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A REALIZATION THEOREM FOR SETS OF LENGTHS

IN NUMERICAL MONOIDS

ALFRED GEROLDINGER AND WOLFGANG A. SCHMID

Abstract. We show that for every finite nonempty subset L of N≥2 there are a numerical monoid H

and a squarefree element a ∈ H whose set of lengths L(a) is equal to L.

1. Introduction

In the last decade the arithmetic of numerical monoids has found wide interest in the literature. Since
numerical monoids are finitely generated, every element of a given monoid can be written as a sum
of atoms and all arithmetical invariants describing the non-uniqueness of factorizations are finite. The
focus of research was on obtaining precise values for the arithmetical invariants (e.g., [1, 21, 2]), on their
interplay with minimal relations of a given presentation (e.g., [7]), and also on computational aspects
(e.g., [13, 14] and [10] for a software package in GAP). A further direction of research was to establish
realization results for arithmetical parameters. This means to show that there are numerical monoids
whose arithmetical parameters have prescribed values. So for example, it was proved only recently
that every finite set (with some obvious restrictions) can be realized as the set of catenary degrees of a
numerical monoid ([22]). The goal of the present note is to show a realization theorem for sets of lengths.

Let H be a numerical monoid. If a ∈ H and a = u1 + . . . + uk, where u1, . . . , uk are atoms of H ,
then k is called a factorization length of a and the set L(a) ⊂ N of all factorization lengths is called the
set of lengths of a. Further, L(H) = {L(a) | a ∈ H} denotes the system of sets of lengths of H . It is
easy to see that all sets of lengths are finite nonempty and can get arbitrarily large, and it is well-known
that they have a well-defined structure (see the beginning of Section 3). As a converse, we show in the
present paper that for every finite nonempty set L ⊂ N≥2 there is a numerical monoid H and a squarefree
element a ∈ H such that L(a) = L (Theorem 3.3). In fact, we show more precisely that the number
of factorizations of each length can be prescribed. Several types of realization results for sets of lengths
are known in the literature, most of them in the setting of Krull monoids (see [20, 16, 23, 11, 12], [15,
Theorem 7.4.1]). However, we know that if H is a numerical monoid, then L(H) 6= L(H ′) for every Krull
monoid H ′ (see [18, Theorem 5.5] and note that every numerical monoid is strongly primary).

It is an open problem which finite sets of positive integers can occur as sets of distances of numerical
monoids. Based on our main result we can show that every finite set is contained in a set of distances of
a numerical monoid (Corollary 3.4). There is a vibrant interplay between numerical monoids, and more
generally affine monoids, and the associated semigroup algebras ([4, 3, 6]). In Corollary 3.5 we shift our
realization result from numerical monoids to numerical semigroup algebras.
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2. Background on the arithmetic of numerical monoids

We denote by P ⊂ N ⊂ Z ⊂ Q the set of prime numbers, positive integers, integers, and rational
numbers respectively. For a, b ∈ Q, let [a, b] = {x ∈ Z | a ≤ x ≤ b} be the discrete interval of integers
lying between a and b. If A,B ⊂ Z, then A + B = {a + b | a ∈ A, b ∈ B} denotes the sumset and
kA = A + . . . + A is the k-fold sumset for every k ∈ N. If A = {m1, . . . ,mk} ⊂ Z with mi−1 < mi for
each i ∈ [2, k], then ∆(A) = {mi−mi−1 | i ∈ [2, k]} ⊂ N is the set of distances of L. Note that ∆(A) = ∅
if and only if |A| ≤ 1.

By a monoid, we mean a commutative cancellative semigroup with identity element. Let H be a
monoid. Then H× denotes the group of invertible elements, q(H) the quotient group of H , and A(H)
the set of atoms (irreducible elements) of H . We say that H is reduced if the identity element is the only
invertible element. We call Hred = H/H× the reduced monoid associated to H . A numerical monoid is
a submonoid of (N0,+) whose complement in N0 is finite. Every numerical monoid is finitely generated,
reduced, and its quotient group is Z. For any set P , let F(P ) denote the free abelian monoid with basis
P . Then, using additive notation, every element a ∈ q(F(P )) can be written uniquely in the form

a =
∑

p∈P

lpp ,

where lp ∈ Z for each p ∈ P , and all but finitely many lp are equal to 0. For a =
∑

p∈P lpp ∈ F(P ), we

set |a| =
∑

p∈P lp ∈ N0 and call it the length of a.
We recall some arithmetical concept of monoids. Since our focus is on numerical monoids we use

additive notation. Let H be an additively written monoid. The (additively written) free abelian monoid
Z(H) = F(A(Hred)) is called the factorization monoid of H and the canonical epimorphism π : Z(H) →
Hred is the factorization homomorphism. For a ∈ H and k ∈ N,

ZH(a) = Z(a) = π−1(a+H×) ⊂ Z(H) is the set of factorizations of a ,

ZH,k(a) = Zk(a) = {z ∈ Z(a) | |z| = k} is the set of factorizations of a of length k, and

LH(a) = L(a) =
{

|z|
∣

∣ z ∈ Z(a)
}

⊂ N0 is the set of lengths of a .

Thus, by definition, L(a) = {0} if and only if a ∈ H× and L(a) = {1} if and only if a ∈ A(H). The
monoid H is said to be atomic if Z(a) 6= ∅ for all a ∈ H (equivalently, every non invertible element is a
finite sum of atoms). We call

• L(H) = {L(a) | a ∈ H} the system of sets of lengths of H , and
• ∆(H) =

⋃

L∈L(H) ∆(L) the set of distances (also called delta set) of H .

Every numerical monoid H is atomic with finite set of distances ∆(H), and ∆(H) = ∅ if and only if
H = N0.

3. A realization theorem for sets of lengths

The goal of this section is to prove our main realization theorem, namely that for every finite nonempty
subset L ⊂ N≥2 there exists a numerical monoid H such that L is a set of lengths of H (Theorem 3.3).
We show the existence of this monoid by an explicit recursive construction over the size of L. Instead of
working with numerical monoids directly, we work in the setting of finitely generated additive submonoids
of the nonnegative rationals. Additive submonoids of (Q≥0,+) are called Puiseux monoids and have
recently been studied in a series of papers by F. Gotti et al. (e.g., [19]). In the setting of Puiseux
monoids all arithmetical concepts refer to addition and not to multiplication of rationals. In particular,
an element a of a Puiseux monoid H is said to be squarefree if there are no nonzero elements b, c ∈ H
such that a = b+ b+ c.
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Clearly, the constructed numerical monoid heavily depends on the given set L. This is inevitable
because for every fixed numerical monoid H , sets of lengths have a well-defined structure. Indeed, there
is a constant M ∈ N0 (just depending on H) such that every L ∈ L(H) has the form

(3.1) L = y +
(

L′ ∪ {νd | ν ∈ [0, l]} ∪ L′′
)

⊂ y + dZ ,

where d = min∆(H), y ∈ Z, L′ ⊂ [−M,−1], and L′′ ⊂ ld+ [1,M ] ([15, Theorem 4.3.6]).

We start with a technical lemma.

Lemma 3.1. Let k ∈ N≥2. Then there exist pairwise distinct nonzero c1, . . . , ck ∈ [−kk−1, kk−1] with
c1 + . . .+ ck = 0 such that for all primes p > (k + 1)kk−1 the following property holds : if l1, . . . , lk ∈ N0

such that
∑k

i=1 lici ≡ 0 mod p, then

l1 = . . . = lk = 0 or l1 = . . . = lk = 1 or l1 + . . .+ lk > k.

Proof. For i ∈ [1, k − 1] we define ci = ki−1, and we set ck = −
∑k−1

i=1 ci. Then clearly,

ck = −
k−1
∑

i=1

ci = −
k−1
∑

i=1

ki−1 = −
kk−1 − 1

k − 1
.

Now we choose a prime p > (k + 1)kk−1 and l1, . . . , lk ∈ N0 such that
∑k

i=1 lici ≡ 0 mod p and
∑k

i=1 li > 0. We may distinguish the following two cases.

CASE 1:
∑k−1

i=1 lici ≥ p or lkck ≤ −p.

If p ≤
∑k−1

i=1 lici ≤
(
∑k−1

i=1 li
)

ck−1, then

k
∑

i=1

li ≥
k−1
∑

i=1

li ≥
p

ck−1
>

(k + 1)kk−1

ck−1
≥ k + 1 .

If p ≤ lk|ck|, then
k

∑

i=1

li ≥ lk ≥
p

|ck|
>

(k + 1)kk−1

|ck|
≥ k + 1 .

CASE 2:
∑k−1

i=1 lici < p and lkck > −p.

Since
∑k

i=1 lici ≡ 0 mod p, we infer that
∑k

i=1 lici = 0. Suppose that there is a j ∈ [1, k] with

lj ≥ k. Since at least two elements of l1, . . . , lk are positive, it follows that
∑k

i=1 li > k. Suppose that

li ∈ [0, k − 1] for all i ∈ [1, k]. Since 0 =
∑k

i=1 lici, the definition of c1, . . . , ck implies that

k−1
∑

i=1

lik
i−1 =

k−1
∑

i=1

lkk
i−1 .

By the uniqueness of the k-adic digit expansion, we infer that li = lk for all i ∈ [1, k − 1]. If l1 = 1, then
l1 = . . . = lk = 1. If l1 > 1, then l1 + . . .+ lk = kl1 > k. �

The following proposition will be our key tool to do the recursive construction step in Theorem 3.3.
For every prime p ∈ P, we denote by vp the usual p-adic valuation of the rationals, that is, for q ∈ Q\{0},
vp(q) the integer j such that q = pj a

b
with integers a, b such that p ∤ ab. Moreover, we set vp(0) = ∞.

Proposition 3.2. Let k ∈ N≥2 and H ⊂ (Q≥0,+) be a finitely generated monoid with N0 ⊂ H and

A(H) ⊂ Q<1. Then there exists a finitely generated monoid H ′ with H ⊂ H ′ and A(H) ⊂ A(H ′) ⊂ Q<1

such that the following properties are satisfied :

(a) For all u ∈ H with u < 1 we have ZH(u) = ZH′(u).

(b) ZH′(1) = ZH(1) ⊎ {q1 + . . . + qk}, where q1, . . . , qk are pairwise distinct and A(H ′) = A(H) ⊎
{q1, . . . , qk}.
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Proof. We set

A(H) =
{a1
b1

, . . . ,
as
bs

}

where ai, bi ∈ N with gcd(ai, bi) = 1 for all i ∈ [1, s]. Let c1, . . . , ck ∈ [−kk−1, kk−1] such that all
properties of Lemma 3.1 are satisfied. We choose a prime number p ∈ N such that

p ∤ lcm(b1, . . . , bs) and p > (k + 1)kk−1 ,

and we define

qi =
p+ ci
kp

for every i ∈ [1, k] .

By construction, we have q1 + . . .+ qk = 1 and vp(qi) = −1 whence qi /∈ H for all i ∈ [1, k]. We define

H ′ =
[

H, q1, . . . , qk
]

⊂ (Q≥0,+)

to be the additive submonoid of nonnegative rationals generated by the elements of H and by q1, . . . , qk.
Thus H ′ is generated by A(H)∪ {q1, . . . , qk} whence finitely generated. Since H ′ is reduced, [15, Propo-
sition 1.1.7] implies that H ′ is atomic and

(3.2) A(H ′) ⊂ A(H) ∪ {q1, . . . , qk} .

We continue with the following assertions.

A1. {q1, . . . , qk} ⊂ A(H ′).
A2. Let u ∈ H and suppose that u has a factorization z ∈ ZH′ (u) which is divisible by some element

from {q1, . . . , qk}. Then either u > 1 or z = q1 + . . .+ qk ∈ ZH′(u) (whence in particular u = 1).

Proof of A1. Assume to the contrary that there is an i ∈ [1, k] such that qi /∈ A(H ′). Since qi /∈ H ,
it is divisible by an atom from A(H ′) \ A(H) ⊂ {q1, . . . , qk}, say qi = qj + b with j ∈ [1, k] \ {i} and
b ∈ H ′ \ {0}. We claim that b /∈ H . Since 0 6= b = qi − qj and 0 6= |ci − cj | ≤ 2kk−1 < p,

vp(qi − qj) = vp

(ci − cj
kp

)

= −1

which implies that b /∈ H . Thus there is an l ∈ [1, k] such that b = ql + d with d ∈ H ′ ⊂ Q≥0. Since
p > (k + 1)kk−1 ≥ 3kk−1 ≥ |ci|+ |cj |+ |cl|, it follows that

qi = qj + ql + d ≥ qj + ql =
2p+ cj + cl

kp
>

p+ ci
kp

= qi ,

a contradiction. �[Proof of A1]

Proof of A2. Since u has a factorization which is divisible by some element from {q1, . . . , qk}, there are
l1, . . . , lk ∈ N0 and v ∈ H such that

u = v +

k
∑

i=1

liqi and

k
∑

i=1

li > 0 .

Since vp(u) ≥ 0 and vp(v) ≥ 0, it follows that

0 ≤ vp(u − v) = vp

(

k
∑

i=1

liqi

)

= vp

(

∑k

i=1 lip+
∑k

i=1 lici
kp

)

whence
∑k

i=1 lici ≡ 0 mod p. Therefore Lemma 3.1 implies that

l1 = . . . = lk = 1 or
k

∑

i=1

li > k .
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If
∑k

i=1 li > k and j ∈ [1, k] with qj = min{q1, . . . , qk}, then

(3.3) u = v +
l

∑

i=1

liqi ≥ (k + 1)qj = (k + 1)
p+ cj
kp

> 1 ,

where the last inequality uses that p > (k + 1)kk−1 ≥ (k + 1)|cj|. If l1 = . . . = lk = 1, then

u =

l
∑

i=1

liqi + v = q1 + . . .+ qk + v = 1+ v .

Thus v > 0 implies u > 1 and v = 0 implies u = 1 and z = q1 + . . .+ qk. �[Proof of A2]

If u ∈ A(H), then u < 1 by assumption and A2 implies that u is not divisible by any element from
{q1, . . . , qk} and therefore u ∈ A(H ′). Thus we obtain that A(H) ⊂ A(H ′) and together with A1 and
(3.2), it follows that

(3.4) A(H ′) = A(H) ⊎ {q1, . . . , qk} .

Thus, we have that

(3.5) Z(H) = F(A(H)) ⊂ F(A(H ′)) = Z(H ′) and ZH(u) ⊂ ZH′(u)

for every u ∈ H . If u < 1, then A2 implies that ZH(u) = ZH′(u).
It remains to show Property (b) given in Proposition 3.2, namely that

ZH(1) ⊎ {q1 + . . .+ qk} = ZH′ (1) .

We see from Equation (3.5) that ZH(1) ⊎ {q1 + . . .+ qk} ⊂ ZH′(1). Conversely, let z be a factorization
of 1 in H ′. Then either z ∈ ZH(1) or z is divisible (in Z(H ′)) by some element from {q1, . . . , qk}. In the
latter case A2 implies that z = q1 + . . .+ qk ∈ Z(H ′). �

Theorem 3.3. Let L ⊂ N≥2 be a finite nonempty set and f : L → N a map. Then there exist a numerical

monoid H and a squarefree element a ∈ H such that

(3.6) L(a) = L and |Zk(a)| = f(k) for every k ∈ L .

Proof. Every finitely generated submonoid of (Q≥0,+) is isomorphic to a numerical monoid (cf. [19,
Proposition 3.2]) and the isomorphism maps squarefree elements onto squarefree elements. Thus it is
sufficient to show that, for every set L and every map f as in the statement of the theorem, there is a
finitely generated submonoid H of the nonnegative rationals with N0 ⊂ H and A(H) ⊂ Q<1 such that
the element a = 1 ∈ H is squarefree in H and has the properties given in (3.6).

Clearly, it is equivalent to consider nonzero maps f : N≥2 → N0 with finite support and to find a monoid
H as above such that |Zk(1)| = f(k) for every k ∈ N≥2 and 1 is squarefree in H . For every nonzero map
f : N≥2 → N0 with finite support

∑

k≥2 f(k) is a positive integer and we proceed by induction on this
sum.

To do the base case, let f : N≥2 → N0 be a map with
∑

k≥2 f(k) = 1. Let k ∈ N≥2 with f(k) = 1. We

have to find a finitely generated monoid H ⊂ (Q≥0,+) with A(H) ⊂ Q<1 and pairwise distinct atoms
q1, . . . , qk ∈ H such that ZH(1) = {q1 + . . .+ qk}.

We proceed along the lines of the proof of A2 in Proposition 3.2. Indeed, we choose c1, . . . , ck ∈
[−kk−1, kk−1] such that all properties of Lemma 3.1 are satisfied and pick a prime number p ∈ N with
p > (k + 1)kk−1. We set

qi =
p+ ci
kp

for every i ∈ [1, k]

and define H = [q1, . . . , qk] ⊂ Q≥0. By [15, Proposition 1.1.7], A(H) ⊂ {q1, . . . , qk}. Since for all (not
necessarily distinct) r, s, t ∈ [1, k] we have qr < qs + qt, it follows that qr ∈ A(H). Thus we obtain that
A(H) = {q1, . . . , qk}. Since q1 + . . .+ qk = 1, it follows that {q1 + . . .+ qk} ⊂ ZH(1). To show equality,



6 ALFRED GEROLDINGER AND WOLFGANG A. SCHMID

let l1, . . . , lk ∈ N0 such that 1 =
∑k

i=1 liqi. It follows that
∑k

i=1 lici ≡ 0 mod p. Therefore Lemma 3.1
implies that

l1 = . . . = lk = 1 or

k
∑

i=1

li > k .

If
∑k

i=1 li > k and j ∈ [1, k] with qj = min{q1, . . . , qk}, then

(3.7) 1 =

l
∑

i=1

liqi ≥ (k + 1)qj = (k + 1)
p+ cj
kp

> 1 ,

a contradiction. Thus l1 = . . . = lk = 1 and the claim follows.
Now let N ∈ N≥2 and suppose that the assertion holds all nonzero maps f : N≥2 → N0 with finite

support and with
∑

k≥2 f(k) < N . Let f0 : N≥2 → N0 with
∑

k≥2 f0(k) = N . We choose an element

k0 ∈ N≥2 with f(k0) 6= 0 and define a map f1 : N≥2 → N0 as f1(k0) = f0(k0) − 1 and f1(k) = f0(k) for
all k ∈ N≥2 \ {k0}. By the induction hypothesis, there exists a finitely generated monoid H1 ⊂ (Q≥0,+)
with N0 ⊂ H1 and A(H1) ⊂ Q<1 such that |ZH1,k(1)| = f1(k) for every k ∈ N≥2 and 1 is squarefree in
H1. By Proposition 3.2 there exist a finitely generated monoid H0 ⊂ (Q≥0,+) such that

ZH0
(1) = ZH1

(1) ⊎ {q1 + . . .+ qk0
},

where q1, . . . , qk0
are pairwise distinct and A(H0) = A(H1) ⊎ {q1, . . . , qk0

} ⊂ Q<1. Since q1, . . . , qk0

are pairwise distinct and since 1 was squarefree in H1, it follows that 1 is squarefree in H0. Moreover,
ZH0,k(1) = ZH1,k(1) for all k ∈ N≥2 \ {k0} and ZH0,k0

(1) = ZH1,k0
(1)⊎ {q1 + . . .+ qk0

}. In particular, we
have |ZH0,k(1)| = f0(k) for every k ∈ N≥2. �

We continue with a corollary on sets of distances. Let H be an atomic monoid with nonempty set of
distances ∆(H). Then it is easy to verify that min∆(H) = gcd∆(H), and the question is which finite
sets D with minD = gcdD can be realized as a set of distances in a given class of monoids or domains.
The question has an affirmative answer in the class of finitely generated Krull monoids ([17]). If H is
a numerical monoid generated by two atoms, say A(H) = {n1, n2}, then ∆(H) = {|n2 − n1|} whence
every singleton occurs as a set of distances of a numerical monoid. There are periodicity results on
individual sets ∆(L(a)) for elements in a numerical monoid ([8]), but the only realization result beyond
the simple observation above is due to Colton and Kaplan ([9]). They show that every two-element set
D with minD = gcdD can be realized as the set of distances of a numerical monoid. As a consequence
of Theorem 3.3 we obtain that every finite set is contained in the set of distances of a numerical monoid
(this was achieved first by explicit constructions in [5, Corollary 4.8]).

Corollary 3.4. For every finite nonempty subset D ⊂ N there is a numerical monoid H such that

D ⊂ ∆(H).

Proof. Let D = {d1, . . . , dk} ⊂ N be a finite nonempty subset. By Theorem 3.3 there is a numerical
monoidH such that L = {2, 2+d1, 2+d1+d2, . . . , 2+d1+. . .+dk} ∈ L(H) whenceD = ∆(L) ⊂ ∆(H). �

Let K be a field and H a numerical monoid. The semigroup algebra

K[H ] =
{

∑

h∈H

ahX
h | ah ∈ H for all h ∈ H and almost all ah are zero

}

⊂ K[X ]

is a one-dimensional noetherian domain and its integral closures K[X ] is a finitely generated module over
K[H ]. Thus K[H ] is weakly Krull, Pic(K[H ]) is finite if K is finite whence it satisfies all arithmetical
finiteness results established for weakly Krull Mori domains with finite class group (see [15] for basic
information). However, all results on L

(

K[H ]
)

so far depend on detailed information on the Picard
group and the distribution of height one prime ideals not containing the conductor in the Picard group.
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Corollary 3.5. Let K be a field, L ⊂ N≥2 a finite nonempty set, and f : L → N a map. Then there is a

numerical monoid H and a squarefree element g ∈ K[H ] such that

LK[H](g) = L and |ZK[H],k(g)| = f(k) for every k ∈ L .

Proof. By Theorem 3.3 there is a numerical monoidH and a squarefree element c ∈ H having the required
properties. Clearly, the additive monoid H is isomorphic to the multiplicative monoid of monomials

H ′ = {Xh | h ∈ H} ⊂ K[H ] .

Since K[H ]× = K×, the monoid H ′′ = {cXh | h ∈ H, c ∈ K×} ⊂ K[H ] is a divisor-closed submonoid
and H ′′

red
∼= H ′. Thus for every k ∈ L and the element g = Xc ∈ K[H ] we obtain that

|ZK[H],k(X
c)| = |ZH′′,k(X

c)| = |ZH′,k(X
c)| = |ZH,k(c)| = f(k)

whence the assertion follows. �
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