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Introduction: decoding needs stability

Decoding models predict stimuli or behavior from brain images. These models have become a standard tool in neuroimaging data analysis [START_REF] Haynes | Decoding mental states from brain activity in humans[END_REF][START_REF] Norman | Beyond mind-reading: multi-voxel pattern analysis of fMRI data[END_REF][START_REF] Varoquaux | How machine learning is shaping cognitive neuroimaging[END_REF]. In clinical applications, they can be used to perform diagnosis or prognosis [START_REF] Demirci | A review of challenges in the use of fMRI for disease classification/characterization and a projection pursuit application from a multi-site fMRI schizophrenia study[END_REF][START_REF] Fan | Spatial patterns of brain atrophy in MCI patients, identified via highdimensional pattern classification, predict subsequent cognitive decline[END_REF]. They are also used as evidence of the link between distributed activity patterns and an observed behavior [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF]. Additionally, decoding used on a large variety of cognitive processes grounds a form of reverse inference [START_REF] Poldrack | Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding[END_REF][START_REF] Schwartz | Mapping cognitive ontologies to and from the brain[END_REF]. An appeal of decoding procedures is that they avoid multiple voxel-wise test and perform an omnibus test: "Can one predict the behavioral outcome from brain activity?"

Identifying the brain activity patterns that drive prediction of behavior is crucial for brain mapping and understanding [START_REF] Gramfort | Identifying predictive regions from fMRI with TV-L1 prior[END_REF][START_REF] Mourão-Miranda | Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional MRI data[END_REF]. However achieving reliable and stable decoder maps is challenging due to the dimensionality of the problem: the number of samples is small -hundreds or less-whereas the number of features is typically the number of voxels in the brain -up to hundreds of thousands. Linear models, e.g. linear support vector machines (SVM), are often used [START_REF] Pereira | Machine learning classifiers and fMRI: A tutorial overview[END_REF], as they have shown a good perfor- * Corresponding author mance in a small-sample regime. In addition, their classification/regression weights form brain maps used for interpretation of the discriminative pattern [START_REF] Mourão-Miranda | Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional MRI data[END_REF].

However, the high dimensionality of the problem leads to multiple weight maps yielding the same predictive power, and some form of regularization has to be applied [START_REF] Hastie | gene shaving' as a method for identifying distinct sets of genes with similar expression patterns[END_REF]. In across-subject settings, complex spatial and sparse penalties such as total-variation (TV) [START_REF] Baldassarre | Structured sparsity models for brain decoding from fMRI data[END_REF][START_REF] Michel | Total variation regularization for fMRI-based prediction of behavior[END_REF] and Graph-net [START_REF] Grosenick | Interpretable whole-brain prediction analysis with GraphNet[END_REF] help the decoder to capture the important brain regions shared across subjects. TV and its variants are considered as the state-of-the-art regularizers for brain images, as they handle local correlations present in the data. The main drawback of spatiallystructured sparsity as in TV and related penalties is their computational cost.

A much cheaper alternative to these structured estimators is to use spatially-constrained clustering algorithms to perform voxel grouping. In decoding, voxel grouping is often used as part of the pipeline for stability selection of correlated voxels [START_REF] Gramfort | Beyond Brain Reading: Randomized Sparsity and Clustering to Simultaneously Predict and Identify[END_REF][START_REF] Varoquaux | Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering[END_REF][START_REF] Wang | Randomized structural sparsity via constrained block subsampling for improved sensitivity of discriminative voxel identification[END_REF]. Additionally, it helps to improve the conditioning of the estimation problem. However, voxel grouping introduces high bias, as the patterns are constrained by the clusters shape.

One way to mitigate this bias is to use model aggregation or ensembling. These approaches have been used to reduce the variability of the output of the decoder (Kuncheva and Rodríguez, 2010;Kuncheva et al., 2010a;[START_REF] Zhou | Ensemble Methods: Foundations and Algorithms[END_REF]. The central idea is to build a decoder by averaging the output of several "good" models. In particular, averaging linear models boils down to averaging weight maps. One way to estimate multiple models is to use bootstrap resampling to generate different training sets to fit the decoder, and then aggregate them. This approach is known as Bagging 1 [START_REF] Breiman | Bagging predictors[END_REF]. It is easy to run in parallel, training each model independently. Yet, naive application of bagging to neuroimaging data induces high computational cost as the data are high dimensional, and parameters have to be set by internal cross-validation.

Decoding calls not only for hyperparameter selection, but also for model validation. Both tasks require a measure of the predictive power of the decoder. In practice, one runs two cross-validation loops -one inside the otherwhere each loop assesses prediction accuracy respectively for model selection and validation. Thus, investigators often train the decoder many times. These repeated calculations entail computational costs that limit day-to-day work on standard workstations. This is particularly problematic for more advanced decoders such as those with spatial regularizations that are beneficial to neuroimaging data (e.g. [START_REF] Grosenick | Interpretable whole-brain prediction analysis with GraphNet[END_REF][START_REF] Michel | Total variation regularization for fMRI-based prediction of behavior[END_REF][START_REF] Mohr | Sparse regularization techniques provide novel insights into outcome integration processes[END_REF]. In the face of growing data size, to enable good validation and ease of use on most hardware, a good decoder should be sparing on computation resources.

Contributions.

Here, we propose a fast scheme to train regularized ensembles of models, FReM. It reduces the variance of the weight maps of the decoder, while ensuring high prediction accuracy. The core of this approach is to average the estimator with the best predictive power per loop inside the nested cross-validation. To benefit from spatial regularization while keeping fast run times, we show how an optional voxel-clustering can be included in the ensembling, bringing stable spatial patterns. We perform a series of classification experiments on several MRI datasets to demonstrate that ensembling regularized models gives state-of-the-art decoders. In particular, we show that they compare favorably to existing decoders in terms of prediction performance, weight-map stability, and computation time.

Background and prior art

Brain decoding

In neuroimaging, a decoder is a predictive model that, given n brain images, fits an external variable y. In practice, we arrange n observed brain images composed of p voxels in a matrix X ∈ R n×p . Linear predictive models, at the core of most decoders in neuroimaging, are then written [START_REF] Hastie | The Elements of Statistical Learning[END_REF]):

1 Bagging stands for Bootstrap aggregating

y = f (Xw + ), (1) 
where y denotes a target variable giving the experimental condition or health status of subjects, f represents the decision function in the classification; w ∈ R p denotes the weight vector/map, and ∈ R n is a random error term.

In spite of a recently growing effort on the accumulation of neuroimaging data [START_REF] Poldrack | OpenfMRI: Open sharing of task fMRI data[END_REF], the number n of samples per-class remains in the order of a few hundreds, whereas p can be hundreds of thousands of voxels (p ≫ n). In this high-dimensional setting, there are many equivalent solutions and some form of regularization or prior is necessary to restrict model complexity. A standard approach relies on solving the following optimization problem:

ŵ(λ) = argmin w∈R p {L(y, X; w) + λΩ(w)} , λ > 0, ( 2 
)
where L is a data-fidelity term, a loss function that measures the quality of the estimator (e.g. logistic or hinge loss); Ω denotes the penalty/regularization term, and λ is the parameter that controls the amount of regularization. Two of the most often used penalties are: 1) the 2 -norm, that penalizes large w coefficients, and yields non-sparse solutions; 2) the 1 -norm, that promotes a small number of non-zero w coefficients, and yields sparse solutions [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF]. Nevertheless, as neuroimaging data exhibit strong correlations between the columns of X, the 1 -penalty yields unstable solutions as it tends to arbitrarily select only one among the correlated variables [START_REF] Varoquaux | Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering[END_REF]Yu, 2013). One way to tackle this is the use of additional spatially-informed penalties as Graphnet [START_REF] Grosenick | Interpretable whole-brain prediction analysis with GraphNet[END_REF] or TV (total variation) [START_REF] Eickenberg | Total variation meets sparsity: statistical learning with segmenting penalties[END_REF][START_REF] Michel | Total variation regularization for fMRI-based prediction of behavior[END_REF].

Model validation and selection

In high-dimensional settings, the number of candidate models is much larger than the number of samples. Therefore, we use regularization to constrain the complexity of the solution, and this penalization is controlled by the λ regularization parameter. The ensuing problem is then to find an optimal value for λ (i.e. finding the best biasvariance trade-off), yielding a model that exploits the richness of the data. One typically uses the predictive power of the decoder to choose the right amount of regularization.

Hyperparameters selection. In general, the setting of the hyperparameter is a data-specific choice, as it is governed by the amount of data and their signal-to-noiseratio (SNR). The most common approach to set it is to use cross-validation to measure the predictive power for various amounts of regularization and retain the value that maximizes the predictive power across several crossvalidation folds [START_REF] Varoquaux | Assessing and tuning brain decoders: cross-validation, caveats, and guidelines[END_REF]. To assess predictive power in addition, the standard scheme is nested cross-validation, that consists of two cross-validation loops run one inside the other: an outer loop is used to assess the predictive power of the decoder, and an inner/nested loop is used to set the hyperparameter(s) (see Fig. 1): the train set is used to fit the decoder, while the test and validation sets are used to measure its ability to generalize to new data.

In most of the non-parametric approaches to select a regularization parameter, a suitable and finite set of l hyperparameters, λ ∈ [λ 1 , . . . , λ l ] is first defined. For each cross-validation fold, one fits the decoder with all hyperparameters, and measures their prediction error on the test set. Then, one choses the λ i value that maximizes the predictive power across folds.

Ensembling methods for better stability

Another desired characteristic of decoding algorithms is the stability to data perturbations. Stability is defined as the amount of change in the output of the decoder as a function of small changes in the data on which the decoder is trained [START_REF] Shalev-Shwartz | Learnability, stability and uniform convergence[END_REF]. These small changes or perturbations usually mean either deleting one example or replacing it with another one 2 . Stability implies that small variations in the data yield a commensurate variation in the prediction and the weight map of the decoder.

In neuroimaging, another approach to improve the stability of the estimators is to train the base estimator on several random partitions of the feature space, then select representative features according to a consensus. These partitions can be defined using various criteria, for instance: i) random voxels selection (Kuncheva et al., 2010b;[START_REF] Rondina | SCoRS-A method based on stability for feature selection and mapping in neuroimaging[END_REF]; ii) using clustering [START_REF] Varoquaux | Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering[END_REF]). Yet, these decoders need to fit more models, to accumulate selection statistics, and hence entail excessive computational costs given the number of models to fit.

2 These perturbations are defined as sampling from the underlying distribution or replicating the experiment for a new set of data.

Model averaging. Model selection can run into some issues due to instability in the choice of the model, as any perturbation of the original data entails the selection of a completely different hyperparameter [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF]. Model averaging mitigates this problem by aggregating the output of several suitable models [START_REF] Nemirovski | Topics in non-parametric statistics[END_REF]. This method improves the predictive power of the base estimator, reducing the variance if the models are sufficiently uncorrelated (see Appendix A).

In particular, averaging linear models boils down to:

ŵbagg (λ) = 1 b b j=1 ŵ(j) (λ), (3) 
where b denotes the number of models to average; it is often chosen as 50 or 100, depending on the sample size and on the computation cost to train the estimator ŵ [START_REF] Bühlmann | Analyzing bagging[END_REF]. The weight map of the bagged estimator3 displays less variance if the weight maps of the base estimators are sufficiently uncorrelated. Note that λ has to be set, requiring another nested loop of crossvalidation (see Fig. 2a). Hence, choosing the parameter of the aggregated model is computationally expensive.

Materials and methods

Dimension reduction by feature agglomeration

In neuroimaging, dimension reduction is routinely used to alleviate problems due to high-dimensionality. A common way to select features is univariate feature screening, which uses a score (e.g. statistical test, correlation) to remove non-predictive variables. In particular, the method proposed by [START_REF] Dohmatob | Speeding-up model-selection in GraphNet via early-stopping and univariate feature-screening[END_REF] operates as follows:

The data (X, y) are standardized so that y has unit variance and zero mean, likewise each row of the design matrix X. Additionally, X is smoothed with a Gaussian filter for the screening of voxels, but not during the fitting of the estimator. Then, for each voxel j one computes the absolute dot-product of y and the jth column of X, X T j y . Finally, one selects the voxels with the highest X T j y values. However, this method does not take into account the spatial structure of brain images. Instead, we can reduce the dimension of the data by grouping similar neighboring voxels, moving from the voxel-space to a parcel-space. To do this, we can use anatomical/functional atlases or datadriven approaches.

Here we rely on a voxel grouping approach, where we use a fraction of the training data to train a clustering algorithm, finding suitable groups of features or parcellations. Then, we use these parcels on the remaining data to work at a parcel level. Formally, we define a feature-grouping matrix Φ ∈ R p×k , where k ≪ p, and each column has a constant value with support at each parcel4 . We normalize each column to have unit 2 -norm [START_REF] Hoyos-Idrobo | Recursive nearest agglomeration (ReNA): fast clustering for approximation of structured signals[END_REF]. To reduce the dimension, we multiply the data by the feature-grouping matrix, X reduced = X Φ. We can also build an approximation5 of the data, X approx = X Φ Φ T . This approach increases the SNR at the expense of spatial resolution without excluding potentially informative variables. It is often used in combination with sparse methods to alleviate their unstability when dealing with correlated variables [START_REF] Bühlmann | Correlated variables in regression: clustering and sparse estimation[END_REF][START_REF] Varoquaux | Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering[END_REF].

Fast regularized ensemble of models (FReM)

Setting the hyperparameters of ensembles of models can be computationally expensive, as a single aggregated estimator requires fitting a base estimator m × l × b times. This corresponds to three loops: i) m cross-validation loops to select the model, ii) l for the hyperparameters, and iii) b to find the base estimators to average (see Fig. 2a). To tackle this computational bottleneck, we average weight vectors of nested cross-validation folds at best performing hyperparameter values (in the sense of predictive power). By doing this, we can reduce the number of required fits to l × b, where the number of estimators b is the number of cross-validation folds. Thus, this scheme uses one loop less than the standard bagging. In addition, we add an implicit spatial constraint using clustering of features, applying it at each fold to increase the randomness of the clusters shapes. For completeness we detail the proposed strategy in Algorithm 1 and Fig. 2b.

Empirical studies: stable brain decoding

In this section, we conduct a series of experiments to highlight the practical aspects of FReM in brain decoding. We use several MRI datasets to investigate their prediction performance, weight-map stability, and computation time.

Experiments on real neuroimaging data

To achieve reliable empirical conclusions, we consider a large number of different neuroimaging studies. We investigate FReM in several binary classification problems based on 8 fMRI datasets. We perform within-subject discrimination across sessions between various types of visual stimuli on the Haxby dataset [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF]. In addition, we discriminate in an across subjects setting: i) different categories of visual stimuli from [START_REF] Duncan | Consistency and variability in functional localisers[END_REF]; ii) conditions with different levels of affective content with data from [START_REF] Wager | Neural mechanisms of emotion regulation: evidence for two independent prefrontal-subcortical pathways[END_REF]; iii) mentalization with data from [START_REF] Moran | Social-cognitive deficits in normal aging[END_REF]; iv) famous, familiar, and scrambled faces from a visual-presentations dataset [START_REF] Henson | Face repetition effects in implicit and explicit memory tests as measured by fMRI[END_REF]; v) left and right saccades in data from [START_REF] Knops | Recruitment of an area involved in eye movements during mental arithmetic[END_REF]; vi) relational and emotion processing, language, and gambling protocols from the human connectome project (HCP) [START_REF] Essen | The human connectome project: A data acquisition perspective[END_REF]; vii) response inhibition on openfMRI ds009 [START_REF] Poldrack | Toward open sharing of task-based fMRI data: the OpenfMRI project[END_REF]. We use the trial-by-trial (Z-score) maps computed in a first-level GLM to perform all across-subject predictions. Additionally, we predict the gender from VBM maps using the OASIS dataset [START_REF] Marcus | Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults[END_REF].

Standard preprocessing and first-level analysis were applied using SPM. The data were variance-normalized and spatially smoothed at 6 mm FWHM for fMRI data and 2 mm FWHM for VBM data.

Experimental setup. In all classification tasks, we use nested cross-validation for an accurate measure of the predictive power. We repeatedly split the data into a validation set and a decoding set. We choose validation sets of 20% the data, respecting the sample dependence structure (leaving out subjects or sessions). We set 10 folds for the outer cross validation loop.

As is standard practice in fMRI decoding [START_REF] Pereira | Machine learning classifiers and fMRI: A tutorial overview[END_REF], we use univariate feature selection on the training set to select 20% of voxels and train the decoder on the selected features. We compare several decoders, split into two groups:

• Non-ensembles: Graph-net [START_REF] Grosenick | Interpretable whole-brain prediction analysis with GraphNet[END_REF], TV-1 [START_REF] Michel | Total variation regularization for fMRI-based prediction of behavior[END_REF], Log-enet [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] 6 , SVM-1 , and SVM-2 .

• Ensembles: FReM of SVM-1 , SVM-2 , both, with and without clustering. These estimators are fitted using the proposed scheme -see Algorithm 1.

We use scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF] for the Logenet, and the SVM with 1 and 2 penalties. We use nilearn [START_REF] Abraham | Machine learning for neuroimaging with scikit-learn[END_REF] for Graph-net and TV-1 . When clustering is applied, we set the number k of clusters to 10% of the number p of voxels7 . We rely on the fast agglomerative clustering presented in [START_REF] Hoyos-Idrobo | Recursive nearest agglomeration (ReNA): fast clustering for approximation of structured signals[END_REF]. In brief, this algorithm iteratively performs 1-nearest neighbor grouping, reduces the graph at each iteration, then averages the input features and repeats the process until it reaches the desired number of clusters.

Regarding the ensembles of models, we use 50% of decoding sets to train the decoder8 .

In the first experiment, we empirically validate the performance of various decoders on different discrimination tasks. In particular, we measure the prediction score, Algorithm 1 Fast regularized ensemble of models (FReM) Require: Training data X ∈ R n×p , the desired number k of clusters, the sampling parameter m, the number b of estimators to aggregate, the set of l hyperparameters [λ 1 , . . . , λ l ], the regularizer Ω and the loss L. Ensure: ŵbagg 1: for j = 1 to b do 2:

Build pseudo-dataset:

{(X * , y * )} ← {(X i , y i )} m i=1
, where X * ∈ R m×p , and y * ∈ R m . {draw m samples from (X, y) at random.} Dimension reduction: Xred ← X * train Φ (j) , where Xred ∈ R ⌊ m 2 ⌋×k .

6:

Univariate feature selection: {use Dohmatob et al. ( 2015).} 7:

for i = 1 to l do 8:

Estimate weight map:

ŵ(i) red = argmin w∈R p L(y * , Xred ; w) + λ i Ω(w) , ŵ(i) red ∈ R k . 9:
end for 10:

Select the best model:

ŵ(j) best ← the ŵ(i) red , i ∈ [0, . . . , l]
with the best performance on the test set.

11:

Return to voxel-space: ŵ(j) approx = ŵ(j) best Φ (j)T , where ŵapprox ∈ R p . 12: end for computation time, and the correlation across folds (stability). In a second experiment, we explore the training speedup of decoders in a multi-core setting. Then we evaluate the similarity between weight maps obtained using all the data and the ones obtained for different sample sizes (small-sample recovery).

Results: evaluating decoder performance

Comparing FReM to bagging

We explore the performance of FReM and bagging on two discriminative tasks: discrimination of famous and scrambled faces from the [START_REF] Henson | Forward inference using functional neuroimaging: Dissociations versus associations[END_REF] dataset, and discrimination of response inhibition on openfMRI ds009 [START_REF] Poldrack | Toward open sharing of task-based fMRI data: the OpenfMRI project[END_REF]. The regularization parameters of bagging are set by 10-fold inner cross validation. Fig. 3 summarizes the relative performance of FReM and bagging with respect their base estimators across discriminative tasks. FReM of 2 -penalized models with and without clustering display better weight map stability than bagging of SVM-2 . FReM of 1 -penalized models without clustering has worst prediction accuracy, with a loss of 2% with respect to bagging. Regarding FReM with clustering, it has the same prediction accuracy as bagging, and it displays better weight map stability. For both penalties, FReM yields computation speedups, > 5 times faster, while preserving the gains in prediction accuracy.

Benchmarking decoders

For all discriminative conditions, we measure the prediction error on several left-out validation sets to assess the predictive power of the decoders. Additionally, we measure the correlation between the weight maps obtained [START_REF] Henson | Forward inference using functional neuroimaging: Dissociations versus associations[END_REF] dataset, and discrimination of response inhibition on openfMRI ds009 [START_REF] Poldrack | Toward open sharing of task-based fMRI data: the OpenfMRI project[END_REF].

(top) Relative performance to SVM-2 . (bottom) Relative performance to SVM-1 . For both penalties, FReM improves the stability of weight maps, and it is > 5 times faster than bagging.
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FReM SVM 1 FReM SVM 1 + clustering in each cross-validation fold, and the computation time required to train the decoder. To perform this analysis, we separate the datasets into two types: within-subject and across-subject. Throughout this experiment, we set the number b of estimators used in FReM to 50. This choice is discussed in Fig. 8.

Fig. 4 summarizes the relative performance with respect to the mean across decoders per discriminative task. In within-subject settings, all sparse methods have good prediction performance. Decoding using the standard SVM with both 1 and 2 penalty is fast, but the weight maps are less stable than the ones found by sparse structured methods -i.e. Graph-net and TV-1 . However, these complex penalties come with higher computation costs. As expected, using FReM reduces the variance of the prediction, while increasing the stability of the weight maps. This effect is enhanced when including a clustering step. The computation time of FReM with or without clustering is less than that of structured sparse classifiers.

For the discriminative task across subjects, FReM consistently improves prediction accuracy as well as the stability of the weight maps, while keeping a computation cost less than structured sparse classifiers. In addition, the use of spatial clustering has a beneficial impact on the spatial stability. In all the presented cases, FReM improves stability of the weight maps of the base estimator, while preserving the prediction accuracy. Note however that, for the combination of the SVM-2 and clustering, it does not display any additional benefit.

Table 1 shows the comparison between each decoder and the decoder displaying the best prediction accuracy, namely FReM of SVM-1 for within-subject problems, and FReM of SVM-2 with clustering for across-subjects problems. These results confirm the above observations. Experiments on simulated data. Unlike brain imaging datasets, simulations open the door to measuring the actual support of a decoder, as well as its prediction accuracy. Briefly, we generate data with 2 classes and 1728 voxels with temporally auto-correlated Gaussian noise (more details in Appendix B). The dataset contains a decoding set of 200 samples. We choose validation sets of 20% the data. We set 10 folds for the outer cross validation loop. We assess the support recovery of each decoder by building the precision-recall curve. This curve is generated by comparing the ground truth weight maps with the coefficients of the decoder after applying different thresholds.

Fig. 5 shows the prediction accuracy of each decoder across cross-validation folds on simulated data. FReM SVM-1 with and without clustering have the best prediction accuracy on simulated data, followed by SVM-1 , and Graph-net. TV-1 display slightly worst performance. Log-enet, SVM-2 , FReM SVM-2 with and without clustering have a low predictive performance. FReM of 1 models increase the prediction accuracy, whereas for 2 models this remains similar.

Regarding the computation time, SVM-2 , FReM of SVM-2 with and without clustering are the fastest methods to train, followed by SVM-1 , FReM of SVM-1 with and without clustering. Log-enet, and Graph-net are slightly slower, whereas TV-1 is at least 4 times slower than Graph-enet. On simulated data, FReM requires the same computation time than its base estimator.

Fig. 6 displays the precision-recall curve, which serves as an indicator of support recovery of the underlying spatial activation map. FReM of SVM-1 with clustering, FReM of SVM-2 with clustering, and TV-1 display have the best support recovery. They are followed by Graphnet, SVM-2 , and FReM SVM-2 . In this experiment, Logenet and SVM-1 both fail to recover the support of the activation signal. We can see that FReM consistently improves the support recovery of base estimators. In particular, FReM of SVM-1 with clustering displays the best trade-off between prediction accuracy and support recovery. It has a predictive performance similar to Graph-net, and a support recovery close to TV-1 .

Delineating brain regions

An important question regarding brain decoders is whether they segment well the brain regions that support the decoding. The validation of this question is hard, yet there is evidence that relying on ensembles of models is a good approach [START_REF] Leung | Information theory and mixing leastsquares regressions[END_REF][START_REF] Zhou | Ensemble Methods: Foundations and Algorithms[END_REF]. Fig. 7 displays the decoder maps for the face-recognition tasks. For these tasks, we expect prediction to be driven Values are displayed relative to the mean over all the classifiers. a) FReM improves prediction accuracy, and when applied with clustering it also reduces the variability. The ensembles of models consistently improves the weights stability, with a computation time smaller than TV-1 and Graph-net. b) FReM with and without clustering slightly improves the prediction accuracy, while significantly improving the stability. Note that the computation time is obtained using a single CPU, see Figure 9 by the functional areas of the visual cortex [START_REF] Grill-Spector | The human visual cortex[END_REF]. Indeed, the maps outline regions in known visual areas -e.g. the fusiform face area (PPA).
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Figure 5: Behavior on simulated data: FReM of SVM-1 with and without clustering display the best predictive performance, followed by SVM-1 , Graph-net, and TV-1 . Log-enet and 2 penalized methods display low performance. 2 methods are the fastest to compute, followed by SVM-1 , FReM of SVM-1 with and without clustering, Log-enet, and Graph-net. TV-1 is the slowest method.

Classifiers

Graph-net (AP: 0.56) TV-1 (AP: 0.74) Log-enet (AP: 0.23) SVM-2 (AP: 0.55) SVM-1 (AP: 0.27) FReM: SVM-2 (AP: 0.53) FReM: SVM-1 (AP: 0.36) FReM: SVM-2 + clustering (AP: 0.76) FReM: SVM-1 + clustering (AP: 0.77) SVM-1 maps are unstructured, and even if using FReM of this model improves the stability of the weight maps, these maps remain scattered with a large number of small clusters. However, the use of clustering yields less and larger clusters, with maps that are qualitatively similar to TV-1 maps. Graph-net and SVM-2 display similar behavior, yielding various small clusters around large clusters of activation. In the case of SVM, the use of FReM can reduce the number of small clusters. The combination with clustering enhances this effect. Note that setting the threshold to visualize regions is difficult task as the noise level is unknown.

Setting the number of estimators to ensemble

The choice of the number b of estimators to combine also affects the stability of the weight maps and the running time. The number b can be interpreted as a "smoothing" parameter [START_REF] Bühlmann | Analyzing bagging[END_REF], and the computation time that one is willing to pay to train a decoder. We measure the performance of ensembles of classifiers on three different datasets and across 10 folds of cross-validation. In practice, we often use a number of estimators between 50 and 100, but to verify if the model converges, we consider here a range from 10 to 640 estimators.

Fig. 8 shows that for ensembles of classifiers, prediction accuracy does not depend on the number of estimators, whereas the computation time is almost linear (t ∝ b γ , where γ ≈ 1). We use the running time as a constraint to finally set the number of estimators to 50, as the weight stability of non-sparse classifiers are at least 95% of the asymptotic optimum. In addition, this is a good compromise between stability and computation cost. Hence, we use this number of estimators throughout all experiments.

Results: parallel computing of brain decoders

One important feature of ensembling models is scalability, as these methods can be trained in parallel in a multicore, shared-memory environment. This corresponds to current standard workstations, which frequently have a large number of CPUs 9 . Here, we measure the training time of various decoders across 5 folds of cross-validation. We perform face-discrimination tasks on two datasets with different sizes.

Fig. 9 shows that, in general, there is not an ideal decrease in the computation time as more CPUs are added. The SVM with 1 and 2 penalty are the fastest. In contrast, TV-1 is the slowest, followed by Graph-net. In both datasets, FReM displays most of the speed up at 10 CPUs, and reaches a minimum at 20. These methods are much 9 Parallel computation was run using joblib https: //pythonhosted.org/joblib/ to use multiple cores on a single computer with Python "multiprocessing". Benchmarks were done on Intel Xeon E5-2697 CPUs, clocked at 2.7GHz, with 12 cores per CPUs, on a single Linux (Ubuntu 16.04) computer. 

Results: small-sample recovery behavior of decoders

In fMRI, despite growing efforts in data accumulation [START_REF] Essen | The human connectome project: A data acquisition perspective[END_REF][START_REF] Poldrack | Toward open sharing of task-based fMRI data: the OpenfMRI project[END_REF], the sample size remains small in comparison with the number of voxels. Therefore, an important aspect of the brain decoders is their sample complexity -i.e. the number of samples required to bound the estimation error. Yet, assessing the recovery of weight maps is difficult, as we do not have access to the asymptotic result. To bypass this problem, we measure the similarity between the weight maps obtained with different sample sizes and the ones obtained using the whole dataset. This gives us an intuition on the small-sample recovery capacity.

Fig. 10 shows that across datasets, FReM of SVM-2 with and without clustering, and FReM of SVM-1 with clustering are consistently the best. In contrast, the SVM-1 and Log-enet fail to recover the final weight maps. TV-1 , Graph-net, and SVM-2 have a good performance on both datasets. FReM of SVM-1 outperforms these methods on the within-subject discrimination, as the weight similarity rapidly increases. On across-subject datasets, FReM of SVM-1 with clustering has almost the same performance as TV-1 , Graph-net, and SVM-2 , differing only after using 80% of the data for training.

Discussion and conclusion: using FReM

We have introduced a fast strategy to train regularized ensembles of models, FReM, that improves the stability of brain decoders. This scheme is summarized as follows: i) For each fold of the nested cross-validation loop, we select the estimator with the best predictive power; ii) we build an estimator by storing the models for all folds of cross-validation and averaging them. This approach differs from the stability selection methods [START_REF] Meinshausen | Stability selection[END_REF][START_REF] Varoquaux | Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering[END_REF], as here we use the amplitude of predictive weight maps for the model aggregation, and not only their support.

Using FReM. The predictive power of FReM is not very dependent on the number of estimators used during the aggregation step. On the other hand, the stability of the resulting decoder improves as more estimators are used. On across-subjects datasets, the use of clustering improves the stability of sparse methods. In terms of computation time, this scheme displays an almost linear complexity in the number of estimators. Thus, setting the number of estimators is an arbitrary choice, it depends only on the computation resources available.

Comparing decoders. In both within and across subjects datasets, FReM has shown an improvement of the performance of the base estimator. This strategy reduces the variance of predictive power and increases the stability of weight maps of the base estimator. It also improves the small-sample behavior of the base estimators, boosting the Computation time of decoders: Total wall clock averaged across 5-fold CV. In general, the speedup in computation time is not ideal: it has a plateau. The fastest methods are the Log-enet, SVM with 1 and 2 penalty, followed by the ensembles of models, that display most of the speedup at 10 CPUs; past this value, the computation time slowly reduces until finally reaching a minimum at 20 CPUs. In contrast, TV-1 and Graph-net are consistently the slowest methods. Figure 10: Small-sample recovery behavior of decoders: Evaluation of the correlation between decoder weight maps for each sample size and the ones obtained using the full dataset. FReM of SVM-2 with and without clustering have consistently the best small-sample recovery performance, followed by TV-1 , Graph-net, and SVM-2 . Within-subject) FReM of SVM-1 rapidly increase their weights similarity, outperforming TV-1 and Graph-net. Across-subjects) the combination of clustering and FReM of SVM-1 has a performance as good as TV-1 . In both discrimination tasks, SVM-1 and Log-enet fail to recover the final decoder weight maps.
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Graphnet

consistency of weight maps. In addition, this scheme leads to qualitatively good brain regions delineation.

In terms of computation time, the use of FReM yields decoders that are slower than the base estimators. But they are faster than state-of-the-art decoders, namely TV-1 and Graph-net. Nevertheless, the speed-up of FReM can be enhanced by parallelizing the training of each estimator to aggregate. Thus, the training time is dominated by the fitting of each decoder. However, this gain is not ideal, and there is a plateau in the speed-up when the number of CPUs increases.

Regarding the combination of FReM and clustering, it has a spatial denoising effect on the resulting weight maps. This is reflected in the reduction of the variability and an increase in the prediction power. But, when the base estimator is a sparse method, the averaging step reduces the sparsity, and yields weight maps with many small values instead.

Our extensive empirical validation (36 decoding tasks, taken from 9 datasets) shows that the FReM, in particular using a SVM-2 with clustering, gives the best stabilityprediction trade-off, with a good qualitative delineation of brain regions. Averaging several "good" estimators yields a model that can adapt to the properties of the noise present in the data. Hence, it is more robust to violations of modeling assumptions. The application of this scheme with clustering benefits to the spatial stability of weight maps, a key requirement of any cross-population study of functional imaging signals. 

Figure 1 :

 1 Figure 1: Illustration of nested cross-validation: Two crossvalidation loops are run one inside the other. The inner loop is used to set the hyperparameters, whereas the outer loop is used to assess the predictive power of the decoder.

3 :

 3 Split into a training set and a testing set: (X * train , y * train ) , (X * test , y * test ). {Select ⌊ m 2 ⌋ samples at random (without replacement).} 4: Build feature-grouping matrix: Φ (j) ∈ R p×k {use Hoyos-Idrobo et al. (2016).} 5:

Figure 2 :

 2 Figure 2: Regularized ensemble of models: Fast regularized ensemble of models uses one loop less than bagging.

Figure 3 :

 3 Figure 3: Comparison of the performance of FReM and bagging: Comparison on two discriminative tasks, discrimination of famous and scrambled faces from the[START_REF] Henson | Forward inference using functional neuroimaging: Dissociations versus associations[END_REF] dataset, and discrimination of response inhibition on openfMRI ds009[START_REF] Poldrack | Toward open sharing of task-based fMRI data: the OpenfMRI project[END_REF]. (top) Relative performance to SVM-2 . (bottom) Relative performance to SVM-1 . For both penalties, FReM improves the stability of weight maps, and it is > 5 times faster than bagging.

Figure 4 :

 4 Figure 4: Relative performance: Relative prediction accuracy, weight stability and computation time for different classification tasks.Values are displayed relative to the mean over all the classifiers. a) FReM improves prediction accuracy, and when applied with clustering it also reduces the variability. The ensembles of models consistently improves the weights stability, with a computation time smaller than TV-1 and Graph-net. b) FReM with and without clustering slightly improves the prediction accuracy, while significantly improving the stability. Note that the computation time is obtained using a single CPU, see Figure9for parallel-computing timings. Results without smoothing are presented in Figure C.2.

  Figure 4: Relative performance: Relative prediction accuracy, weight stability and computation time for different classification tasks.Values are displayed relative to the mean over all the classifiers. a) FReM improves prediction accuracy, and when applied with clustering it also reduces the variability. The ensembles of models consistently improves the weights stability, with a computation time smaller than TV-1 and Graph-net. b) FReM with and without clustering slightly improves the prediction accuracy, while significantly improving the stability. Note that the computation time is obtained using a single CPU, see Figure9for parallel-computing timings. Results without smoothing are presented in Figure C.2. a) Within-subject discrimination Classifier prediction weight computation score stability time Graph-net 1.4e-3 > 1.6e-4 > 7.8e-14 < TV-1 6.3e-5 > 8.3e-3 > 7.8e-14 < Log-enet 5.9e-3 > 7.8e-14 > 7.8e-14 > SVM-2 1.4e-9 > 8.9e-12 > 7.8e-14 > SVM-1 2.4e-3 > 7.8e-14 > 7.8e-14 > SVM-2 1.5e-8 > 1.7e-4 < 2.1e-13 < SVM-1 Reference SVM-2 + clustering 2.8e-7 > 3.1e-6 < 1.1e-8 < FReM

Figure 6 :

 6 Figure6: Support recovery on simulated data: Evaluation of support recovery for different decoders. The average precision (AP) is presented in parenthesis. FReM of SVM-1 with clustering, FReM of SVM-2 with clustering, and TV-1 have the best recovery performance. They are followed by Graph-net, SVM-2 , and FReM of SVM-2 without clustering. Log-enet and SVM-1 fail to recover the ground truth. FReM generally improves the performance of base estimators.

Figure 7 :

 7 Figure 7: Qualitative comparison of decoder weight maps: Weight maps for different discriminative tasks on the Haxby and HCP datasets. The maps are thresholded at the 99 percentile for visualization purposes. In both dataset, (top) illustration of weight maps for the face-recognition task; (bottom) outlines of the other tasks. The weight maps obtained with TV-L1 and FReM methods with clustering display a prediction driven by the functional areas of the visual mosaic, such as: primary visual areas, lateral occipital complex, the face and place specific regions in the fusiform gyrus. An example of the difference of outlines between FReM and its base estimator see Figure D.3.
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Figure B. 1 :

 1 Figure B.1: Weight maps of the decoder: Weight maps for different decoders on simulated data. The values in parenthesis correspond to the Pearson correlation to ground truth. Note that the maps are unthresholded.

Table 1 :

 1 Comparison of performance: Each decoder is compared with a reference. The values correspond to Bonferroni-corrected p-values obtained by paired Wilcoxon rank test. The direction in the parenthesis denotes the sign of the mean difference, and bold text denotes a significant results (p < 10 -10 ). Results without smoothing are presented in TableC.2.

  TableC.2: Comparison of performance: Each decoder is compared with a reference. The values correspond to Bonferroni-corrected p-values obtained by paired Wilcoxon rank test. The direction in the parenthesis denotes the sign of the mean difference, and bold text denotes a significant results (p < 10 -10 ).

						b) Across-subjects discrimination		
		Classifier	prediction score	weight stability	computation time		Classifier	prediction score	weight stability	computation time
		Graph-net	2e-6 >	8.1e-8 >	7.8e-14 <		Graph-net	5.4e-17 >	3.4e-22 >	9.9e-4 >
		TV-1 Log-enet	1 1	5.8e-2 > 7.8e-14 >	7.8e-14 < 7.8e-14 >		TV-1 Log-enet	7.9e-19 > 1.3e-8 >	4.7e-17 > 1.2e-28 >	6.4e-32 < 1.2e-28 >
		SVM-2 SVM-1	4.5e-10 > 1.7e-2 >	1.8e-12 > 8.4e-14 >	7.8e-14 > 7.8e-14 >		SVM-2 SVM-1	3.6e-4 > 3.5e-4 >	2.8e-14 > 1.2e-28 >	6.3e-32 > 1.2e-28 >
		SVM-2	1.8e-11 >	1	1		SVM-2	1	1.8e-13 <	1.4e-22 >
	FReM	SVM-1 SVM-2 + clustering	4.6e-6 >	Reference 9.5e-3 <	1	FReM	SVM-1 SVM-2 + clustering	1	6.3e-32 > Reference	6.3e-32 >
		SVM-1 + clustering	1	0.2 <	0.5 >		SVM-1 + clustering	1	3.6e-28 >	0.2 >

a) Within-subject discrimination

The bagged estimator is a Monte-Carlo approximation of E[w].

The feature-grouping matrix is orthogonal.

This approximation can be seen as the application of an anisotropic smoothing.

We don't use an SVM with elastic net penalty, as none of the solvers have an implementation, and using our own implementation will lead to unfair comparisons.

We consider a useful dimension reduction range, k ∈ p 20 , p 10 . This regime gives a good trade-off between computational efficiency and data fidelity[START_REF] Hoyos-Idrobo | Recursive nearest agglomeration (ReNA): fast clustering for approximation of structured signals[END_REF].

In the standard bootstrap the whole dataset is resampled. However, it can be approximated with a subsampling of 50% of the data[START_REF] Dümbgen | Stochastic search for semiparametric linear regression models. From Probability to Statistics and Back: High-Dimensional Models and Processes -A Festschrift in Honor of Jon A[END_REF][START_REF] Praestgaard | Exchangeably weighted bootstraps of the general empirical process[END_REF][START_REF] Shah | Variable selection with error control: another look at stability selection[END_REF] 
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Appendix A. Bagging reduces the variance of the base model

A learning problem can be cast as identifying the best hypothesis in a space of hypotheses. Statistical issues arise when the sample size is small compared to the size of the hypothesis space. In this setting, there are several hypothesis that give the same prediction accuracy on training data. One can reduce the risk of choosing a "wrong" estimator by averaging the output of several of these estimators [START_REF] Dietterich | Ensemble Methods in Machine Learning[END_REF].

Bagging in regression [START_REF] Breiman | Bagging predictors[END_REF]: We present Breiman's proof of bagging regressors to demonstrate its benefits. Let D be a training set which contains a sample of independent (x, y) drawn from the distribution P . Define h(x, D) to be prediction function based on the sample D. Let haggr(x) = E D [h(x, D)] be an aggregate of prediction functions. Take x to be a fixed predictor and y an output value. Then

Hence, the averaged predictor has lower mean-squared error than the base predictor. This improvement depends on how unequal

The more the h(x, D) vary with respect to each other, the more improvement the aggregation may produce.

To understand the effect of averaging, let us assume the extreme case where the models created by sampling are i.i.d. Let the aggregation be mean of the predicted values haggr(x) = 

Hence, the variance of the aggregated estimator is:

We can see that averaging the error as √ b. Note that i.i.d. case studied here is the most favorable case.

Appendix B. Experiments on Simulated data

Appendix simulation

We use the same approach in Michel al. (2011) to simulate data satisfying the Eq. 1. The matrix X consists of n = 100 images, and p = 1728 voxels (size 12 × 12 × 12). Each image contains a set of five square Regions of Interest (ROIs) (size 2 × 2 × 2), and each of the four ROIs has fixed weight in {-0.6, 0.5, -0.6, 0.5, 0.5}. us denote S the support of the (i.e. the 40 resulting voxels of interest), and w i,j,k denotes the weights of the (i, j, k) voxel. The resulting images are smoothed with a Gaussian kernel with a standard deviation of 2 voxels, to mimic the structure observed in real fMRI data. To simulate the spatial variability between images (inter-subject variability, movement artifacts in intra-subject variability), we define a new support of ROIs, Ŝ such as, for each image l-th, 50% (randomly chosen) of the weights w are to zero. Thus, we have Ŝ ⊂ S. We simulate the target y for the l-th image as:

with the signal in the (i, j, k) voxel of l-th image simulated

∼ N (0, γ), We choose γ in order to have a SNR of dB. Finally, we apply a sign function to Eq. B.1 to obtain a binary targets.

Appendix C. Benchmarking results without smoothing

Results without spatial of the voxels are given in Fig. C.2. The results obtained with and without spatial smoothing of the voxels are consistent. In within subject settings, structured sparse methods display good prediction accuracy and stability of weight maps. However, the computation time is slow. FReM of SVM-1 to a better performance, increasing prediction accuracy and weight map stability, while reducing the computation time.

In between subject settings, FReM over performs other methods. In particular, FReM of SVM-2 with clustering.

Table C.2 shows the comparison between each decoder and the mean performance across models. These results confirm the above observations. 3 displays the difference between the outlines obtained with FReM and its base model. The difference between the outlined brain maps is characterized by small clusters. As expected, this effect is higher for SVM-1. FReM of SVM-1 with clustering leads to greater brain activation areas that are not found by the base estimator. On the other hand, FReM of SVM-2 with clustering displays a marginal difference with its non-clustered counterpart. 

Appendix D. FReM improves brain regions delineation