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We measure the angular dependence of the resonant dipole-dipole interaction between two individual Rydberg
atoms with controlled relative positions. By applying a combination of static electric and magnetic fields on the
atoms, we demonstrate the possibility to isolate a single interaction channel at a Förster resonance, that shows
a well-defined angular dependence. We first identify spectroscopically the Förster resonance of choice and we
then perform a direct measurement of the interaction strength between the two atoms as a function of the angle
between the internuclear axis and the quantization axis. Our results show good agreement with the angular
dependence ∝ (1 − 3 cos2 θ ) expected for this resonance. Understanding in detail the angular dependence of
resonant interactions is important in view of using Förster resonances for quantum state engineering with
Rydberg atoms.
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Among the systems currently considered for quantum engi-
neering with applications to quantum simulation [1] and quan-
tum information [2], ensembles of individual Rydberg atoms
are promising [3–5], since they provide large interactions [6]
and are scalable [7]. For that purpose, one needs to control
pairwise interactions in the system. Significant achievements
using small numbers of atoms have been obtained based on the
phenomenon of Rydberg blockade [8–15]. The energy transfer
between atoms [16,17] observed in the presence of resonant
interactions also leads to interesting many-body dynamics
governed by spin-exchange Hamiltonians [18,19]. In those
examples, one has to pay attention to the angular dependence
of the interaction [20–23].

The anisotropy of the dipole-dipole interaction plays a
crucial role in solid-state nuclear magnetic resonance [24],
and in systems such as cold polar molecules [25,26] or dipolar
quantum gases [27]. Although experimental evidence of the
anisotropy of the resonant dipole-dipole interaction between
Rydberg atoms has been observed in confined geometries [28],
to date, a direct measurement of this angular dependence has
not been obtained due to the complexity introduced by multi-
ple interaction channels and inhomogeneities in disordered
ensembles [20,29]. Here we use a combination of electric
and magnetic fields to isolate a single interaction channel,
by tuning two atoms separated by a controlled distance R to
a Förster resonance. We measure the evolution of the system
[30] to extract the interaction strength as a function of the
angle θ between the interatomic axis and the quantization
axis z. Our results further extend the possibilities offered by
Rydberg atoms for quantum state engineering.

The electric dipole-dipole interaction between two atoms
(k = 1,2) is described by the operator

V̂dd = 1

4πε0R3
[A1(θ )(d̂1+d̂2− + d̂1−d̂2+ + 2d̂1zd̂2z)

+A2(θ )(d̂1+d̂2z − d̂1−d̂2z + d̂1zd̂2+ − d̂1zd̂2−)

−A3(θ )(d̂1+d̂2+ + d̂1−d̂2−)], (1)

where d̂k,± = ∓(d̂k,x ± id̂k,y)/
√

2 are the components
of the dipole operator in the spherical basis. The

operator V̂dd in Eq. (1) contains terms with angular prefac-
tors A1(θ ) = (1 − 3 cos2 θ )/2, A2(θ ) = 3 sin θ cos θ/

√
2, and

A3(θ ) = 3 sin2 θ/2, that couple pair states where the total
magnetic quantum number M = m1 + m2 changes by �M =
0, �M = ±1, and �M = ±2, respectively. In the absence of
external fields, two atoms prepared in the same state generally
interact in the van der Waals regime, where several states
contribute to second order to the interaction [7]. Resonant
dipole-dipole interactions occur when two pair states coupled
by V̂dd are degenerate, giving rise to stronger interaction
energies Edd ∝ 1/R3 [6,7].

Resonant interactions between Rydberg atoms can be
observed by applying an electric field, to reach a Förster
resonance [31–38]. Here we study the resonance

59D3/2 + 59D3/2 ←→ 61P1/2 + 57F5/2 (2)

for two rubidium atoms prepared in |d〉 = |59D3/2,mj =
3/2〉 [30]. When θ = 0, the angular prefactors A2 and A3

vanish, and we only need to consider dipolar couplings
with �M = 0. In this case, Eq. (2) describes the transition
of one atom to the magnetic substate |p〉 = |61P1/2,mj =
1/2〉 while the other atom evolves to the magnetic substate
|f1〉 = |57F5/2,mj = 5/2〉. We define the symmetric state
|pf1〉s = (|pf1〉 + |f1p〉)/√2. In a zero electric field, the
energy splitting between |dd〉 and |pf1〉s is only h × 8.5 MHz,
and vanishes for a small electric field (Fres � 33 mV/cm)
due to the differential Stark effect between the two states
[39]. At resonance, the eigenstates of the system are the
combinations |±1〉 = (|dd〉 ± |pf1〉s)/

√
2, that have energies

E± = ±√
2C3/R

3. The coefficient C3, defined such that the
matrix element of V̂dd between |dd〉 and |pf1〉 for θ = 0
is equal to C3/R

3, was measured previously in [30] to be
C3/h = 2.39 ± 0.03 GHz μm3.

Here, we focus on the angular dependence of this inter-
action. When θ 	= 0, V̂dd couples |dd〉 to different magnetic
substates |pfi〉s, as detailed later (see Fig. 4). Since the states
|pfi〉s have different polarizabilities, it is possible, by a proper
choice of parameters, to isolate one interaction channel [37,38]
showing a well-defined angular dependence. This is what we
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demonstrate here for the resonance between |pf1〉s and |dd〉,
with full control over the geometry of the system, which allows
us to measure an interaction strength varying as A1(θ ).

Our experiment starts by loading two 87Rb atoms from
a magneto-optical trap into two microscopic dipole traps,
created by focusing a laser beam of wavelength 852 nm using
a high-numerical aperture lens [40]. We control R and θ using
a spatial light modulator to create arbitrary trap patterns [41].
Using a set of electrodes, we control the electric field Fz at the
position of the atoms. We apply a 3.3 G magnetic field along z,
and we optically pump the atoms in |g〉 = |5S1/2,F = 2,mF =
2〉. For the Rydberg excitation from |g〉 to |d〉 = |59D3/2,mj =
3/2〉, we perform a two-photon transition using a π -polarized
laser beam of wavelength 795 nm and a σ+-polarized laser
beam of wavelength 474 nm. During that time, the microtraps
are switched off. At the end of the sequence, we turn on the
trapping light again and shine resonant light of wavelength
780 nm on the atoms. We read out the state of the system by
detecting the fluorescence of ground-state atoms (atoms that
are in a Rydberg state at the end of the excitation sequence
are not recaptured in the microtraps). We repeat the sequence
�100 times to reconstruct the two-atom state populations Pgg ,
Pgr , Prg , and Prr , where r stands for any Rydberg state and g

stands for the ground state.
In a first experiment, we identify the various resonances

by measuring Rydberg excitation spectra as a function of the
electric field for two atoms with R = 9.1 μm and θ = 32◦.
For electric fields that vary between Fz = 4 mV/cm and
Fz = 44 mV/cm, we shine on the atoms an excitation laser
pulse of Rabi frequency �/2π � 0.76 MHz and duration
τ = 1 μs. We record the probability Prr to excite both atoms
to a Rydberg state as we scan the frequency detuning δ of
the excitation laser with respect to the Rydberg line measured
in a zero electric field. Figure 1(a) shows the result of this
measurement. For electric fields smaller than a few mV/cm,
we observe a single excitation line showing the transfer of
population from |gg〉 to |dd〉 via the pair states |gd〉 and
|dg〉. At resonance between |dd〉 and |pfi〉s, the state |gg〉 is
partially coupled to the eigenstates |±i〉 = (|dd〉 ± |pfi〉s), and
we observe the presence of two excitation lines. Because |pfi〉s

have different polarizabilities, resonances between |dd〉 and
|pfi〉s occur at distinct Fz, and we observe different avoided
crossings between |dd〉 and |pfi〉s. The measured spectrum
is in good agreement with the calculated spectrum shown in
Fig. 1(b), obtained by simulating the experimental sequence
for the system, as detailed later in this Rapid Communication
(see Fig. 4). For θ = 0, the same measurement (not shown
here) gives a single avoided crossing between |dd〉 and |pf1〉s

[30]. The observation of multiple resonances when θ 	= 0 is a
first indication of the anisotropy of the interaction.

We now focus on the resonance at Fz � 33 mV/cm (red
dashed line in Fig. 1) and study its angular dependence.
For a given angle θ , we obtain the interaction strength
between the two atoms by measuring the time evolution of
the system in the presence of resonant interactions [30]. In
this experiment, R = 9.1 μm, �/2π � 5 MHz, and θ varies
between −90◦ and 90◦. We first place the system out of
resonance (Fz = 64 mV/cm), where the atoms show weak
van der Waals interactions �1 MHz. We apply an optical π

pulse to prepare the two-atom system in the state |dd〉. We then

FIG. 1. (Color online) Rydberg excitation spectrum for two
atoms with R = 9.1 μm and θ = 32◦. The double excitation proba-
bility Prr is represented as a function of the detuning δ and the electric
field Fz. The red vertical dashed line shows the measured position
of the Förster resonance detailed in this Rapid Communication. The
bold arrows show the calculated positions of the different resonances.
(a) Experimental spectrum. (b) Theoretical spectrum obtained by
solving the Schrödinger equation for the system (see text).

switch on abruptly strong resonant interactions by pulsing the
electric field to 33 mV/cm with rise and fall times �10 ns,
thus inducing back and forth oscillations between |dd〉 and
|pf1〉s. After an interaction time t , the probability for both
atoms to be in the state |d〉 reads

Pdd (t) = cos2

(√
2C3A1(θ )

�R3
t

)
, (3)

where we neglect the influence of other interaction channels.
At the end of the sequence, we freeze the dynamics by
switching the electric field back to Fz = 64 mV/cm. To read
out the state of the system, we shine a second optical π pulse
on the atoms, that couples |dd〉 back to |gg〉 while leaving
|pf1〉s unchanged. We measure the probability Pgg to detect
both atoms in the ground state. Assuming perfect excitation
and detection, Pgg coincides with Pdd .

Figure 2 shows the coherent oscillations observed for
different angles θ . The anisotropy of the interaction is evident
on the data. For θ = 0 we observe contrasted oscillations
with frequency ν � 8.6 ± 0.4 MHz, compatible with the value
of C3 measured using the same experimental sequence and
varying R [30]. As we increase θ , we initially observe
a decrease of ν. For θ � 57◦, the observed dynamics are
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FIG. 2. (Color online) Coherent oscillations at resonance for
angles varying between θ = 0 and θ = 92◦, where R = 9.1 μm. The
typical error on Pgg is ±0.05. Lines are fits to the data by damped
sines (see text).

essentially described by an exponential damping. This is
compatible with the expected behavior close to the “magic an-
gle” (θm � 54.7◦) where the strength of resonant interactions
vanishes [A1(θm) = 0], and where one thus expects Pdd to stay
constant. Further increasing θ leads again to the observation
of contrasted oscillations with increasing frequencies. The
observed damping originates mainly from dephasing, due to
the finite temperature of the atoms and fluctuations in the
voltages applied to the electrodes leading, respectively, to
shot-to-shot fluctuations of R and of the detuning between
|dd〉 and |pf1〉s. The observation of mainly one frequency in
the oscillations confirms that the interaction channel of choice
is well isolated.

We obtain the interaction strength as a function of θ by
fitting the measured coherent oscillations with damped sines
of frequency ν. Figure 3(a) shows a plot of ν as a function
of θ . Our measurement procedure does not give access to
the sign of the interaction, and we thus infer it from the
expected functional form. The error bars represent statistical
errors from the fit. For θ � 57◦, close to the magic angle, we
do not observe any significant oscillation within the limits of
experimental accuracy. In this case, we assign the value 0 MHz
to the frequency, with an error bar representing the upper
frequency one could possibly infer from the measurement
and equal to 1/(2tmax), where tmax = 700 ns is our largest
interaction time. The data show good agreement with the
expected angular dependence ∝A1(θ ) plotted as a solid line
in Fig. 3(a), where we used the coefficient C3 measured in
[30]. The polar representation of the fitted frequencies as a
function of θ exhibits the characteristic shape of the function
(1 − 3 cos2 θ ), as can be observed in Fig. 3(b).

In the remainder of this Rapid Communication, we analyze
theoretically our results. We first consider the situation where
no magnetic field is applied on the atoms. Coming back
to Eq. (1), terms with the angular prefactor A1(θ ) couple
|dd〉 and |pf1〉s (�M = 0). Terms with the angular prefactor
A2(θ ) couple |dd〉 and |pf2〉s, with |f2〉 = |57F5/2,mj =
3/2〉 (�M = −1). Finally, terms with the angular prefactor
A3(θ ) couple |dd〉 and |pf3〉s, with |f3〉 = |57F5/2,mj = 1/2〉
(�M = −2). In the absence of magnetic field, we thus expect
three resonances between |dd〉 and the states |pf1〉, |pf2〉, and
|pf3〉.

FIG. 3. (Color online) Angular dependence of the interaction.
(a) Graph of ν as a function of θ . The solid line plots
−C3A1(θ )/(hR3). Error bars show statistical errors in the determi-
nation of ν. The shaded area corresponds to a systematic 5% error
on the calibration of R. (b) Representation in polar coordinates. By
symmetry, the points at angles at θ + 180◦ are taken identical to the
points at θ .

We now take into account the effect of the 3.3 G magnetic
field applied on the atoms during our experiments, leading to
energy shifts and to mixing of the different states [37,38].
Figure 4 shows the calculated Stark map for the relevant
pair states, where the dipole-dipole interaction has not been
included. It was obtained by calculating the (one-atom) level
shifts of the states |p〉, |d〉, and |fi〉 from the diagonalization of
the total Hamiltonian, including the Stark and Zeeman effects
[42]. The electric dipole matrix elements were obtained nu-
merically using quantum defect theory [20,43,44]. We observe
that the magnetic field shifts the pair states energies due to
the Zeeman effect, and mixes |pfi〉s to |pfi+3〉s (i = 1,2,3),
where |f4〉 = |57F7/2,mj = 5/2〉, |f5〉 = |57F7/2,mj = 3/2〉,
and |f6〉 = |57F7/2,mj = 1/2〉 (see solid lines paired by colors
in Fig. 4). Because all pair states have different polarizabilities,
the system exhibits a discrete set of Förster resonances (see
bold arrows), at the crossings between the solid colored
lines and the black dashed line. The color bar represents the
degree of admixture of the different states and shows that the
presence of a magnetic field increases the number of expected
resonances.

Based on this Stark map, we finally simulated numerically
the experimental spectrum of the two-atom system of Fig. 1(a).
For that purpose, we first truncated the two-atom basis,
retaining only the two-atom states differing in energy by
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FIG. 4. (Color online) Stark map of the relevant pair states in
the presence of a 3.3 G magnetic field. The colored lines plot the
eigenenergies of the two-atom system as a function of the electric
field. The color scale represents the overlap between the calculated
eigenstates |�〉 and the states |pf1〉s, |pf2〉s, and |pf3〉s. The black
dashed line shows the energy of |dd〉. The solid arrows show
the positions of the different resonances. The red vertical dashed
line indicates the position of the resonance detailed in this Rapid
Communication.

no more than 40 MHz from |dd〉, and then calculated the
restriction of V̂dd to this truncated basis. The result of the
calculation, shown in Fig. 1(b), is in good agreement with
the experiment regarding the positions and the strengths of
the different resonances. For our experimental parameters, we
note that we resolve three avoided crossings. We focused in

this Rapid Communication on the crossing between the states
|dd〉 and |pf1〉s occurring at Fz � 33 mV/cm. In this case,
the states |pf2〉s and |pf3〉s are off-resonant by more than
10 MHz, which ensures that this resonance is well isolated
from other interaction channels, as observed on the interaction
dynamics. On the contrary, in the absence of magnetic field,
the energy splitting between the different states (�10 MHz)
would not be sufficient to isolate the different channels. Using
a finite magnetic field was thus necessary to isolate a single
resonance. By reproducing the same procedure with different
interaction channels, one could in principle engineer other
angular dependencies ∝A2(θ ) or ∝A3(θ ).

The control over the anisotropy of the dipole-dipole
interaction demonstrated in this work will be useful for the
implementation of quantum information protocols [45] or for
the quantum simulation of many-body spin systems in large
two-dimensional arrays of dipole traps [41]. It is also a moti-
vation to revisit, in the presence of anisotropic interactions,
effects discussed previously such as the prediction of the
breakdown of the Rydberg blockade in the presence of nearly
resonant interactions [46], the existence of few-body Förster
resonances [47], or the diffusion of spin excitations in complex
ensembles of spins with long-range interactions [48,49].
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