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We explore the dynamics of Rydberg excitations in an optical tweezer array under antiblockade (or
facilitation) conditions. Because of the finite temperature the atomic positions are randomly spread, an
effect that leads to quenched correlated disorder in the interatomic interaction strengths. This drastically
affects the facilitation dynamics as we demonstrate experimentally on the elementary example of two
atoms. To shed light on the role of disorder in a many-body setting we show that here the dynamics is
governed by an Anderson-Fock model, i.e., an Anderson model formulated on a lattice with sites
corresponding to many-body Fock states. We first consider a one-dimensional atom chain in a limit that is
described by a one-dimensional Anderson-Fock model with disorder on every other site, featuring both
localized and delocalized states. We then illustrate the effect of disorder experimentally in a situation in
which the system maps on a two-dimensional Anderson-Fock model on a trimmed square lattice.
We observe a clear suppression of excitation propagation, which we ascribe to the localization of the many-
body wave functions in Hilbert space.

DOI: 10.1103/PhysRevLett.118.063606

Introduction.—Rydberg gases provide a versatile plat-
form for studies of quantum few-body and many-body
phenomena with applications ranging from quantum infor-
mation processing [1] to simulations of complex condensed
matter systems. The experimental degree of control has
reached a stage which enables efficient entanglement
creation [2] and implementation of quantum Ising models
[3,4]. This opens pathways towards probing magnetic
structures [5–8] as well as the exploration of open
many-body quantum systems [9–15].
Of particular interest is the so-called facilitation mecha-

nism (or antiblockade), where the excitation of an atom to a
Rydberg state is strongly enhanced in the vicinity of an
already excited atom [16,17]. This effect is of broad
relevance and exploited in the design of quantum gates
[18,19], as well as in protocols for dissipative quantum state
preparation [6]. In the many-body context it effectuates an
aggregation mechanism, where an initial Rydberg excita-
tion seed triggers a dynamical growth of excitation clusters
[18,20–23] and it enables the implementation of kinetic
constraints [12,24,25] thereby connecting to the physics of
glass-forming substances [26–28].
Here we perform a theoretical and experimental study of

the facilitated dynamics of Rydberg excitations in a one-
dimensional array of optical tweezers. In a first experiment
conducted with only two of them, we establish that the
uncertainty of the atomic positions introduces disorder

which strongly affects excitation transfer between the
atoms. To gain insight on how disorder affects the
many-body context we theoretically consider first a regime
of small disorder and strong interaction, which lends itself
to a description through a one-dimensional Anderson
model [29–31] defined on a reduced Hilbert space. Here,
the disorder occurs on every other “site” and the corre-
sponding amplitudes are correlated due to their dependence
on the interatomic distances. Finally, we conduct an
experiment where we probe the excitation dynamics in a
linear array of eight tweezers and provide first evidence of a
strong suppression of excitation propagation. We show that
in the accessed parameter regime the physics is governed
by an effective two-dimensional Anderson model on a
trimmed square lattice, and we interpret the absence of
propagation in terms of localization of the wave function in
the Hilbert space.
Rydberg lattice gas with disorder.—We consider a chain

of tight optical traps (tweezers), each loaded with a single
atom [4,32–34]. Figure 1(a) displays an example for two
atoms. We label the Cartesian coordinates with an index
i ¼ 1, 2, 3, with the chain lying along direction 3. The
average separation between contiguous traps is
r0 ¼ ð0; 0; r0Þ. We describe the Rydberg atoms as effective
two-level systems [35] with the electronic ground state j↓i
and a Rydberg excited state (or “excitation”) j↑i. In the
following, we refer to the tensor products of j↑i and j↓i
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states as the “Fock basis.” The atoms are driven by laser
light with Rabi frequency Ω, and detuning Δ. Excited ones
interact via a van der Waals potential VðjrjÞ ¼ C6=jrj6
[35,36]. The Hamiltonian of the system reads

H ¼
X

k

�
Ω
2
σxk þ Δnk þ

X

l>k

Vðjrk − rljÞnknl
�
; ð1Þ

where k, l are lattice indices, σxk ¼ j↑kih↓kj þ j↓kih↑kj and
nk ¼ j↑kih↑kj. We express the kth atom position as
rk ¼ ðk − 1Þr0 þ δrk. The displacements δrk originate
from the finite temperature T of the atoms and constitute
an intrinsic source of randomness. For sufficiently low T,
the atoms, which are frozen during the experiment, occupy
the harmonic part of the traps (with frequencies ωi along
i ¼ 1, 2, 3). Hence, their distribution is approximately a
Gaussian with widths σi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ðmω2

i Þ
p

, with m the
atomic mass [37]. Randomness enters Eq. (1) via the
interaction term, which depends on the distances dk;l ¼
jrkþl− rkj ¼ jlr0þδrkþl−δrkj. Correspondingly, we intro-
duce the energy displacements δVk ≡ Vðdk;1Þ − Vðr0Þ.
Note that these distances are not independently distributed:
for instance, dkþ1;1 and dk;1 both depend on rkþ1, which
generates correlation between them [37].
Two-atom dynamics and facilitation mechanism.—We

begin by illustrating the effect of the disorder in a two-atom
setting. Considering first Δ ¼ 0 [see Fig. 1(b)], the two

atomic states j↑↓i; j↓↑i are resonant with j↓↓i, while the
interaction brings the state j↑↑i off resonance and thus
decouples it from the dynamics. Since the disorder only
acts on j↑↑i, a dynamics starting from j↓↓i, j↑↓i, j↓↑i, or
combinations thereof, is not affected by it. In the experi-
ment, after preparing the system in the j↑↓i state, the
evolution thus resembles a coherent oscillation of the initial
excitation between the atoms. This is shown in Fig. 1(d),
where we display the excitation probabilities P↑↓ ¼
hn1ð1 − n2Þi, P↓↑ ¼ hð1 − n1Þn2i as functions of time.
The presence of the disorder becomes apparent instead
when driving the system through the j↑↑i resonance. This
is achieved by setting Δ ¼ −VNN [Fig. 1(c)], the so-called
“facilitation condition” [24,43–46], where VNN ¼ Vðr0Þ is
the nearest-neighbor interaction energy in the absence of
disorder. Here, the amplitude of the oscillations of P↓↑ and
P↑↓ is suppressed, see Fig. 1(e). This means that the
displacements δr1, δr2 can be sufficiently large to bring the
j↑↑i state off-resonance, hindering in turn the propagation
of the initial excitation. Note that the initial state j↑↓i is
obtained with nonunit probability due to experimental
imperfections (see Supplemental Material [37] for details).
We also refer to Refs. [4,33] for further details on the
experimental setting.
Generalization to many atoms.—We investigate now the

facilitated propagation of an excitation through a one-
dimensional chain of atoms and first consider a simplified
situation before addressing the parameter regime accessed
by our experiment. The Hilbert space of our system can be
depicted as a complex network of Fock states. Only states
which differ by a single spin flip are connected by
Hamiltonian (1) via the “flipping” (∝Ω) term. This is
sketched in Fig. 2(a) for three atoms, where we label the
states with their diagonal energies (i.e., their energies for
Ω ¼ 0), dub VNNN ¼ Vð2r0Þ the next-nearest-neighbor
interactions and assume we can neglect all terms Vðnr0Þ
for n > 2. In the following, we fix the facilitation condition
Δ ¼ −VNN and we make a number of simplifying assump-
tions: (i) large detuning (Δ ≫ Ω). This strongly suppresses
unfacilitated transitions; (ii) strong next-nearest-neighbor
blockade [Vð2r0Þ ≫ Ω; δVk]. Interactions at distance 2r0
are supposed to be sufficiently strong to suppress

FIG. 1. Two-atom setting. (a) The harmonic traps are disposed
in a line along i ¼ 3with average separation r0 and widths σi. (b),
(c) Level structure for the two-atom case for the resonant (Δ ¼ 0)
and facilitated (Δ ¼ −VNN) conditions, respectively. The exper-
imental data for the time evolution of the excitation probabilities
P↑↓, P↓↑ are shown as full circles in panels (d),(e). The data are
averaged over at least 100 realizations of the disorder. The solid
lines show numerical solutions of the dynamics obtained averag-
ing over 30 realizations of the disorder. The experimental data
here and in the following were obtained using 87Rb atoms held at
a temperature T ¼ 50 μK in the traps with frequencies
ω1 ¼ 2π × 11, ω2;3 ¼ 2π × 91.5 kHz resulting in the position
uncertainties σ1 ¼ 1 μm and σ2;3 ¼ 120 nm. The internal levels
are j↓i¼j5S1=2;F¼2;M¼2i and j↑i¼j100D3=2;F¼3;M¼3i
with r0 ¼ 14.2 μm, Ω ¼ 2π × 1.25 MHz, C6 ¼ −2π × 7.3×
107 MHz μm6. Consequently, VNN ¼ C6=r60 ¼ −2π × 8.9 and
jδVj ∼ 2π × 0.64 MHz (all energies are in units of ℏ).

FIG. 2. Fock space structure for three atoms prior and after
applying the facilitation condition. States with similar energy
occupy the same row. (a) Internal structure of the Fock space.
Linked states are connected by one spin flip. (b) Fock states
spanning the reduced Hilbert space under facilitation conditions
are shown in red (see text for details).
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transitions. In particular, we require this suppression to be
much stronger than the one produced by the disorder. We
also consider a tight confinement of the atoms, σj ≪ r0,
such that, as in Fig. 1(e), the disorder can hinder, but not
prevent transport entirely (i.e., δVk ≲ Ω).
Under these conditions the states organize in layers with

large energy gaps approximately of the order of VNNN or Δ.
Within each layer, however, states are now separated by
considerably smaller differences δVk. We thereby neglect
connections between different layers and retain only the
intralayer ones [see Figs. 2(a),2(b)].
We focus now on the highlighted (red) layer at energy Δ

[Fig. 2(b)]. We recall first that (i) implies that spins cannot
be flipped if they do not have a single excited neighbor. As
a consequence, clusters of consecutive excitations can
shrink or grow, but not merge or (dis)appear; i.e., the
number Ncl of these clusters is conserved (see also the
discussion in Ref. [37]). Condition (ii) implies instead that
a spin next to two consecutive excitations cannot flip (e.g.,
j↑↑↓i ↔ j↑↑↑i is forbidden); it then follows that the
number NNNN of excitation triples (↑↑↑) is conserved. The
red layer in Fig. 2(b) corresponds to Ncl ¼ 1, NNNN ¼ 0 as
it exclusively includes states with a single excitation or a
single pair of neighboring ones; in the following, the
former kind will be denoted by odd integers, j2j − 1i≡
j↓1…↓j−1↑j↓jþ1…↓Li (j ¼ 1…L), whereas the latter
by even integers, j2ji≡ j↓1…↓j−1↑j↑jþ1↓jþ2…↓Li
(j ¼ 1…L − 1). The dynamics restricted to this layer
can be described by a one-dimensional Anderson model
[29]. In fact, the Hamiltonian connects these states sequen-
tially (…j2j − 1i ↔ j2ji ↔ j2jþ 1i…), taking the form
of a tight-binding model with sites labeled by b¼1…2L−1
and a random potential hb ¼ ½1þ ð−1Þb�δVb=2=Ω acting
only on even ones. In this restricted space H can be recast
as [37]

HA ¼ Ω
2

X2L−2

b¼1

ðjbihbþ 1j þ jbþ 1ihbj þ hbjbihbjÞ: ð2Þ

The two main differences to the “canonical” Anderson
model lie in the absence of disorder on odd sites and the
fact that the hb are identically distributed, but not inde-
pendent random variables. In order to distinguish it from a
standard Anderson model defined in real space, i.e., on a
physical lattice, in the following we shall call it the
Anderson-Fock model.
Localization in the 1D Anderson-Fock model.—Our

analysis—analogously to the canonical case—focuses on
the eigenvectors jψni of HA. In the Fock basis, we
distinguish between localized states whose amplitude
jhbjψnij is concentrated within a region of width l and
decays exponentially ∼e−r=l with the distance r from it, and
delocalized states which are instead extended and do not
show exponentially suppressed tails. Equivalently, one can
introduce the Lyapunov exponent γ ¼ l−1 [38,39]. Wave

functions with γ > 0 are localized, whereas γ ¼ 0 denotes
delocalization. We emphasize that the Lyapunov exponent,
as a function of the energy E, only depends on the
distribution of the disorder, and not on the specific
realizations thereof [40]. In Fig. 3 we report a numerical
determination of γ for a chain of length L ¼ 25 000 sites.
We provide details of these computations in Ref. [37]. We
find that γ is positive ∀E ≠ 0, while γðE ¼ 0Þ ¼ 0, signal-
ing the presence of a delocalized state. The asymmetric
shape originates from an asymmetry of the distribution of
energy displacements between positive and negative values
[37]. In the inset we compare our Lyapunov exponent
results with a numerical simulation of a system of size
L ¼ 20 (for a randomly chosen realization of the disorder).
This shows that the Lyapunov exponent provides a rea-
sonably reliable prediction already for relatively small
system sizes.
Note, that E ¼ 0 is always—independently of the

realization of disorder—an eigenvalue of HA and
corresponds to the (delocalized) wave function jψ0i ¼
ð1= ffiffiffiffi

L
p ÞPb sinðπb=2Þjbi, which has nonvanishing com-

ponents only on states not affected by the disorder. This is
in contrast to the standard Anderson model [29], which
features full localization, and is instead reminiscent of
related works on one dimensional models: the random
dimer model [38,47–50] and the Anderson model in the
presence of correlated disorder [39], both exhibiting
delocalized states in the spectrum.
Localization in the 2D Anderson-Fock model.—Moving

away from this simplified discussion we now analyze an

FIG. 3. Lyapunov exponent for the one-dimensional Anderson-
Fock model. All data shown in this figure are obtained with the
same parameters given in Fig. 1. In the main figure we report the
Lyapunov exponent as a function of the energy E (measured in
units of Ω=2). The inset shows a comparison between the shapes
of the wave functions obtained from a numerical reconstruction
(left panel) and from the corresponding prediction associated to
the Lyapunov exponent (right panel) for a chain of L ¼ 20 sites
and a specific realization of the disorder. In the right panel the
envelopes ∝ exp ½−4γðEÞjk − kmaxðEÞj� are centered at the posi-
tion kmaxðEÞ at which the corresponding set of excitation
probabilities in the left panel reaches its maximum. The factor
4 in the exponent stems from considering probabilities instead of
amplitudes and the fact that the length of the atomic chain is
about half the one in Fock space.
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experiment conducted in a chain of 8 atoms. We monitor
the local densities hnkðtÞi starting from a single excitation
jψ ini ¼ j↑↓↓↓↓↓↓↓i. The result is displayed in Fig. 4(a)
and no appreciable propagation beyond the second site is
observed, signaling a strong suppression of transport. As
shown in the following, this can again be ascribed to the
fact that the eigenstates are localized, although via a
slightly modified theoretical description.
Solving Hamiltonian (1) in the presence of disorder,

Fig. 4(b), we find localization, in good agreement with the
experimental data. The case without randomness, studied
only numerically [Fig. 4(c)], features instead propagation.
In our experiment, condition (ii) (i.e., VNNN ≫ δVk) is not
satisfied. It is thereby possible to grow clusters beyond the
two-excitation limit. This breaks the chainlike structure
obtained from the simplified description [Fig. 2(b)]. Instead
it gives rise—when considering a single cluster (Ncl¼ 1)—
to a two-dimensional square lattice with N ¼ LðLþ 1Þ=2
sites. This structure, previously discussed in Ref. [41], is
sketched in Fig. 4(f) for four atoms. We remark that the two
bottommost rows correspond precisely to the previous one-
dimensional chain. The dynamics on this “triangle” of
states is described by a 2D tight-binding Anderson-Fock
model similar to Eq. (2) (see Ref. [37] for the derivation).
As shown in Figs. 4(d)–4(e) the solutions of this effective
model agree well with that of the full Hamiltonian.
The observed inhibition of excitation propagation stems

from the localization of the many-body eigenstates jEi on
the restricted Fock basis jci. We quantify the degree of
localization by means of the inverse participation ratio
(IPR) I ¼ ðNP

cjhEjcij4Þ−1 [51]. As a measure of
localization, the IPR can be easily tested on the two
limiting cases: for a state jEi uniformly distributed on
the basis (jhEjcij ¼ 1=

ffiffiffiffi
N

p
) one finds the maximal value

I ¼ 1, whereas for a completely localized state, namely,

jEi≡ jc̄i corresponding to a single Fock state jc̄i, one has
I ¼ 1=N. A numerical study of I for L ¼ 20 atoms and the
parameter set employed in the experiment is reported in
Fig. 4(g), where for every realization of the disorder the
spectrum is calculated via exact diagonalization. The IPR is
then computed for each energy eigenvector and a first
average is calculated among levels which end up in the
same bin of the histogram. A second average is then applied
over all the considered realizations. In general, we observe
that the IPR remains rather low on the entire spectrum
(I < 0.1), signaling that the parameters are in the localized
phase. The formof the IPR indicates the presence of strongly
localized states at large energies (both positive and neg-
ative), while eigenstates at smaller energies are slightlymore
spread-out. The central peak links to the presence of the state
jψ0i¼jE¼0i encountered above, which is still an exact
eigenstate, but only occupies the bottommost row [see
example in Fig. 4(g)], its IPR being I ¼ L=N ¼ 2=ðLþ 1Þ.
It is important to remark that despite the mapping onto

a single particle Anderson problem in Fock space, the
system is in fact interacting in real space and does not
reduce, in general, to a noninteracting Anderson problem.
In particular, rephrasing the dynamics in terms of domain
wall degrees of freedom [52,53] does not yield free
particles [37].
Outlook.—The Rydberg excitation dynamics in detuned

optical tweezer arrays is governed by certain classes of tight
binding Anderson models featuring inhibited excitation
transport, the simplest one being a 1D Anderson-Fock
model with disorder on every other site. Currently accessed
experimental parameter regimes feature a 2D manifestation
of an Anderson-Fock model with correlated disorder,
whose behavior is largely unexplored. The presented
system opens possibilities for studies of multidimensional
Anderson models, where the dimensionality is twice the

FIG. 4. Eight-atom experiment and two-dimensional Anderson-Fock model. (a) Experimental data for the dynamics of the
site-resolved excitation probability averaged over more than 100 realizations. Here, j↑i ¼ j56D3=2; F ¼ 3;M ¼ 3i, r0 ¼ 4.1 μm;
Ω ¼ 2π × 2.1, Δ ¼ −VNN ¼ −2π × 8.4, and jδVj ∼ 2π × 2.1 MHz (in units of ℏ). The data are compared with numerical data from
exact diagonalization of the Hamiltonian (b),(c), and the 2DAnderson-Fock model (d),(e), with and without disorder. Disorder averages
are made over 100 realizations. In the absence and for low disorder (jδVj≲ 2π × 0.4 MHz), excitations still propagate ballistically.
(f) Lattice structure of the effective model for L ¼ 4 atoms and Ncl ¼ 1. (g) Inverse participation ratio I as a function of the energy E
(measured in units of Ω=2) for a chain of L ¼ 20 atoms. The amplitude of the wave function (projecting jEi on the Fock basis jci) is
reported for four representative states on a lattice whose structure follows the one shown in panel (f). From left to right they display: a
state localized in both Fock space and real space, the special state jψ0i and a similar state found for small E > 0 (see text for details).
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number of excitation clusters. This connection may shed
light on how Fock space localization influences real
space localization, which is a subtle and interesting open
problem in the context of many-body localization [54,55],
which started to be addressed experimentally only very
recently [56,57].
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