figure 3b, it is seen that the GPM and RPM control is between
two and seven orders of magnitude more accurate than the corresponding LPM controls forN ≤ 15. For
N > 15, the GPM and RPM state and control errors drop to machine precision (approximately10−16), while
the LPM errors achieve machine precision atN = 30.

In Fig. 3c it is seen that the GPM and RPM costate errors decrease to near the optimizer tolerances (approx-
imately10−15) while the LPM costate error remains above10−2. As a result, it appears as if the LPM costate
does not converge for this example. To examine the costate behavior for all three methods in more depth,
Fig. 3d shows an enlarged plot of the exact costate and the approximations generated by all three methods for
N = 30. It is seen that the LPM costate oscillates about the exact solution while the GPM and RPM costates
are indistinguishable from the optimal solution.
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Figure 3: Exact Solution, State, Control, and Costate Errors for Example 1.

Example 2

Consider the following orbit-raising optimal control problem found in Ref. 23. Minimize the cost func-
tional

J = −r(tf ) (76)
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subject to the dynamic constraints

ṙ = vr,

θ̇ = vθ/r,
v̇r = v2

θ/r − µ/r2 + a sinβ,
v̇θ = −vrvθ/r + a cosβ,

(77)

and the boundary conditions

(r(0), θ(0), vr(0), vθ(0)) = (1, 0, 0, 1),

(vr(tf ), vθ(tf )) = (0,
√

µ/r(tf )),
(78)

where

a ≡ a(t) =
T

m0 − |ṁ|t
. (79)

It is noted for this example thatµ = 1, T = 0.1405, m0 = 1, ṁ = 0.0749, andtf = 3.32.

The orbit-raising problem was solved using the GPM, RPM, and LPM forN = 64. The state, control
(after an upwrapping of the angle), and costate solutions are shown in Figs. 4, 5, and 6, respectively (where
β is plotted at only thecollocation pointsfor each method because each method only determines the control
at the collocation points). First, it is observed from Figs. 4 and 5 that the three methods produce qualitatively
similar values for the state and control. Next, Fig. 6 shows that the costate obtained using the LPM looks
significantly different from the costate obtained using either the GPM or the RPM. In particular, noting that
λ∗

θ(t) ≡ 0 for this problem, it is seen that the GPM and the RPM produce a very accurate result forλθ(t)
while the LPM produces a value forλθ(t) that oscillates about zero. In addition, it is seen in Fig. 6 thatλr(t)
for LPM also oscillates (unlike the smooth behavior shows for the GPM and RPM). Thus, the GPM and RPM
differ significantly from the LPM in costate accuracy, demonstrating a fundamental difference in the nature
of the costate estimates obtained using either the GPM or RPM as compared with the LPM.
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Figure 5: GPM, RPM, and LPM Control Solutions for Example 3 UsingN = 64.
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CONCLUSIONS

A comparison has been given of three different pseudospectral methods based on collocation at Legendre-
Gauss (LG), Legendre-Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL) points. The state was ex-
panded in Lagrange polynomials and the dynamics was enforced at the collocation points. For each of the
schemes in this paper, (1) the state at the final time can be expressed in terms of a quadrature rule associated
with the collocation points, (2) the state at the initial time is approximated by interpolation, and (3) the control
and the state are approximated at the collocation point. LG and LGR based schemes presented in this paper
employ polynomials to approximate the state that are the same degree as the number of collocation points.
In the corresponding LGL scheme, the state approximation is a polynomial that is one degree lower than the
number of collocation points. Each of these scheme can be expressed in either a differential or an integral
formulation. The LG and LGR differentiation and integration matrices are invertible, and the differential and
integral versions are equivalent. The LGL differentiation matrix is singular, and the equivalence between
differential and integral forms is lost. A transformed first-order optimality system was developed and com-
pared to the continuous first-order optimality conditions. LGL collocation was the only scheme for which
the differentiation matrices for the state and the costate dynamics were the same. Two numerical examples
were given. In the first example, the state and control were several orders of magnitude more accurate with
either Gauss or Radau collocation when compared to Lobatto. In addition, the Lobatto costate did not seem
to converge near the starting time. For the second example, where the exact solution was not known, the state
and control for all three methods were qualitatively similar, however, the Lobatto costate oscillated around
the correct costate.
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