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Abstract

We hypothesize that the trisomy 21 (Down syndrome) is the additive and
interactive outcome of the triple copy of different regions of HSA21.
Because of the small number of patients with partial trisomy 21, we
addressed the question in the Mouse in which three chromosomal
regions located on MMU10, MMU17 and MMU 16 carries almost all the
HSA21 homologs. Male mice from four segmental trisomic strains
covering the D21S17-ETS2 (syntenic to MMU16) were examined with
an exhaustive battery of cognitive tests, motor tasks and MRI and
compared with TS65Dn that encompasses D21S17-ETS2. None of the
four strains gather all the impairments (measured by the effect size) of
TS65Dn strain. The 152F7 strain was close to TS65Dn for motor
behavior and reference memory and the three other strains 230ES,
141G6 and 285E6 for working memory. Episodic memory was impaired
only in strain 285E6. The hippocampus and cerebellum reduced sizes
that were seen in all the strains indicate that trisomy 21 is not only a
hippocampus syndrome but that it results from abnormal interactions
between the two structures.
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Introduction

Down syndrome, with an extra copy of HSA21, and also known as trisomy
21 (TRS21), has been characterized in a set of 25 traits (Jackson et al.
1976), but with incomplete penetrance. 45-50% of the patients have heart
malformations (Vis et al. 2009). Incomplete penetrance is also the case for
leukemia which is 45 times more prevalent in TRS21 than in the general
population (Boker et al. 2001 ; Janzen et al. 2015; Mezei et al. 2014).
Intellectual disability (ID) is the main characteristic of people with TRS21.
With only a few exceptions, IQ test scores are less than 70 (i.e. below the
normal range threshold). Mean IQ scores for persons with TRS21, between
40 and 50 (Breia et al. 2014 ; Carlier et al. 2011 ; Carr 2012) is only an
estimate, as scores are influenced by demographic characteristics of the
study sample (e.g. age or the institutional environment) and the lowest
score of the IQ test used (40 or 45 on the Wechsler scales, but lower for
other tests). Further bias often occurs for the mean IQ as many individuals
with TRS21 record a minimum score (Carlier and Roubertoux 2014 ;
Couzens et al. 2011 ; Roubertoux and Carlier 2009 ; Tsao and Kindelberger
2009) while others cannot be assessed because of their poor language
skills and/or the severity of their behavioral disorders. Attention, learning,
planning, cognitive flexibility, memory and linguistic abilities are affected
(Costanzo et al. 2013 ; Grieco et al. 2015; Lanfranchi et al. 2010; Vicari
2006). Of the 25 traits used to draw up the clinical picture of TRS21
(Jackson et al. 1976), intellectual disability is therefore the only one with
near-complete penetrance (Antonarakis et al. 2004 ; Grieco et al. 2015),
which makes the discovery of chromosome 21 (HSA21) genes associated
with ID the main challenge of research on TRS21. It is difficult to identify
the HSA21 genes with their triple copy being associated with ID because
of the small number of segmental trisomies (Higurashi et al. 1990;
Poissonnier et al. 1976). Another difficulty is the heterogeneity of the
cognitive profile as some cognitive processes are strongly impacted while
others are less impaired (Chapman and Hesketh 2001 ; Lavenex et al.
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2015; Patterson et al. 2013 ; Vicari and Carlesimo 2006). This
heterogeneity and the lack of validity of certain cognitive measures can

explain discrepancies between studies (Delabar et al. 1993 ; Korenberg et
al. 1994; Lyle et al. 2009).

The mouse model provides an option for overcoming the problem of the
small number of segmental trisomies in Man. HSA21 encompasses
between 210 (Hattori et al. 2000) and 283 protein-coding genes (Watanabe
et al. 2004). Most are orthologs to mouse genes and are located on three
syntenic regions: MMU10, MMU16 and MMU17.The estimated number of
genes carried by the three regions varies according to the sequencing
method and to the criteria. MMU10, MMU16 and MMU17 included nearly
41, 113 and 19 orthologs respectively (Fig. 1a). No involvement of a triple
copy of MMU10, between Pdxk and Prmt2,/u et al. 2010a) (see Fig. 1g)
has been found in cognitive performance. A—triple copy of MMU17
(limited by Abcg! and U2af1 (Pereira et al. 2009) — Fig. 1 I-or by 4bcg!
and Rrplb (Yu et al. 2010a) Fig. 1)) had no effect on cognitive
performances. If a triple copy of MMU17 alone does not impair cognition,
two MMU17 copies are necessary for rescuing the wild phenotype of
MMU16 in full mouse model gathering the 10, 16 and 17 regions (Zhang et
al. 2014). But an extra copy of the telomeric end of MMU16 alone
generates brain abnormalities and cognitive deficit. The segmentally
trisomic strain Ts65Dn that carries a Robertsonian translocation of nearly
all the MMU16 genes (from Mrpl-39 to Znf295) excluding the Lipi to
Mrpl-39 region (Fig. 1b, h) is associated with cognitive deficit, as reported
in more than 30 studies (Roubertoux and Carlier 2009 ; Seregaza et al.
20006).

Fig. 1

Mouse models of TRS21 produced by triplicating a mouse chromosome
fragment, with the names of the genes bounding the fragments (a—j). a
Syntenic regions of HS21 in the mouse genome (MMU10, MMU16 and
MMU17). b Ts65Dn strain (Davisson et al. 1990; Reeves et al. 1995). ¢
MS1Ts65 (Sago et al. 1998). d TsCje (Sago et al. 2000). e Ts1Rhr (Olson et
al. 2007). f Euploid mice for the Tsl1Rhr region only (Belichenko et al.
2009; Olson et al. 2007). g Dp(10)1Yey/+, mice trisomic for MMU10 (Yu et
al. 2010a, b). h Dp(16) Yu, mouse trisomic for MMU16 (Yu et al. 2010a,
b). i TsYah, mouse trisomic for 12 genes in the MMU17 region (Pereira et
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The genes contributing to the brain and cognitive defects of a triple
MMU16 seem located to its telomeric end. When the Ts65Dn was split
producing two partial strains, Ms1Ts65 and Ts1cje (Fig. 1¢, d), cognitive
deficits were observed only with the telomeric part of Tslcje (Sago et al.
1998, 2000). The telomeric part of Ts1cje is also telomeric on Ts65Dn and
contains a region corresponding to the 21q22.1 and 21q22.3 cytological
bands of HSA21 that is overlapped by the D21S17-ETS2 human region.
One of the segmental trisomic mice with human fragments covering the
D21S17-ETS2 region shows cognitive defect (Chabert et al. 2004 ; Smith
et al. 1997). When the same fragments were incorporated in euploid mice
(Fig. le), it was expected that the Cbrl to C2lorfll segment
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encompassing the D21S17-ETS2 syntenic region would lower both
synaptic plasticity and cognitive performance; and the reverse was
expected when the Cbrl to C21orfll segment was removed from trisomic
mice (Fig. 1f), but this was not the case. Olson and colleagues did not
observe cognitive impairment in the mice with the Morris Water Maze
(MWM), or with long-term potentiation (Olson et al. 2004 ). Unexpectedly,
data from another study of the same group provided evidence linking the
Cbrl to C2lorfll triple copy with cognitive deficit when testing other
cognitive tasks (alternation task and novel object recognition) (Olson et al.
2007). Differences between the cognitive processes tested in the two
studies may contribute to discrepancies in the findings results.

We hypothesize that a triple copy of a HSA21 syntenic fragment that
generates ID does not impact all the cognitive functions. We assume, in
other words, that the segmental trisomic mice have different profile for
cognition, motor behavior and brain structures that are impaired in TRS21.
We therefore chose to use tests to produce a wide range of cognitive
measures, following the analyze by Milner, Squire and Kandel (Milner et
al. 1998). We also tested motor activity as atypical motor development
was included in traits reported by Jackson (Jackson et al. 1976); and we
performed volumetric measurement of brain structures as observations of
human patients showed the HSA21 triple copy to have a strong effect on a
number of brain structures (Menghini et al. 2011; Roubertoux and Carlier
2009). We used four strains of mice integrating extra copies of fragments
covering D21S17-ETS2 (Smith et al. 1997) to test the heterogeneous
profile hypothesis. These four were compared with both euploids and
Ts65Dn mice because it encompasses the D21S17-ETS2 segmental strains.

Materials and methods
Mice

The first group of mice is the Ts65Dn strain carrying a Robertsonian
translocation of a MMU16 fragment (Davisson et al. 1990) bounded by
Mrpl39 and Znf295 and encompassing approximately 113 genes
(Antonarakis et al. 2004 ). We used C57BIl/6JEi1 x C3H/Hel. F2 as controls
(Coussons-Read and Crnic 1996). Ts65Dn and C57B1/6 J x C3H/Hel
controls were supplied by The Jackson Laboratory. The second group had
four strains each carrying a fragment of human chromosome 21 (HAS 21)
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covering the D21S17-ETS2 region (Fig. 2a). Each strain had two
sub-strains replicating the same HSA21 fragment. We selected sub-strains
50, 4, 12 and 67 to cover the D21S17-ETS2 region as they carry only one
extra copy of the HSA21 fragment and are therefore more relevant for
modeling the syndrome. The mice with an extra fragment from HSA21
have an FVB background. They are albino and they carry a recessive
mutation causing retinal degeneration. By the age of 3 months they are
blind. One prerequisite for the experiment was to cross blind and albino
FVB males with C57BL/6 females that have pigmented eyes and that did
not have the mutation as most of the cognitive tasks involved visual cues.
The euploid controls (C57BL/6 x FVB) were non-transgenic littermates.
They were compared with the C57B1/6 J x C3H/HelJ for each measure.

Fig. 2

Segmental trisomies of the D21S17-ETS2 region (a, b). a Segmental
trisomies 21 produced by inserting human contiguous fragments in the
D21S17-ETS2 region of HSA21 (Smith et al. 1997). b Interactions between
the proteins encoded by these genes as resulting from the analysis of the 14

proteins encoded by the D21S17-ETS2 segmental trisomies with String
(Szklarczyk et al. 2015)
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The C57BL/6 mice were purchased from Charles River France; the 230ES,
141G6, 152F7 and 285E6 breeders were kindly donated to P.L. Roubertoux
by Ed. Rubin and were from the European Mouse Mutant Archive
(EMMA). EMMA ID for breeders: 01302—01304, 01237, 01238, 01245,
01246, 01748 ( https://www.infrafrontier.eu/search ). Genotyping was done
by PCR using the primers as described by D. Smith and as previously
reported (Chabert et al. 2004).

The testing schedule was designed to avoid the effects of excessive
handling, learning transfer and fatigue. Batch 1 (62 mice, aged

85—-107 days): open field, recognition of novel object; batch 2 (78 mice,
88—99 days): radial maze, traction strength; batch 3 (79 mice,

92-100 days): fear conditioning, hind limb coordination and brain MRI;
batch 4 (72 mice, 91-102 days): water maze, hole-board and batch 5@72
mice, 100-106 days): visible platform (water maze), sensorial testing and
brain samples. The order of the tests was counterbalanced across mice
within batch. Only male mice were tested in this study as no trisomic
female was obtained in the strains 152F7 and 141G6. The design included
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363 male mice. Sample sizes are detailed in the captions to diagrams.

Housing

Grouped males display frequently agonistic behavior (Ginsburg BE 1942;
Maxson and Canastar 2003 ). Males with B6.FVB background display
aggressive behavior and they could not be housed together. Social isolation
generates undesirable physiological and brain effects that can be permanent
(Volden et al. 2013). Each male to be tested was housed with a female to
avoid these biases. Transparent 35 x 20 % 18 cm cages were used with
woodchip poplar bedding, dome house for enrichment, food (Harlan Global
Diet 2018) and water ad /ib and a 12/12 light/dark period with lights on at
7 AM.

Transcription of the genes carried by euploids, and the
230E8, 141G6, 152F7 and 285E6 strains

We limited the analysis to the hippocampus and the frontal association
cortex, known for their implication in cognitive functions. All brain
dissections were made on ice. We first extracted the hippocampus from six
mice in each segmental trisomic strain and from 24 euploid mice. The
same numbers were used for the frontal association cortex, obtained by
coronal section as described (Palkovits and Brownstein 1988). The whole
brain was placed on the refrigerated platform of a manual cryostat. We
retrieved a large slice from bregma 3.20 to bregma 2.58, Fig. 04 to 09 of
the stereotaxic atlas (Paxinos and Franklin 2004 ) then took four fragments
per slice using a micro-dissection needle (trocar diameter 1 mm) from the
frontal association cortex in the upper peripheral part of the brain. The
brain samples were preserved in liquid nitrogen. Validation of the micro-
dissection was done after fixation of the bregma 3.20-bregma 2.58 slice in
paraformaldehyde, 20 p-thick slide slicing and cresyl violet acetate from
Sigma, staining and examination under microscope. We performed RNA
extraction with the RNeasy Lipid Tissue Mini Kit (QIAGEN).
Hybridization of the RNA (one euploid mouse and one segmental trisomic)
was performed with the Whole Mouse Genome Microarray Amp Labeling
Kit, Two-Color Kit (Agilent Technologies). The transcripts were counted,
controlled and normalized as previously described (Bourgeois and
Roubertoux 2015). Within-strain comparisons were performed on euploid
and co-hybridized trisomic mice (matched student #) and the comparison
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was expressed as log2 of the mean value of the ratio number of transcripts
in segmental trisomic mice/number of transcripts in segmental euploid

mice.

Interactions between proteins coded by genes in the
D21517-ET52 region

Proteins encoded by the genes on the four fragments were entered into the
Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), and

we detected interactions between proteins above the medium confidence
threshold (Szklarczyk et al. 2015).

Control for sensorial impairment

We controlled mice for visual, auditory and pain perception according to
the protocols previously presented (Caubit et al. 2016).

Cognitive measures

We selected six cognitive tasks to cover the processes underlying the
memory classification of Milner, Squire and Kandel (Milner et al. 1998).
Reference memory was measured by the ability to locate the platform in
the MWM. Working memory was measured by the number of errors in a
version of the 8-arm radial maze (RAM) (Liu et al. 2011 ; Matynia et al.
2002). Episodic memory was assessed using the novel object recognition
test (Ennaceur and Delacour 1988; Lyon et al. 2012). For associative
memory we used cued conditioning in the emotional response test. For
discriminative memory we used the altered context version of the
fear-conditioning test (Contarino et al. 2002). We add the exploratory
behavior that plays a crucial role in learning (Arenas et al. 2014;
Sanderson and Bannerman 2011 ). It was assessed using an automatic
hole-board.

The MWM measures a mouse’s ability to find a submerged resting platform
(P) concealed beneath opaque water, an exercise requiring the use of
extra-maze visual cues which are provided in the room (Upchurch and
Wehner 1988). The platform was a glass cylinder (7 cm diameter)
positioned 25 cm from the edge of a 100 cm diameter circular tank filled
with water 26 £ 1 °C and light at 70 1x on the surface. Each mouse
performed 2 blocks of 4 trials each, every day for 4 successive days: one
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shaping block (data not included here) and 7 test blocks. A trial lasted 90 s
when the mouse failed to reach the platform. We considered that the mouse
had reached the platform when it stayed on the platform for 5 s at least. At
the end of a trial, we presented a small metal shelf to the mouse (in water
or on the platform) that climbed on it and was transferred in a cage with
dry sawdust for 120 s. We had previously assigned four virtual cardinal
points to the tank, each being the starting point for a trial. The starting
point for each trial was chosen randomly and within a block the mouse
never started more than once from the same virtual cardinal point. We
measured and reported the “time to reach the hidden platform” (P) over 7
blocks. Strains can achieve different performance levels between blocks,
but without a cumulative reduction in the time to reach the platform, which
is the criterion to identify learning process. We computed and reported “the
slopes of the learning curves”, a negative and significant slope indicating
learning behavior. The probe-test procedure, conducted after removing the
platform, was done 24 h after block 7 to meet the requirements for
reference memory and lasted 90 s. The mouse was placed in the center of
the tank, and we measured the time of first crossing the virtual annulus
corresponding to P. The variable is reported as the “latency to reach the P’
virtual platform”. Time spent in the quadrant containing the platform is
generally reported as an indicator of the ability to locate the platform, but
we did not use that index as it gave the same scores for regions of the
quadrant that were not equidistant from the center of the platform, and also
because it interferes with thigmotaxis. We measured activity on the virtual
P” region, concentric to P and covering the same surface area (radius:

25 cm) as a quadrant. The measure included the number of visits in P’. It
was labeled “number of visits in P during the probe test”. We subjected a
group of naive mice to the visible-platform version of the test, with the
platform 5 mm above non-opacified water to check whether the differences
in the time to reach the platform were due to vision and/or swimming
abilities rather than learning ability. The score was reported as “time to
reach the visible platform”. The measure of swimming ability in the MWM
was calculated during the 90 s of the probe test: “distance swum”
expressed in mm. The time to reach the platforms was automatically
measured using a Video track setup (Viewpoint- Behavior technologies:
http://www.viewpoint.fr/news.php ).

The RAM @sisted in finding a food pellet in each of eight arms of the
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maze by using extra-maze visual cues. The male mice were previously
subjected to a diet until it reached 90% of its initial body weight when the
learning experiment started. Briefly, a tested male was housed in an
individual cage and it received a small quantity of pellet (between 4 to 7%
of the initial body weight). The males were weighted and fed daily at 7 PM.
They were housed in a new clean cage to prevent food hoarding. The
amount of food was daily adjusted to the body weight reached by the
mouse. Mice were habituated to the maze on the first day, then trained for
5 days (Roubertoux et al. 2003 ). An error was counted when the mouse
entered an arm it had already explored in the same session (Hodges 1996).
Data describe the learning performance during five consecutive days. We
report the slope of the learning curve and the total number of errors.

We used a modified Ugo Basile fear conditioning system for altered
context and cued fear conditioning with the protocol over two successive
days as used by (Wehner and Radcliffe 2004 ). On day 1, the mouse was
placed in the plastic box fit with a loudspeaker emitting a composite sound
of 70 db and an electrified grid floor connected to a constant current
shocker: current from 0.1 to 2.9 mA in 0.1 mA steps. Light was 40 Ix at
ground level. The mouse was allowed to explore the box for 5 min, and
was then subjected to the sound for 20 s, followed by a 2 s pause, then an
electric stimulus (0,9 mA) lasting 2 s. The paired sound-electric shock was
repeated 120 s later. On day 2, the mouse was placed in the modified box
where a removable partition had halved the surface area (altered context)
and was left there for 300 s. The mouse was then taken back to its home
cage. One hour later it was placed in the non-modified box and subjected
to a 20 s sound. We recorded the number of freezing episodes during the
300 s in the altered context and during the 300 s after the sound was
emitted in the non-modified box. A freezing episode was defined as the
absence of any movement except for respiration. We choose to measure the
number of freezing because of its high reliability (Wehner et al. 1997).
The altered context conditioning score (discriminative memory) was the
difference between the number of freezing episodes in the 300 s prior to
the first auditory stimulus (day 1) and the number of freezing episodes in
the 300 s spent in the altered context (day 2). The “cued associative
conditioning score” (associative learning) was the difference between the
number of freezing episodes in the 300 s prior to the first auditory stimulus
(day 1) and the number of freezing episodes in 300 s after the auditory

hp?token=23-K...
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stimulus (day 2) (Wehner and Radcliffe 2004 ; Wehner et al. 1997).

The novel object recognition test is based on the observation that the
replacement of a familiar object by a new object induces an
over-exploration of the object by rodents. The number of contacts when
exploring expresses the intensity of the recollection (Ennaceur and
Delacour 1988). Two identical 3 x 2 cm washable plastic objects were
placed in an arena with low lighting (65 1x at ground level). The mouse
was left free to explore the setup for 10 min. Twenty-four hours later, the
mouse was put in the same experimental conditions, but one of the two
objects had been replaced by a differently shaped object. The number of
contacts when exploring (nose contact with an object) was counted for
each object. The “novel object recognition score” was the number of
contacts with the novel object minus the number of contacts with the
familiar object (day 2).

Exploratory activity was measured using an automatic hole-board
apparatus: a gray plastic board with four rows of four holes evenly spaced,
30 mm in diameter and each with a photocell. When a mouse dips the nose
into a hole, it is automatically recorded on a digital meter; testing is done
for 10 min. This is reported as the “number of head dipping in the
hole-board”. The digital meter indicated the number of exploratory dips
and we counted the number of stereotyped dips for each mouse according
to previously published criteria (Irie et al. 2012 ; Makanjuola et al. 1977).

Motor measures

The Open field task exploring a novel environment measures motor
performance (walking) and exploratory abilities. The field has a diameter
of 100 cm and is bounded by a 60 cm high white cylinder (Denenberg
1969 ; Kafkafi et al. 2003); lighting 1s 230 Ix at ground level and the area
is divided virtually into three equal and concentric zones (Denenberg
1969). Mice were tested individually for 20 min; we counted the number
of rearing, leaning and grooming. The distance walked (in mm) and the
time spent in each of the three zones was measured using Videotrack from
ViewPoint (Videotrack rodent behavior tracking software, ViewPoint,
Lyon, France) over the full 20 min of the test.

Hind limb coordination is measured in the notched bar test used to assess
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gait impairment (number of hind paw slips) (Lipp P. and Wahlsten 1992).
A solid bar with a smooth surface was used for shaping. Two
experimenters stood either side of the carved bar to count the number of
times the mouse slipped over five trials.

Traction strength was measured using the Ugo Basile Grip-Strength Meter.
The mouse was placed over a grid base plate, with the grid connected to a
force sensor connected to the Peak Amplifier. When the mouse is pulled by
the tail, it grasps the grid. The mouse is positioned so that only the
forepaws can reach the grid. Maximum traction strength is recorded at the
moment when the mouse loses its grip. This is reported as “forelimb
traction strength” and is expressed in gram-force.

Brain magnetic resonance imaging (MRI)

Volumetric properties of brain structures were measured using a 70/16
pharmascan spectrometer (BRUKER Biospin, Ettlingen, Germany) with a
7 - s magnet and 16 cm horizontal bore size after gaseous anesthesia of the
mouse (induction air 2 L/ min + isoflurane 3% and maintenance via a
nose-cone air 2 L/ min + isoflurane 2%). We used 24 axial contiguous
T2-weighted images (slice thickness = 0.5 mm) with fat suppression
(bandwidth = 900 Hz) acquired from whole brain with a turbo-RARE
sequence (TEeff=48 ms, TR =3500 ms, rare factor =8, 5 averages) with
19 mm Field Of View and 256 x 256 matrix. We acquired 24 coronal slices
going from the olfactory bulb to the cerebellum. The structures were
measured according to Cavalieri’s principle of stereology adapted to brain
volume. We used a computer-assisted method superimposing a grid with
equidistant markers on the slice to calculate the surface area of the brain
structure being measured. Volume was computed as follows: V mm° =¥
(area x ST), where X area is the area of the slice, and was expressed as the
number of markers encompassed in the area, transformed into mm”. ST
was the thickness of the slice (mm). “Brain volume” was measured in
mm3, and the volume of each structure was expressed as a percentage of
the total brain volume and is reported as “hippocampus %” and “striatum
%”. The “cortex %” covered the different cortices; “ventricle % covered
the two lateral and the third ventricles, and “cerebellum %7 is the
percentage of the cerebellum over the cerebrum (volume of brain +
cerebellum).
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Statistics

Non-parametric statistics were chosen considering the non-normality of the
distributions and the small sample sizes. Data analyses were done with
Statistical Package for the Social Sciences (SPSS software, version 19).
The results are shown as box-and-whisker diagrams presenting the median,
the interquartile range (the box), the bottom and top quartiles (the lines
under and above the box). Differences between more than two groups were
computed with the Kruskal-Wallis non-parametric test and post-hoc group
comparisons with the Mann—Whitney test. Because of the large number of
comparisons and to reduce type 2 error, we only took into account p values
of p <.01. Differences between blocks in the MWM and between days in
the RAM were tested for each group with Friedman ANOVA
non-parametric test for related samples. The individual slope of the
learning curve was obtained for each mouse by calculating a new score as
the slope of the median values of the four trials in each of the seven blocks
in the MWM, and as the slope of the number of errors of the 5 consecutive
days in the RAM. The median slopes for the six groups were compared
using the Kruskal-Wallis test and post-hoc comparisons with
Mann—Whitney U test.

The effect size was calculated after changing U values into z scores (Field
2005) and was expressed as the percentage of the total variance of the
dependent variable associated with differences between groups. We
considered the effect size (Cohen 1988) rather than the probability of
rejecting the null hypothesis because the validation of a model organism
for a disorder not only requires a significant difference but also a large
difference between the model and its controls. Values of 1.33 cor2 ¢
below the population mean were set as the criteria for diagnosing mild
impairment and impairment, respectively. Expressed as effect size, these
values are R> = 0.30 (ord=1.3) and R”=0.50 (or d=2) for mild
impairment and impairment respectively (Cohen 1988). For convenience
R” was expressed as percentage of the total variance of the dependent
variable associated with difference between groups, i.e. 30% and 50% for
mild impairment and impairment respectively.

Results

Gene transcription
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Nine protein-Coding genes were significantly over-transcribed in the

frontal association cortex and ten in the hippocampus (Table 1) of the mice
carrying extra fragments in the D21S17-ETS2 region. Figure 2b indicates
the site of transcription (hippocampus and cortex) of the genes according
to their segmental location. The number of transcripts was the same in the

Ttc3 and the Pigp genes independently of the fragment (141G6 and

152F7).

Table 1

Transcription of the genes carried by the 131E8, 142G6, 1523F7 or 2551E6 strains

in the frontal associative cortex and in hippocampus after normalization

Gene
symbol

Setd4
Chrl
Cbhr3
Dopey?2

Morc3
Chaflb

Cldnl4

Hles

Ripply3

Pigp

Pigp

Ttc3

Gene name

SET domain containing 4
carbonyl reductase 1
carbonyl reductase 3
dopey family member 2
microrchidia 2 A

chromatin assembly factor 1,
subunit B

claudin 14

holocarboxylase synthetase
ripply3 homolog (Zebrafish)
phosphatidylinositol glycan
anchor biosynthesis, class P
(141 Go)
phosphatidylinositol glycan
anchor biosynthesis, class P

(152 F7)

tetratricopeptide repeat
domain 3 (141 G6)

Frontal
associative
cortex

1.93*
3.01%*
1.94%*
0.43
0.57

1.14

0.69
1.50%*
0.92

2.44%%

2.67**

1.50%*

Hippocampus

1.92%
2.00%*
2.58%*
0.61
0.82

1.07

1.65*
1.45%
0.05

2.50%*

2.21%*

1.52%%*

The transcription value is expressed as the log2 ratio (number of transcripts in

trisomic/ number of transcripts in euploid). *(p <.05), **(p <.01) indicates that

the mean value of the euploid is significantly lower than the value of its
co-hybridized trisomic
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Frontal
Gene . .
Gene name associative Hippocampus
symbol
cortex
tetratricopeptide repeat % 5%
Tte3 domain 3 (152F7) 1.48 178
Dser3 Down syndrome critical region 1.61%* 1.50%
gene 3
dual-specificity tyrosine-
Dyrkla (Y)-phosphorylation regulated  1.50* 2.31%*
kinase la
potassium inwardly-rectifying
Kcnj6 channel, subfamily J, member = 1.85%** 1.93%*

6

The transcription value is expressed as the log2 ratio (number of transcripts in
trisomic/ number of transcripts in euploid). *(p <.05), **(p <.01) indicates that
the mean value of the euploid is significantly lower than the value of its
co-hybridized trisomic

Figures 3, 4, 5, 6, 7 and 8 present descriptive statistics on behavioral
and brain variables, and also values for statistical significance of partial
comparisons. The effect size of differences between the euploid group and
each of the other groups (Rz) is in Table 2 and will be covered in the
discussion section. The euploid groups (C57BL/6 J x C3H/HeJ and
C57BL/6 JxFVB male mice) did not differ and were therefore pooled in the
following analyses.

Table 2

Size of the effect of the differences between the euploids and Ts65Dn and the
segmental trangenics covering the D21S17-ETS2 region on cognition, volume of
brain structures and motor behavior

Behavioral and brain

Euploids compared to
measures

TS65Dn  230E8 141G6  152F7 285E6
R? was expressed as a percentage of variance

Underlined and bold values correspond to mild impairment and impairment,
respectively. > and < indicate the direction of the difference between the
groups: > means that the score of the euploid group was higher. *Negative
slope characterizes learning
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Behavioral and brain
measures

Euploids compared to
TS65Dn  230E8 141G6  152F7 285E6
Cognition

Reference memory

Slope of the learning
curves in MWM 69 (>)* 08 64(>) 71> 26

Latency to reach the P’

virtual platform during the 48 (<) 21 04 27 0.02
probe test
Number of visits in P” 53 (>) 00 05 69(>) 06

during the probe test

Working memory

Slope of the learning

curves in RAM 1(>)* 28 00 01 02
Numb f i

RALll\ilrl ers of errors in 71 (<) 71(<) 53(<) 06 65 (<)

Associative memory

Cue‘d‘ associative 03 1 18 02 00
conditioning score

Discriminative memory

Altqrgd gontext 26 18 39 (>) 15 12
conditioning score

Episodic memory

Novel object recognition 00 20 07 13 44 (>)
score T

Exploratory behavior

Number of head dipping
in the hole-board 69 (<) 10 00 55 00
Cerebrum

Brain volume 30 (<) 00 00 42 (<) 00

R? was expressed as a percentage of variance

Underlined and bold values correspond to mild impairment and impairment,
respectively. > and < indicate the direction of the difference between the
groups: > means that the score of the euploid group was higher. *Negative slope
characterizes learning
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Behavioral and brain Euploids compared to

measures

TS65Dn  230E8 141G6 152F7 285E6

Cortex % 69 (>) 10 21 01 31 ()

Hippocampus % 69 (>) 55(>) 42() 69(>) 62()

Ventricle % 69 (<) 2 31K 69K 42K
Striatum % 08 02 17 08 21

Cerebellum / cerebrum % 61 (>) 26 31> 55¢) 62()

Motor abilities

Distance walked in open

field 05 03 00 00 36 (>)
Forelimb traction strength 55 (>) 27 13 63(>) 35(»
Number of hind paw slips 67 (<) 00 00 55(<) 00

on a notched bar task
R? was expressed as a percentage of variance

Underlined and bold values correspond to mild impairment and impairment,
respectively. > and < indicate the direction of the difference between the
groups: > means that the score of the euploid group was higher. *Negative slope
characterizes learning

Fig. 3

Learning performance in Morris Water Maze of segmental trisomic strains of
mice (A to F). a Median time — in s - to reach the hidden P platform in the
course of 7 blocks of 4 trials each; asterisk indicates that the difference
between blocks was significant independently of the shape of the curve; b
slopes of learning curves over the 7 blocks; ¢ latency to reach the virtual P’
platform; d number of visits in the P” region during the probe test; e time to
reach the visible platform. f Distance swum during the probe test. Sample
size: 230E8=141G6=152F7=285E6=Ts65Dn=10 and euploids=12.
Solid lines: 5Dn vs other groups, doted lines: euploid vs other groups in
b,c,dand f. 7 p <.01, **p <.001
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Fig. 4

Cognitive performance in radial maze (a, b, ¢). a Number of errors in RAM
from day 1 to day 5. b Slope of the learning curve. ¢ Total number of errors
along the 5 days. Sample size: euploids and 152F7 n= 10, and other groups
n=9). Solid lines: Ts65Dn versus other groups, doted lines: euploid versus
other groups. *p <.01, **p <.001
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Fig. S

Performance in conditioning (a, b). a Associative conditioning in altered
context, b cued associative conditioning. White boxes represent the number
of freezing episodes on day 1, striped boxes indicate the number of freezing
episodes on day 2. Parentheses indicate the groups for which the median of
the difference between score on day 1 and day 2 differ — see text. Ts65Dn n
=9, other groups n=14.). Solid lines: Ts65Dn versus other groups, doted
lines: euploid versus other groups. *p <.01, **p <.001
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Fig. 6

Performance in object recognition and exploration tasks (a, b). a Novel
object recognition. White box represent the number of contacts towards the
familiar object, striped boxes indicate the number of contacts toward a novel
object. Parentheses indicate the groups for which the median of the
difference between the number of contact towards the familiar and towards
the novel objects differ — see text. Sample size euploid n=12; 230ES, 141G6
and 152F7 n=10, 285E6 n=9, and Ts65Dn n= 6. b Number of head dipping
in the hole-board (Ts65Dn n = 6; for other groups n=9). Solid lines: Ts65Dn
versus other groups, doted lines: euploid versus other groups. *p <.01, **p
<.001
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Fig. 7

Motor performance by segmental trisomic strains of mice (a, b, ¢). a
Distance walked over 20 min in the open-field (sample size: euploid n= 12,
230E8 n=10, 141G6 n=11, 152F7 n=11, 285E6 n= 12 and Ts65Dn n=6).
b Forelimb traction strength measured in gram-force (Ts65Dn, n =8, and for
other groups n = 14). ¢ Number of hind paw slips on a notched bar task (n as
in B). Solid lines: Ts65Dn versus other groups, doted lines: euploid versus
other groups. *p <.01, ** p<.001
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Cerebrum MRI of segmental trisomic and euploid mice, volumetric analysis
(a—f). a Brain volume; b cortex % (the volume of the structure / volume of
the brain); ¢ hippocampus %; d striatum %; e cerebellum % (the cerebellum
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Cognitive performances

The Ts65Dn group, the euploids and the segmental trisomies covering the
D21S17-ETS2 did not suffered from vision, auditory, and pain sensitivity
impairment.

Results of the MWM are presented in Fig. 3. We calculated the median
time of each strain across the 7 blocks. The six groups (euploids, Ts65Dn
and the 5 segmental trisomies covering the D21S17-ETS2 region) recorded
different times to reach the hidden platform (Xz =23.21,df=5, p<.001).
Only the euploids and the 230E8 mice fulfilled the learning criterion, i.e.
reducing the time needed to reach the platform from one block to the next
(¢ =33.04, df=6, p<.001 and y° = 21.38, df =6, p = .002, respectively).
The 285E6 group had between-block differences but there was no
reduction in the time to reach the hidden platform, which is the criterion
for learning (Fig. 3a). A negative slope of the curve indicates learning.
The slopes differed between the 6 strains (x2 =28.30,df =5, p<.001) with
steepest negative slope for euploid group - see Fig. 3b for partial
comparisons and Table 2 for the size of the effects. The slope of the
TS65Dn group was null with no variation across blocks and TS65Dn
performance was the worst of all the groups. The size of the difference
between the euploids and the Ts65Dn was 69%. Performance by the 285E6
and 141G6 groups was erratic, with good scores for the first block and bad
scores for some of the later blocks. Two variables were measured in the
probe test: (1) latency to reach the P’ virtual platform, which differentiated
the 6 groups (x2 =16.62, df =5, p=.005; Fig. 3¢), and (2) the number of
visits in P” that includes visits in P’ (XZ =26.18, df =5, p <.001; Fig. 3d).
Compare to TsD65Dn, the euploids showed a shorter latency to reach P’
and a higher number of visits in P” (effect sizes 48 and 53%, respectively).
We controlled that time to reach the visible platform (Fig. 3 e) and the
distance swum (Fig. 3 ) did not differed between the six groups.

For the RAM, the number of errors decreased significantly from day 1 to
day 5 in each strain except for Ts65Dn (Fig. 4a). The slopes of the
learning curve differed between the six groups (Xz =26.31,df=5, p<.001)
- see Fig. 4b for partial comparisons and Table 2. The strains differed
when the number of errors along the 5 days was analyzed (x2 =40.77, df =
5, p<.001) — Fig. 4c for partial analyses. The size of the difference
between the best learner (euploid group) and the poorest (Ts65Dn) reached
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71% (Table 2). The number of errors was higher for the 230E8 strain than
for the euploids whereas the slope of the learning curve did not differed
between the two groups (Fig. 4b and ¢, and Table 2). Two conditions
were observed with the “fear conditioning” task. The altered context score
did not show a significant strain difference between the 6 strains whereas
the cued conditioning score differed ()(2 =15.24,df=5, p=.01) (Fig. 5a,
b; Table 2). No significant difference between the 6 strains was observed
with novel object recognition with a significant lower score for 285E6

compared to euploid and Ts65Dn (Fig. 6a 5r the hole-board, the

repetitive head dipping was very scarce ana aid not differ between the
groups. Figure 6b represents the number of non-repetitive head dipping.
The 6 strains differed (3" = 28.60, df =5, p < .001).

Motor performance

In the open-field test, the ambulation (total distance walked in mm,

Fig. 7a), the number of entrances into the central area and other behavioral
parameters (leaning, rearing and grooming — data not shown) did not
differentiate the strains. The inactivity periods were similar for all the
strains (from 310 to 317). Leaning takes most of the activity of the mice
but without difference between strains.

Specific deficits were found in forelimb traction strength and in hind paw
coordination. Forelimb traction strength presented differences between the
euploid group and the trisomic groups (xz =28.49, df =5, p <.001); see
Fig. 7b and Table 2. Number of hind paw slips differed between the
euploid and the segmental trisomics (Xz =28.75,df =5, p<.001; Fig. 7c;
Table 2).

Brain structure: solumetric analysis

The volume of individual structures was expressed as a percentage of total
brain volume because brain volume (Fig. 8a) differentiated the 6 groups
(XZ =16.95, df =5, p=.005). Although none of the partial comparison was
significant, the sizes of the difference between euploids and Ts65Dn and
152F7 were in the mild range (30 and 42% respectively). Cortex %

(Fig. 8b; Table 2) differed across the strains (X2 =18.60, df=5, p=.002).
Five partial comparisons reached the 0.01 threshold with Ts65Dn. The
difference between euploids and 285E6 was not significant but the size of
the difference was in the mild range with a lower % of cortex for the

hp?token=23-K...
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euploids. The hippocampus % differed (XZ =24.56,df =5, p<.001)

(Fig. 8c; Table 2). There was no difference for the striatum % (Fig. 8d;
Table 2). The ventricle % differed (x2 =19.40,df =5, p=.002) (Fig. 8e;
Table 2). The volume of the cerebellum was expressed as a percentage of
the whole cerebrum, and differed across the groups ()(2 =16.04,df =5, p=
.007) (Fig. 8f; Table 2).

Discussion

Several regions syntenic to HAS 21 modulate brain and cognition when
they are triplicated in segmental mouse models of TRS21. But we still
ignore whether the triple copy of a syntenic HSA21 fragment impacts
globally the cognitive functions or impacts only specific functions. We
addressed the question by selecting a sample of tasks in line with the
cognitive framework of Milner, Squire and Kandel (Milner et al. 1998),
and measured brain structures known to be modified in TRS21 patients.
We also ignore whether the phenotypic modification induced by a
segmental mouse trisomy reported only a significant difference or a
pathological variation. We selected the effect size (Cohen 1988) to express
between-group differences and with R”=0.30 (or 30% of variance) for
mild impairment, and R”=0.50 (or 50% of variance) for impairment. Our
expectation was that the largest effect sizes would be observed when
euploid and Ts65Dn groups were compared. The effect sizes of
comparisons of the D21S17-ETS2 extra fragment groups and euploid
groups would then provide information on the impact which certain parts
of HSA21 would have on the brain and behavior of persons with the Trs21
phenotype.

It has been argued that comparisons of Ts65Dn and subjects with extra
fragments encompassed in the D21S17-ETS2 is a source of a bias as
Ts65Dn not only has a triple copy of an MMU16 fragment that is syntenic
to HSA21, but also carries a non-syntenic MMU17 fragment (Yu et al.
2010a, b). The non-syntenic MMU17 fragment is located between App
and Cdarx, in the centromeric part of Ts65Dn. The non-syntenic MMU17
fragment is encompassed by Ms1Ts65 which is produced by splitting
Ts65Dn at the Sod1 locus (see Fig. 1c¢), but Ms1Ts65 is not involved in
cognitive disorders - see (Seregaza et al. 2006) for a review—which means
that the MMU17 non-syntenic fragment cannot be associated with the
cognitive impairment observed in Ts65Dn.
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Heterogeneity of cognitive and motor abilities and of
brain structures in the Ts65Dn mouse

The heterogeneity of cognitive profiles that characterizes TRS21 patients is
found in Ts65Dn mice since the pioneering studies (Escorihuela et al.
1995, 1998; Reeves et al. 1995). In reviews (Roubertoux and Carlier
2010; Seregaza et al. 2006) we noted that poor performance by Ts65Dn
mice was reported in 8 out of 11 studies of spatial memory, 7 out of 8
studies of discriminative memory and 2 out of 3 studies of long-term
memory when the differences were expressed as inferential statistics.
Similar results were found in the present study, but results expressed as
effect size cast a different light on the conclusions (Table 2). For effect
size, 18 traits were measured; eleven were found to be impaired, and two
mildly impaired. Impairment was observed with reference memory,
working memory and exploratory behavior, but no impairment was found
on episodic memory, associative memory or discriminative memory. The
exploration score is notably high in Ts65Dn as previously demonstrated
(Escorihuela et al. 1995) and could be an indicator of the hyperactivity
associated with attention deficits. Our results do not support a stereotypy
hypothesis.

The gait and movements of persons with TRS21 are characterized by
impaired motor efficiency or clumsiness (Galli et al. 2013 ; Jover et al.
2010; Palisano et al. 2001 ; Rigoldi et al. 2009 ; Vicari 2006), and to such
an extent that it has been included in the Jackson signs for the TRS21
phenotype. More interestingly, motor exercise interacts with cognitive
function in Ts65Dn mice (Kida et al. 2013). Impaired tonicity has been
reported in children with TRS21 (Uyanik et al. 2003) as poor limb
coordination. Ts65Dn mice displayed impaired tonicity and hind limb
coordination (effect size 55% and 67%, respectively, see Table 2; Fig. 7b,
c). In the MWM, swimming differences did not impact the learning
performance: trisomic mice reached the visible platform as quickly as the
euploids (Fig. 3e).

The total volume of the brain and the volume of most brain structures were
found to be smaller in TRS21 patients, the largest difference being for the
hippocampus (—43 to —50%), followed by the cerebellum (—24%), and the
cortex (—17%) (Roubertoux and Carlier 2009) Fig. 12.1, p 17. The size of
the decrease in volume is predictive of cognitive and brain impairments in
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both humans (Allin et al. 2001 ; Peng et al. 2015) and rodents (Caston et
al. 2004 ; Colombel et al. 2004 ; Goddyn et al. 2006; Rosin et al. 2015;
Siraly et al. 2015). Smaller brain volumes are also found in Ts65Dn mice
when compared to euploids, with large effect sizes for the hippocampus,
the cortex and the cerebellum (69%, 69% and 0.61, respectively).

Comparison of phenotypes: segmental trisomic
fragments in the D21S17-ETS2 region and Ts65Dn

The 152F7 fragment has been proposed to model characteristics of the
cognitive impairment observed in TRS21 (Smith et al. 1997). Our study
can confirm that the fragment is similar to Ts65Dn for reference memory
(learning slope and probe test in the MWM) and exploration, but not for
working memory (RAM); and the triple copy of the 152F7 fragment does
not affect other forms of memory. For motor behavior, the effect sizes
match Ts65Dn. The size of the cortex is not impacted in 152F7.

In comparisons with euploids, the triple copy of the 230E8 fragment shows
an impairment of the volume of the hippocampus and of number of errors
in RAM, and shows mild impairment in size of ventricles. The 141G6 mice
range from mildly impaired to impaired for cognition (slope of learning
curve in MWM, and in RAM, altered context conditioning) and for the
anatomy of the brain (smaller hippocampus and larger ventricles).

The 285E6 strain contains only the Kcnj6 also named Girk2 gene. Kcnj6
plays a crucial role in postsynaptic mechanisms because its channels are
coupled with alpha-adrenergic, muscarinic cholinergic and cannabinoid
receptors but also with gamma-aminobutyric acid B receptors (Blednov et
al. 2003 ) that modulates the synaptic transmission in TRS21 mouse
models (Kleschevnikov et al. 2012). Our results are in agreement with
recent studies showing that a triple copy of Kcnj6 impairs brain and
behavioral traits (Cooper et al. 2012 ; Jiang et al. 2015) but the present
results demonstrate that the cognitive impairment is mild. The 285E6 mice
are mildly impaired for the novel object recognition task. Motor
characteristics (distance walked and tonicity) were subjected to a mild
impairment. The hippocampus and cerebellum are substantially smaller
(effect size 62%), and the ventricles are larger (effect size 42%, Table 2).

Our findings confirm that the profile of Ts65Dn is closer to the profile of
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152F7, than to the other fragments in the D21S17-ETS2 region, for
reference memory, confirming the role of Dyrkla. The role of this gene
should not be generalized. The 152F7 fragment is not implicated in several

other cognitive processes: working, discriminant and episodic memory.

Epistatic effects between chromosomal regions

A number of studies have reported interactions between genes or
chromosomal fragments syntenic to HSA21 (Jiang et al. 2015; Zhang et al.
2014). Proteins encoded by genes located on fragments in the
D21S17-ETS2 region interact (Fig. 2b), suggesting there are epistatic
effects between the chromosomal fragments. We detected three interactions
between isolated fragments and Ts65Dn. An interaction can produce an R’
value that is higher for the triple copy of the fragment than the R for
Ts65Dn. The first interaction was observed for the number of visits in the
P” region. The size of the effect is higher for 152F7 than for Ts65Dn (69%
vs. 53%). The second was for discriminative memory (altered context
associative conditioning) showing mild impairment for 141G6 compared to
euploids, but the effect was not observed when the fragment was inserted
into Ts65Dn. The third is the distance walked, showing mild impairment
for 285E6 compared to euploids; however, in the comparison of Ts65Dn
and euploids, the size of the effect is close to zero.

The hippocampus hypothesis

After Pennington’s seminal paper (Pennington et al. 2003 )we have seen
arguments on the role of the hippocampus in cognitive dysfunction in
patients with TRS21 (Menghini et al. 2011) as well as in mouse models
(Smith et al. 1997; Yu et al. 2010b). Our findings confirm the hypothesis
but cast a different light on conclusions drawn. Nine of the genes mapped
on the fragments covering the D21S17-ETS2 region are over transcribed in
the hippocampus, and all nine genes are found in each of the four strains.
The hippocampus is smaller in size in the four strains compared to euploid
mice, and, together with the larger ventricles, is one of two invariant
features of TRS21. In our TRS21 models, the difference in the size of the
hippocampus is not proportional to the degree of impairment of cognitive
and motor skills. Cerebellum proportion may be seen as relevant for a
number of reasons. First, it is in the pathological range of variations for all
the strains except for 230E8. Many studies have presented evidence
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showing that small volume of the cerebellum modifies reference memory
processes (as measured in the MWM), and that a smaller hippocampus
alters associative memoryt=opddyn et al. 2006). While there is no direct

anatomical pathway betwcen the hippocampus and the cerebellum, there
are functional links between the two organs, and theta oscillations can
contribute to such functional links. During associative conditioning theta
oscillations occur in the cerebellum and also in the hippocampus, and are
synchronized in both organs (Nokia and Wikgren 2010; Wikgren et al.
2010). And the cortex contributes to the regulation of the interaction
between the hippocampus and the cerebellum. An abnormally small cortex
may cause selective disorganization of the interaction process between the
hippocampus and the cerebellum (Weiss and Disterhoft 2011 ) but the
hippocampal - cerebellar impairment appears as a common characteristic
of the Ts65Dn and of three of the strains belonging to D21S17-ETS2
region (141G6, 152F7 and 285E6) but not of 230ES.

General conclusion

Using four chromosomal fragments covering the D21S17-ETS2 region, we
found that the triple copy of the fragments does not impair the same
functions and the same brain structures. The profile of 152F7 that carries
the DYRKI1A gene is more affected and closer than TS65Dn but the three
other strains are also impaired even though in a lesser extent. The
hippocampus-cerebellum interaction mechanism is associated with the
impairment of Ts65Dn and of 141G6, 152F7 and 285E6 that it
encompasses whereas a hippocampus mechanism only could be associated
with 230E8 impairment. The results emphasize the necessity to use an
exhaustive and standardized battery of cognitive and motor tasks for the
exploration of segmental mouse models. It is unwise to claim that a
trisomic strain of mouse or any mouse model of ID, exhibits cognitive
impairment when it was subjected to only one learning test. It may be
unwise even more to accept that a non-human organism is a model of
trisomy 21 or of another disorder without considering the effect size of the
difference between mutants and controls.
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