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Abstract

We build and evaluate a probabilistic model designed for forecasting the
distribution of the daily mean wind speed at the seasonal timescale in France.
On such long-term timescales, the variability of the surface wind speed is
strongly influenced by the atmosphere large-scale situation. Our aim is to
predict the daily mean wind speed distribution at a specific location using
the information on the atmosphere large-scale situation, summarized by an
index. To this end, we estimate, over 20 years of daily data, the conditional
probability density function of the wind speed given the index. We next use
the ECMWF seasonal forecast ensemble to predict the atmosphere large-scale
situation and the index at the seasonal timescale. We show that the model
is sharper than the climatology at the monthly horizon, even if it displays
a strong loss of precision after 15 days. Using a statistical postprocessing
method to recalibrate the ensemble forecast leads to further improvement of
our probabilistic forecast, which then remains sharper than the climatology
at the seasonal horizon.
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1. Introduction1

In the recent years, energy transition has been on the forefront of political2

and societal issues, mainly due to the increasing awareness of the need to act3

against the climate disruption. This has led many countries to encourage the4

use of renewable energy. Since 2008, the European Union (EU) targets 20%5

of renewable energy contribution to the total energy mix by 2020, and 27%6

by 2030. Consequently, wind energy has seen a major growth in Europe. To7

give an idea of this sharp increase, the total installed wind power capacity8

in the EU has changed from 12.9 GW in 2000 to 141.6 GW in 2015 (EWEA9

(2016)). The actual share in the final consumption met by wind energy in10

the EU was 11.4% in 2015 (EWEA (2016)).11

At such scales, the variability of the wind power production due to the12

natural intermittency of the wind resource becomes a critical issue for suc-13

cessful network integration of this source of energy (Albadi and El-Saadany14

(2010)). As a consequence, the interest and demand for near-surface wind15

speed forecasts has seen a major boost. Numerous methods exist for fore-16

casting wind speed at different horizons, motivated by different applications17

(Chang (2014); Soman et al. (2010)). Many studies focus on the short-term18

scale ranging from several minutes to one day (Carpinone et al. (2015); Gomes19

and Castro (2012); Stesfos (2002)). Medium-term forecasting methods, rang-20

ing typically from 3 days up to 10 days, have also been investigated in depth21

(Barbounis et al. (2006); Taylor et al. (2009); Wytock and Kolter (2013)).22

On much longer timescales and with very different motivations, the impact23

of the climate change on wind speeds has also been adressed (Najac et al.24

(2009); Pryor and Barthelmie (2010); Sailor and M. Smith (2008)).25

Whereas both relatively short and very long timescales have been thor-26

oughly studied, the intermediate timescale going from monthly to seasonal27

horizon is a research topic for which not so many studies exist. This timescale28

is becoming very important for the transmission system operators (TSOs) as29

the proportion of intermittent ressources in the energy mix increases. The30

TSOs are responsible for balancing the supply and demand of energy and31

they are required to make seasonal projections, e.g., to guarantee the secu-32

rity of energy supply during the coming winter, which becomes more difficult33

with the the increased variability of energy production. The risk of not being34

able to satisfy the energy demand may be quantified in terms of the notion35

of Loss of load expectation (LOLE). Quoting from NationalGrid (2016), the36

LOLE is a “measure of the risk across the whole winter of demand exceeding37
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supply under normal operation. It gives an indication of the amount of time38

across the whole winter that the System Operator may need to call on a39

range of emergency balancing tools to increase supply or reduce demand.”40

For instance, a cold winter characterized by weaker winds than normal may41

in some cases lead to a lack of energy if not enough other production means42

have been made available upstream to meet the energy demand.43

Among the few existing studies of long term wind speed forecasting, (Azad44

et al. (2014); Bilgili et al. (2007)) advocate the use of Artificial Neural Net-45

works (ANN) for forecasting average monthly wind speed. These studies give46

an accurate estimate of the trend of the wind speed at the yearly horizon47

but provide limited information on the wind variability at higher frequencies.48

ANN models have also been used for forecasting daily mean wind speed at49

the seasonal scale providing more information on the wind variability within50

a given season for energy production evaluation (Guo et al. (2012); J. Wang51

et al. (2015); More and Deo (2003)).52

These studies provide ’point forecasts’, which give one value for the wind53

energy production at the specified horizon, but do not consider the uncer-54

tainty on the forecast (as a rule, forecast uncertainty is difficult to quantify55

with neural networks since the underlying probabilistic model is not easy56

to define). At such timescales, the idea of point forecast can be very ques-57

tionable due to the dominant chaotic nature of the atmospheric system at58

the timescales exceeding typically 10 days. At this long-term horizon, the59

idea of probabilistic forecasting therefore gains sense. Indeed, forecasting60

centers such as the European Center for Medium-range Weather Forecasts61

(ECMWF) use ensemble forecasts to take into account the uncertainty due62

to the growing small errors in the atmospheric system. Surface wind speed63

is a variable that is not provided by such prediction models because of its64

complexity and interaction with the surface, but valuable information on65

the general circulation of the atmosphere can be retrieved from such fore-66

casts. Indeed, several works have confirmed the predictability at seasonal67

timescales of recurrent oscillating patterns in the atmosphere, such as the El68

Nino (Cassou (2008); Owen and Palmer (1987)) or the North Atlantic Os-69

cillation (NAO) (Davies et al. (1997); Rodwell et al. (1999)). On the other70

hand, large-scale atmospheric patterns have already been shown to partly71

explain the surface wind speed in France at such timescales (Alonzo et al.72

(2017)).73

In this paper, our aim is to use long-term forecasts of large-scale cir-74

culation patterns provided by ECMWF to obtain probabilistic long-term75
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forecasts of local surface wind speeds. Our approach is to build a prob-76

abilistic model describing the relationship between the local surface wind77

speed and the large-scale circulation of the atmosphere, summarized by a78

single purpose-built index. To this end we estimate the conditional proba-79

bility density function of the wind speed given the index by gaussian kernel80

density estimation over 20 years of daily data. We next use the ECMWF81

seasonal forecast ensemble to predict the large-scale situation of the atmo-82

sphere and the index at the seasonal timescale. The prediction of the index is83

then plugged into our model, to obtain probabilistic forecasts of the surface84

wind speed. The ensemble forecast displays a growing uncertainty with time85

leading to an increase of the confidence interval width predicted by the prob-86

abilistic model. We show that the model is sharper than the climatology at87

the horizon of one month, even if it displays a strong loss of precision after 1588

days. Using the statistical postprocessing method EMOS (Ensemble Model89

Output Statistics) to recalibrate the ensemble forecast leads to a further im-90

provement of our probabilistic forecast, which then remains sharper than the91

climatology at the seasonal horizon.92

This paper is structured as follows. Section 2 describes the method to93

build the probabilistic model as well as the data used in this study. In section94

3, the performance of the model is assessed. In section 4, the probabilistic95

model is used to forecast the wind speed at the monthly and seasonal hori-96

zon by applying it to seasonal ensemble forecasts of large scale circulation97

patterns of the atmosphere.98

2. Data & methods99

2.1. Data : ECMWF reanalysis and forecasts100

In this paper, we use the so called “perfect model” approach meaning that101

the ECMWF ERA-I reanalysis is considered as the reality. This is justified102

by the comparison of ECMWF products and observation, in particular for103

surface wind speed (Jourdier (2015)). The model is estimated and evaluated104

the surface wind speed retrieved from this data. We use ECMWF reanalysis105

for 37 years between 1 January 1979 and 31 December 20151.106

The basic idea of this work is to link the large-scale circulation of the at-107

mosphere with the daily mean surface wind speed distribution in France. The108

1ECMWF Data are available at http://apps.ecmwf.int/datasets/
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Figure 1: a. Domain used to perform the PCA on the Z500. The red box corresponds to
the domain covering France on which the model is built and assessed. b. Domain covering
France and part of its neighbouring countries. The colors represents the altitude above
the sea level.

large-scale circulation is well described by the 500-hPa geopotential height109

(Z500) over the North Atlantic/European region (Michelangeli et al. (1995)).110
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We therefore retreive from the ECMWF reanalysis the daily time series of111

500-hPa geopotential height (Z500) over a large domain that spans over North112

Atlantic Ocean and Europe (20◦N to 80◦N and 90◦W to 40◦E), (Figure 1,113

a), with grid size of 0.75◦. The daily surface wind speed used to build and114

evaluate the probabilistic model is also retrieved from ECMWF reanalysis.115

The data spans the same period, but over a smaller domain which covers116

France and parts of neighbouring countries (40.5◦N to 52.5◦N and -6.75◦W117

to 10.5◦E), (Figure 1, b).118

The 37 years of data are split into three periods. The first 20-year period119

(1 January 1979 to 31 December 1998), is used to build and estimate the120

model. This period is referred to as the fitting period. On the subsequent121

13-year period (1 January 1999 to 31 December 2011), the probabilistic model122

is evaluated and compared to the past seasonal climatology of the wind speed,123

considered as the benchmark for wind speed forecasting at such long-term124

horizon. The seasonal climatology is defined as the empirical distribution of125

the daily average wind speed computed over all days in a given season of the126

fitting period. This period is referred to as the validation period. The results127

of the validation of our model are described in section 3.128

On the 4 remaining years, we use the model to build probabilistic fore-129

casts of the surface wind speed at the seasonal horizon. 48 ECMWF seasonal130

ensemble forecasts of the Z500 field over the large domain are retrieved. Sets131

of forecasts are retrieved from 2012 to 2015, beginning on every first day of132

each month. A major change of the assimilation system and forecast model133

limits the use of seasonal forecasts before November 2011. Seasonal forecasts134

provide a prediction of the Z500 at more than three months horizon, allow-135

ing to predict the surface wind speed at either monthly or seasonal horizon.136

The seasonal ensemble forecasts consist of 41 members. Each member has137

a slightly different initial state, so that the uncertainty on the atmospheric138

circulation grows with the forecast horizon giving a range of different possi-139

ble states of the atmosphere. The forecasting performance of our model is140

analyzed in section 4.141

2.2. Statistical methods142

In the first step of building our model we apply the Principal Component143

Analysis (PCA) to the Z500 variable to reduce its dimension. The outputs144

of the PCA are the Empirical Orthogonal Functions (EOF) describing the145

prevalent spatial patterns in the data, and the associated Principal Compo-146

nents (PC) time series which show how the state of the atmosphere projects147
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onto these patterns. The first EOFs may be identified with the classical148

large-scale weather patterns (NAO, SCA, ...) which control the European149

climate variability (Casanueva et al. (2014); Folland et al. (2008); Wallace150

and Gutzler (1980)). We expect the PCs to be well predicted in the seasonal151

ensemble forecasts.152

In the second step, we build a model giving the probability distribution153

of the daily mean wind speed knowing the first n PCs. In other words, we154

want to compute the conditional density p(y|X1, ..., Xn) of the daily mean155

surface wind speed Y given the PCs of Z500 X1 to Xn. Computing this156

conditional density directly is difficult due to the high dimension of the vector157

(X1, . . . , Xn). To overcome this issue, we use the single index approximation158

(Delacroix et al. (2003)): we assume that the information about the PCs159

(X1, . . . , Xn) may be summarized by a single scalar index160

I = β0 +
N∑
i=1

βiXi +
N∑
i=1

βiiX
2
i +

N−1∑
i=1

N∑
j>i

βijXiXj, (1)

where the coefficients β0, βi and βij are computed by least-squares regression161

of the surface wind speed Y on the principal components X1, . . . , Xn for each162

location. A test of optimization of the index parameters βi by minimization163

of the continuous ranked probability score (CRPS – see below) has been164

performed at several locations, but did not produce a significant improvement165

(only of the order of 0.1% of the initial CRPS).166

The conditional probability density function p(y|I) is given by the stan-167

dard formula168

p(y|I) = p(y, I)

p(I)
, (2)

where p(y, I) is the joint density of the surface wind speed Y and the index I169

and p(I) is the marginal density of the index. A gaussian kernel density esti-170

mator (KDE) is used to estimate the joint density and the marginal density171

over the period of length T :172

p̂(y|I = i) =

T∑
t=1

Kh1(y − Yt)Kh2(i− It)

T∑
t=1

Kh2(i− It)

, (3)

7



where Kh is the gaussian kernel function writen as :173

Kh(x) =
1

h
√
2π

exp
(
− x2

2h2

)
. (4)

While the estimated density is not very sensitive to the choice of the kernel174

function, the bandwidth parameters h1 and h2 have a significant impact175

on the resulting probability density function. In our study, the bandwidth176

parameters have been computed by cross-validation.177

3. Evaluation and optimization of the model178

3.1. Criteria for model evaluation: calibration and sharpness179

The performance of a probabilistic forecasting model is typically assessed180

in terms of calibration and sharpness (Carney and Cunningham (2006); Fos-181

ter and Vohra (1998); Gneiting et al. (2007); Thorarinsdottir (2013)). While182

calibration refers to the statistical consistency between the model and the183

actual values of the variable to predict, sharpness is a property of the model184

only and measures the width of the confidence intervals. Different modes185

of calibration exist and must be considered for the model to be fully cali-186

brated. In the following, we evaluate probabilistic calibration and marginal187

calibration. Consider a probabilistic forecast at time t in the form of a pre-188

dictive distribution function Ft(x), and corresponding to the realization xt.189

Probabilistic calibration (Gneiting et al. (2007)) measures the compatibility190

of the probabilistic forecast Ft(x) with the actual realization xt by means of191

the probability integral transform (PIT) defined by pt = Ft(xt). The fore-192

cast is said to be probabilistically calibrated if the PIT follows a uniform193

distribution.194

On the other hand, the marginal calibration (Gneiting et al. (2007))195

compares the long-run distribution of the probabilistic forecast F (x) :=196

1
T

∑T
t=1 Ft(x) to the long-run (climatological) distribution of the data, pro-197

vided that the data is stationary. In meteorological terms, the assumption198

of stationarity of the data corresponds to the common assumption of the199

existence of a stable climate.200

To evaluate the model performance we consider as the benchmark the201

seasonal climatology, which is often used within the wind energy industry202

for such long-term wind energy prediction (Pinson and Kariniotakis (2009)).203

Indeed, the persistence and autocorrelation of the wind disappear after 5 days204

at most so that the seasonal pattern is the only information that remains in205

absence of additional data.206
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Probabilistic calibration.207

Probabilistic calibration is assessed using the Probability Integral Trans-208

form (Gneiting et al. (2007)). By applying, at each time step, the predicted
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Figure 2: Example of a PIT histogram for one point in France (49.5◦N/2.25◦E), for the
model (a.) and the climatology (b.). The p-value of the KS test performed on the 3 days
sampled PIT is indicated. In this particular example the null hypothesis of uniformly
distributed PIT is not rejected at the 5% confidence interval for neither the model nor the
climatology.

209

Cumulative Distribution Function (CDF) Ft(·), to the actual value yt, we210

obtain a sample (F (yt))
T
t=1 of values in [0, 1], which must follow a uniform211

distribution on [0, 1] if the forecast is probabilistically calibrated. Unifor-212

mity of the PIT can be evaluated visually by ploting its histogram, usually213

referred to rank histogram in meteorology, (Figure 2), or more rigorously by214

performing a Kolmogorov-Smirnov (KS) test on the sample. The KS test215

is to be performed on independent and identically distributed random vari-216

ables. Hamill (Hamill (2000)) shows that the correlated errors of samples can217

lead to misinterpretation of the PIT while testing uniformity. The samples218

thus have to be spaced far enough in space and time to be reasonably close219

to being independent. As the daily mean wind speed is autocorrelated up to220

time scales of about 3 to 5 days, so is the PIT. Figure 3 shows the autocor-221

relation of the entire sample of the PIT (Fig 3 a) and of the PIT resampled222

every 3 days (Fig 3 b). After 3 days, the sampled PIT shows little or no223

autocorrelation and the KS test is thus performed on a 3 day sampled PIT.224

Marginal calibration.225

Marginal calibration can be seen as a way to ensure that the actual cli-226

matology of the wind speed over the validation period is well represented by227
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Figure 3: Autocorrelation of the PIT of the model (bold black curves) and the climatol-
ogy (green curves), as function of the time lag : for the entire PIT sample (a) and for
the PIT sampled every 3 days (b). The straight line represents the spatially averaged
autocorrelation, and the dashed lines represent the 20th and the 80th percentiles.

the model. Actual climatology refers here to the probability density function228

of the wind speed over the validation period (and should not be confused229

with the past seasonal climatology computed on the fitting period, taken as230

a predictive distribution of reference). Marginal calibration can be assessed231

visually by plotting the difference between the climatological CDF on the232

validation period and the mean predicted CDF given by the model.233

Figure 4 shows the marginal calibration computed using the probabilistic234

model (black dashed line) and the past seasonal climatology (black solid235

line) on the validation period at one grid point in the center of France236

(49.5◦N/2.25◦E).237

To highlight the fact that part of the deviation comes from the statistical238

variations of the samples, we generate fifty random samples from the distribu-239

tion of the actual wind speed over the 17 years of validation period (actual240

climatology) estimated by KDE. From these random samples we compute241

fifty different resampled actual climatologies, and calculate the difference242

between the distribution obtained for each one of them and that of the ac-243

tual climatology. The red solid line represents the mean difference between244

the actual climatology and resampled actual climatologies, and red dotted245

lines represent the 20th and 80th percentiles. We see that for this particu-246

lar point the curve corresponding to the past seasonal climatology is outside247

this bootstrap-style confidence interval, while the curve corresponding to our248

probabilistic foreacast is well inside it.249

In order to visualize marginal calibration on a map, we compute at each250
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Figure 4: Difference between the actual CDF (actual climatology) on the validation period
and : the mean predicted CDF (bold black solid line), the mean past seasonal climatology
(black solid line), the mean of the resampled actual climatologies (red solid line), the 20th

and 80th percentiles of the resampled actual climatologies (red dotted lines) for one point
in France (49.5◦N/2.25◦E).

grid point the Mean Absolute Errors (MAE) between those distributions.251

MAE is calculated following the equation.252

MAE =

∫ ∞

−∞
|Freal(Y )− Fpred(Y )|dy (5)

The model is considered marginally calibrated if the computed MAE defined253

above is less than the 95th percentile of the MAE computed for the so called254

resampled actual climatologies.255

Sharpness.256

Sharpness refers to the width of the predictive distribution, that is to257

say, the accuracy of the forecast. Confidence interval widths are therefore258
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good diagnostics of the sharpness of a probabilistic forecasting model. In this259

paper, the 90% confidence interval width is used as measure of sharpness.260

Continuous Ranked Probability Score (CRPS).261

The Continuous Ranked Probability Score (CRPS) is a widely used scor-262

ing rule in meteorological probabilistic forecasts (Candille et al. (2007); Can-263

dille and Talagrand (2005)). It aims to evaluate both calibration and sharp-264

ness simultaneously. The CRPS for a single predictive distribution F and265

realization yt is defined by:266

CRPS(F, yt) =

∫ ∞

−∞
(F (y)− 1(y≤yt))

2dy (6)

with 1(y≤yt) being defined as :267

1(y≤yt) =

{
1, if y ≥ yt.

0, otherwise.
(7)

For the entire sample of size T we define the CPRS by

CPRS =
1

T

T∑
t=1

CPRS(Ft, Yt).

3.2. Optimization of the model268

In this section we discuss the choice of the number of principal compo-269

nents to be used in the model. By adding more PCs, the variability of the270

large scale circulation is better accounted for, but too many PCs can also271

lead to overfitting and thus poor calibration of the model. Depending on the272

region, the optimal number of PCs can be estimated. For example, although273

the onshore wind variability can be partially explained by the large-scale at-274

mosphere circulation, smaller scale phenomena such as topography effects,275

can have a significant influence on the wind speed. Conversely, offshore wind276

speed is more regular and obviously not impacted by orography so that large-277

scale atmosphere circulation is the main driver of its variability at those long278

timescales.279

To determine the optimal number of PCs we increase their number from280

5 to 30 with an increment of 5 (which corresponds to 6 different models)281

and evaluate the probabilistic and marginal calibration and sharpness on the282
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validation period of 17 years for the model based on the index computed283

with the corresponding number of PC.284

Unexpectedly, marginal calibration shows no significant variation depend-285

ing on the number of PC (no more than 10% of the statistical error), probably286

because of the CDF averaging effect. Conversely, probabilistic calibration287

and sharpness show high sensitivity to the number of PC (Figure 5). Unfor-288

tunately, on average, adding PCs sharpens the model, but also decalibrates289

it (Figure 5 a and c).290
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Figure 5: a. Spatially averaged p-value of the KS test performed on 3 days sampled
PIT used to assess probabilistic calibration ; b. Spatially averaged MAE between actual
climatology and the predicted climatology given by the model used to assess marginal
calibration ; c. Spatially averaged 90% confidence interval width used to assess sharpness.
All three graphs are plotted as function of the number of PCs used to fit the index. The
black line with point markers is the average over the entire domain, the black doted line
with ’x’ markers is the average over the offshore part of the domain, and the black doted
line with ’+’ markers over the onshore part of the domain.

In our final model, we use the following methodology to choose the opti-291

mal number of PCs for each location. We first test the null hypothesis that292

the PIT follows a uniform distribution with a 95% confidence level using the293

3 days sampled PIT for each model. If the hypothesis is not rejected for294

any of the 6 models corresponding to different numbers of PCs, we keep the295

model which maximizes the sharpness. If the null hypothesis is rejected for296

all 6 models, we keep the model that maximizes the p-value of the KS test,297

with the risk to have a non-calibrated model.298

Figure 6 shows the result of the choice described above. Over the northern299

half of the domain and along the western coast of France, a large number of300

PC (> 15) is required to build the index meaning that the variability can be301

explained by shorter scale phenomena without compromising the calibration302

quality of the model. This results in a sharper model than when using less303

PCs. Conversely, for offshore wind taking a large number of PCs reduces the304

calibration quality.305
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Figure 6: Optimal number of PCs used to fit the index of the model determined using the
optimization process described in the text. ’x’ markers show points where the model is
not calibrated (Figure 7).

In the southeast of France, over the Mediterranean coast and the sea, we306

can find a clear signature of the orography. Offshore, the Mistral, which refers307

to the strong wind blowing over the Mediterranean sea after being channeled308

in the valley formed by the Alps and the Massif Central (Drobinski et al.309

(2017)), can be identified by an intermediate number of PC (20-30). The310

Tramontane also refers to an orographic wind blowing over the same region311

but channeled in the valley formed by the Pyrenees and the Massif Central312

(Brossier and Drobinski (2009)) (Fig 1 b). South of the Alps, the model is313

not calibrated, and south of the Massif Central only 5 PCs are used resulting314

in model that is less sharp.315

3.3. Evaluation of the optimized model316

Figure 7 shows the results of the KS test performed on the 3 days sampled317

PIT given by the optimized model (Fig 7 a and b) and the climatology (Fig318

7 c and d). The p-value for the climatology ranges between 0 and 0.8, while319

it ranges between 0 and 0.5 for the model. The null hypothesis of adequate320

calibration is not rejected in the North part of the domain for the model,321

while for the climatology this hypothesis is rejected over the North part of322

the domain. The climatology does not represent the law of the wind well323

in those regions but the probabilistic model represents it quite well (Fig324

7 b and d). This can be surprising as the climatology is built using 20325

years of data which may seem to be sufficient to ensure calibration over a326

14



period of the same length. Nevertheless, it has been shown that annual wind327

trends can be significant over 1 to 2 decades in this region (Jourdier (2015)).328

Using only the past five years of wind speed data to build the empirical329

seasonal CDF allows to follow those trends. This sliding CDF displays a330

null hypothsis of adequate calibration which is not rejected over the entire331

domain. Nevertheless, it performs as well as the seasonal climatology in terms332

of sharpness (Not shown). In the South of the domain, the model and the333

climatology perform similarly in terms of probabilistic calibration showing334

large non-calibrated areas. Indeed, the region is very complex and strongly335

influenced by orography. This complexity seems to be hard to recover with336

the information on the season only (climatology) or the information on the337

large-scale circulation (model).338

Figure 8 shows the MAE between the real climatological CDF over the 13-339

year validation period and, on the one hand, the averaged CDF predicted by340

the model (Fig 8 a.) and on the other hand the climatological CDF based on341

the 20 year fitting period (Fig 8 b). We can clearly see a strong correlation342

between marginal calibration and probabilistic calibration. The model is343

considered marginally calibrated if the computed MAE is inferior to the344

95th percentile of the MAE computed for the resampled actual climatologies.345

Applying this criterion to MAE computed for the model and for the past346

seasonal climatology gives a map (not shown) which is very similar to those347

in Figures 7c and 7. If the model or the climatology is probabilistically348

calibrated in a given location, it is also marginally calibrated there. Overall,349

for both calibration criteria, the calibration of the model is at least as good350

as that of the climatology and often much better.351

Figure 9 displays the 90% confidence interval width averaged over the vali-352

dation period for the model (IC90mod) (Fig 9 a) and the climatology (IC90clim)353

(Fig 9 b), and the ratio of IC90clim to IC90mod (Fig 9 c). The first striking354

observation is that the 90% confidence interval is much larger offshore than355

onshore for both the model and the climatology. This highlights the fact that356

even if the wind may be more regular, it can also be much stronger because357

of the low roughness, so that the difference between weak and strong wind358

events is by far larger than onshore. The signature of the Mistral and Tra-359

montane is clear (Fig 9 a, b), with even larger interval width that may come360

from the bimodal distribution of the wind speed in this region (Drobinski361

et al. (2015)).362

Over the entire domain, on average, the model is sharper than the clima-363

tology. The model does not perform more than 50% better than the clima-364
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Figure 7: Left graphs: p-value of the KS test performed on the 3 days sampled PIT of
the model (a.) and the climatology (b.) and for the empirical seasonal CDF based on the
last five years of wind speed (e). Right graphs: the blue area (0 value) shows the regions
where the null hypothesis of adequate calibration is rejected for the model (b) and the
climatology (d) and for the empirical seasonal CDF based on the last five years of wind
speed (f).
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and ’+’ markers on panel b. show respectively points where the model and the climatology
are not probabilistically calibrated.
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Figure 9: 90% confidence interval width averaged over the validation period, for the model
(a.) and the climatology (b.). Panel c. displays the ratio of the confidence interval width
of the climatology over the model. ’x’ and ’+’ markers indicate places where respectively
the model or the climatology are not calibrated.

tology, except in the northeast of the domain. Over the north of France, the365

model is sharper than the climatology by more than 40% which is encourag-366

ing because of the high wind energy potential in those regions. Unfortunately,367

over the west Atlantic ocean, the model is not as sharp as expected compared368
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to climatology, but still, it performs 20% to 30% better. Over the south of369

France, in addition to the bad calibration of the model, its performance in370

terms of sharpness is not as spectacular as in other regions. Again, this can371

be due to the complexity of the wind variability in this region.372

- - All seasons Winter Spring Summer Fall
Model Mean IC90 5.2 5.5 5.1 4.8 5.4

σ 2.1 2.3 2.0 1.9 2.2
Climatology Mean IC90 6.9 7.9 6.4 5.8 7.7

σ 2.4 2.7 2.1 2.1 2.6
Ratio IC90clim/IC90mod 1.3 1.4 1.2 1.2 1.4

Table 1: 90% confidence interval width (IC90) (m.s−1) averaged on the validation period
and on the whole domain, for all seasons, and every season separately, for the model and
the climatology.

By averaging the interval width separately for each season, we can high-373

light a strong seasonal variability of the interval given by the climatology,374

which is not so noticeable for the model (Table 1). Thus, the model shows375

even better performance compared to the climatology in winter and fall (40%376

sharper than climatology on average over the domain) which are the seasons377

when the risk of high LOLE may be larger because of low temperature. The378

model is 80% sharper than the climatology in the northeast regions in winter379

and fall (not shown). Differences between land and sea are present for all380

seasons, and the Mediterranean region is always more problematic.381

The CRPS of the model and the climatology should inform us on both382

the calibration and sharpness. It is expressed in the same units as the pre-383

dicted quantity (m.s−1 in the case of wind speeds) and reduces to the MAE384

for point forecasts. Figure 10 shows the mean CRPS on the validation pe-385

riod, for the model (Fig 10a), the climatology (Fig 10b) and the ratio of386

CRPSclim/CRPSmod (Fig 10c). All panels are very comparable to those of387

Figure 9. Even if there is no doubt that the CRPS adresses both calibration388

and sharpness, on average, it appears to put too much weight on sharpness.389

For instance, over the Alps, the model is not calibrated, nevertheless the390

CRPS has very low values, indicating that the model has good performance.391

The CRPS values do display a very significant difference between land and392

sea, and so does the confidence interval width. It is thus clear by comparing393

figures 9 and 10 that the average CRPS is informative about the sharpness394

of the model more than about its calibration quality.395
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Figure 10: CRPS of the model (a.) and the seasonal climatology (b.). ’x’ marker on
panel a. and ’+’ markers on panel b. show respectively points where the model and the
climatology are not calibrated. c. is ratio of the CRPS

4. Forecasting the wind at the monthly and seasonal horizon396

4.1. Methodology397

To make monthly / seasonal forecasts with our model, we must take into398

account the uncertainty of the Z500 forecast, and thus also of the index. The399

seasonal ensemble forecasts of ECMWF are based on 41 members displaying400

a large range of possible Z500 fields. For each member, we first calculate401

the values of the principal components by projecting the corresponding Z500402

field onto the EOFs identified during the stage of model calibration. Next,403

for each member of the ensemble forecast, and for each location where sur-404

face wind speed forecast is needed, we compute the corresponding index405

value using equation (1), where the coefficients βi were identified during406

the stage of model calibration. This gives us an ensemble of index values407

I1, . . . , In. From this ensemble we construct the predictive distribution of in-408

dex values, denoted by µ. This can be done in two different ways. The first409

method (raw forecast) consists in taking simply the empirical distribution of410

I1, . . . , In, that is, µ = 1
n

∑n
k=1 δIk , where δx is the point mass at point x.411

The second method uses statistical post-processing of the ensemble forecast412

to construct a distribution µ with better calibration / sharpness properties413

than the raw forecast. In this paper, we use the Ensemble Model Output414

Statistics (EMOS) method, described below, for forecast post-processing.415

Once the predictive distribution for the index has been constructed, the416
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density of the predictive distribution for the surface wind speed given the417

forecast p(y|F ) is obtained by integrating the density of the conditional dis-418

tribution of the wind speed given the index with respect to the predictive419

distribution of the index:420

p(y|F ) =

∫ ∞

−∞
p(y|I = x)µ(dx), (8)

This should produce a less sharp model with a higher chance to be calibrated421

than if only the mean of the forecast ensemble is used.422

Ensemble Model Output Statistics - EMOS.423

To recalibrate and sharpen a forecast ensemble different statistical post-424

processing methods exist such as the Bayesian Model Averaging (BMA)425

(Möller et al. (2013); Raftery et al. (2005); Sloughter et al. (2013)) or the En-426

semble Model Output Statistics (EMOS) (Gneiting et al. (2005); N.Schuhen427

et al. (2012); Thorarinsdottir and Gneiting (2010)). EMOS aims at recali-428

brating the distribution of ensemble forecasts, but also at sharpening it. This429

method is inspired by Gneiting et al. (2005) apart from the optimization al-430

gorithm. This method is based on the assumption that µ has a normal431

distribution N(mI , σI), where mI is a weighted linear combination of the432

index values of the ensemble,433

mI = b0 +
n∑

m=1

bmIm, (9)

and σI is parameterized by434

σI = c+ dVar(I), (10)

where Var(I) is the empirical variance of the ensemble.435

The parameters of the EMOS method b0, . . . , bn, c and d are estimated436

as follows. In the first step of the estimation procedure, on the training437

period, set to three years in this study, we perform a linear regression of438

the index I computed from the actual ERAI-reanalysis on the index values439

I1, . . . , In computed from the ECMWF seasonal forecasts. This gives us440

a first estimate of b0, . . . , bn. In this first step we set c = 0 and d = 1.441

Then, in the second step, we improve the first-step estimates by minimizing442

the Continuous Ranked Probability Score (CRPS) of the forecasts, averaged443
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over the training period, seen as function of the parameters b0, . . . , bn, c and444

d using the Powell algorithm (Powell (1964)).445

In the end, we obtain a set of parameters b1, ..., bm, c and d that min-446

imize the CRPS score. The minimization of the CRPS must optimizes the447

calibration and the sharpness. We apply the obtained parameters on the448

remaining year of forecasts to estimate the gaussian distribution N(mI , σI)449

of the index and then integrate over this distribution as in eq (8). The pro-450

cedure is repeated 4 times by training on three different years and testing451

on the remaining year. This results in 48 EMOS forecasts of the daily mean452

wind speed distribution at the seasonal horizon.453

4.2. Results454

Figure 11 displays the p-value of the KS test performed on the 3 days455

sampled PIT of the 4 years of forecasts2, for the climatology (Fig 11 a),456

raw forecasts (Fig 11 b), and EMOS forecasts (Fig 11 c). The colorbar is457

designed to test the null hypothesis at 95% confidence. Regarding this test,458

forecasts are not calibrated in the northeast part of France which disagrees459

with the test performed on the validation period. As this behaviour is quite460

comparable to the climatology, this suggests that the fitting period of 20461

years used to build the model and climatology may not be representative462

enough of the wind in the forecasting years in those regions.463

Figure 12 shows the ratio IC90clim/IC90mod averaged at 15 days (Fig 12464

a.), monthly (Fig 12 b.) and seasonal horizon (Fig 12 c.) for raw forecasts465

(black dots) and EMOS forecasts (green dots), for all forecast years.466

The accuracy decreases with the forecast horizon. It appears that the467

forecast is quite sharp within 15 days and deteriorates significantly for larger468

horizons. The largest deterioration occurs between November and February.469

In spring and summer, forecasting performance does not seem to be highly470

sensitive to the forecast horizon.471

Moreover, EMOS forecasts only significantly improves the accuracy with472

respect to raw forecasts, in winter and fall, especially at monthly and seasonal473

horizon. Raw and EMOS forecasts at 15 days horizon are almost always474

2Note that we only have 48 independent forecasts which is not enough to test calibra-
tion. To get around this difficulty, we use forecasts obtained at the same date for different
horizons (3 days, 6 days, 9 days, . . . , 30 days) as if they were independent. Autocorrela-
tion analysis shows that they are indeed uncorrelated. Each forecast thus corresponds to
10 data points.
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Figure 11: p-value of the KS test performed on the 3 days sampled PIT of the 4 years
forecasts, for the climatology (a.), raw forecasts (b.), and EMOS forecasts (c.). Blue
areas correspond to regions where the null hypothesis of calibration is rejected at the 5%
confidence level.

better than the climatology. The improvement with EMOS optimization475

does not seem to be very large at this horizon, most probably because the476

distribution of the index is already very sharp. EMOS forecasts still slightly477

improve raw forecasts by about 5% in the beggining and at the end of the478

year.479

The seasonal variability described in Table 1 is recovered at the 15 days480

and monthly horizon, which is encouraging. At the seasonal horizon, raw481

forecasts performance does not display a strong seasonal variability and the482

ratio is close to one, so the model does not perform better than the clima-483

tology. EMOS forecasts performance displays an even lower intra-annual484

variability but the ratio is systematically around 1.10. This is a very in-485

teresting result as it shows that there is a valuable statistical information486

on the local surface wind speeds in the seasonal forecasts of the large-scale487

circulation post-processed using the EMOS method, which leads to a 10%488

improvement over the climatology on average even at this long timescale.489

Figures 13, 14 and 15 show the ratio IC90clim/IC90mod for each year of490

forecasts, respectively at 15 days, monthly and seasonal horizons, for raw491

forecasts (top) and EMOS forecasts (bottom). A sharp decrease of the ratio492

can be seen between figures 13 and 14. Comparatively, the acuracy decrease493
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Figure 12: Ratio IC90clim/IC90mod at 15 days (a.), monthly (b.) and seasonal horizon
(c.) for every raw forecasts (black cross) - the black slight line represents the mean ratio
; and EMOS forecasts (green dots) - the green bold line represents the mean ratio. Four
forecasted years are 2012, 2013, 2014, 2015.

is less pronounced, between figure 14 and 15. In the northeast of the domain,494

the ratio is the highest so that the model seems to be very sharp, especially495

at the 15 days horizon for the year 2015. This could be the cause of the496

decalibration of the model (Fig 11).497
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Figure 13: Ratio of IC90clim over IC90mod averaged over 12 seasonal forecasts, for fore-
casted years 2012 (a., e.), 2013 (b., f.), 2014 (c., g.), and 2015 (d., h.) at 15 days horizon
for raw forecasts (top) and EMOS forecasts (bottom)

Those figures also show the efficiency of the EMOS method to reduce498
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Figure 14: Same as figure 13 for monthly horizon forecasts.
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Figure 15: Same as figure 13 for seasonal horizon forecasts.

the uncertainty on the index and thus to highly sharpen the model so that499

forecasts at the seasonal horizon give more information on the wind than the500

climatology which is at this moment widely used for such long-term wind501

energy evaluation. The EMOS forecasts display a consistent spatial pattern502

in terms of accuracy for any forecast horizon which is not the case for raw503
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forecasts. Indeed, the performance of raw forecasts displays a noticeable504

inter-annual variability. For instance, at the monthly horizon, forecasted505

year 2015 is comparable to the climatology in the east of the domain while506

year 2012, 2013, and 2014 are sharper than the climatology in this part of507

France. It again highlights the added value of EMOS forecasts compared to508

raw forecasting method, even if a larger sample of forecasted years should be509

analysed to confirm this behaviour. The Mediterranean region is the region510

where the model performs the worst compared to the climatology. This result511

confirms what was found on the validation period. For EMOS forecasts, the512

spatial pattern of the ratio is very comparable to the Fig 9 for any forecast513

horizon and for all years. This is not as clear for raw forecasts. It means514

that the uncertainty on the ensemble forecast is highly reduced by EMOS515

method, but moreover that this method reduces the inter-annual variability516

of the uncertainty of the ensemble.517

5. Conclusion518

A probabilistic model is proposed to predict daily wind speed distribu-519

tion from a few days to seasonal timescale. It is compared to the climatology520

which is often the reference used as the best seasonal forecast for energy man-521

agement. The study shows that the model is better statistically calibrated522

than the climatology and is able to follow very long-term trends of the wind523

speed. On average over France, the model is shown to be 30% sharper than524

the climatology. It is shown to be more accurate than the climatology espe-525

cially onshore, in the northwest regions and in winter and fall.526

We apply the probabilistic model to the seasonal forecast ensemble of527

ECMWF. We test two methods to forecast wind speed with these ensembles.528

The first method uses the empirical density of the raw calculated index,529

and the second estimates the density of the calculated index by optimizing530

calibration and sharpness of the ensemble using the EMOS statsitical post-531

processing technique (Gneiting et al. (2005)). We show that the model is532

able to be more precise than the climatology at 15 days and monthly horizon533

using both methods and that at the seasonal horizon, the EMOS method is534

systematically more precise than climatology.535
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