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Parameter Exploration to Improve Performance
of Memristor-Based Neuromorphic Architectures

Mahyar Shahsavari, Pierre Boulet, Member, IEEE

Abstract—The brain-inspired spiking neural network neuromorphic architecture offers a promising solution for a wide set of cognitive
computation tasks at a very low power consumption. Due to the practical feasibility of hardware implementation, we present a
memristor-based model of hardware spiking neural networks which we simulate with N2S3 (Neural Network Scalable Spiking Simulator),
our open source neuromorphic architecture simulator. Although Spiking neural networks are widely used in the community of
computational neuroscience and neuromorphic computation, there is still a need for research on the methods to choose the optimum
parameters for better recognition efficiency. With the help of our simulator, we analyze and evaluate the impact of different parameters
such as number of neurons, STDP window, neuron threshold, distribution of input spikes and memristor model parameters on the MNIST
hand-written digit recognition problem. We show that a careful choice of a few parameters (number of neurons, kind of synapse, STDP
window and neuron threshold) can significantly improve the recognition rate on this benchmark (around 15 points of improvement for the
number of neurons, a few points for the others) with a variability of 4 to 5 points of recognition rate due to the random initialization of the
synaptic weights.

Index Terms—Neuromorphic Computing, Parameter Evaluations, Spiking Neural Networks, Memristor, Unsupervised Learning
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1 INTRODUCTION

N EUROMORPHIC computing has the potential to bring very
low power computation to future computer architectures and

embedded systems [1]. Indeed parallel neuromorphic computing,
by doing computation and storage in the same devices can
overcome the Von-Neumann bottleneck which is coming from
speed difference between the processor and the memory. There are
two broad types of brain-inspired cognitive computations: abstract
artificial neural networks (ANNs) and closer to biology spiking
neural networks (SNNs) [2]. Machine learning algorithms such as
classical ANNs and more recently deep belief networks [3], [4]
are widely used for data classification and clustering. However,
ANNs are a highly abstract mathematical model of neurons that
are designed to be executed on digital processing platforms (more
and more using accelerating units such as GPUs). There are two
different types of data coding: rate and spike. In the rate coding,
the rate of each data is important, while in spike coding the spikes
are the same and the timing of spikes is important. ANNs only use
rate coding to represent neuronal activity and are not capable of
taking into account the precise relative timing of spikes. In contrast,
timing in SNNs is significant which make them suitable for dealing
with natural signals in real-time that are getting more and more
significant in the internet of things using online learning. The data
should be coded to spikes to be processed in SNN, which is known
as spike coding (versus rate coding in ANN). SNNs offer online real
time unsupervised learning through continuous weight updating
which is performed on local synaptic weights. This temporal and
spatial locality is important in hardware implementations of neural
networks because it frees this architecture of the memory bottleneck
of Von Neumann architectures.

• M. Shahsavari and P. Boulet are with Univ. Lille, CNRS, Centrale Lille,
UMR 9189 – CRIStAL – Centre de Recherche en Informatique Signal et
Automatique de Lille, F-59000 Lille, France.

Recent advances in nanotechnology have provided neuromor-
phic computing architecture with novel memristive devices which
have the capability of mimicking synaptic plasticity, such as resis-
tive switching memory (RRAM) [5], [6], [7], phase change memory
(PCM) [8], [9], [10], conductive bridge memory (CBRAM) [11],
[12], [13], and ferroelectric memory (FeRAM) [14], [15]. The
advantages of using these memristive nanodevices to model the
behavior of synapses are their unique properties, such as scalability,
flexibility because of their analog behavior, manufacturability on
top of CMOS technology to make a crossbar array (shown in
Figure 1) and ability to remember the last state in a SNN [16].
Fortunately due to close collaboration with the nano-electronics
research center in the University of Lille (IEMN), we have the
opportunity to study the appropriateness of various classes of
memristors (e.g.,TiO2, NOMFET, Magnetoelectric) to build a SNN
hardware platform by using real parameters. In order not to restrict
our study of parameter exploration to only one device, we have
chosen here the resistive memory model presented in [17] which is
a generic memristive device model.

It is widely believed that plasticity is the key of learning in the
biological brain [18]. Consequently, with the latest proposals to use
the memristive nano-devices as synapses, we implement an efficient
and well-studied unsupervised learning rule known as spike timing
dependent plasticity (STDP) [19], [20]. In this study, building upon
our previous work [21], we show that the memristive synapses are
adapted to unsupervised STDP learning in SNNs. We explain the
required technology and architecture with system-level simulation.
For implementation and results, we use the MNIST dataset of
handwritten digits [22] to test the performance of neural networks.
Although, there are various research works using STDP learning in
SNN architecture and neuromorphic VLSI implementations, none
of them evaluates and analyzes the key parameters that improve
learning and SNN recognition performance in those architectures.
Our main contribution is to evaluate and explore the impact of
several parameters on the learning performance of SNNs for the
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Fig. 1. Crossbar arrays allow to build SNNs. a) The memristive synapse
connects the spiking neurons in configurable crossbar array suitable for
STDP unsupervised learning, the presynaptic neurons are considered
as inputs and postsynaptic neurons as outputs. b) Two crossbar arrays
can interconnect the neurons of a three-layer feed-forward SNN.

MNIST benchmark:

• the number of neurons in the output layer,
• different distributions of spikes to code the input images,
• the model of the synapses (this parameter alone has been

studied in our previous work [21]),
• the duration of the STDP window,
• various thresholds for adaptive threshold LIF neurons,
• and the memristive synapse fitting parameter.

We find that the most significant parameters are the number of
neurons (from less than 70 % of recognition rate with 20 neurons to
around 85 % with 100 neurons), the model of synapse (difference
of a few points of recognition rate in average between the two
tested models) and its properties and the neuron threshold (a few
points of improvement).

A lot of efforts have been put into developing appropriate
simulation tools and techniques [12], [23]. In this paper, for
implementation we use our simulator, N2S3 (Neural Network
Scalable Spiking Simulator), an open source event-driven simulator,
that is dedicated to the architecture exploration of hardware SNNs.

In the following, we first survey the hardware spiking neural
networks systems, then present our simulation tool, N2S3, that
we use in the following experimental evaluation of the various
parameters of SNNs with the MNIST benchmark.

2 HARDWARE SPIKING NEURAL NETWORK SYS-
TEM SURVEY

Specific application domains such as Big Data classification, visual
processing, pattern recognition and in general sensory input data,
require information processing systems which are able to classify
the data and to learn from the patterns in the data. Such systems
should be power-efficient. Thus researchers have developed brain-
inspired architectures such as spiking neural networks. For large
scale brain-like computing on neuromorphic hardware, there are
four approaches:

1) Microprocessor based approaches where the system can
read the codes to execute and model the behavior of neural
systems and cognitive computation such as the SpiNNaker
machine [24].

2) Fully digital custom circuits where the neural system
components are modeled in circuit using sate-of-the-art
CMOS technology e.g., IBM TrueNorth machine [1].

3) Analog/digital mixed-signal systems that model the behav-
ior of biological neural systems, e.g. the Neurogrid [25]
and BrainScales [26] projects.

4) Memristor crossbar array based systems where the analog
behavior of the memristors emulate the synapses of a
spiking neural network.

In the following, we give some details about these approaches
and compare their performance. Because we used MNIST for
experimental evaluation, we present the results of classification for
SpiNNaker, TrueNorth and BrainScales. We did not find the same
evaluation on Neurogrid.

SpiNNaker is a massively parallel and processor-based (ARM
processor) system with the purpose of building large scale spiking
neural networks simulations. It is highly scalable and capable
to simulate a network from thousands to millions of neurons
with varying degree of connectivity. It proposes to integrate
57,600 custom VLSI chips based on the AER (Address Event
Representation) communication protocol [27]. Each chip Contains
18 fixed-point advanced RISC ARM968 processing cores next to
the custom routing infrastructure circuits which is dedicated 96 KB
of local memory besides 128 MB of shared Dynamic Random
Access Memory (DRAM) as it is depicted in Figure 2.a. The
router memory consists of a three-state 1024× 32 bit Content
Addressable Memory (CAM) and a 1024×24 bit Random Access
Memory (RAM). Going more to the details, each ARM core
has a local 32 KB instruction memory and 64 KB data memory.
Regarding to the architecture and design properties, SpiNNaker
offers very fast simulation of large scale neural networks. It has
a remarkable flexibility for arbitrary connectivity for network
architecture and various neurons, synapses and learning algorithms.
However, the system still uses Von Neumann architecture with a
large extent of memory hierarchies found in conventional computers
with memory wall bottleneck issues. Because of using low-power
ARM processors dedicated to power-efficient platforms used in
training and robotic applications with four to 48 nodes, SpiNNaker
consumes a relatively small amount of power. Testing MNIST on
SpiNNaker has been reported in [28] using spike-based variation
of previously trained Deep Belief Networks (DBNs). To implement
spiking DBNs on SpiNNaker, a collection of functions were
developed in Python that read a MATLAB file of an off-line
trained DBN and generate a description of network ready to run
on SpiNNaker. The classification accuracy for this work is 95 %,
which consumes only 0.3 W with classification latencies in the
order of tens of milliseconds. However, there is yet the memory
wall issues of conventional computing platforms as SpiNNaker has
Von Neumann architecture. For better weight resolution 22 bits are
applied to store network weights that can be replaced only by one
memristor in non-Von Neumann neuromorphic platforms. Among
the parameters we explore in our work, neuron firing threshold,
spike distribution and number of neurons could be applicable for
future similar research using SpiNNaker platform.

IBM designed a scalable, flexible and non-Von Neumann full
custom spiking neural network named “TrueNorth”. Although
TrueNorth uses transistors and digital gates, but they use event-
driven method to communicate in fully asynchronous manner.
The structure of TrueNorth consists of 5.4 billion transistors to
build 4096 neurosynaptic cores. Each core includes 256 digital
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LIF neuron, 256×256 binary programmable synapses, and asyn-
chronous encoding/decoding and routing circuits. Each synapse
has binary behavior that can be individually turned on or off and
can be assigned to model one type of inhibitory and two types
of excitatory synapse with different weights. Neuron dynamics
has a global 1 kHz clock and so is discretized by into 1 ms
time steps. Regarding to the synaptic matrix, each neuron can be
connected to one up to 256 neurons of a destination core. The
routing in TrueNorth is less flexible than in SpiNNaker, however
TrueNorth can distribute the system memory includes core synaptic
matrix and routing table entries (Figure 2.b). The architecture
thus supports dynamics of connectivity that includes feed-forward,
recurrent, and lateral connections. In this platform the synapses
do not implement any plasticity mechanism, therefore they are not
able to perform on-line learning. TrueNorth is used to recognize
and classify MNIST dataset images using unsupervised learning
in RBM architecture [29]. The system scored 91.94 % using
60,000 samples for training set and 10,000 samples of test set.
As the TrueNorth is a non-Von Neumann architecture using spikes,
parameters we are evaluating in this study are applicable here more
than to the SpiNNaker platform. Memristor could be an alternative
for synapse model in future development of TrueNorth as the
architecture has neurons next to synapses.

The BrainScales project (Brain-inspired multiscale computation
in neuromorphic hybrid systems) is the successor of FACETS [30]
project. This project proposes the design and implementation of
a custom analog/digital mixed-signal simulation engine that is
able to implement the differential equations with an acceptable
accuracy. This computational neuroscience model is provided by
neuroscientists, and reproduces the results obtained from numerical
simulations executed on conventional computers. The Heidelberg
University BrainScales project (HICANN chip) aims to produce
a wafer-scale neural simulation platform, in which each 8 inch
silicon wafer integrates 50× 106 plastic synapses and 200,000
biologically realistic neuron circuits (see Figure 2.c). In order to
have a scalable size with maximum number of processors on the
wafer, relatively small capacitors have been applied for modeling
the synapses and neurons. Accordingly, using the large currents
generated by the above-threshold circuit and the small capacitors,
the BrainScales circuits is not able to achieve the long time-
constants required for interacting with the real-time environments.
However, the speed of network components operations compared to
biological elements reactions is accelerated by a factor of 103 or 104

which can reduce the simulation time dramatically. Furthermore,
it needs large bandwidth and fast switching and still high-power
circuit for propagating spikes across the network [31]. PyNN is
a Python-based language designed for describing spiking neural
network models [32]. The integration of the operating software
framework for the BrainScales (FACETS) is now available in PyNN.
It represents an optimal way to provide a convenient interface
to work with BrainScales neuromorphic devices that allows to
benchmark and verify the hardware model. MNIST could be a good
experimental use-case to compare the performance of BrainScales
with other neuromorphic platforms. Additionally, regarding the
potential of memristor nanodevice, we recommend it to play the
role of synapse in BrainScales architecture. The model of memristor
could be a similar model that we are using in this work.

Neurogrid is another big project is developed at Stanford
University that emulates neuromorphic engineering vision, sub-
threshold network components circuits and uses analog/digital
mixed-signal to model continuous time for network elements. This

neuromorphic platform simulates a million neurons with billions
of synaptic connections in real-time. Similar to TrueNorth and
BrainScales the architecture of Neurogrid is non-Von Neumann.
Neurogrid emulates four network elements, axon, dendrite, soma
and synapse. Only the axon circuit is digital and the other elements
are modeled in the analog circuits due to the better energy efficiency.
Neurogrid consists of 16 standard CMOS “NeuroCores” (see
Figure 2.d) integrated on a board that works using 3 W of power
energy connected in a tree network, with each NeuroCore consisting
of a 256×256 array of two-compartmental neurons. The synaptic
circuits are shared among the neurons while different spikes can
be assigned to the same synapse. The main goal of neuromorphic
systems is to interact with real physical environments and process
the natural signals with physiological time-scales, Neurogrid
has long time constants in the range of tens of milliseconds.
Consequently, this long time constants limitation causes difficulty
in using typical VLSI for design and implementation. Neurogrid
and BrainScales similarly use the temporal dynamic of memory
elements to store the state of the network. Accordingly, these
two projects have the capability of local learning using the STDP
learning rule. NGPython is a user interface software allows a user to
specify neuronal models in the Python programming environment.
As computational elements in Neurogrid and BrainScales such
as using spiking data, model of neurons, Non-Von Neumann
architecture, synaptic connections and STDP local learning are
similar to our platform, N2S3 [33], [34] could be a potential
software tools for simulation the network elements and even an
interface between hardware and users. The scalability to be used in
distributed systems, flexibility and suing memristor nanodevice as
synaptic connections in N2S3, provide the possibility of simulating
hardware models using memristive synapses beside other already
existed elements in Neurogrid or BrainScales.

Yet there is another alternative in addition to mentioned archi-
tecture that has been proposed by several authors [5], [16], [35],
[36], [37], using memristive devices as synapses in neuromorphic
circuits. This has the potential to lower the energy consumption
by a large proportion with the ability of storing the network
synaptic weights for long term in a low cost way. It has also
been showed that the memristors can emulate the STDP learning
rule, and thus lead to unsupervised learning circuits. Therefore,
this neuromorphic architecture can learn on-line. Additionally,
using memristive synapse next to CMOS neuron cause a non-
Von Neumann architecture and more efficient data communication
between memory and processing unit. We have thus chosen to
study this kind of architecture and in particular, to check how
some parameters of the architecture or of the devices influence the
learning capabilities of the circuit.

3 SPIKING NEURAL NETWORK SIMULATION WITH
N2S3
To perform our study of the influence of architecture and device
parameters on the learning capabilities of SNN memristor-based
hardware, we need to simulate this kind of circuits. In this section
we motivate the need for and describe our simulator, N2S3.

3.1 Requirements for a Spiking Neuromorphic Hard-
ware Simulator

In their comprehensive introduction and literature review about
SNN, Paugam-Moisy and Bohte [38] explore the computational
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Fig. 2. Large scale spiking neural network systems, a) Principal architectural parts of a SpiNNaker processing node, b) In TrueNorth, conceptual
blueprint of an architecture like the brain, tightly integrates memory, computation, and communication in distributed modules that operate in parallel
and communicate via an event-driven. c) Schematic of HICANN board in BrainScales project, d) In Neurogrid, the chip comprises a 256×256 array
of neuron elements, an asynchronous digital transmitter for sending the events generated by the neurons, a receiver block for accepting events from
other sources, a router block for communicating packets among chips, and a memory blocks for supporting different network configurations.

capabilities of SNNs, their learning capabilities, and their simula-
tion. Brette et al. [39] surveyed and discussed the existing work
on SNN simulation in 2007. All the simulators discussed in this
paper as well as the more recent Brian [23] simulator target the
simulation of biological SNN. More recently, Bichler et al. [12]
proposed Xnet, a C++ event-driven simulator dedicated to the
simulation of hardware SNNs. In our work, we share the goals
of Xnet (as stated in [12]): “intermediate modeling level, between
low-level hardware description languages and high-level neural
networks simulators used primarily in neurosciences”, and “the
integration of synaptic memristive device modeling, hardware
constraints and any custom features required for the targeted
application”. In addition to these goals, we put an emphasis on
flexibility and usability to allow the study of various kinds of
hardware designs, scalability to simulate large hardware SNNs, and
software engineering best practices (robust and extensible software
architecture for maintainability, extensive test suite, continuous
integration, open-source distribution).

In this section, we present N2S3 (Neural Network Scalable
Spiking Simulator, pronounced “Nessie”), an event-driven simula-
tor we have designed for the architecture exploration of hardware
SNN architectures. The internals of N2S3 are based on the
exchange of messages between concurrent actors [40], mimicking
the exchange of spikes between neurons, thus allowing a lot of
freedom in the network topologies. N2S3 has been developed
from the ground up for extensibility, allowing to model various
kinds of neuron and synapse models, various network topologies
(especially, it is not restricted to feed-forward networks), various
learning procedures (supervised or unsupervised), various reporting
facilities, and to be user-friendly, with a domain specific language
to easily express and run new experiments. It is available as open-

source software at sourcesup.renater.fr/wiki/n2s3 so that its users
can share their models and experimental settings to enable others
to reproduce their results. In this spirit, N2S3 is distributed with
the implementation of two “classical” experiments: handwritten
digit recognition on the MNIST dataset [41], [42] and the highway
vehicle counting experiment [43].

Thus the main differences with Xnet are the more flexible inter-
nal software architecture, the possibility to distribute a simulation
on several computers, and the open source license (though Xnet
has been released recently as a part of N2D2, an open source deep
learning software platform, see github.com/CEA-LIST/N2D2). On
the other hand Xnet can use GPUs to accelerate the computation
while it is more complicated (and not done yet) with N2S3.

3.2 Event-Driven vs Clock-Driven Simulation

SNN are essentially defined by standard differential equations,
but because of the discontinuities caused by the spikes, designing
an efficient simulation of spiking neural networks is a non-trivial
problem. There are two families of simulation algorithms: event-
based simulators and clock-based ones. Synchronous or “clock-
driven” simulation simultaneously updates all the neurons at every
tick of a clock, and is easier to code, especially on GPUs, for
getting an efficient execution of data-parallel learning algorithms.
Event-driven simulation behaves more like hardware, in which
conceptually concurrent components are activated by incoming
signals (or events). As some of the learning mechanisms of spiking
neural networks are based on the relative timings of spikes, the
choice of the clock period for a clock-based simulation may lead
either to imprecision or to a higher computational cost.
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3.3 State of N2S3 as of version 1.0

To address our concurrency and distributability requirements (i.e.,
potential ability to scale out a simulation on several computers
to handle large networks) we have chosen to use the Scala
programming language [44] along with the Akka actor library [40].
We have demonstrated the feasibility to distribute a simulation but
we have not yet tested the scalability of the simulations. This will
be future work.

At the moment, N2S3 can read AER files and the MNIST
files and convert them to spikes that are sent to an artificial
neural network of any topology (we currently have shortcuts to
model fully connected multilayer networks, convolutional networks,
and reservoir computing topologies). The spikes are carried by
messages between actors representing some subsets of the neurons
of the network, and are fully or partially synchronized to offer a
tradeoff between accuracy and concurrency. In the experiment
below, messages are fully synchronized, and thus ordered by
timestamps so that the accuracy of the simulation is guaranteed.
The reader interested in more details about N2S3 can read [34] and
the documentation at sourcesup.renater.fr/wiki/n2s3.

4 EXPERIMENT SETUP AND MODELS

We describe in this section the choices we have made to build our
experiment: neuron and synapse models, network topology and
learning process, and the dataset on which we run our simulations.

4.1 Leaky Integrate and Fire Neuron Model

The Leaky Integrate and Fire (LIF) neuron model is a well-studied
model of neuron. There are three reasons for using LIF in our
platform.

• The fabricated model with recent CMOS technology is
available [45], [46].

• LIF works effectively in spiking and event-based net-
works [47].

• LIF models are quite fast to simulate, and particularly
attractive for large-scale network simulations [39].

Neurons integrate the input spikes from other neurons they are
connected to. These input spikes change the internal potential of
the neuron, it is known as neuron’s membrane potential or state
variable. When this membrane potential passes a threshold voltage
due to integrated inputs, the action potential occurs, in other words,
the neuron fires. It then sends spikes to the output neurons it is
connected to.

The model is described by the neuron membrane potential:

τn
dv
dt

=−v(t)+RIsyn(t) (1)

Isyn(t) = ∑
j

gi j ∑
n

α(t− t(n)j ) (2)

where v(t) represents the membrane potential at time t, τn = RC
is the membrane time constant and R is the membrane resistance.
Equation 1 describes a simple parallel resistor-capacitor (RC)
circuit where the leakage term is due to the resistor and the
integration of Isyn(t) is due to the capacitor. The total input current,
Isyn(t), is generated by the activity of pre-synaptic neurons. In fact,
each pre-synaptic spike generates a post-synaptic current pulse. The
total input current, injected to a neuron is the sum over all current
pulses which is calculated in Equation 2. Time t(n)j represents the
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Fig. 3. a) Simulation of a single LIF neuron, the input spikes are applied
in t=[10, 30, 40, 50] ms. Between 10 and 30 there is more decrease
than between 30 and 40. b) Memorization in biology. c) The data is
stored in Long-Term Memory (LTM) if the spikes are repeated in a certain
time-window, otherwise Short-Term Memory (STM) will store temporary
data.

time of the nth spike of post-synaptic neuron j, and gi j is the
conductance of synaptic efficacy between neuron i and neuron
j. Function α(t) = qδ (t), where q is the injected charge to the
artificial synapse and δ (t) is the Dirac pulse function. If Isyn(t) is
big enough where action potential can pass the threshold voltage,
neuron fires. It means there are enough input spikes in a short
time window. When there is no or only a few spikes in a time
window, the neuron is in the leaky phase and the state variable
decreases exponentially. The duration of this time window depends
on τn = RC. The equation is analytically solvable and thus we use
the answer of Equation 1 in the network simulation when there is
an input spike to improve the simulation performance. Figure 3.a
shows the model of a single neuron. When the input voltage passes
the threshold, the neuron fires and resets to its resting state. The
membrane potential stays below the reset value for an definite
period, which is called the refractory period.

4.2 Artificial Synapse Model
Before the discovery of a memristor nanodevice, by using state-
of-the-art technology, 12 transistors were combined to mimic the
behavior of memristor to perform the STDP learning method [48].
Therefore, using a two-terminal and scalable device such as
the memristor could save a remarkable amount of power and
cost specially in modeling large scale Spiking Neural Networks.
To model biological synapses, not only do we need a device
able to store the last activity, but it must also have enough
flexibility to achieve Spike Timing Dependent Plasticity (STDP)
for learning. Using memristor as a nonvolatile synaptic memory
has been proposed in several works [16], [36], [37], [49]. By using
nonvolatile memory, we can guarantee to store the last synaptic
weight which is necessary for network training but the synapse can
not forget. To be able to have a synapse which is able to forget,
scientists used a volatile memory cell [50], [51]. We have proposed
in [21] to combined both kinds of memories in order to improve
the learning capabilities of the network. The results of that study
show (Figure 4) that this combined synapse box (VNV synapse
model on the figure) improves slightly the recognition rate on the
MNIST benchmark, all other parameters identical.

The present study is complementary by looking at the effect
of other parameters than the device used for the synapse on these
learning capabilities. We use here the resistive RAM as modeled in
our previous work [52]. By changing the doped-undoped regions
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Fig. 4. Recognition rate as a function of number of output neurons. In the
box plot (with the default parameters of the R boxplot function) for each
number of neurons, we compare the recognition rate of the two synapse
models.

of device, the conductance will be changed. A larger doped region
leads to more conductivity. Therefore by controlling this boundary
between two regions, the conductivity is controlled. The behavior
of memristor can be modeled as follows [53]:

v(t) = Rmi(t) (3)

Rm = RON
w(t)

D
+ROFF

(
1− w(t)

D

)
(4)

where Rm is the variable resistance of memristor, w(t) is the width
of the doped region, D is the overall thickness of device, RON and
ROFF are device resistances while the active region is completely
doped (w = D) and mostly undopped (w→ 0) respectively. To
model the changing of the conductance, we use the model extracted
from Equation 4 and introduced in [17], [54] by considering
gmax =

1
RON

and gmin =
1

ROFF
as the maximum and minimum device

conductance respectively.

4.3 Network Topology and Learning Process
By using unsupervised learning inspired by biological neural
networks, we propose a fully connected feed-forward network
architecture. To figure out the correlation between the data, the
STDP adjusts the strength of a synapse if the sensory input spikes
are frequent enough to pass the short term potentiation and remain
in the long term potentiation. In STDP, if there is an output spike
in the pre-synaptic neuron and shortly after in the post-synaptic
neuron, the conductance of the synapse between these two neurons
increases. On the other hand, if the post-synaptic neuron spikes
shortly before the pre-synaptic neuron, the conductance of the
synapse between the two neurons decreases. A more comprehensive
explanation for STDP is beyond the scope of this research, however

if readers want to know how plasticity in memristor helps targeting
STDP achievement we refer you to [55].

Furthermore, by inspiring from the biological behavior of the
brain, we apply lateral inhibition inside a layer to reduce the activity
of the neighbors of the winner neurons. This method is known as
the winner-take-all (WTA) strategy [56]. The neuron which reaches
the threshold first sends an inhibitory signal to all other neurons in
the same layer to reset their states during the inhibition time.

The last issue in network architecture that we should address
is homeostasis. In STDP learning, the connectivity between two
neurons (i.e. the synaptic weight or conductance) is increased when
the post synaptic neuron fires shortly after the presynaptic neuron.
This process may be repeated frequently specially with WTA lateral
inhibition. Homeostasis is a neuron property that regulates the firing
threshold to prevent a neuron to be hyperactive [57]. The idea is to
use an adaptive threshold for the membrane potential. If the neuron
is too active in a short time window the threshold grows gradually;
likewise, when a neuron is not active in a certain time window the
threshold is reduced slightly.

4.4 MNIST Handwritten Digit Recognition Setup

We have used the MNIST training dataset of handwritten digits [22]
to train and test the performance of neural networks based on the
synapse box. The training set consists of 60000 digits between 0
and 9 and each handwritten number is a 28 × 28 pixel 8 bit gray
scale image. In this simulation, we present the full dataset (60000
images) and full images twice. Each pixel is connected to one input
buffer neuron. To transfer the image of a handwritten digit to spikes
train, we have tried several spike distributions such as Poisson,
Uniform, and Jitter. We have chosen the Poisson distribution,
however we have not observed remarkable difference regarding
to the output results of network efficiency (see section 5.1). Pixel
intensity is between 0 to 255 and is transferred to 0 to 22 Hz spiking
frequency using various distributions during a 350 ms presentation
window. Based on previous similar work [58], we have chosen a
delay of 150 ms between two images. Therefore, there is sufficient
time for membrane potentials of all neurons to reset back to their
initial value. The network connection weights are between 0 and 1
initialized using a Gaussian distribution.

The hardware platform is a 4 core Intel core i7 CPU. We
have simulated different network topologies consisting of 2 fully
interconnected layers, with a fixed number of input neurons (28×
28 = 784) and different numbers of output neurons (from 20 to
100 neurons).

To measure and evaluate the network classification accuracy
after a fully unsupervised learning period consisting of the
presentation of the full MNIST data set, we label the output neurons
using 10000 samples of MNIST. After training, we stop all synaptic
modification processes such as STDP. We assign a number class to
the output neuron which has most frequent firing rate during the
presentation of the 10000 labeling samples. Using these labels, we
then evaluate the recognition rate of the network on 10000 different
test samples by comparing the known class of the input with the
class of the most frequent firing output neuron.

We obtain recognition rates that are comparable to the state of
the art [17], [58] and the running time of the simulations are also
comparable to those of similar experiments though it is difficult to
make accurate comparisons because we lack precise information
on the hardware and software setup of those works.
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5 EXPERIMENTAL EVALUATION OF THE INFLU-
ENCE OF FOUR PARAMETERS ON THE CLASSIFICA-
TION OF HANDWRITTEN DIGITS

Not only choosing the network elements such as type of neuron
(e.g., LIF), model of synapse, network architecture (e.g., RBM in
this work) and algorithms of learning (e.g., STDP in this work)
is important in the network recognition accuracy, but also tuning
the parameters of each elements could have remarkable impact
of recognition performance of network. For instance, evaluation
of the impact of the number of neurons on recognition rate of
network has been represented in [59], [60]. However this evaluation
is for artificial neural network not spiking architecture. Another
example is to evaluate the impact of learning parameter (α) and
initial conductance of synapse which are studied in [17]. The
advantages and disadvantages of using different types of STDP
learning methods are studied comprehensively in [20], [61].

In this section, we evaluate and explore the effects of four
parameters on the performance of the network architecture namely
the distribution of input spike trains, the STDP window duration,
the neuron threshold, and the synapse β parameter. Furthermore,
due to importance of the number of neurons in hardware imple-
mentation of Neuromorphic architectures, we analyze these four
parameters each time using different number of neurons. The
results of these evaluations are useful for tuning the parameters
for any SNN architecture using threshold-based model of neuron
such as LIF, artificial model of synapse, and STDP learning
method. Although the memristor is used to model the synapse
in the network, however more case-specification to target more
audiences in neuromorphic domain, we represent a general model
of memristor which is close to biological model and represented
in [17], [54]. The MNIST use-case is used in this evaluation,
however the spiking distribution evaluation could be valid for other
experimental use-cases as transferring data to spikes is common
process for all SNN implementations.

These parameters will be fully described in the following. The
full MNIST dataset is presented twice to the networks with four
different numbers of output neurons. A sample of output results is
shown in Figure 5 for 20, 30, 50 and 100 output neurons.

We vary each parameter independently to asses its influence
on the recognition rate. The default value for these parameters are
taken from the values listed in the literature. We call this set of
parameters the baseline.

• Input spike train distribution: Poisson.
• STDP window duration: 25 ms.
• Neuron threshold: 15 mV.
• Synapse β parameter: 1.5.

At the end of this section, in Section 5.5, we compare the
baseline with the best parameters obtained separately and discuss
the results.

In all the simulations, as the weight initialization is random,
each simulation has been repeated 10 times and the results are
shown in box plots with the default parameters of the box plot
function of the R statistical tool.

5.1 Effect of Spike Distribution
As the computation in SNNs is done using spikes, we need to
generate spike trains of the images of the MNIST dataset to extract
a spike-based dataset from a frame-based dataset respecting the
intensity of each pixel of images. The pixel intensity is between 0

Fig. 5. Sample heat maps of the synaptic weights after network training
with four different numbers of output neurons (20, 30, 50 and 100). As
it is obvious in the figure, for network using 20 output neurons there is
ambiguity in recognition of digits 3, 5 and 8 (underfitting). For networks
using more output neurons, we add the number of synapses and network
has more chance of learning. In addition, in MNIST testing, we can add
the number of neurons to 300 (it is not illustrated in this figure) while still
increasing the network prediction ability. However there is limitation of
this increment due to overfitting. For instance the network recognition
using 500 output neurons is less than network with 300 output neurons.

to 255 and should be transferred to the spike trains to be readable
by a SNN. For instance, Diehl and Cook [58] use a method where
the maximum pixel intensity of 255 is divided by 4, resulting in
input firing rates between 0 and 63.75 Hz. Yet there remains the
question of which time interval between two spikes do we use to
generate the spikes? Therefore, statistical distribution rules can
help to generate appropriate spike trains when encoding the pixels.

5.1.1 Poisson Input Spike Train Distribution
Here we explain a particular class of random process called a
Poisson spike train process. Let us define ρ(t) response function
to the input stimuli by

ρ(t) =
k

∑
i=1

δ (t− ti) (5)

where k is the total number of spikes in the spike train, and ti
defines the moment each spike occurs. The unit impulse signal is
defined as

δ (t) =
{

1 if t = 0
0 otherwise. (6)

The instantaneous firing rate (e.g., of a sensory neuron) can now be
formally defined to be the expectation of the sensory input response
function which is r(t) = 〈ρ(t)〉. The average spike count between
times t1 and t2 can then be defined from the instantaneous firing
rate

〈n〉=
∫ t2

t1
r(t)dt, (7)

the probability of a spike occurring during a given brief time
interval is equal to the value of the instantaneous firing rate during
that time interval times the length of the interval.

P(one spike in (t−δ t,t+δ t)) = r(t)δ t (8)
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Fig. 6. Comparison of three different distributions for generating the input
spike trains.

We assume the instantaneous firing rate r is constant over time.
This is called a homogeneous Poisson process.

From Equation 7 we derive 〈n〉 = r∆t for any interval ∆t =
t2− t1. Equation 8 can be used to generate a Poisson spike train
by first subdividing time into a series of short intervals, each
of duration δ t and generating a sequence of random numbers
x[i] uniformly distributed between 0 and 1. For each interval, if
x[i] ≤ rδ t, generate a spike, otherwise, no spike. This procedure
is appropriate only when δ t is small enough for e.g., millisecond
range. Using Poisson distribution, we made a event-based version
of MNIST [62] and it is available open-source online (github.com/
MazdakFatahi/evt-MNIST). We refer to intensity of pixels as the
probability that a spike occurs within an interval.

5.1.2 Other Distributions of the Input Spike Trains
In our simulation, the pixel intensity between 0 and 255 is
transferred to 0 to 22 Hz spiking frequency using different
probability distributions during a 350 ms presentation window.
Based on previous similar work [58], we have chosen a delay
of 150 ms between two images. Therefore, there is enough time
for membrane potentials of all neurons to reset back to their
initial value. The network connection weights are between 0 and
1 initialized using a Gaussian distribution. We compare uniform,
Gaussian and Poisson distribution using different numbers of output
neurons in Figure 6. This figure shows that the choice of the input
distribution does not have a significant impact on the recognition
rate of the network. That means that the classification of the inputs
is done mainly on the frequency of the inputs regardless of the
precise timing of the spikes.

Figure 7 depicts the average recognition rate for different
numbers of neurons using the three spike train distributions.
This figure demonstrate that increasing the number of neurons
increases the recognition rate. We expected such a behavior because
increasing the number of neurons will increase the number of
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Fig. 7. Average recognition rate of the network using different input spike
train distributions.

synapses in the network, therefore the chance of learning is
increased due to more precise coding. It is worth noting that
in general the relation between the number of neurons and the
learning performance is not always increasing with the number of
neurons. The reason is that the random selection of the number of
neurons might cause either overfitting or underfitting problems.

5.2 Effect of STDP Window Duration

Activity-dependent modification of synaptic weights because of
STDP depends on the correlations between pre- and postsynaptic
firing over timescales of tens of milliseconds [63]. Contrarily
to a biological simulation, as we simulate hardware SNNs, we
can choose some parameters. The way STDP is implemented in
hardware is a very important parameter. We use a simplified form
of STDP (from [64]) where the weights of the synapses are always
slightly decreased except when there is a temporal correlation
between a presynaptic firing and a postsynaptic firing during a time
window of duration STDP window. We look here at the influence
of this STDP window duration on the learning capabilities of our
networks.

The duration of the STDP window is related to the frequency of
the input spike trains. We start using maximum frequency 63.75 Hz
which is presented in [58], the STDP window duration should be
of approximately the same duration as the corresponding period,
15.7 ms, or higher. To be able to evaluate the optimum STDP
window duration, we have started using a 15 ms duration and
increasing to 65 ms by increments of 10 ms as it is depicted in
Figure 8.

The results show a low performance using 15 ms regarding to
other STDP window durations. We have a remarkable improvement
from 15 ms to 25 ms and the best results are obtained using the
range between 35 ms and 55 ms which is reasonable corresponding
maximum input spike frequency 22 Hz in our implementation. At
65 ms, the recognition rate starts to decrease. Our interpretation
is that a too short duration does not allow to capture all the high
intensity pixels in the input, and a too long duration is not specific
enough as it captures too many mid range pixels and thus is not
specific enough. One would need to do additional experiments to
check how the STDP window influences the learning speed of the
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Fig. 8. The comparison of different STDP window durations.
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Fig. 9. Average recognition rate of the network using different number of
neuron and six different STDP window durations.

network. Indeed, here we just check the final network state after
two presentations of the 60000 images of the MNIST dataset, but
the convergence speed of the SNN may well depend also on the
STDP window duration.

Figure 9 illustrates the average recognition rate of neural
networks using various number of neurons.

5.3 Effect of Neuron Threshold

In our hardware simulation, we use the Leaky-Integrate-and-Fire
(LIF) neuron model. This type of neuron model is fit for SNN
architectures [47] due to several properties such as availability of
low-power CMOS design using subthreshold regime transistor [65],
fast to simulate, and particularly efficient for large-scale network
simulations [39].

The LIF model is described in Section 4.1, Equations 1 and 2.
If injected currents from synapses are large enough, they cause the
action potential to pass the threshold voltage, and the neuron fires.
It means there are enough input spikes in a short time-window.
When there is no or only a small number of spikes in a time-
window, the neuron is in the leaky phase and the state variable
decreases exponentially. The duration of this time window depends
on τn = RC.

To simulate the LIF neuron, we have to define a threshold for
the neuron. Furthermore, we used the homeostasis technique to
improve the network stability and performance. It means that if one
or a group of neurons are too active when reading the input data,
we slightly increase the threshold and vice versa if one or some
neurons are inactive during the training process the threshold is
decreased slightly. In this section, we verify and analyze the spiking
neural network performance while using different thresholds for the
same neurons to reach the best threshold value. To be able to trace
only the impact of different thresholds on the system performance,
we use the same homeostasis for all neurons with the same rate
of increasing and reduction. The range of threshold values have
been chosen to cover the minimum and maximum action potential
in the network. Figures 10 and 11 shows the effect of the different
thresholds on the recognition rate. The results show that the neuron
thresholds between 25 and 35 mV lead to the best recognition rates.
However, for the larger numbers of neurons choosing a threshold of
45 mV also leads to an acceptable performance. In contrast, for the
networks with the smaller numbers of neurons the lower thresholds
lead to a good recognition rate in the network. One could think that
it is easily explained because in the networks with more neurons,
each neuron is connected to a larger number of other neurons and
thus receives more incoming spikes and thus reach its threshold
sooner. But here, the number of inputs of the neurons is constant
and equal to 28× 28 = 784, the number of pixels in the image.
Actually, the winner-takes-all rule increases the connectivity of the
neurons inside the layer, but for inhibitory purposes. In general,
the optimal value of the neuron threshold depends on the network
architecture, and more generally on the activity of the network. In
our case, the differences are not large enough to conclude and we
would need to run a much larger number of simulations to check if
this shift on the optimal value is real or just a random effect.

5.4 Effect of Synapse β Parameter

The quality of the synapse and the rate of conductance change of
synapses causes influence the learning capabilities of SNNs. For
instance using binary synapses which switch from zero to one will
cause much lower performance in learning than using an analog
synapse. Therefore the amount of change after updating the weights
is important. The conductance change does not only depend on the
STDP rule for modification but also on the characteristics of the
synapse itself. Here, we evaluate the network learning performance
when changing parameters in the synapse to modulate the synaptic
weight change rate.

For the model of memristor as an artificial synapse, we use the
model introduced in [17], [54] which is inspired from experimental
memristive devices measurements [66]. The increasing and decreas-
ing of conductance is presented by Equation 9 and Equation 10
respectively.

∆ginc = αince−β
g−gmin

gmax−gmin (9)
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Fig. 10. Comparison of the recognition rate for various neuron thresholds.

0 20 40 60 80 100

70

75

80

Number of output neuron

R
ec

og
ni

tio
n

ra
te

(%
)

Threshold=15 mV
Threshold=25 mV
Threshold=35 mV
Threshold=45 mV

Fig. 11. Average recognition rate for various neuron thresholds.

∆gdec = αdece−β
gmax−g

gmax−gmin (10)

gmax and gmin are the maximum and minimum of the conduc-
tance of the memristor. αinc and αdec characterize the conductance
step and β is a fitting parameter. To evaluate the impact of synaptic
conductance on learning in the neural network, we vary the β fitting
parameter because it directly affects the amplitude of the weight
modifications. The other parameters in the simulation are fixed
to gmax = 1, gmin = 0.0001, αinc = 0.01 and αdec = 0.005. The
initial conductance of the nanodevices before starting to train the
network are chosen randomly around the mid-range. We observed
no remarkable effective impact on the network performance, which
is a proof of neural network robustness to variations as is reported
in [64]. The results for four different number of neurons in the
output are presented in Figure 12 and 13.

1.5 1.8 2 2.5

70
00

71
00

72
00

73
00

74
00

Neuron=30

Different Beta factors of artificial synapse

R
at

e 
R

ec
og

ni
tio

n 
X

 %

1.5 1.8 2 2.5

77
00

78
00

79
00

80
00

Neuron=50

Different Beta factors of artificial synapse

R
at

e 
R

ec
og

ni
tio

n 
X

 %

1.5 1.8 2 2.5

83
00

83
50

84
00

84
50

85
00

85
50

Neuron=100

Different Beta factors of artificial synapse

R
at

e 
R

ec
og

ni
tio

n 
X

 %

1.5 1.8 2 2.5

62
00

64
00

66
00

68
00

Neuron=20

Different Beta factors of artificial synapse

R
at

e 
R

ec
og

ni
tio

n 
X

 %
Fig. 12. Comparison of various fitting parameter (β ) values. The results
demonstrate better performance using β between 1.8 and 2. However,
the differences are small.
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Fig. 13. comparing network performance using various number of
neurons with different fitting parameter (β ) for synapse model.

Although the network performance variation using different
β parameters is not remarkable, the results demonstrate slightly
better performance using β between 1.8 and 2.

5.5 Discussion

As a final experiment, the network architectures consist of non-
volatile (values inspired by the literature [17], [64], [67] here
NV) and volatile/nonvolatile (VNV) synapse models which is
represented in [21] using the baseline parameters are compared
with the best values for all the evaluated parameters, once including
the nonvolatile (NV) synapse and once volatile/nonvolatile (VNV)
synapse. The parameters are listed in table 1. Other network
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TABLE 1
Best parameters vs. baseline parameters

Synapse Distrib. STDP w. Thres. β

Best VNV Poisson 55 ms 35 mV 2
Best NV Poisson 55 ms 35 mV 2
Baseline VNV Poisson 25 ms 15 mV 1.5
Baseline NV Poisson 25 ms 15 mV 1.5
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Fig. 14. Using the best parameters significantly improves the recognition
rate.

elements and parameters that are not listed in table 1 are the
same for all models.

We have evaluated these models using the same number of
output neurons that were used in the parameter evaluation sections
with the addition of 300 neurons for the output layer. The results
in Figure 14 demonstrate enhanced performance using the best
obtained parameters rather than baseline parameters. These results,
as most simulations shown in this paper, show that the variation
of recognition rate due to the random initialization of the synaptic
weights is around 6 to 8 points with half of the results in a 3 to
4 point range. The ranges of variation of the best version and of
the baseline overlap, so one does not have the guarantee that using
theoretically better parameters will lead to a better performing
network, it is just statistically better.

As a summary, we can conclude from this study that:

• The parameters that have a significant influence on the
learning rate are the number of neurons in the SNN, the
type of synapse (volatile or synapse box), the duration of
the STDP window and the neuron threshold value.

• The distribution of the spikes in the input spike trains and
the β fitting parameter of the volatile synapse do not have
a significant impact on the recognition rate.

• One can significantly improve the recognition rate of a
SNN by choosing better parameters.

• There is a relatively large spread of the recognition rate due
to the random initialization of the synaptic weights in the
simulations.

Thus a design space exploration should concentrate on the

parameters that influence significantly the recognition rate, first of
all the architecture of the network (number of neurons, topology),
and then tune the other parameters. This design space exploration
should be based on a statistical analysis of the performance of the
network by running several simulations for each combination of
parameter values. Finally, researchers should explain clearly what
they mean when they give a single number as the recognition rate
of a given SNN, is it a mean of several rates, the best rate or just a
single rate.

6 CONCLUSION

We have presented an empirical study of the influence of several
parameters on the recognition rate of memristor based hardware
SNNs on the MNIST benchmark. This study is based on simulations
run with N2S3, an open source simulator we have developed to
help design neuromorphic circuits.

This study has shown that not all parameters have a significant
influence on the learning rate of SNNs and thus that a design
space exploration should concentrate first on the architecture of
the network; then, the kind of device used as a synapse, the STDP
mechanism used and its parameters, and the threshold of the neuron.
Quantitatively we have found that the most significant parameters
on our test case are the number of neurons (from less than 70 % of
recognition rate with 20 neurons to around 85 % with 100 neurons),
the model of synapse (difference of a few points of recognition rate
in average between the two tested models) and its properties and the
neuron threshold (a few points of improvement but rather a range of
values that work similarly well). These numbers are averages and
the reader should be well aware that due to the random initialization
of the weights of the synapses the spread of the recognition rate for
a given experiment (i.e. with fixed parameters) is of 4 to 5 points,
so there is not a single combination of parameters that is always
better than the others, only statistically better.

This study is only valid on the MNIST benchmark and should
be complemented by similar studies on other test cases to confirm
these findings, especially test cases using natural data in spiking
form where the precise relative timings of the input spikes would
necessitate more precise STDP mechanisms than the simplified one
used in this paper that is only sensitive to the average frequency of
the input spike trains.

In the future, we will explore different models of synapse and
neurons, more complex network topologies and STDP mechanisms,
and enhance the N2S3 simulator with automatic design space
exploration facilities that will concentrate on optimizing the most
significant parameters discovered in this study. In addition to the
recognition rate (or classification capabilities), we will also evaluate
other performance measures such as the power consumption
of the circuit or its convergence speed. As there are various
number of memristors, evaluation the proper one for neuromorphic
architecture could be another potential study for future works
specially with considering real fabrication parameters.
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T. Natschläger, D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner,
O. Rochel, T. Vieville, E. Muller, A. P. Davison, S. El Boustani, and
A. Destexhe, “Simulation of networks of spiking neurons: a review of
tools and strategies,” Journal of Computational Neuroscience, vol. 23,
no. 3, pp. 349–398, Dec. 2007.

[40] D. Wyatt, Akka Concurrency. USA: Artima Incorporation, 2013.
[41] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2323, 1998.

[42] Y. LeCun and Y. Bengio, “Convolutional networks for images,
speech, and time series,” The handbook of brain theory and neural
networks, vol. 3361, no. 10, p. 1995, 1995. [Online]. Available:
https://www.researchgate.net/profile/Yann Lecun/publication/2453996
Convolutional Networks for Images Speech and Time-Series/links/
0deec519dfa2325502000000.pdf

[43] O. Bichler, D. Querlioz, S. J. Thorpe, J.-P. Bourgoin, and C. Gamrat,
“Extraction of temporally correlated features from dynamic vision sensors
with spike-timing-dependent plasticity,” Neural Networks, vol. 32, pp.
339–348, Aug. 2012.

[44] M. Odersky, P. Altherr, V. Cremet, I. Dragos, G. Dubochet, B. Emir,
S. McDirmid, S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman,
L. Spoon, and M. Zenger, “An overview of the Scala programming
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