
HAL Id: hal-01615043
https://hal.science/hal-01615043v1

Preprint submitted on 11 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal control of diffusion coefficients via decoupling
fields

Stefan Ankirchner, Alexander Fromm

To cite this version:
Stefan Ankirchner, Alexander Fromm. Optimal control of diffusion coefficients via decoupling fields.
2017. �hal-01615043�

https://hal.science/hal-01615043v1
https://hal.archives-ouvertes.fr
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Abstract

We consider a diffusion control problem, where the controller totally determines the
state’s diffusion coefficient but has no influence on the state’s drift rate. By using the
Pontryagin maximum principle we characterize an optimal control in terms of the ad-
joint forward-backward stochastic differential equation (FBSDE), turning out to be fully
coupled. We use the method of decoupling fields for proving that the adjoint FBSDE
possesses a solution.
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Keywords. Optimal stochastic control, diffusion coefficient, forward-backward stochastic
differential equation, decoupling field.

Introduction

Let (Mα
t ) be a stochastic process with controlled dynamics of the form dMα

t = µ(t,Mα
t )dt+

αtdWt, where µ is affine linear in its second argument and W is a one-dimensional Brownian
motion. In this article we consider the control problem that consists in minimizing, among a
suitable class of controls α, the target functional

E

[∫ T

0
f(t,Mα

t , αt)dt+ g(Mα
T )

]
, (1)

where f and g are nice functions, in particular convex in M and α.
This control problem arises in situations where one can control a state’s fluctuation inten-

sity but not its drift, and where one aims at steering the state into a target area. To give an
explicit example, Mα may describe the position of a particle in a medium with temperature α.
By heating or cooling the medium the particle’s fluctuations increase or decrease respectively.
The function f reflects the costs involved by any temperature change.

Diffusion control problems arise also in portfolio optimization. In this context Mα can
be interpreted as a portfolio value process with volatility α. A reduction of the portfolio’s
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volatility involves hedging costs f . The function −g can be taken to be a utility function. The
optimal control of diffusion coefficients appear also in other fields of applications, see e.g. [16]
for examples arising in biology.

Assuming a Markovian framework, one can choose a Hamilton-Jacobi-Bellman (HJB) ap-
proach and characterize the value function in terms of the HJB equation. In a non-Markovian
framework the problem of minimizing (1) seems to be unsolved, to the best of our knowledge.

Our solution method is based on the maximum principle, leading to a probabilistic repre-
sentation of the value function’s sensitivity w.r.t. the controlled space variable. More precisely,
we reduce the control problem to an adjoint forward-backward stochastic differential equation
(FBSDE). The adjoint FBSDE turns out to be fully coupled, and hence it is a priori not clear
whether a solution exists. Our idea is to use the so-called method of decoupling fields for
proving that the fully coupled system possesses indeed a solution.

In order to make our idea work, we first transform the adjoint FBSDE so as to reduce
the dependence of the forward diffusion coefficient on the control. The decoupling field of the
transformed FBSDE can be controlled by using the convexity properties of the cost functions.
More precisely, we show that the space derivative of the decoupling field is bounded and
bounded away from zero. This allows to conclude existence of a solution of the adjoint equation
and hence to obtain an optimal control for the problem of minimizing (1). We remark that the
convexity assumptions also guarantee that the maximum principle applies in the first place.

We now explain how our solution method compares to other approaches. One can strive to
obtain a probabilistic representation of the value function itself (and not only of its derivative).
In the Markovian case the value function satisfies a fully non-linear PDE, allowing a repre-
sentation in terms of a 2nd order BSDE (see [21]). Our approach focuses on the derivative of
the value function, which satisfies a semi-linear PDE and hence has a representation in terms
of a standard FBSDE.

A difficulty of the HJB approach arises from the fact that the diffusion coefficient is
unbounded in the control. In order to circumvent this difficulty, [4] introduce a tailor-made
modification of the viscosity solution concept. The control problem considered in [4] is more
general than the problem of the present article. In contrast to [4], our approach does not
require that the function g has strictly smaller growth in x than the function f in a.

Finally, a further advantage of our method compared to the HJB approach is that it
allows for a non-Markovian setting, i.e. the functions f and g can additionally depend, in a
progressively measurable way, on the Brownian paths.

The literature provides many examples of problems involving the optimal control of a
diffusion coefficient. We do not strive to give an overview on this classical type of control
problem, but select some articles that seem closest to the problem we study in the current
article. A simple problem version with infinite time horizon is discussed in Example 7.6, [20].
Specific problems with a finite time horizon have been studied in [19], [9] and [10]. A reverse
diffusion control problem is solved by McNamara [15]: he determines the reward functions for
which a given bang-bang diffusion control is optimal. A diffusion control problem within an
exponential martingale model is studied in [2].

As mentioned earlier, our approach is rooted in reducing the initial control problem to
an FBSDE. It is a longstanding challenge to find conditions guaranteeing that a given fully
coupled FBSDE possesses a solution. Sufficient conditions are provided e.g. in [11], [17],
[14], [18], [5], [12] (see also references therein). The method of decoupling fields, developped
in [6] (see also the precursor articles [13], [7] and [12]), is practically useful for determining
whether a solution exists. A decoupling field describes the functional dependence of the
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backward part Y on the forward component X. If the coefficients of a fully coupled FBSDE
satisfy a Lipschitz condition, then there exists a maximal non-vanishing interval possessing a
solution triplet (X,Y, Z) and a decoupling field with nice regularity properties. The method of
decoupling fields consists in analyzing the dynamics of the decoupling field’s gradient in order
to determine whether the FBSDE has a solution on the whole time interval [0, T ]. The method
can be successfully applied to various problems involving coupled FBSDE: In [8] solutions to a
quadratic strongly coupled FBSDE with a two-dimensional forward equation are constructed
to obtain solutions to the Skorokhod embedding problem for Gaussian processes with non-
linear drift. In Chapter 5 of [6] the problem of utility maximization in incomplete markets is
treated for a general class of utility functions via construction of solutions to the associated
coupled FBSDE. In the more recent work [3], the method is used to obtain solutions to the
problem of optimal position targeting for general cost functionals.

The paper is organized as follows. In Section 1 we rigorously describe the problem and
its mathematical set-up. In Section 2 we apply the maximum principle to reduce the control
problem to the adjoint FBSDE. Section 3 provides a brief introduction into the method of
decoupling fields. In Section 4 we first transform the adjoint FBSDE so as to dampen the
dependence of the forward diffusion on the control. We then prove existence of a solution by
using the method of decoupling fields. In Section 5 we illustrate the construction of a solution
with an explicit example. Finally, in Section 6 we explain heuristically how the adjoint FBSDE
is connected to the control problem’s HJB equation.

1 Problem formulation

Let T > 0 be a deterministic finite time horizon. Let W be a Brownian motion on a complete
probability space (Ω,F ,P) and denote by (Ft)t∈[0,T ] the smallest filtration satisfying the usual
conditions and containing the filtration generated by W .

Let g : Ω×R → R be measurable and f : Ω× [0, T ]×R×R → R be measurable such that
for all (m, a) ∈ R2 the mapping (ω, t) 7→ f(ω, t,m, a) is progressively measurable. We make
the following additional assumptions on f and g:

(C0) For every fixed pair (ω, t) ∈ Ω× [0, T ] the mappings (m, a) 7→ f(t,m, a) and m 7→ g(m)
are convex, with f being strictly convex in a. Note that we follow the usual convention
and omit the function argument ω.

(C1) g(·) and f(t, ·, ·) are twice continuously differentiable. Moreover, g′, fm and fa are
Lipschitz continuous in the last two components and satisfy

‖(|fm|+ |fa|)(·, ·, 0, 0)‖∞ <∞ and ‖g′(0)‖∞ <∞.

(C2) There exists a positive constant δl > 0 such that faa ≥ δl everywhere. Throughout we
assume that δl denotes the largest constant with this property.

Notice that (C1) implies that there exists a δu ∈ [δl,∞) such that for all (ω, t,m, a) ∈ Ω ×
[0, T ]× R× R we have

faa(t,m, a) ≤ δu. (2)

Moreover, (C1) implies that fm and fa grow at most linearly in m and a.
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Let A be the set of all progressively measurable α : Ω×[0, T ] → R such that E
[∫ T

0 α2
s ds

]
<

∞. For all m ∈ R and α ∈ A we define

Mm,α
t = m+

∫ t

0
(bs +BsM

m,α
s ) ds+

∫ t

0
αsdWs, (3)

where b,B : Ω× [0, T ] → R are progressively measurable and bounded processes. As outlined
in the introduction, our aim is to solve the following problem:

Minimize J(m,α) := E
[∫ T

0
f (s,Mm,α

s , αs) ds+ g
(
Mm,α

T

)]
over all α ∈ A. (4)

For simplicity we sometimes write Mα or just M instead of Mm,α. In other words, for given
m, the goal is to choose α from the set A of admissible controls in such a way that J is
minimized.

2 Reducing the problem to an FBSDE

The so-called Hamiltonian of the control problem (4) is defined by

H(t,m, a, y, z) := (bt +Btm)y + az + f(t,m, a),

for t ∈ [0, T ] and (m, a, z) ∈ R× R× R. Notice that

min
a∈R

H(t,m, a, y, z) = (bt +Btm)y − f∗(t,m,−z), (5)

where f∗(t,m, ·) is the convex conjugate of f(t,m, ·). Observe that condition (C2) guarantees
that f∗ assumes real values only. For the following observation we need both (C1) and (C2).

The minimum in (5) is attained at a = f∗3 (t,m,−z), where f∗3 denotes the partial derivative
of f∗ with respect to the last component. This partial derivative exists since f is differentiable
and, by (C2), the image of fa(t,m, ·) is the whole real line. More precisely, using Fermat’s
theorem applied to the minimization problem mina∈RH(t,m, a, y, z) = mina∈RH(t,m, a, y, z)
one can deduce

a = f∗3 (t,m,−z) = f−1
a (t,m,−z),

where f−1
a (t,m, ·) denotes the inverse of the function fa(t,m, ·), which is strictly increasing.

The so-called adjoint forward-backward stochastic differential equation (FBSDE) for the
control problem (4) is given by

Mm
s = m+

∫ s
0 (br +BrM

m
r ) dr +

∫ s
0 f

∗
3 (r,M

m
r ,−Zm

r )dWr,

Y m
s = g′(Mm

T )−
∫ T
s Zm

r dWr +
∫ T
s (BrYr + fm(r,Mm

r , f
∗
3 (r,M

m
r ,−Zm

r )))dr
(6)

for all s ∈ [0, T ]. To simplify the notations, when there is no ambiguity, (Mm, Y m, Zm) will
be denoted by (M,Y,Z). In order to rigorously define what we mean by a solution of (6)
we introduce the following process spaces. For any t0 ∈ [0, T ) we denote by H2

t0,T
the set of

all (Ft)-progressively measurable processes (Xt)t∈[t0,T ] such that E
∫ T
t0
X2

t dt < ∞. We define
H2

T := H2
0,T .

A solution to (6) is a triplet (M,Y,Z) = (Mm, Y m, Zm) of progressively measurable
processes such that
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• M , Y and Z are processes in H2
T ,

• M and Y are continuous processes,

• the two equations (6) are satisfied a.s. for every fixed s ∈ [t, T ].

Constructing solutions to the above FBSDE is important for the following reason:

Proposition 2.1. If there exists a solution (M,Y,Z) of (6), then an optimal control for
problem (4) is given by

αs = f∗3 (s,Ms,−Zs), s ∈ [0, T ].

Proof. We adapt the proof of Theorem 5.2 in [22] to our setting. For m ∈ R and ᾱ ∈ A let
M̄ = Mm,ᾱ be the associated state process. Let us define δM := M̄ −M and δα := ᾱ − α.
Note that M̄0 =M0 = m, such that δM0 = 0. Since g is convex we have a.s.

YT δMT − Y0δM0 = YT δMT = g′(MT )δMT ≤ g(M̄T )− g(MT ). (7)

At the same time Itô’s formula proves that

YtδMt − Y0δM0 =

∫ t

0
(δMs) dYs +

∫ t

0
Ys d(δMs) +

∫ t

0
(δαs)Zs ds

= −
∫ t

0
(δMs) (BsYs + fm(s,Ms, αs)) ds+

∫ t

0
(δMs)Zs dWs

+

∫ t

0
YsBs(δMs) ds+

∫ t

0
Ys(δαs) dWs +

∫ t

0
(δαs)Zs ds

=

∫ t

0
((δαs)Zs − (δMs)fm(s,Ms, αs)) ds+

+

∫ t

0
(Ys(δαs) + (δMs)Zs) dWs, (8)

for all t ∈ [0, T ]. Now note that

Ha(s,Ms, αs, Ys, Zs) = Zs + fa(s,Ms, f
∗
3 (s,Ms,−Zs)) = Zs − Zs = 0.

Together with the convexity of H this implies

H(s, M̄s, ᾱs, Ys, Zs)−H(s,Ms, αs, Ys, Zs) ≥ Hm(s,Ms, αs, Ys, Zs)(δMs)

+Ha(s,Ms, αs, Ys, Zs)(δαs)

= (BsYs + fm(s,Ms, αs)) (δMs).

Thus, due to the definition of H

f(s, M̄s, ᾱs)− f(s,Ms, αs) = H(s, M̄s, ᾱs, Ys, Zs)−H(s,Ms, αs, Ys, Zs)

−Bs(δMs)Ys − Zs(δαs)

≥ fm(s,Ms, αs)(δMs)− Zs(δαs).
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Let τ be a [0, T ]-valued stopping time such that M , M̄ and Y are bounded on [0, τ ]. Formula
(8), together with inequality (9), implies

E [YτδMτ − Y0δM0] ≥ E
[∫ τ

0

(
f(s,Ms, αs)− f(s, M̄s, ᾱs)

)
ds

]
,

where all integrals are well-defined, since M , M̄ , Y are bounded on [0, τ ], α and ᾱ are square
integrable and f is at most quadratic in a. Note that

sup
s∈[0,T ]

|Ms|, sup
s∈[0,T ]

|M̄s| and sup
s∈[0,T ]

|Ys|

are square integrable. Choosing an appropriate localizing sequence τn → T of stopping times
we can pass to the limit using dominated convergence and obtain

E [YT δMT − Y0δM0] ≥ E
[∫ T

0

(
f(s,Ms, αs)− f(s, M̄s, ᾱs)

)
ds

]
. (9)

Combining (9) with (7) we obtain

E
[
g(M̄T )− g(MT )

]
≥ E

[∫ T

0

(
f(s,Ms, αs)− f(s, M̄s, ᾱs)

)
ds

]
.

This leads to
J(m, ᾱ) ≥ J(m,α),

which shows optimality of α.

3 The method of decoupling fields

As mentioned above, solving (6) is crucial in constructing optimal controls. As a key result of
this paper we prove in Section 4 the solvability of (6).

Note that even under our Lipschitz assumptions, it is not trivial to show well-posedness
of (6) due to its coupled nature. It is necessary to take more subtle structural properties into
account to conduct the proof. Our argumentation will be based on the so-called method of
decoupling fields which we will briefly sum up in this section.

For a fixed finite time horizon T > 0, we consider a complete filtered probability space
(Ω,F , (Ft)t∈[0,T ],P), where F0 consists of all null sets, (Wt)t∈[0,T ] is a 1-dimensional Brownian
motion and Ft := σ(F0, (Ws)s∈[0,t]) with F := FT . The dynamics of an FBSDE is given by

Xs = X0 +

∫ s

0
µ(r,Xr, Yr, Zr)dr +

∫ s

0
σ(r,Xr, Yr, Zr)dWr,

Yt = ξ(XT )−
∫ T

t
f(r,Xr, Yr, Zr)dr −

∫ T

t
ZrdWr,

for s, t ∈ [0, T ] and X0 ∈ R, where (ξ, (µ, σ, f)) are measurable functions such that

ξ : Ω× R → R, µ : [0, T ]× Ω× R× R× R → R,
σ : [0, T ]× Ω× R× R× R → R, f : [0, T ]× Ω× R× R× R → R,
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Throughout the whole section µ, σ and f are assumed to be progressively measurable with
respect to (Ft)t∈[0,T ].

A decoupling field comes with an even richer structure than just a classical solution
(X,Y, Z).

Definition 3.1. Let t ∈ [0, T ]. A function u : [t, T ] × Ω × R → R with u(T, ·) = ξ a.e. is
called decoupling field for (ξ, (µ, σ, f)) on [t, T ] if for all t1, t2 ∈ [t, T ] with t1 ≤ t2 and any
Ft1-measurable Xt1 : Ω → R there exist progressively measurable processes (X,Y, Z) on [t1, t2]
such that

Xs = Xt1 +

∫ s

t1

µ(r,Xr, Yr, Zr)dr +

∫ s

t1

σ(r,Xr, Yr, Zr)dWr,

Ys = Yt2 −
∫ t2

s
f(r,Xr, Yr, Zr)dr −

∫ t2

s
ZrdWr,

Ys = u(s,Xs), (10)

a.s. for all s ∈ [t1, t2]. In particular, we want all integrals to be well-defined.

Some remarks about this definition are in place.

• The first equation in (10) is called the forward equation, the second the backward equation
and the third will be referred to as the decoupling condition.

• Note that, if t2 = T , we get YT = ξ(XT ) a.s. as a consequence of the decoupling
condition together with u(T, ·) = ξ. At the same time YT = ξ(XT ), together with the
decoupling condition, implies u(T, ·) = ξ a.e.

• If t2 = T we can say that a triplet (X,Y, Z) solves the FBSDE, meaning that it satisfies
the forward and the backward equation, together with YT = ξ(XT ). This relationship
YT = ξ(XT ) is referred to as the terminal condition.

For the following we need to introduce further notation.
Let I ⊆ [0, T ] be an interval and u : I ×Ω×R → R a map such that u(s, ·) is measurable

for every s ∈ I. We define

Lu,x := sup
s∈I

inf{L ≥ 0 | for a.a. ω ∈ Ω : |u(s, ω, x)− u(s, ω, x′)| ≤ L|x− x′| for all x, x′ ∈ R},

where inf ∅ := ∞. We also set Lu,x := ∞ if u(s, ·) is not measurable for every s ∈ I. One
can show that Lu,x < ∞ is equivalent to u having a modification which is truly Lipschitz
continuous in x ∈ R.

We denote by Lσ,z the Lipschitz constant of σ w.r.t. the dependence on the last component
z. We set Lσ,z = ∞ if σ is not Lipschitz continuous in z.

By L−1
σ,z =

1
Lσ,z

we mean 1
Lσ,z

if Lσ,z > 0 and ∞ otherwise.
For an integrable real valued random variable F the expression Et[F ] refers to E[F |Ft],

while Et,∞[F ] refers to ess supE[F |Ft], which might be ∞, but is always well defined as the
infimum of all constants c ∈ [−∞,∞] such that E[F |Ft] ≤ c a.s. Additionally, we write ‖F‖∞
for the essential supremum of |F |.

In practice it is important to have explicit knowledge about the regularity of (X,Y, Z).
For instance, it is important to know in which spaces the processes live, and how they react
to changes in the initial value.
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Definition 3.2. Let u : [t, T ]× Ω× R → R be a decoupling field to (ξ, (µ, σ, f)).

1. We say u to be weakly regular if Lu,x < L−1
σ,z and sups∈[t,T ] ‖u(s, ·, 0)‖∞ <∞.

2. A weakly regular decoupling field u is called strongly regular if for all fixed t1, t2 ∈ [t, T ],
t1 ≤ t2, the processes (X,Y, Z) arising in (10) are a.e unique and satisfy

sup
s∈[t1,t2]

Et1,∞[|Xs|2] + sup
s∈[t1,t2]

Et1,∞[|Ys|2] + Et1,∞

[∫ t2

t1

|Zs|2ds
]
<∞, (11)

for each constant initial value Xt1 = x ∈ R. In addition they are required to be
measurable as functions of (x, s, ω) and even weakly differentiable w.r.t. x ∈ Rn such
that for every s ∈ [t1, t2] the mappings Xs and Ys are measurable functions of (x, ω) and
even weakly differentiable w.r.t. x such that

ess supx∈R sup
s∈[t1,t2]

Et1,∞

[
|∂xXs|2

]
<∞,

ess supx∈R sup
s∈[t1,t2]

Et1,∞

[
|∂xYs|2

]
<∞,

ess supx∈REt1,∞

[∫ t2

t1

|∂xZs|2 ds

]
<∞. (12)

3. We say that a decoupling field on [t, T ] is strongly regular on a subinterval [t1, t2] ⊆ [t, T ]
if u restricted to [t1, t2] is a strongly regular decoupling field for (u(t2, ·), (µ, σ, f)).

Under suitable conditions a rich existence, uniqueness and regularity theory for decoupling
fields can be developed.
Assumption (SLC): (ξ, (µ, σ, f)) satisfies standard Lipschitz conditions (SLC) if

1. (µ, σ, f) are Lipschitz continuous in (x, y, z) with Lipschitz constant L,

2. ‖(|µ|+ |f |+ |σ|) (·, ·, 0, 0, 0)‖∞ <∞,

3. ξ : Ω× R → R is measurable such that ‖ξ(·, 0)‖∞ <∞ and Lξ,x < L−1
σ,z.

In order to have a notion of global existence we need the following definition:

Definition 3.3. We define the maximal interval Imax ⊆ [0, T ] of the problem given by
(ξ, (µ, σ, f)) as the union of all intervals [t, T ] ⊆ [0, T ], such that there exists a weakly regular
decoupling field u on [t, T ].

Note that the maximal interval might be open to the left. Also, let us remark that we
define a decoupling field on such an interval as a mapping which is a decoupling field on
every compact subinterval containing T . Similarly we can define weakly and strongly regular
decoupling fields as mappings which restricted to an arbitrary compact subinterval containing
T are weakly (or strongly) regular decoupling fields in the sense of the definitions given above.

Finally, we have global existence and uniqueness on the maximal interval:
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Theorem 3.4 ([6], Theorem 5.1.11, Lemma 5.1.12 and Corollary 2.5.5). Let (ξ, (µ, σ, f)) sat-
isfy SLC. Then there exists a unique strongly regular decoupling field u on Imax. Furthermore,
either Imax = [0, T ] or Imax = (tmin, T ], where 0 ≤ tmin < T . In the latter case we have

lim
t↓tmin

Lu(t,·),x = L−1
σ,z. (13)

Moreover, for any t ∈ Imax and any initial condition Xt = x ∈ R there is a unique solution
(X,Y, Z) of the FBSDE on [t, T ] satisfying

sup
s∈[t,T ]

E[|Xs|2] + sup
s∈[t,T ]

E[|Ys|2] + E
[∫ T

t
|Zs|2ds

]
<∞.

Equality (13) allows to verify global existence, i.e. Imax = [0, T ], via contradiction. We
refer to this approach as the method of decoupling fields.

4 Transforming the FBSDE

The aim of this section is to prove that the adjoint FBSDE (6) has a solution on the whole
interval [0, T ]. To this end we first transform the FBSDE in a way that reduces the dependence
of the forward diffusion on the control. We then apply the method of decoupling fields to the
transformed system.

Let γ = 1
δu

. We consider the auxiliary FBSDE

Xx
s = x+

∫ s
0 (br +BrM

x
r −Br(X

x
r −Mx

r )− γfm(r,Mx
r , Z̃

x
r ))dr

+
∫ s
0 (Z̃

x
r − γfa(r,M

x
r , Z̃

x
r ))dWr

Mx
s = (Id+ γg′)−1(Xx

T )−
∫ T
s Z̃x

r dWr −
∫ T
s (br +BrM

x
r ) dr,

(14)

for all s ∈ [0, T ].
We first show that the parameters of the FBSDE (14) satisfy the standard Lipschitz

conditions.
Notice that γg′ is non-decreasing in x since g is convex. Hence Id+γg′ is strictly increasing

with a derivative of at least 1. This implies that the inverse in x, denoted by ξ = (Id+γg′)−1,
exists and that the inverse is Lipschitz continuous in x with a Lipschitz constant smaller than
or equal to 1. Since g′(0) is essentially bounded, also ξ(0) = (Id + γg′)−1(0) is essentially
bounded. Indeed,

|ξ(0)| = |ξ(0)− ξ((Id+ γg′)(0))| ≤ |(Id+ γg′)(0)| ≤ γ‖g′(0)‖∞.

Let µ(t, x,m, z) = (bt +Btm)−Bt(x−m)− γfm(t,m, z) and σ(t,m, z) = z − γfa(t,m, z) be
the drift and the diffusion coefficient of the forward equation in (14), respectively. Condition
(C1) entails that µ and σ are Lipschitz continuous and that (|σ|+ |µ|)(·, ·, 0, 0) is bounded.

Notice that σ(t,m, z) is differentiable in z and that the derivative takes values only in
[0, 1− δl

δu
]. Hence the diffusion coefficient is Lipschitz continuous in z with a Lipschitz constant

equal to δu−δl
δu

. In particular, the Lipschitz constant of (Id + γg′)−1 is strictly smaller than
L−1
σ,z =

δu
δu−δl

. Note that Lσ,z = 0 if and only if δl = δu.
To sum up, we have verified that the parameters of the FBSDE (14) satisfy the stan-

dard Lipschitz conditions (SLC). The benefit of considering (14) comes from the following
observation.
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Lemma 4.1. If (Xt,Mt, Z̃t) is a solution of (14), then (Mt,
1
γ (Xt −Mt),−fa(t,Mt, Z̃t)) is a

solution of (6).

Proof. Let (Xt,Mt, Z̃t) be a solution of (14). In particular, all three processes are in H2
T . The

linear growth condition on fa implies that also (fa(t,Mt, Z̃t)) is in H2
T . Thus each process

in the new triplet (Mt,
1
γ (Xt −Mt),−fa(t,Mt, Z̃t)) is in H2

T . A straightforward calculation
shows that the three processes of the new triplet satisfy the dynamics (6).

We use the method of decoupling fields for proving that there exists a solution of (14) on
[0, T ]. Since the parameters of (14) satisfy the (SLC), there exists a maximal interval Imax

with a weakly regular decoupling field u (see Theorem 3.4).
In the following fix t0 ∈ Imax. Let (X,M, Z̃) = (Xt0,x,M t0,x, Z̃t0,x) be the solution of (14)

on [t0, T ] with initial value x ∈ R such that Mt = u(t,Xt) a.s. for all (t, x) ∈ [t0, T ]× R.
According to strong regularity u is weakly differentiable w.r.t. the initial value x ∈ R.

In the following we denote by ux a version of the weak derivative of u w.r.t. x such that it
coincides with the classical derivative at all points for which it exists and with 0 everywhere
else. Moreover, the processes (X,M, Z̃) are weakly differentiable w.r.t. x. We can formally
differentiate the forward and the backward equation in (14). One can verify that one can
interchange differentiation and integration and that a chain rule for weak derivatives applies
(see Sections A.2 and A.3 in [6]). We thus obtain that for every version (∂xX, ∂xM,∂xZ̃) =
(∂xX

t0,x, ∂xM
t0,x, ∂xZ̃

t0,x) of the weak derivative, such that for every s ∈ [t0, T ] (∂xXs, ∂xMs)
is a weak derivative of (Xs,Ms), we have for every t ∈ [t0, T ]:

∂xXt =1 +

∫ t

t0

Bs(2∂xMs − ∂xXs) ds− γ(fmm(s,Ms, Z̃s)∂xMs + fma(s,Ms, Z̃s)∂xZ̃s)ds

+

∫ t

t0

(∂xZ̃s − γfma(s,Ms, Z̃s)∂xMs − γfaa(s,Ms, Z̃s)∂xZ̃s)dWs (15)

and

∂xMt = ξ′(XT )∂xXT +

∫ T

t
Bs∂xMs ds+

∫ T

t
∂xZ̃sdWs, (16)

for P⊗ λ - almost all (ω, x) ∈ Ω× R.
By redefining (∂xX, ∂xM) as the right-hand-sides of (15) and (16) respectively, we obtain

processes (∂xX, ∂xM) that are continuous in time for all (ω, x) but remain weak derivatives
of X,M w.r.t. x. From now on, we always assume that ∂xX and ∂xM are continuous in time.
We also assume that for fixed t ∈ [t0, T ] the mappings ∂xXt and ∂xMt are weak derivatives of
Xt and Mt w.r.t. x ∈ R. In particular ∂xXt0 = 1 a.s. for almost all x ∈ R.

In order to obtain bounds on the weak derivative ux, we study the process Vt := ux(t,Xt),
t ∈ [t0, T ].

Recall that Mt = u(t,Xt) a.s. for all (t, x) ∈ [t0, T ] × R. Therefore, for fixed t ∈ [t0, T ],
the weak derivatives of the two sides of the equation w.r.t. x ∈ R must coincide up to a P⊗λ
- null set. The chain rule for weak derivatives (see Corollary 3.2 in [1] or Lemma A.3.1. in [6])
implies, for any fixed t ∈ [t0, T ], that we have for P⊗ λ - almost all (ω, x)

∂xMt1{∂xXt>0} = ux(t,Xt)∂xXt1{∂xXt>0} = Vt∂xXt1{∂xXt>0}. (17)

Now, choose a fixed x ∈ R such that ∂xXt0 = 1 a.s., (17), (15), (16) are satisfied for almost
all (ω, t) ∈ [t0, T ] × Ω and, in addition, (17) is satisfied for t = t0, P - almost surely. Note
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that, since ∂xX, ∂xM are continuous in time, (15) and (16) in fact hold for all t ∈ [t0, T ], P -
almost surely.

Observe that Vt is bounded since ux(t, x) is bounded. Furthermore, according to the
definition of the maximal interval, if Lσ,z > 0, then there exists ε > 0 such that for all
(t, x) ∈ [t0, T ] × R we have |ux(t, x)| ≤ (1 − ε) δu

δu−δl
. A priori, ε depends on t0. We will see

below that it can be chosen independently of t0.
In the case Lσ,z = 0 there exists a constant K such that for all (t, x) ∈ [t0, T ]×R we have

|ux(t, x)| ≤ K. We will show below that K can be chosen independently of t0.
We now turn to the dynamics of V .

Lemma 4.2. The process (Vt)t∈[t0,T ] has a time-continuous version which is an Itô process.
Moreover, there exists Ẑ ∈ H2

t0,T
such that (V, Ẑ) is the unique solution of the BSDE

Vt = ξ′(XT )−
∫ T

t
ẐsdWs −

∫ T

t
ρ(s, Vs, Ẑs)ds,

where ρ : Ω× [t0, T ]× R× R → R is defined by

ρ(t, v, z) =v[2Bt(1− v) + γfmm(t,Mt, Z̃t)v + γfma(t,Mt, Z̃t)h(t, v, z)]

− z[−γfma(t,Mt, Z̃t)v + (1− γfaa(t,Mt, Z̃t))h(t, v, z)],

with

h(t, v, z) =
z − γfma(t,Mt, Z̃t)v

2

1− v[1− γfaa(t,Mt, Z̃t)]
.

Furthermore, Ẑ ∈ BMO(P), i.e. supt∈[t0,T ]

∥∥∥E [∫ T
t |Ẑs|2 ds

∣∣Ft

]∥∥∥
∞
<∞.

Proof. Let τn = T ∧ inf{t ≥ t0 : ∂xXt ≤ 1
n}. On [t0, τn] we have Vt = ∂xMt

1
∂xXt

, a.e. Hence V
has a version which is an Itô process on [t0, τn]. We denote the Itô process decomposition by

Vt = ux(t0, x) +

∫ t

t0

ẐsdWs +

∫ t

t0

κsds, t ∈ [t0, τn].

The product formula yields, on [t0, τn],

d(Vt∂xXt) =Vt(Bt(2∂xMt − ∂xXt)− γ(fmm(t,Mt, Z̃t)∂xMt + fma(t,Mt, Z̃t)∂xZ̃t))dt

+ ∂xXtκtdt+ Ẑt(∂xZ̃t − γfma(t,Mt, Z̃t)∂xMt − γfaa(t,Mt, Z̃t)∂xZ̃t)dt

+
(
∂xXtẐt + Vt[∂xZ̃t − γfma(t,Mt, Z̃t)∂xMt − γfaa(t,Mt, Z̃t)∂xZ̃t]

)
dWt.

The drift and diffusion coefficients coincide with the coefficients in (16). This implies, using
straightforward transformations, the definition of h and the property Vt∂xXt = ∂xMt,

∂xZ̃t = ∂xXth(t, Vt, Ẑt)

and

κt =
1

∂xXt
[Bt∂xMt

−Vt(Bt(2∂xMt − ∂xXt)− γ(fmm(t,Mt, Z̃t)∂xMt + fma(t,Mt, Z̃t)∂xZ̃t))

−Ẑt(∂xZ̃t − γfma(t,Mt, Z̃t)∂xMt − γfaa(t,Mt, Z̃t)∂xZ̃t)
]

=ρ(t, Vt, Ẑt).
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We next show that the denominator of h is bounded away from zero. Assume first Lσ,z > 0.
Then for all v with |v| ≤ (1−ε) δu

δu−δl
we have |v(1−γfaa(s,Ms, Z̃s))| ≤ |v| δu−δl

δu
≤ (1−ε), and

hence the denominator of h(t, Vt, Ẑt) is greater than or equal to ε. In the case where Lσ,z = 0,
the denominator is equal to 1.

It remains to show that τ := limn→∞ τn = T a.s. To this end note that ∂xXt satisfies, on
[t0, τ), the linear SDE

d∂xXt = αt∂xXtdt+ βt∂xXtdWt,

where
αt := Bt(2Vt − 1)− γ(fmm(t,Mt, Z̃t)Vt + fma(t,Mt, Z̃t)h(t, Vt, Ẑt))

and
βt := h(t, Vt, Ẑt)− γfma(t,Mt, Z̃t)Vt − γfaa(t,Mt, Z̃t)h(t, Vt, Ẑt).

Consequently,

∂xXt∧τn = exp

(∫ t∧τn

t0

(
αs −

1

2
β2s

)
ds+

∫ t∧τn

t0

βs dWs

)
.

Note that αt and βt are both bounded by C(1 + |Ẑt|) for some sufficiently large C > 0. We
claim that Ẑ has a bounded BMO-norm with a bound which does not depend on n. Indeed,
the pair (V, Ẑ) can be interpreted as a solution of a quadratic BSDE on [0, τn]. Since V is
bounded, standard results imply that Ẑ has a bounded BMO-norm (see e.g. Theorem A.1.11.
in [6] for details).

Now if (limn→∞ ∂xXτn) (ω) = 0 for some ω, then
(∫ τ

t0
|Ẑt|2 dt

)
(ω) = ∞ must hold for the

same ω. This, however, is false for almost all ω, due to Ẑ being a BMO-process on [t0, τ). In
other words, the continuous process ∂xX does not reach 0 with probability 1 and, therefore,
limn→∞ τn = T a.s.

In particular Vt = ∂xMt
1

∂xXt
a.e. and V has a time-continuous version.

In the following we assume that V refers to the time-continuous version of Lemma 4.2.

Lemma 4.3. There exists a P-equivalent probability measure Q and a Q-BM WQ such that
(V, Ẑ) is the unique solution of the BSDE

Vt =ξ
′(XT )−

∫ T

t
ẐsdW

Q
s − (18)∫ T

t

(
2BsVs(1− Vs) + γfmm(s,Ms, Z̃s)V

2
s − γ2

f2ma(s,Ms, Z̃s)

1− Vt(1− γfaa(s,Ms, Z̃s))
V 3
t

)
ds.

Proof. Note that

ρ(t, v, z) =2Btv(1− v) + γfmm(t,Mt, Z̃t)v
2 − γ2

f2ma(s,Ms, Z̃s)

1− v(1− γfaa(s,Ms, Z̃s))
v3

− zψ(t, v, z),

where

ψ(t, v, z) = −γv fma(s,Ms, Z̃s)

1− v(1− γfaa(s,Ms, Z̃s))
− γfma(t,Mt, Z̃t)v+ (1− γfaa(t,Mt, Z̃t))h(t, v, z).
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Since V is bounded, there exists a constant C > 0 such that |ψ(t, Vt, Ẑt)| ≤ C(1 + |Ẑt|) for
all t ∈ [t0, T ]. Consequently ψ(t, Vt, Ẑt) ∈ BMO(P). In particular there exists a probability
measure Q ∼ P such that

dQ

dP
= exp

(∫ T

t0

ψ(t, Vt, Ẑt) dWt −
1

2

∫ T

t0

ψ2(t, Vt, Ẑt) dt

)
.

By Girsanov’s theorem WQ
t :=Wt−

∫ t
t0
ψ(s, Vs, Ẑs) ds, t ∈ [t0, T ], is a Brownian motion w.r.t.

Q. Finally, observe that V satisfies (18).

Lemma 4.4. For all t ∈ [t0, T ] we have a.s. q ≤ Vt ≤ 1, where

q :=
exp (−T (2‖B‖∞ + γ‖fmm‖∞))

1 + γ‖g′′‖∞
∈ (0, 1).

Proof. Let α(s, y) = −2Bty(1 − y) − γfmm(s,Ms, Z̃s)y
2 + γ2 f2

ma(s,Ms,Z̃s)

1−y(1−γfaa(s,Ms,Z̃s))
y3 be the

generator of the BSDE (18).
In the case Lσ,z > 0 one can modify α to a Lipschitz continuous generator by replacing y

with (
y ∨

(
−(1− ε)

δu
δu − δl

))
∧ (1− ε)

δu
δu − δl

.

Indeed, (V, Ẑ) solves also the modified BSDE since |Vs| ≤ (1 − ε) δu
δu−δl

. Notice that for all v
with |v| ≤ (1 − ε) δu

δu−δl
we have |v(1 − γfaa(s,Ms, Z̃s))| ≤ |v| δu−δl

δu
≤ (1 − ε), which further

implies that

v 7→ 1

1− v(1− γfaa(s,Ms, Z̃s))

takes values only in [1, 1ε ] and is Lipschitz continuous.
In the case Lσ,z = 0 the generator α becomes Lipschitz continuous by replacing y with

(y ∨ −K) ∧K.
Now consider the cut-off function c(v) = ((v ∨ 0) ∧ 1) and set

α̌(s, v) =− 2Btc(v)(1− c(v))− γfmm(s,Ms, Z̃s)c(v)
2

+ γ2
f2ma(s,Ms, Z̃s)

1− c(v)(1− γfaa(s,Ms, Z̃s))
c(v)3.

Observe that

α̌(s, v) ≤ −2Btc(v)(1− c(v))− γfmm(s,Ms, Z̃s)c(v)
2 + γ

f2ma(s,Ms, Z̃s)

faa(s,Ms, Z̃s))
c(v)2

≤ −2Btc(v)(1− c(v))− γc(v)2
1

faa(s,Ms, Z̃s)
det(D2f)(s,Ms, Z̃s)

≤ −2Btc(v)(1− c(v)).

Let (V̌ , Ž) be the solution of the BSDE with parameters (ξ′(XT ), α̌). The comparison theorem,
applied to (V̌ , Ž) and the BSDE with parameters (1,−2Btc(1− c)), implies V̌t ≤ 1.
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Next, we estimate V̌ from below. Notice that

α̌(s, v) ≥ −2‖B‖∞c(v)(1− c(v))− γ‖fmm‖∞c(v)2 ≥ − (2‖B‖∞ + γ‖fmm‖∞) c(v).

Moreover, ξ′(x) = 1
1+γg′′(ξ(x)) ≥

1
1+γ‖g′′‖∞ . A comparison with the BSDE with parameters(
1

1 + γ‖g′′‖∞
,− (2‖B‖∞ + γ‖fmm‖∞) c

)
yields V̌t ≥ q.

Notice that this further entails that (V̌ , Ž) is also a solution of the BSDE (18). Uniqueness
implies that V̌ = V .

Recall that the diffusion coefficient in the forward part of (14), given by σ(t,m, z) =
z−γfa(t,m, z), is Lipschitz continuous in z with Lipschitz constant δu−δl

δu
. Lemma 4.4 implies

that 0 < q ≤ ux(t0, x) = Vt0 ≤ 1 < δu
δu−δl

.
Note that we have chosen a version of V such that Vt = ∂xMt

∂xXt
for all t ∈ [t0, T ]. Moreover,

for t = t0, we have Vt0 =
∂xMt0

1 = ux(t0, x), a.s.
Since x was chosen arbitrarily outside a λ - null set, we have that the ux(t0, ·) is essentially

bounded by 1. Since the bound does not depend on t0, by Theorem 3.4 it must hold that
Imax = [0, T ]. Moreover, the following holds true:

Proposition 4.5. There exists a unique weakly regular decoupling field u for (14) on [0, T ].
Moreover, for every t ∈ [0, T ] we have q ≤ ux(t, x) ≤ 1 for almost all (ω, x) ∈ Ω× R.

We can now formulate the main result of the section.

Theorem 4.6. Let m ∈ R. Then

1. for all t ∈ [0, T ] the function u(t, ·) has a Lipschitz continuous inverse u−1(t, ·), P -a.s.,

2. there exists a solution (M,Y,Z) of (6),

3. the function ν(t,m) := 1
γ (u

−1(t,m)−m) is a decoupling field for (6), i.e. Yt = ν(t,Mt)
for all t ∈ [0, T ],

4. an optimal control of problem (4) is given by

α∗
t = Z̃t,

where Z̃ is part of the solution triplet of (14) with inital value x = u−1(0,m).

Proof. Since ux(t, ·) is bounded away from zero and bounded from above by 1, u(t, ·) : R → R
is a bijection. Therefore, for every m ∈ R there is an x ∈ R such that M0 = u(0, x) = m. For
this x ∈ R there exists according to Theorem 3.4 a unique triplet (X,M, Z̃) such that

sup
s∈[0,T ]

E[|Xs|2] + sup
s∈[0,T ]

E[|Ms|2] + E
[∫ T

0
|Z̃s|2ds

]
<∞

and such that FBSDE (14) is satisfied. Finally, using Lemma 4.1 we obtain a solution to
FBSDE (6).

A straightforward calculation shows that for all t ∈ [0, T ] we have ν(t,Mt) = Yt. Finally,
using Proposition 2.1 we obtain that Z̃t = f−1

a (t,Mt,−Zt) is an optimal control for problem
(4).
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5 An illustrating example

In general one can not expect the FBSDE (6) to possess a solution in closed form. For some
examples, however, one can calculate the process V explicitly. This allows then to obtain a
candidate for the decoupling field of FBSDE (14) and hence to derive a solution of (6) in
closed form. In the following we illustrate such an explicit construction for a particular choice
of f and g.

Let āt be a bounded and progressively measurable process, l > 0 and L ≥ 0. Suppose that
f(t,m, a) = lm2 + (a− āt)

2. Furthermore, let b = 0, B ∈ R and g(m) = Lm2. We can choose
δu = δl = 2, and hence γ = 1

2 .
In this example we interpret Mt as the state of a particle in a medium with temperature

αt at time t. āt is the natural temperature process. Any cooling or heating entails quadratic
costs. Problem (4) corresponds to the aim of steering the particle as close as possible to zero
while keeping the costs for a temperature control low.

Notice that ξ(x) = x
1+L and ξ′(x) = 1

1+L . Moreover, the function ρ defined in Lemma 4.2
is given by

ρ(t, v) = 2Bv + (l − 2B)v2.

Therefore, the process (Vt) is the solution of the Riccati equation

V ′(t) = 2BV (t) + (l − 2B)V 2(t), V (T ) =
1

1 + L
.

By solving the Riccati equation we obtain explicit expressions for Vt.

1. case: B = 0.

Vt =
1

l(T − t) + 1 + L

2. case: B 6= 0.

Vt =
e−2B(T−t)

1 + L+ l−2B
2B (1− e−2B(T−t))

Note that Vt does not depend on the spatial variable x. In particular, the decoupling field u
of (14) is affine linear in x. This implies that M is affine linear in X.
Note that in this example the FBSDE (14) takes the form

Xt = x+
∫ t
0 ((2B − l)Ms −BXs)ds+

∫ t
0 āsdWs,

Mt = XT
1+L −

∫ T
t Z̃sdWs −

∫ T
t BMsds.

(19)

Assuming Mt = VtXt, the drift of the forward equation is linear in X, which allows to solve
the equation explicitly.

Proposition 5.1. The solution of (19) is given by

Xt =

(
x+

∫ t

0
H−1

s āsdWs

)
Ht,

Mt = VtXt,

Z̃t = ātVt,
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where Ht = e
∫ t
0 [(2B−l)Vs−B]ds. In particular, the decoupling field for (19) is given by u(t, x) =

Vtx. Moreover an optimal control of problem (4) is given by

α∗
t = ātVt

(note that the optimal control does not depend on the initial condition).

Proof. Let X, M and Z̃ be defined as in Proposition 5.1. A straightforward calculation shows
that X satisfies the dynamics

dXt = [(2B − l)Vt −B]Xtdt+ ātdWt

= ((2B − l)Mt −BXt)dt+ ātdWt.

We now verify that M satisfies the backward equation in (19). First notice that M satisfies
the terminal condition MT = Xt

1+L . The product formula implies

dMt = VtdXt +XtdVt

= Vt[(2B − l)Vt −B]Xtdt+ VtātdWt +Xt(2BVt + (l − 2B)V 2
t )dt

= BMtdt+ Z̃tdWt.

Hence (X,M, Z̃) satisfies (19).

6 Linking the decoupling field to the HJB equation

In this section we try to explain the link between the FBSDE and the HJB approach for
solving (4). Our arguments are mainly heuristic.

Let us assume that b,B, f, g do not depend on ω. Consider (6) and assume that there
exists a differentiable function w : [0, T ]×R → R such that w(t,Mm

t ) = Y m
t a.s. for all initial

values m ∈ R and all t ∈ [0, T ]. Assuming that w is continuously differentiable in time and
twice continuously differentiable in space, we can apply the Itô formula to w(t,Mt):

Yt = w(t,Mt) =w(0,m) +

∫ t

0
wt(s,Ms) ds+

∫ t

0
wm(s,Ms)f

∗
3 (s,Ms,−Zs) dWs

+

∫ t

0
wm(s,Ms)(bs +BsMs) ds+

1

2

∫ t

0
wmm(s,Ms) (f

∗
3 (s,Ms,−Zs))

2 ds.

At the same time the backward equation in (6) yields

Yt = Y0 +

∫ t

0
Zs dWs −

∫ t

0
(BsYs + fm(s,Ms, f

∗
3 (s,Ms,−Zs))) ds.

Comparing the martingale and the finite variation parts leads to

Zs = wm(s,Ms)f
∗
3 (s,Ms,−Zs),

wt(s,Ms) + wm(s,Ms)(bs +BsMs) +
1

2
wmm(s,Ms) (f

∗
3 (s,Ms,−Zs))

2

= −(Bsw(s,Ms) + fm(s,Ms, f
∗
3 (s,Ms,−Zs))).
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The first equation is equivalent to wm(s,Ms)αs+fa(s,Ms, αs) = 0, where αs := f∗3 (s,Ms,−Zs).
Assume that wm(s,Ms) ≥ 0 and let ϕ : [0, T ] × R × [0,∞) → R be the function such that
αs = ϕ(s,Ms, wm(s,Ms)). Then we obtain

wt(s,Ms) + wm(s,Ms)(bs +BsMs) +
1

2
wmm(s,Ms) (ϕ(s,Ms, wm(s,Ms)))

2

= −Bsw(s,Ms)− fm(s,Ms, ϕ(s,Ms, wm(s,Ms))).

Thus, it is natural to expect w to satisfy the PDE

wt(s,m) + wm(s,m)(bs +Bsm) +
1

2
wmm(s,m) (ϕ(s,m,wm(s,m)))2

= −Bsw(s,m)− fm(s,m, ϕ(s,m,wm(s,m))).

Now let us look at the classical HJB approach to problem (4): The associated HJB equation
for the value function v : [0, T ]× R → R has the form

vt(s,m) + (bs +Bsm)vm(s,m)− sup
a∈R

[
−1

2
a2vmm(s,m)− f(s,m, a)

]
= 0.

Assuming vmm ≥ 0, the optimal a in the above expression is given by ϕ(s,m, vmm(s,m)),
which is straightforward to verify using Fermat’s theorem. We can rewrite the HJB equation
as

vt(s,m) + (bs +Bsm)vm(s,m) +
1

2
vmm(s,m) (ϕ(s,m, vmm(s,m)))2

= −f(s,m, ϕ(s,m, vmm(s,m))).

Note that w(T, ·) = g′ and v(T, ·) = g. It is, therefore, natural to conjecture that w = vm
holds true. We verify this by assuming that v is three times continuously differentiable and
by differentiating the HJB equation for v w.r.t. m, thus obtaining an equation for vm =: w̄:

w̄t(s,m) + w̄m(s,m)(bs +Bsm) +
1

2
w̄mm(s,m) (ϕ(s,m, w̄m(s,m)))2 +Bsw̄(s,m)

+ w̄m(s,m)ϕ(s,m, w̄m(s,m)) (ϕm(s,m, w̄m(s,m)) + ϕ3(s,m, w̄m(s,m))w̄mm(s,m))

=− fm(s,m, ϕ(s,m, w̄m(s,m)))

− fa(s,m, ϕ(s,m, w̄m(s,m))) (ϕm(s,m, w̄m(s,m)) + ϕ3(s,m, w̄m(s,m))w̄mm(s,m)) ,

where ϕ3 is the derivative w.r.t. the last component. Due to the definition of ϕ the above
simplifies to

w̄t(s,m) + w̄m(s,m)(bs +Bsm) +
1

2
w̄mm(s,m) (ϕ(s,m, w̄m(s,m)))2

= −Bsw̄(s,m)− fm(s,m, ϕ(s,m, w̄m(s,m))).

Indeed, w and w̄ satisfy the same PDE, which makes it plausible to believe that it is in fact
the same object.

Now note that while v satisfies a fully non-linear PDE, the PDE satisfied by its spatial
derivative w is quasi-linear and hence is easier to analyze. In particular, the quasi-linearity of
w allows to reduce the problem to the FBSDE (6). Although the FBSDE is strongly coupled,
it still crucially simplifies the problem. Indeed, as we have seen in Section 4, the method of
decoupling fields allows to prove existence, uniqueness and regularity.

17



References

[1] L. Ambrosio and G. Dal Maso. A general chain rule for distributional derivatives. Proc.
Am. Math. Soc., 108(3):691–702, 1990.

[2] S. Ankirchner, C. Blanchet-Scalliet, and M. Jeanblanc. Controlling the Occupation Time
of an Exponential Martingale. Appl. Math. Optim., 76(2):415–428, 2017.

[3] S. Ankirchner, A. Fromm, T. Kruse, and A. Popier. Optimal position targeting via
decoupling fields. working paper or preprint, Apr. 2017.

[4] F. Da Lio and O. Ley. Convex Hamilton-Jacobi equations under superlinear growth
conditions on data. Appl. Math. Optim., 63(3):309–339, 2011.

[5] F. Delarue. On the existence and uniqueness of solutions to FBSDEs in a non-degenerate
case. Stochastic Process. Appl., 99(2):209–286, 2002.

[6] A. Fromm. Theory and applications of decoupling fields for forward-backward stochastic
differential equations. PhD thesis, Humboldt-Universität zu Berlin, 2015.

[7] A. Fromm and P. Imkeller. Existence, Uniqueness and Regularity of Decoupling Fields
to Multidimensional Fully Coupled FBSDEs. Preprint arXiv:1310.0499, 2013.

[8] A. Fromm, P. Imkeller, and D. Prömel. An FBSDE approach to the Skorokhod embedding
problem for Gaussian processes with non-linear drift. Electron. J. Probab., 20:38 pp., 2015.

[9] I. Karatzas. Adaptive control of a diffusion to a goal and a parabolic Monge-Ampère-type
equation. Asian J. Math., 1(2):295–313, 1997.

[10] I. Karatzas and W. D. Sudderth. Control and stopping of a diffusion process on an
interval. Ann. Appl. Probab., 9(1):188–196, 1999.

[11] J. Ma, P. Protter, and J. Yong. Solving forward-backward stochastic differential equations
explicitly – a four step scheme. Probab. Theory Relat. Fields, 98(3):339–359, 1994.

[12] J. Ma, Z. Wu, D. Zhang, and J. Zhang. On well-posedness of forward-backward SDEs—a
unified approach. Ann. Appl. Probab., 25(4):2168–2214, 2015.

[13] J. Ma, H. Yin, and J. Zhang. On non-Markovian forward-backward SDEs and backward
stochastic PDEs. Stochastic Process. Appl., 122(12):3980–4004, 2012.

[14] J. Ma and J. Yong. Forward-backward stochastic differential equations and their applica-
tions, volume 1702 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999.

[15] J. M. McNamara. Optimal control of the diffusion coefficient of a simple diffusion process.
Math. Oper. Res., 8(3):373–380, 1983.

[16] J. M. McNamara, A. I. Houston, and E. J. Collins. Optimality models in behavioral
biology. SIAM Rev., 43(3):413–466, 2001.

[17] E. Pardoux and S. Tang. Forward-backward stochastic differential equations and quasi-
linear parabolic PDEs. Probab. Theory Relat. Fields, 114(2):123–150, 1999.

18



[18] S. Peng and Z. Wu. Fully coupled forward-backward stochastic differential equations and
applications to optimal control. SIAM J. Control Optim., 37(3):825–843, 1999.

[19] V. C. Pestien and W. D. Sudderth. Continuous-time red and black: how to control a
diffusion to a goal. Math. Oper. Res., 10(4):599–611, 1985.

[20] L. C. G. Rogers and D. Williams. Diffusions, Markov processes, and martingales. Vol.
2. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. Itô
calculus, Reprint of the second (1994) edition.

[21] H. M. Soner, N. Touzi, and J. Zhang. Wellposedness of second order backward sdes.
Probability Theory and Related Fields, 153(1):149–190, Jun 2012.

[22] J. Yong and X. Y. Zhou. Stochastic controls, volume 43 of Applications of Mathematics
(New York). Springer-Verlag, New York, 1999. Hamiltonian systems and HJB equations.

19


	Problem formulation
	Reducing the problem to an FBSDE
	The method of decoupling fields
	Transforming the FBSDE
	An illustrating example
	Linking the decoupling field to the HJB equation

