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AN OVERVIEW OF THREE PSEUDOSPECTRAL METHODS FOR
THE NUMERICAL SOLUTION OF OPTIMAL CONTROL
PROBLEMS

Divya Garg: Michael A. Patterson| William W. Hager! and Anil V. Rao?®
University of Florida, Gainesville, FL 32611

David Benson’
The Charles Stark Draper Laboratory, Inc., Cambridge, MA 02139

Geoffrey T. Huntington!
Blue Origin LLC, Kent, WA 98032

An overview is presented of three different pseudospectral methods based on collocation at
Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL)
points. For each of the schemes presented here, (1) the state at the final time can be expressed
in terms of a quadrature rule associated with the collocation points, (2) the state at the initial
time is approximated by interpolation, and (3) the control and the state are approximated
at the collocation points. The LG-based and LGR-based schemes presented here employ
polynomials to approximate the state that are the same degree as the number of collocation
points. In the corresponding LGL scheme, the state approximation is a polynomial that is one
degree lower than the number of collocation points. Each of these scheme can be expressed
in either a differential or an integral formulation. The LG and LGR differentiation and inte-
gration matrices are invertible, and the differential and integral versions are equivalent. The
LGL differentiation matrix is singular and the equivalence between the differential and in-
tegral version is lost. For each scheme, the transformation between the KKT multipliers of
the discrete nonlinear programming problem and costates of the continuous optimal control
problem is developed. The LGL collocation is the only scheme for which the differentiation
matrices for the state and the costate dynamics are the same. Two examples are used to assess
the accuracy and features of each collocation scheme.

INTRODUCTION

Over the last decade, pseudospectral methods have risen to prominence in the numerical solution of optimal
control problems:1? Pseudospectral methods are a classliggct collocationwhere the optimal control
problem is transcribed to a nonlinear programming problem (NLP) by parameterizing the state and control
using global polynomials and collocating the differential-algebraic equations using nodes obtained from a
Gaussian quadrature. It is noted that some researchers prefer therteogonal collocatiort1° but the
terms pseudospectral and orthogonal collocation have the same meaning.

The three most commonly used sets of collocation pointsLagendre-GauséL.G), Legendre-Gauss-
Radau(LGR), andLegendre-Gauss-Lobat{bGL) points. These three sets of points are obtained from the
roots of a Legendre polynomial and/or linear combinations of a Legendre polynomial and its derivatives. All
three sets of points are defined on the domaih, 1], but differ significantly in that the LG points include
neitherof the endpoints, the LGR points includee of the endpoints, and the LGL points inclutieth
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of the endpoints. In addition, the LGR points are asymmetric reativthe origin and are not unique in

that they can be defined using either the initial point or the terminal point. In recent years, the two most
well documented pseudospectral methods ard_timtto pseudospectral metho#l(LPM) and theGauss
pseudospectral methdd® 617 In addition, an LGR collocation method for the special case of infinite-
horizon optimal control problems has been discussed in Ref. 10 whiRaHau pseudospectral methioas

been developed in Ref. 11 for the case of general finite-hodraiinfinite-horizon problems. Upon cursory
examination it may appear as if LG, LGR, and LGL points are essentially similar, with only minor differences
due to the fact that each set of nodes is a different form of Gaussian quadrature. In this paper we provide an
overview of using LG, LGR, and LGL points for the numerical solution of optimal control problems.

In the overview presented here, the components of the state are approximated by a Lagrange polynomial
expansion, and the system dynamics is enforced at the collocation points. After forming the first-order
optimality conditions for the discrete problem, we introduce a transformed adjoint variable, and a transformed
optimality system, which we show is a pseudospectral scheme applied to the costate equation. We show that
the LG and LGR differentiation matrices are non-square and full rank while the LGL differentiation matrix
is square and singular. As a consequence, the LG and LGR scheme can be written in an equivalent form
involving an integration matrix rather than a differentiation matrix. Finally, three examples are studied in
detail that provide the key characteristics of each pseudospectral scheme.

This paper is organized as follows. First we describe the basics of collocation at the nodes associated with
the different forms of Gaussian quadrature. We then describe the LG, LGR, and LGL schemes. Next, we
discuss our rationale for unifying these schemes into a single framework for solving optimal control problems
using pseudospectral methods. Finally, we give numerical examples and conclusions.

LG,LGR, AND LGL COLLOCATION POINTS

The LG, LGR, and LGL collocation points lie on the open intervak (—1,1), the half open interval
T €[-1,1)orT € (—1,1], and the closed interval € [—1, 1], respectively. A depiction of these three sets
of collocation points is shown in Fig. 1 where it is seen that the LG points contain neither 1, the LGR
points contain onlpneof the points—1 or 1 (in this case, the point1), and the LGL points contaipoth—1
and 1. DenotingV as the number of collocation points aRg (1) as theN"-degree Legendre polynomial,
the LG points are the roots ¢ty (7), the LGR points are the roots &y _;(7) + Px (), and the LGL points
are the roots of’y_; () together with the points-1 and 1:

LG: Roots obtained fronPy (1)
LGR: Roots obtained frony _1(7) + Py (7)
LGL: Roots obtained fronP’y _; () together with the points-1 and 1

It is seen from Fig. 1 that the LG and LGL points are symmetric about the origin whereas the LGR points
are asymmetric. In addition, the LGR points are not unique in that two sets of points exist (one including the
point —1 and the other including the point 1). The LGR points that include the terminal endpoint are often

called theflippedLGR points. In this paper we use the flipped LGR points, while Ref. 11 uses the standard

set of LGR points.

Notation. Throughout the paper, we employ the following notatidr. denotes the transpose of a matrix
A. Given two matricesA andB of the same dimension&A, B) is their dot product:

(A,B) = traceA"B.

When A andB are vectors, this is the usual vector inner product IfR™ — R™, thenVf is them by
n matrix whosei-th row is Vf;. In particular, the gradient of a scalar-valued function is a row vector. If
¢ : R™*™ — R andX is anm by n matrix, thenV¢ denotes then by n matrix whose(i, j) element is

(Vo) = )

Generdly, a single subscript attached to a matrix denotes a row of the matrix. Xhus thei-th row of
X. The only exception is the differentiation matiix where subscripts are used to denai@imns We also
employ MATLAB submatrix notationD;.; represents the submatrix Bf formed by columns throughyj.
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Figure1: Schematic Showing the Differences Between LGL, LGR, and LG Collocation Points.

Expository ApproachTo simplify the exposition, we focus on an unconstrained control problem on the
time intervalr € [—1, +1] with terminal cost. Note that the time interval can be transformed frein1] to
the time intervalto, ¢t ¢] via the affine transformation

byt tp+to
=Ty Tt

t

The goal § to determine the state(7) € R"™ and the control1i(7) € R™ which minimize the Mayer cost
functional

o (x(1)), @)
subject to the constraints

dx
= =fx(n).u(m), x(~1) =xo, @
wheref : R® x R™ — R"™, andxj is the initial condition, which we assume is given.

COLLOCATION AT LG, LGR, AND LGL POINTS

In this section we provide an overview of solving optimal control problems using collocation at Legendre-
Gauss (LG), Legendre-Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL) points. In order to provide
consistent terminologyN is always the number ofollocation pointsfor a particular scheme, and these

collocation points are labeled, ..., 75. Using this convention, for LG, neither endpoint = —1 or
Tn+1 = +1 is collocated, for LGR, the initial pointy = —1 is uncollocated, while for LGL, both the initial
point; = —1 and the terminal pointy = +1 are collocated. Although both the LG and LGR schemes have

noncollocated endpoint(sje still approximate the state at these endpoints as explained bélwe.G and

LGR schemes considered in this paper differ from those considered in Ref. 18. For the LG scheme, Ref. 18
imposes the initial condition at the collocation poiat> —1, while the terminal constraint is imposed at

7n < +1. Itis shown in Ref. 18 that these modifications to the boundary conditions lead to a divergent
numerical scheme.

Collocation at L egendre-Gauss (L G) Points

Consider collocation at th& LG points. Each component of the statés approximated by a polynomial
of degree at mosV. LetL;(7), (i = 0,..., N), be a basis of Lagrange polynomials given by

N
T—T; .
Li(T)zl‘[T_iTﬂ_, (i=0,...,N). ©)
j=o0 " J
J#i



The j** component of the state is approximated by a series of the form

N
¥ (1) = ZwijLi(T)- (4)
=0

Notice that this series includes the Lagrange polynomial associated with therpeint-1, which is not a
collocation point. Differentiating the series and evaluating atffiecollocation point;,, gives

N N
&Y (1) = wiLi(te) =Y Dyiwij,  Dri = Li(r). ©)
i=0 i=0

The N x (N + 1) non-squarematrix D is called theGauss Pseudospectral differentiation matrixet X
denote the matrix formed from the coefficients in (4). With this notationDX is an N by n matrix and
(5) can be written
i (1;) = (DX);;. (6)
Let X'¢ andU"C be N by n and N by m matrices respectively with;* andu." the discrete approxima-
tions to thej* component of the state and control, respectively, evaluated &t'th& point:

LG

i %,TIJTG(TZ') and uL-G%u'J‘-G(Ti), 1<i<N.

X ij

For the matriceX, X6, andU"® (and later for the matrices of Lagrange multipliers) subscripts are used to
denote rows of the matrix (e.gX; is thei*" row of X). This row contains the components of the discrete
approximation tax(7;). Let F(X'¢, U'6) denote anV by n matrix whosg(4, j) element is given by

Collocating the dynamics at th€ LG points, we have

DX = F(X'¢ U (8)

Let X x+1 be the value of the state approximatedat; = +1:
XN+17j = xév(l)
By the fundamental theorem of calculus,
XNyl = zjv(l) = xév(—l) + / i;-v(’r)d’]‘. 9)
—1

Letwy, 1 < k < N, be the LG quadrature coefficients. Siméé has degree at mo$f, :z:jv has degree at
mostN — 1. By (6) and by the exactness of LG quadrature,

-1

+1 N N
/ i];-V(T)dT = Zwlacjv(ﬁ) = Z w;(DX);;. (10)
i=1 i=1

ubstitutingz:' (—1) = Xy, in (9) and combining wit an , we deduce that
Substituti ;V Xo,; in(9) and bini ith (8) and (10 ded h

Xni1 = Xo+w'DX = w'F(X6, U). (11)

With this background, the discrete nonlinear programming problem (NLP) using LG points is the follow-
ing:
minimize ®(Xy41)
subjectto DX = F(X'6, UY),
Xni1 = Xo+wlF(X6 ULe),
Xo = Xo,

(12)

where the state initial conditioxy is a row vector. It is seen that the NLP of (12) includes variables for the
stateX, at the initial point § = —1), the stateX;, 1 < i < N attheN LG points, and the staf¥ 5 ; at the
terminal point ¢ = +1); the NLP also includes variables for the conftdl, 1 < ¢ < N, attheN LG points.



We now develop the first-order optimality conditions for (12), alafled as the KKT conditions of the
NLP. LetA¢ denote theV by n matrix of Lagrange multipliers associated with the system dynamics (8), let
A 41 denote the by n vector of multipliers associated with the equation (11)Xot;, and letu be the
1 by n row vector of Lagrange multipliers associated with the initial condition. The KKT conditions of the
NLP of (12) are given as

AN = Vx?®Xn41)

DT A Vx (A" + wA N, F(XLG, ULC))
u Any1 — DJALG

Vu (A, £(X;,Uj)) +wjVu(An 1, £(X;,05) = 0 1<j<N

where/ is the Lagrangian of the NLP of (12), i.e.,
LAY, Anir, 1, X, X1, UMC) = &(X 1) + (A, F(XM6, UC) - DX)
+ (Ani1, W F(XC,U) + Xo — Xvi1) + (1, x0 — Xo).

andDy is the initial column ofD. It is noted that theV x N matrix D;. is nonsingular (see Ref. 19 for
details).

(13)

Transformed Adjoint System Using LG Collocatioinalogous to Ref. 20, we now reformulate the KKT
conditions of the NLP given in (12) so that they become a discretization of the first-order optimality conditions
for the continuous control problem (1)—(2). The quadrature weight$ < ¢ < N, associated with the LG

points have the property that
.1 N
[ ptoyir =3 wiptr)
-1 i=1

for all polynomialsp of degree at mostN — 1. Let A be anN by n matrix withi-th row

i =Aj/wi + Anya- (14)
Furthermore, for use in the discussion that follows, let
An41 = ANy (15)
Finally, let Ao be defined as
Xo = Any1 — DJAC. (16)

In order to connect the discrete costate equations to the continuous costate equations, we emplyy an
N + 1 matrix D, which is a modified version dd, defined as follows:

N
DZ,N-H = _ZDZj, i=1,....,N (18)
j=1

We now develop another equation fog by manipulating (16). We know that the components of the vector
D1 are the derivatives at the collocation points of the polynomial whose value is;10aK ¢ < N. This
polynomial is simply the constant 1, whose derivative is O everywhere. Hence, wdtave 0, which
implies that

N
Dy =-)» D (19)
j=1

In other wordsDy is a linear combination of the columnsDB#;. ;. Returning to the definition oXq in (16),
we obtain

N N N
Ao = Ani1-— Z AiDjp = Any1 + Z ZAiDij (20)
i=1 i=1 j=1
N N _ N N
= AN+1 — Z Z AzDL% = AN+1 — Z Z’w]‘(ki — )\N+1)D; (21)
i=1 j=1 i i=1 j=1
N
= Anvi+ ) w V(A £(X;,Ty), (22)
j=1



In summary, the transformed KKT conditions are the following (sefe F&for details of the derivation):

Ao = W, (23)

Avir = Vx®(Xpyy1), (24)

DI A+Dl Avi = —Vx(AF(X©, U9, (25)
N

Ao = Ang1+ Y wVx (A (X, U5), (26)
j=1

0 = Vy(\F(X UC)). (27)

(28)

We now compare the transformed KKT conditions for the discrete control problem (the pseudospectral
scheme) to the first-order optimality condition for the continuous control problem (1)—(2):

A1) = p (29)
A(l) = Vo(x(1)) (30)
At) = —Vo (A1), £(x(t), u(t))) (31)

0 = VuA®),£(x(t),u(t)) (32)

Observe that transformed variabkesand v satisfy exactly the same conditions as the continuous costate
A(t) evaluated at the endpoints. Also, the discrete and continuous necessary condition for the control have
exactly the same structure. In the discrete optimality system, the equation (26) represents a quadrature ap-
proximation to the integral ovér-1, 1] of the adjoint equation. The connection between the discrete costate
dynamics (25) and the continuous costate dynamics is less obvious. It is noted that the the system (25) is a
pseudospectral scheme for the costate equation (see Ref. 19 for details).

Thus the transformed KKT conditions are related to a pseudospectral discretization of the continuous
costate equation. Furthermore, the differentiation matrices of the state and costate discretizations are based
on the derivatives of polynomials of degrie Note that eitheD or D operate on polynomial values to give
the derivative at the collocation points. HowevBr,operates on the polynomial valugér;), 0 < i < N,
while D operates on the polynomial valug&;), 1 <i < N + 1.

Integral Formulation Using LG Collocation We will now show that the LG pseudospectral discretization
of the state equation has an equivalent integrated formulation. First, using (19), we have

Do = —D1.n1, (33)
wherel is a column vector of all ones. Multiplying (33) ﬂy;}v gives
D; yDo = —1. (34)

Let p be any polynomial of degree at mast By the construction of thé&/ x (N + 1) matrix D, we have
Dp = p where

pi = p(n), 0<i<N,
pi = p(n), 1<i<N. (35)
Multiplying the identityp = Dp = Dgpo + D1.xP1.5 DY D;}V and utilizing (34) gives
pi:poJr(D;}vp)i; 1<:<N (36)

Next, we obtain a different expression fgr— po based on the integration of the interpolant of the derivative.
Let L; be the Lagrange interpolation polynomials associated with the collocation points:

N
Li=TT—%, j=1,...,N. 37
! Hfj—n’ i=1..., (37)
i#j
Notice that the Lagrange polynomidls defined in (3) have degrée¥ since the product startsat= 0, while
the ponnomiaIsL} have degre&v — 1 since the product starts with= 1.



Sincep is a polynomial of degree at moat— 1, it canbe interpolated exactly by the Lagrange polynomials

i
Li:
N
b= #iL}(r) (38)
j=1
Integratingp from —1 to 7;, we obtain
N -
P(Ti) :p(—l)—szinj, Aij :/1 L;(T)dT, 1 SZ SN (39)
J=1 -
Utilizing the notation (35), we have
pi=po+ (Ap);, 1<i<N. (40)

The relations (36) and (40) are satisfied for any polynomial of degree atkhdate equate (36) and (40) to
obtain
Ap =Dy yp.
Choosep from the columns of the identity matrix to deduce tiat= D} },. The dynamics of system (12)
can be rewritten as
Dy X' = F(X'¢, UC) — Dyxo. (41)

Multiply (41) by A = D} }, and utilize (34) to obtain
X; =Xo+AFXSC UY), 1<i<N, (42)

whereA,; is thei*" row of A = D7 },. Hence, the differential form of the state equafidX = F(X'C, U'¢)

is equivalent to the integrated form (42), where the elementfs afe the integrals of the Lagrange basis
defined in (37), while the elements BX in the differential form are the derivatives of the Lagrange basis
defined in (5). Combining (42) and (11), the integral form of LG collocation can be written as

Y = 1X, + AF(X¢, ULC), (43)
where .
Xt ~ A
Y_[XNH] and A_{WT]. (44)

In other words, the integral form of LG collocation provides an approximation to the state at each of the LG
pointsplusthe terminal point.

To summarize, the approximation to the dynamics given in (42) is in the form of a diophtit integra-
tion methodwhile the differential formDX = F(X'¢, UL®) is in the form of gpseudospectral metho@he
fact that either the integral or the differential form can be used shows that the LG collocation method derived
in this paper can be thought of aghera global implicit integration methodr a pseudospectral method. In
particular, using the pseudospectral form of LG collocation results in a system of equations thaidss
of information from the integral form (because the maldix  is nonsingulaj. We call the differential form
of LG collocation derived in this paper tligauss pseudospectral methiod

Collocation at L egendre-Gauss-Radau (L GR) Points

The theory in this section follows from the theory for Radau collocation developed in Ref. 11; the only
difference is that in Ref. 11, we focused on the Radau points that inelude—1, while here we consider
the flipped set of Radau points which includes = 1. These Radau schemes are fundamentally different
from those presented in either Ref. 10 or Ref. 18. The scheme in Ref. 10 utilizes a polynomial of degree 1
lower than the degree that we use. By increasing the degree of the polynomial, we are able to approximate the
state at both endpoints. The Radau scheme in Ref. 18 imposes the state endpoint constraints at the collocation
points; in Ref. 18 it is shown that this strategy for imposing the endpoint constraints leads to a divergence
scheme.

*The equvalence between the integral and derivative forms of LG collocation derived in this paper can also be found in Ref. 6.



Consider now collocation using th€ backwad LGR collocation points, 7», ..., 7y on the interval
[-1,1], with n > —1 and7y = +1. As with the LG scheme, we introduce an additional noncollocated
pointTy = —1 which is used to describe the approximation to the state variable-at-1. Exactly as we did
for LG points, each component of the state is approximated by a Lagrange polynomial expansion of the form
(4). Again, the discrete system dynamics has the f¥ = F(X R ULCR), The fundamental difference
between LG and LGR collocation is thay, = +1 is included in the LGR collocation points. Hence, we do
not need to develop a quadrature approximation to the state at the endpoint. Hence, the NLP associated with
the backward LGR points has the simplified form

minimize ®(Xy) subjectto DX = F(X"R U'F) X, = x,. (45)

Next, the Lagrangian of the NLP of (45) is
E(ALGRv K, Xv ULGR) = (I)(XN) + <ALGR7 F(XLGRv ULGR) - DX> + <Ha X0 — X0>7

whereA'®R is an V by n matrix of Lagrange multipliers associated with the system dynamicg.aisca

1 by n row vector of Lagrange multipliers associated with the initial condition. The KKT conditions of the
backward LGR collocation are obtained by differentiating the Lagrangian with respect to the state and control
variables and are given as follows (see Ref. 19 for details):

VO(Xn) 4+ Vx(Anf(Xy,Uy)) = DLAMR
N .
2z Dighi = Vx <AijG(g(jan)>a 1<j<N-1 (46)
u = -DJA
Vu(A;, £(X;,U;)) =0

Transformed Adjoint System Using LGR Collocaticknalogous to the results given in Ref. 11, the trans-
formed adjoint variables corresponding to Radau collocation can be expressed in termd difytihematrix
A with é-th row

Ai = A /w, (47)
and the row vector
Ao = —DJ AR, (48)
Herew is the vector of LGR collocation weights. LEX" be anN by N matrix defined as follows:
1 i .
DYy =—-Dyy+— and Djj = —&Dﬁ otherwse (49)
wN w;

Using the transformations of (47) and (48), together iith, we obtain the following transformed KKT
conditions for the backward LGR discretization (see Ref. 11 for details):

)\() = M, (50)
N
AO_ZinX<Ai7f(Xi7Ui)> = VO(Xy), (51)
1=1
DA = —vx<,\,F(XLGR,ULGR)>+ieN(AN—W(XN)), (52)
wN
0 = Vy(\F(XSR USCR)). (53)

Observe that the discrete and continuous necessary condition for the control (compare (32) and (53)) have
exactly the same structure. Moreover, the transformed varfaplatisfies exactly the same condition (50)

as the continuous costa?é—1) in (29). The summation in (51) approximates the integrahadver the
interval[—1, 1]. Hence, the left side of (51) approximatedl ), which corresponds t& y, and the condition

(51) is a subtle way of enforcing the equal®fy®(Xy) = A, in an approximate sense. Moreover, if
Vo&(Xy) = An, then last term in the discrete dynamics (52) vanishes. Finally, as has been shown in
Ref. 11, the system (52), with the last term dropped, is a pseudospectral scheme for the costate equation.
More precisely, ifp is a polynomial of degree at moat — 1 andp; = p(7;), 1 < j < N, then

(D'p); =p(ri), 1<i<N (pofdegree< N —1).

Thus we have shown that the transformed KKT conditions are related to a pseudospectral discretization of the
continuous costate equation. However, the differentiation mBxfiin the costate discretization is connected

with the derivatives of polynomials of degree at mdét— 1, while the differentiation matrix in the state
discretization is based on the derivatives of polynomials of delyree



Integral Formulation Using LGR CollocatiorThe equvalent integral formulation for LGR collocation
has exactly the same form as that of LG collocation; namely,

X; = Xo + A, F(XSOR ULCRy 1 < < N, (54)

whereA; is thei’" row of A = D} },. Hence, the differential form of the state equafidK = F(X'¢R ULCR)
is equivalent to the integrated form (54), where the elements afe integrals of the Lagrange basis func-
tionsL; defined in (37) while the elements BY in the differential form are the derivatives of the Lagrange
basis functionl,; defined in (5).

Summarizing, the approximation to the dynamics given in (54) is in the form of a gloipditit integra-
tion methodwhile the differential approximatioDX = F(X'CR UL6R) s in the form of apseudospectral
method The fact that either the integral or the differential form can be used shows that the LGR collocation
method can be thought of aithera global implicit integration methodr a pseudospectral method. In par-
ticular, using the pseudospectral form of LGR collocation results in a system of equations that is equivalent to
the integral form (because the matfik . y is nonsingulaj. We call the differential form of LGR collocation
theRadau pseudospectral methdebr more details concerning the analysis of LGR collocation, see Ref. 11.

Collocation at L egendre-Gauss-L obatto (LGL) Points

Consider now collocation using thé LGL collocation points. Unlike either Gauss or Radau collocation,
where additional nodes were introduced at the endpoints, there is no need for additional nodes with LGL
since the endpoint 1 and-+1 are collocation points; hence, the state at the endpoints naturally appear in the
discrete problem. Each component of the state approximated by a polynomial of degree at miystLet
LI, i =1,..., N, be the Lagrange basis associated with the collocation points, which were introduced in
(37). Thej** component of the state is approximated by a series of the'fdrm

N
e (r) =Y ayLi(r). (55)
=1
Differentiating the series and evaluating at the collocation paimfives-3
N N
iév(Tk) = iniLj(Tk) = ZDkixija Dki = Lj(Tk). (56)
=1 =1

The N by N squarematrix D is called theLobatto Pseudospectral differentiation matrik has one row
for each collocation point; thg" column contains the derivative of the Lagrange polynorﬁifaévaluated
at each of the collocation points. L&t“C- denote the matrix formed from the coefficients in (55). The
discrete optimization problem has the form

minimize ®(Xy) subjectto DXL = F(X'6L Ueh) X, =xq. (57)
Notice that the structure of the discrete problem (57) for LGL collocation is the same as that for LGR collo-
cation in (45).

We now develop the first-order optimality conditions for (57). These can be found in a more general
context in Ref. 3. The system dynamics in (57) is composeli ofequations. LeA'°" denote theV by
n matrix of Lagrange multipliers associated with the system dynamics, apddeta 1 byn row vector of
Lagrange multipliers associated with the initial condition. The Lagrangian associated with (57) is

‘C(ALGLa M, XLGLv ULGL) = q)(XN) + <ALGL, F(XLGLa ULGL) - DXLGL> + <Ha X0 — X1>

The KKT conditions of the NLP are obtained by differentiatifigvith respect to each componentXfC©-
andU"CL and are given as follows:

Vx®(Xy) = YN DinA; — Vx(An,f(Xy, Uy))

>y DA = Vx(A;f(X;,Uy), 2<j<N-1 (58)
Sy DA, = Vx(A,f(X1,U1)) — p

Vu(A;,£(X;,U;) = 0



Note thatF (X6t ULCL), the right side vector evaluated at the collocation points, depends uporiXoth
andX y.

The costate equations can then be rewritten

V(A1 £(X1,Ur)) - DIASE = p, (59)
DAVANE — Vi (An, f(Xy, Uy)) = Vx®(Xy) (60)
D)y 1Asn-1 = Vx{Aaun_1,F(Xan_1,Uzn_1)) (61)

Note that theV by N Lobatto differentiation matrix isingularsinceD1 = 0.

Transformed Adjoint System for LGL Collocatitdsing an approach nearly identical to that used for
LGR collocation, the KKT conditions of the NLP are now reformulated so that they become a discretization
of the first-order optimality conditions for the continuous control problem (1)—-(2)ulet < i < N, be the
guadrature weights associated with the LGL points; the transformed adjointié tyen matrix A defined

by

Let D' be theN by N matrix defined as follows:
D, = Dy, 2<i<N-1
D, = -Dn-2%
v 63
D;r\[N = —Dyny+ ﬁ ( )
D, = -%Dy 1<ij<N, (i#}))
The substitutions (62) and (63) in (60)—(61) lead to the following transformed costate equation:
1 1
DA = —Vx (A, F(XE,UH) + —eq (i — A1) + ——en(An = VxB(Xw)), (64)
1 N

wheree; andey are the first and last columns of thé x N identity matrix. Finally, dividing the last
equation in (58) byw; yields
Vi (A, F(XC Utet)y = o. (65)

Observe that the continuous and discrete control necessary conditions (32) and (65) again have the same
structure. The discrete and continuous adjoint, however, seem to satisfy quite different conditions. The
continuous endpoint conditions (29) and (30) are not present in the discrete system (64). As it turns out, the
matrix D' is a differentiation matrix connected with the quadrature points (see Ref. 19 for details). Note that
LGL collocation is the only one of the three schemes for wHixth= Df. This observation has also been
made in Refs. 21 and 22.

Integral Formulation Using LGL Collocation An integral analogue of LGL collocation can be developed
as follows: Given a polynomial of degree at mosV — 1, its derivativep is a polynomial of degree at most
N — 2. Hencep can be interpolated exactly by the Lagrange polynonﬂéldefined in (37):

N
pr) = pLi(r), By =p(7)
j=1
Again, we integrate from-1 to 7; to obtain the relation

N .
plr) = p(—1) + 3 i Ay, Aij:/ Li(r)dr, 2<i<N. (66)
j=1

If this is applied to each component of the state variable, then we have
X; = Xo 4+ AF(XCH Ut 2<i <N, (67)

whereA,; is thei-th row of A. Note, though, that this integrated scheme is not equivalent to the original LGL
collocation system, it is simply a different discrete scheme. In fact, the original LGL discrete system contains
N equations, one equation for each collocation point while (67) represéntd equations.

10



COMPARISON OF LG, LGR, AND LGL COLLOCATION

With eadt of the collocation schemes, the state at the final time is approximated by a quadrature rule
associated with the collocation points. For LG collocation, this quadrature rule is embedded in the constraint

Xni1 = Xo + wlF(X¢, U). (68)
HereX 1 andX, are the approximations to the state-at +1 andr = —1 respectively, anev| . F(X¢, UL)

is a quadrature approximation to the integral

/_ :1 x(t) dt.

Now consider the Lobatto differentiation matidX-¢- and the corresponding quadrature weight, . By
the exactness of the LGL quadrature rule, we have

+1 -1 fori=1,
(Wi DY), = / Li(t) dt = 0 for2<i<N -1,
-t +1 fori= N.

Hence, multiplying each side of the LGL state equatdX'°t = F(X'°L UCL) by w], vyields the
identity
Xy = X; + wig F(X'C Uteh). (69)

For Lobatto collocationX ; andX; correspond to the state-at= +1 andr = —1 respectively. Hence, the
Lobatto identity (69) is analogous to the Gauss identity (68).

Finally, let us consider the LGR collocation scheme. Since the Lagrange polynomials in (3) start from
i = 0, it follows that for the Radau differentiation mat3“°R and the corresponding quadrature weights
wLGRr, We have

+1 —1 fori=0,
(w[GRDLGR)j:/ Lj(t);dt = 0 forl<i<N -1,
-1 +1 fori= N.

As a result, multiplying each side of the LGR state equal-®R = F(X"°R UCR) by w[ .. yields the
identity
Xy = Xg + wggF(X"CR UCR), (70)

For Radau collocationX ;y and X, correspond to the state at= +1 andr = —1 respectively. Hence,
each collocation scheme ultimately leads to a state approximation at the terminal time based on the scheme’s
quadrature rule [see (68)—(70)].

With each of the schemes, the initial state is introduced in the discretization through interpolation. In
particular, for either LG or LGR collocation, the initial value of the state variable appears as the coefficient
of Ly in the expansion (4). HerBy is the Lagrange basis function associated with the noncollocated point
79 = —1. For LGL collocation, the initial value of the state appears as the coefficiebf af (55). In
this caseLI is the Lagrange basis function associated with the collocated Lobattorpoint—1. Figure 2
provides a schematic showing how the three pseudospectral schemes use collocation and interpolation points.

Another interesting feature of the three pseudospectral schemes concerns the discrete mapping from the
control to the state. To illustrate this feature, consider the simple scalar dynamics

T =u. (71)
With either the LG or LGR scheme, the dynamics is approximated by
Dozo + D1.nX1.v = U, (72)

whereD is the GPM/RPM differentiation matrix add, is the first column oD. We showed thaD ;. was
invertible, andD; 5 Dy = —1. Hence, we have

Xl:N = 1.%'0 + D;}VU

11
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Figure 2: Schematic Providing a Visualization of How the Interpolation and Collocation Points are Utilized
in the GAM, RPM, and LPM.

This shows that there is a unique state associated with each choice for the control, provided the initial condi-
tion z is given.

For the Lobatto scheme, the dynamics is approximated by
DY"MX,. v = U, (73)

where we recall that the matrR-"M is square andingular. Thus, the state is not uniquely determined by

the control. In fact, the equation (73) only has a solution wiiglies in the column space @-"M. Hence,

for GPM or RPM, the map from control to state is one-to-one and onto. For LPM, the map from control to
state is only defined when the control is orthogonal to the null spa¢®6t")T. In general, for nonlinear
dynamics, with GPM or RPM, it may be possible to solve for the state in terms of the control and eliminate
the state from the problem. With LPM, the representation of the state in terms of the control becomes more
complex due to the singularity of the differentiation matrix.

In addition to the properties of the discretized dynamic constraints, the three pseudospectral schemes treat
the costate endpoint conditions quite differently. For LG collocation, the endpoint conditions appear explic-
itly in the transformed adjoint conditions (23) and (24). For LGR collocation, the initial condition appears
explicitly in (50) while the terminal condition appears in the approximate form (51). For LGL collocation,
the boundary conditions are embedded inside the costate dynamics (64).

EXAMPLES

In this section we consider two examples using the aforementioned GPM, RPM, and LPM. The first exam-
ple has an analytic solution, thus providing the ability to perform an error and convergence analysis for the
GPM, RPM, and LPM. The second example is a space flight application that has been studied extensively in
the literature (see Ref. 23).

Example 1
Consider the following optimal control problem.

minJ = —y(ts) s.t. { z(o) i 1_9 +yu—u (74)

wheret; = 5. The optimal solution to this problem is

y*(t) = 4/(1+ 3exp(t))
As(t) = —exp(2In(1 + 3exp(t)) —t)/(exp(=5) + 6 + 9exp(5)) (75)
u(t) =y*(t)/2

12



The optimal control problem given in (74) was solved using the GPM, Ré#d,LPM for theN ranging
from five to 30 by steps of five using the NLP solver SNOPT with optimality and feasibility tolerances of
10~1% and2 x 10715, respectively. For each method, the initial guess was the exact solution. We compute
the L, errorsin state, costate, and control at the approximation points (i.e., collocation points for the control
and collocation pointplusnoncollocated endpoints for the state and costate). Figs. 3a—3c show the base 10
logarithm of theL..-norm errors for the state, control, and costate, respectively. First, it is seen in Fig. 3a
that the state error using either the GPM or RPM is approximately two to four orders of magnitude smaller
than the state error for LPM faW < 15. In Figure 3b, it is seen that the GPM and RPM control is between
two and seven orders of magnitude more accurate than the corresponding LPM contiélsfdrs. For
N > 15, the GPM and RPM state and control errors drop to machine precision (approxineaté®y, while
the LPM errors achieve machine precisiom\at= 30.

In Fig. 3citis seen that the GPM and RPM costate errors decrease to near the optimizer tolerances (approx-
imately10~15) while the LPM costate error remains abawe 2. As a result, it appears as if the LPM costate
does not converge for this example. To examine the costate behavior for all three methods in more depth,
Fig. 3d shows an enlarged plot of the exact costate and the approximations generated by all three methods for
N = 30. Itis seen that the LPM costate oscillates about the exact solution while the GPM and RPM costates
are indistinguishable from the optimal solution.

o GPM o GPM
g -2¢ o RPM | 8 -2t ¢ o RPM
= @ o LPM = g o 9 LPM
& A o 1 & -4r s 1
* E] s
T 6y ‘ o ) 8
£ o £ 8 o
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(a) State Error for Example 1. (b) Control Error for Example 1.
B 01
3 -=-GPM
= o -o-RPM
& 5f —-LPM
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|
:& % < o <o oy
‘; [} \-g 0
< ~< <
S5 e '
5 =]
2 0.05
I -100 o GPM a
< o RPM o
o LPM B 8
-15, ‘ : 0.1 ‘ : i
5 10 15 20 25 30 0 0.5 1 1.5 2
N t
(c) Costate Error for Example 1. (d) Costate for Example 1 Using all Three Methods
AlongsideExact Solution.
Figure 3: Exact Solution, State, Control, and Costate Errors for Example 1.
Example 2

Consider the following orbit-raising optimal control problem found in Ref. 23. Minimize the cost func-

tional

J=—r(ty)
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subject to the dynamic constraints

r= U,
0 vg /T

’ 77
Oy vi/r — u/r* + asin 3, (77)

—v,vg /T + acos 3,

(r(0),6(0),v-(0),v(0)) = (1,0,0,1),

(0, /1] (E7)). (78)

—
<
3
—~
~
=
~—
<
)
—
o~
~
~
~

where
T

mo — |7’I’L|t
It is noted for this example that = 1, 7" = 0.1405, mo = 1, 7 = 0.0749, andt; = 3.32.

The orbit-raising problem was solved using the GPM, RPM, and LPMVot 64. The state, control
(after an upwrapping of the angle), and costate solutions are shown in Figs. 4, 5, and 6, respectively (where
0 is plotted at only theollocation pointfor each method because each method only determines the control
at the collocation points). First, it is observed from Figs. 4 and 5 that the three methods produce qualitatively
similar values for the state and control. Next, Fig. 6 shows that the costate obtained using the LPM looks
significantly different from the costate obtained using either the GPM or the RPM. In particular, noting that
X, (t) = 0 for this problem, it is seen that the GPM and the RPM produce a very accurate resyt#pr
while the LPM produces a value fog (¢) that oscillates about zero. In addition, it is seen in Fig. 6 hét)
for LPM also oscillates (unlike the smooth behavior shows for the GPM and RPM). Thus, the GPM and RPM
differ significantly from the LPM in costate accuracy, demonstrating a fundamental difference in the nature
of the costate estimates obtained using either the GPM or RPM as compared with the LPM.

a=alt) = (79)
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(a) Example 3 State Using GPM aid = 64. (b) Example 3 State Using RPM ad = 64.

x(t) = (r(t), 0(t), vr(t), vy (t)) [LPM]

(c) Example 3 State Using LPM and = 64.
Figure4: GPM, RPM, and LPM State Solutions for Example 3 Usi¥ig= 64.
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CONCLUSIONS

A compaison has been given of three different pseudospectral methods based on collocation at Legendre-
Gauss (LG), Legendre-Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL) points. The state was ex-
panded in Lagrange polynomials and the dynamics was enforced at the collocation points. For each of the
schemes in this paper, (1) the state at the final time can be expressed in terms of a quadrature rule associated
with the collocation points, (2) the state at the initial time is approximated by interpolation, and (3) the control
and the state are approximated at the collocation point. LG and LGR based schemes presented in this paper
employ polynomials to approximate the state that are the same degree as the number of collocation points.
In the corresponding LGL scheme, the state approximation is a polynomial that is one degree lower than the
number of collocation points. Each of these scheme can be expressed in either a differential or an integral
formulation. The LG and LGR differentiation and integration matrices are invertible, and the differential and
integral versions are equivalent. The LGL differentiation matrix is singular, and the equivalence between
differential and integral forms is lost. A transformed first-order optimality system was developed and com-
pared to the continuous first-order optimality conditions. LGL collocation was the only scheme for which
the differentiation matrices for the state and the costate dynamics were the same. Two numerical examples
were given. In the first example, the state and control were several orders of magnitude more accurate with
either Gauss or Radau collocation when compared to Lobatto. In addition, the Lobatto costate did not seem
to converge near the starting time. For the second example, where the exact solution was not known, the state
and control for all three methods were qualitatively similar, however, the Lobatto costate oscillated around
the correct costate.
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