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Abstract 
Thermomechanical coupling is studied in dynamic fracture mechanisms. The crack propagation 
problem is formalized within the framework of the thermodynamics of irreversible processes to 
determine their essential parameters and couplings. The analytical approach developed herein is 
based on the linear elastic mechanics of fracture, including the inertial effects and thermomechanical 
couplings. For a one-dimensional restriction, the mechanics and thermics equations are uncoupled in 
the entire structure, with simplified thermomechanical coupling at the crack-tip. This study aims to 
determine the criteria for fracture initiation and propagation in the presence of heating and inertial 
effects.  
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1.Introduction 

Thermomechanical coupling in dynamic crack propagation has attracted considerable 
experimental and theoretical interest in recent years. Döll [6] and Shockey et al. [7] used 
thermocouples for temperature measurements. Fuller et al. [8] measured the temperature increase at a 
mobile fast 1(200 650 . )m s−−  crack-tip in poly(methyl methacrylate) using an infrared detector. 
They also used thermocouples and thermosensitive liquid crystal films to measure the heat generated 
relative to the crack speed. Bui et al. [3] used an infrared camera to film the temperature field in a 
fissured thin plate at low propagation velocity 1(2 . )mm s− . They detected a temperature rise of 
approximately 10 C  at the crack-tip. Furthermore, Weichert and Schönert [9], [10], Rice and Levy 
[11], and several others attempted to theoretically estimate the temperature at the crack-tip. Because 
the origin of heat at the crack-tip is dependent on plastic dissipation, the most accurate models of 
temperature fields are based on the capacity to calculate the mechanics fields related to crack 
propagation. However, exact analytical solutions for plastic field work in the crack propagation zone 
are not available even for perfect elastoplastic materials. Moreover, despite intense research efforts 
toward understanding the dynamic fracture process, few studies have systematically combined 
experimental and theoretical models to validate the experimental measurement techniques or theory 
that serves as the basis for such investigations. The successful modelling of complex loading 
environments and the constitutive laws of these experiments remain an open problem. Thus, in the 
present study, a detailed theoretical analysis was conducted to understand the nature of this coupling. 
An entirely coupled assay (temperature-displacement or temperature-time) was conducted to model 
these experiments. To clarify the evolution of the temperature field, one-dimensional modelling was 
performed to facilitate the understanding and study of its influence on propagation conditions. This is 
primarily applicable to metals and polymers. While this phenomenon finds increasing applications, 
its properties remain poorly known, especially under dynamic loading. 

 
2.Thermodynamic Description of Crack Propagation
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Fracture is a process in which much energy is wasted. A solid in which a crack propagates 
represents a system in this process, and dissipation is mainly due to various mechanisms such as 
internal friction and plastic deformation. The evolution of such a system can be described according 
to the thermodynamics laws for continuous media. For any material system, the first and second 
principles of thermodynamics can be expressed as follows: 

 
= ( )

. 0 ( )

ex cr

V

E C P P Energy balance
q nS da Entropy production
T∂

 + +



+ ≥ ∫




 (2.1) 

where , , , , ,ex CrE C P P S and q denote the internal energy, kinetic energy, power of external 
forces, received calorific power, entropy, and heat flux, respectively. 

 
In the interest of simplicity, the problem of linear crack propagation is considered in two 

dimensions (plane strain, plane stress, or shearing anti-plane); however, the material is unspecified. 
A thermically isolated system is also considered. As shown in Fig.1, the applied force ( )F t  and 
displacement ( )u t  are on complementary parts u Fand∂Ω ∂Ω  of the border. On the crack surface 
Σ , the free edge condition is also considered. Because of the presence of the possible mobile 
singularity of the thermomechanical fields close to the crack-tip A , the thermomechanical 
description is not traditional. The additional terms due to the singularity can play a fundamental role. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Linear crack with mobile reference. 
 

The consequence of the energy balance can be established as follows: If , ,T and Sξ  denote the 
specific internal energy, temperature, and specific entropy, respectively, the energy balance of the 
entire system can be written as: 

 21 =
2 cr

d u d n u da P
dt

ρ ξ σ
Ω ∂Ω

 + Ω ⋅ ⋅ + 
 ∫ ∫   (2.2) 

Although the expression on the right-hand side of (2.2) is clear, that on the left-hand side is not 

commonplace as the function 21
2

uρ ξ + 
 

  is not necessarily integrable because of the mobile 

singularity. It is necessary to isolate the crack-tip with a closed curve Γ  in the translatory 
movement of the crack that delimits the domain VΓ . 

 
In the mobile reference 1 2AX X , we introduce the temporal derivative ( )⋅ , , 1 2 = ( , , )t X X tξ ξ , 

which is related to the material derivative ( )'  by the relation : [12] 

 ,1 =' aξ ξ ξ− ⋅   (2.3) 
The principle of singularity transport consists of the conservation of the singularity nature with 
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the movement of the crack. While ξ  can be singular, 'ξ  is much more regular, and ,1aξ ξ− : . 
Because of this regularity, we obtain: 

 21 = ( )
2V V

d u d u u d
dt

ρ ξ ρ ξ
Γ Γ

 + Ω + Ω 
 ∫ ∫     

and thus, for an evanescent curve, 0Γ→  

 2

0

1 = 0lim 2V

d u d
dt

ρ ξ
Γ→ Γ

 + Ω 
 ∫   (2.4) 

From 

 2 2
1

1 1= ( )
2 2V

d u d uu d u a n d
dt

ρ ξ ρ ξ ρ ξ
Ω ΓΓ Γ

   + Ω + Ω− + Γ   
   ∫ ∫ ∫     

we finally obtain the energy balance of the entire system: 

 2
1

0

1( ) = 0lim 2
n u d uu d u a n dσ ρ ξ ρ ξ

∂Ω Ω ΓΓ→ Γ

  ⋅ ⋅ Ω − + Ω+ + Γ    
∫ ∫ ∫     (2.5) 

To specify the energy exchanges close to the crack-tip, we compare (2.5) with the energy balance 
of the system occupying material items ΓΩ  at time t . This energy balance is given as 

 ( ) =uu d n u da n u d q n dρ ξ σ σ
Ω ∂Ω Γ ΓΓ

+ Ω ⋅ ⋅ − ⋅ ⋅ Γ + ⋅ Γ∫ ∫ ∫ ∫     (2.6) 

and then: 

 2
1

0

1 = 0lim 2
q n d u a n n u dρ ξ σ

Γ ΓΓ→

   ⋅ Γ − + + ⋅ ⋅ Γ      
∫ ∫     (2.7) 

A quantity not necessarily null Π  and defined as: 
 

0
= lim q n d

ΓΓ→
Π ⋅ Γ∫  (2.8) 

physically represents a heat source concentrated at the crack-tip. 
From (2.7), the expression for Π  is given by: 

 2
1

0

1= lim 2
u a n n u dρ ξ σ

ΓΓ→

  Π + + ⋅ ⋅ Γ    
∫     (2.9) 

The consequence of the second principle can also be deduced similarly. The entropy production 

of the entire system is reduced to  = dS s d
dt

ρ
Ω

Ω∫  and can then be expressed as: 

 1
0

= 0limS s d s a n dρ ρ
Ω ΓΓ→ Γ

 Ω− Γ ≥ 
 ∫ ∫   (2.10) 

To identify the entropy production at the crack-tip AS , we can compare it to the entropy 

production of the material points system occupying ΓΩ  at time t : 

 = 0q nS s d d
T

ρΓ Ω ΓΓ

⋅
Ω − Γ ≥∫ ∫  

which finally involves 

 1
0

1= ( ) 0limAS q n T s a n d
T

ρ
ΩΓ→ Γ

⋅ − Γ ≥∫   (2.11) 

If <AT T→ +∞  when X A→ , it follows from (2.8), (2.9), and (2.11) that: 

 2
1

0

1= 0lim 2A AT S u a n n u dρ σ
ΓΓ→

  ⋅ Ψ + + ⋅ ⋅ Γ ≥    
∫     (2.12) 

where = T sξΨ −  denotes the specific density of free energy and = A AD T S⋅ , the dissipation at 
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the crack-tip. 
If > 0a , from ,1  aξ ξ− : , we note that: 

 

2
1 ,1

0

2
1 ,1

0

1= = lim 2

1= = lim 2

A A

A A

a avec u n n u d

D a G G u n n u d

ρ ξ σ

ρ σ

ΓΓ→

ΓΓ→

   Π Π Π + − ⋅ ⋅ Γ      


   Ψ + − ⋅ ⋅ Γ     

∫

∫

 

 

 (2.13) 

In most applications, <AT +∞  and 1s r−=  (in terms of singularity); the fact that 

0 1  = 0lim T s n dρΓ→
Γ

Γ∫  implies: 

 = = 0AD a GΠ ≥  (2.14) 
Thus, the heat source also dissipates at the crack-tip. The fracture energy G  is identified by the 

thermodynamic force AΠ  in isentropic transformation and by the thermodynamic force AG  in 
isothermal transformation. 

In fact, in the preceding analysis, continuity and regularity are tacitly allowed in all structures 
except at the crack-tip. If shock waves are present in the form of a discontinuity surface S  being 
propagated in translation with the crack, the traditional equations of the surface discontinuity jump 
lead to the introduction of the heat surface and entropy production surface on S . In particular, the 
contribution of a discontinuity surface in translation with the crack is: 

 2
1 ,1

1 1= lim 2S
S

S a u n n u d
T

ρ σ
ΓΓ→

  Ψ + − ⋅ ⋅ Γ    
∫   (2.15) 

in terms of entropy production. 
 
In conclusion, the singularity at the crack-tip leads to the introduction of a concentrated heat 

source Π  in addition to the more traditional concepts of voluminal heat source σ ε ρ ξ−   and of 
surface heat sources localized on the discontinuity surface. 

 
The thermomechanical evolution of solids is then described by mechanical equations 

(equilibrium, constitutive laws) and thermal equations that simply express the various conditions of 
the sources. These thermal equations are: 

 

0

: =
:

=lim

Local equations x div q
Boundary conditions Classical on

Non classical at the crack tip A

q n d

σ ε ρ ξ

ΓΓ→

• ∀ ∈Ω −
• ⋅ ∂Ω
 ⋅ − −

 ⋅ Γ Π
 ∫



 (2.16) 

 
3.Thermal Analysis 

Thermomechanical coupling occurs at different levels: local coupling at a regular point by the 
energy balance =Div q σ ε ρ ξ−   as well as coupling at the crack-tip by (2.8) and (2.9), 
notwithstanding the fact that the constitutive laws also imply the temperature. 

 
The most interesting question is naturally the asymptotic behaviour of the thermomechanical 

response. It is clear that for most materials, the coupled equations are so complex that analytical 
solutions cannot be explicitly obtained. However, partial results can be established when it is 
assumed that conduction obeys the Fourier law: 

 =q k T− ⋅∇  (3.1) 
In this case, we establish what follows [3]. If the material is elastic, the free energy density 
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( , )TεΨ  can be expressed as: 

 0 0 0
0

1= ( 2 ) 3 ( ) ( )
2 ii kk ij ij

TK T T cTLog S c T
T

ρ λε ε µε ε α
 

Ψ + − − − − − +Ψ 
 

 (3.2) 

and the constitutive laws are: 

 
0

0

0

= = 3

= = 2 3 ( )

kk

ij ii ij ij ij

TS S K c Log S
T T

K T T

ρ α ε

σ ρ σ λ ε δ µ ε α δ
ε

  ∂Ψ
− ⇒ + +   ∂  
∂Ψ ⇒ + − − ∂

 (3.3) 

where 1= (3 2 )
3

K λ µ+  is the bulk modulus, and λ  and µ  are Lamés’ coefficients. 

 
The thermomechanical equations of dynamic crack propagation can now be explicitly written as: 

 03 = 0
( ) 3 = 0
k T c T K T tr a G

tr u K T u F
ρ α ε δ

λ µ ε µ α ρ
 ∆ − − +


+ ∇ + ∆ − ∇ − +

  


 (3.4) 

where , , , , ,T c k andε α δ  denote the temperature field, deformation field, bulk heat, linear 
dilatation coefficient, and Dirac mass at crack-tip, respectively. 

 
Thus, we observe, on the one hand, a double interaction between the thermal and the mechanical 

effects with traditional thermoelastic coupling at any point in the solid, and, on the other hand, a new 
thermomechanical coupling arising from the creation of a heat source by mechanical energy 
dissipation at the extremity of a propagating crack. 

 
The study of the asymptotic behaviour of the thermomechanical response is formulated as 

follows. The displacement u  and temperature T  are developed like a series of decreasing 
singularities: 

 
(1) (2)

(1) (2)

=
=

u u u
T T T

κ
κ

 + +


+ +




 (3.5) 

where κ  is a small positive parameter, and ( )nu  and ( )nT  belong to the entirety of elementary 
functions: 

 1( ) ( ) ( , )m
mr Log r Log r f tββ β θ  

where 1 2andβ β  are real numbers and 1( ) = ( )m mLog r Log Log r−  , ( , )f tθ , which represents 
the angular distribution, is supposed to be regular on the interval ] , [π π−  with regard to θ . 

The time derivative in (3.4) can be asymptotically evaluated because for any physical quantity Z
we obtain: 

 ,1=Z a Z more regular term− +   (3.6) 
 
The development (3.5) is now deduced point-by-point from equations (3.1) and (3.4) and 

appropriate boundary conditions on the crack-tip. 
 
First, it is supposed that 0Π ≠ , and thus, from the previous discussion, we obtain: 

 (1)
0= ( )

2
a GT Log r T O r Log r
k π

− + +


 (3.7) 

where 0T  is a uniform temperature distribution. The singularity of the temperature field of the first 
order is thus logarithmic. 
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However, the claim 0Π ≠  also implies from (2.8), (2.9), and (3.2) that (1)ε  is more singular 

than (1)T . Under these conditions, (1)u  necessarily verifies the local equation: 
 (1) (1) 2 (1)

,11( ) = 0tr u a uλ µ ε µ ρ+ ∇ + ∆ −   (3.8) 
as it follows from (3.5). (3.8) is not new because it exactly represents the classical form studied in 
isothermal elastodynamics by Yoffé [4], [19], [20]. By the analytical method, it is well known that 

the solution (1)u  is a linear combination of the elementary functions 
1
2( ) ( ) ( , )i ijK t Z a r h aθ  , 

which effectively leads to 0Π ≠ . 
 
From the expressions obtained for (1)T  and (1)u , (3.4) proves that (2)T  must satisfy: 

 (2) (1) (1)
,13 ( ) ) = 0,k T K T a trα ε∆ +   (3.9) 

and we obtain: 

 
1

(2) 2= ( ) ( , )T T t r Log r f aθ+   (3.10) 
with mode I of loading and the boundary conditions being perfectly isolated: 

 

2 2

2
3

22

3 2 1
2 2

( , ) = cos
22 ( 2 )

I

K a a
f a K a G

k

ρ ρα ζ
λ µ λ µ θθ
π ρ λ µ

  
− − −  + +   −

+

 

   (3.11) 

where ζ  is proportional to 1

2

β
β

 as defined in [4, 5]. 

 
The process generating the temperature field can be highlighted by the layout of isotherms: 

 (1) (2)   = T T Cteκ+  
 
We use the physical characteristics of polyethylene and steel. 

 
The data in Table 1 defines the characteristic length ι : 

 
1
2 ( )=

3 Id

k

K K

λ µι µα
ρ

+  

 
Table 1 Physical characteristics of polyethylene and steel 

 
  Polyethylene Steel 
λ  2[ . ]N m−  1,1.109 0,8.1011 
µ  2[ . ]N m−  0,3.109 0,8.1011 

k  1 1[ . . ]W m K− −  0,35 42,0 

α  1[ ]K −  200,0.10-6 1,5.10-5 

IdK  3
2[ . ]N m  

2,0.106 1,0.107 

 
This value corresponds to several interatomic distances, and therefore, it must necessarily be 

placed at much larger distances in front of ι  to ensure the validity of the thermodynamics equations 
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of continuous media. In addition, r
ι

 should not be too large so that the asymptotic developments 

make sense. We then take 100 1000r to
ι

: . To trace the isotherms, we set 
2

21= IdG K
E
ν− , which 

corresponds to an energetic criterion of propagation. 
 
The principal part of the temperature (1)T  is a revolution field determined by the rate G  at 

which heat is dissipated by conduction. Reciprocally, the knowledge of the temperature field makes 
it possible to determine G ; however, it does not allow the heat dissipation regime to be deduced. 
Thus, from (2)T , the angular distributions ( , )f aθ   can be easily seen in Fig.2, which is in 

agreement with the results of [13] for 1= 100 .a m s− with regard to steel. These results show a 
temperature field dominated by adiabaticity for > 0.001r m , with the direction of the isotherms 
being parallel to the crack line ( = 0θ ). 

 
 
 
 
 
 
 
 
 

 

           
              [Polyethylene, 3= 3.310ι Å]                        [Steel, = 12ι Å] 

Fig.2 Temperature distribution (2)T , 1= 100 .a m s− . 

Fig.3 shows the isothermal curves (1) (2)T Tκ+  with = 0.001r m  until a constant ( )T t , with 
different crack propagation velocity a  for polyethylene and steel. It shows that these isotherms 
depend slightly on the speed a  in the interval ]0, [rC . 
 
 

  
          [Polyethylene, 3= 3.310ι Å]                             [Steel, = 12ι Å] 

Fig.3 Isothermal curves as function of a , = 0.001r m . 
 

The direction of the isotherms, which is appreciably parallel to the crack line, shows that the 
process is essentially adiabatic, thus corroborating the results of [15]. 
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The model adopts the assumption of brittle fracture, in which all rupture phenomena are 
concentrated at a mathematical singularity. In the calculation, therefore, any reference to plasticity 
can be avoided, and a very simple thermal analysis of the phenomenon is enabled. The thermal 
singularity must be considered a mathematical singularity exactly as we interpret a singularity in 
mechanical fields. It is clear that, physically, no material would support an infinite constraint or 
deformation and an infinite temperature. The model previsions appear to agree rather well with the 
experimental results except for a certain radius ι . Thus, it is necessary to use many simplifying 
assumptions to analytically study the initially posed problem. 

 
4.One-dimensional Modelling 

Based on the theoretical analysis, the objective is to, on the one hand, study the coupling effect, 
and, on the other hand, analyse the criteria in the function of the temperature and their effects on 
dynamic crack propagation [4]. This is not numerically possible in 2D  because the codes are not 
yet perfectly set even for crack propagation alone with isotherm criteria [16, 17]. 

 
The one-dimensional model does not imply variation of the volume ( = 0)trε , and therefore, 

there is no change in temperature. Thus, the mechanical and thermal equations are uncoupled in the 
entire structure with the introduction of a concentrated heat source D  at the crack-tip. 
 
4.1 Mechanics Equation 

The system is of a double beam cantilever (DCB) type, and it is subjected to opening efforts at its 
left extremities (Fig.4). The system has a prefissure of length 0a . We need to determine the 
dissipation D  at position ( )a t  and speed ( )a t  owing to this crack. Because of the symmetry of 
the loading and geometry, we study only the upper part of the beam of section S  and mass density 
ρ . 

The one-dimensional problem involves the following considerations: 
• a space variable: x , 
• a kinematic field: ( , )u x t , transverse displacement, 
• a stress component: ( , )x tτ , sharp effort. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig.4 One-dimensional modelling. 
 
 
4.1.1 Structural Behaviour 
 
Motion equation 

While considering that the system does not undergo a voluminal effort, the motion equations 
reduced to this kinematics lead to: 
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2

2( , ) = ( , )ux t S x t
x t
τ ρ∂ ∂
∂ ∂

 (4.1) 

Elastic constitutive law 
The relation of the linear elastic constitutive law limited to one-dimensional kinematics is 

reduced to: 

 ( , ) = ( , )ux t S x t
x

τ µ ∂
∂

 (4.2) 

The modulus of elasticity µ  represents the relationship between shearing and distortion. Only 
the behaviour in shearing is thus active. 
 
Wave equation 

From equations (4.1) and (4.2), we obtain the wave equation on ( , )u x t , where  = c µ
ρ

 is the 

wave celerity in this medium: 

 
2 2

2
2 2( , ) ( , ) = 0u uc x t x t

x t
∂ ∂

−
∂ ∂

 (4.3) 

of the general solution 
 ( , ) = ( ) ( )u x t f x c t g x c t− + +  (4.4) 

under the additional conditions defined below. 
 
Initial conditions 

The beam is initially assumed to be resting and to have a prefissure: 

 
0

( , = 0) = 0
( = 0) =

u x t x
a t a

∀



 (4.5) 

Boundary conditions 
A transverse load ( )F t  is applied at the extremity = 0x  of the beam; at the same time, owing 

to wave propagation and the one-dimensional characteristic, the crack-tip imposes an embedding 
condition: 

 
( = 0, ) = ( , )
( = ( )) = 0
x t F x t

u x a t
τ −



 (4.6) 

This latter term is important because it is mobile: ( )a t  evolves over time. 
 
4.1.2 Fracture Parameters 
 
Energy balance 

To define the propagation criteria, we study the energy balance of the system and obtain 
parameters that can characterize the cracking. For this purpose, we write the energy balance of the 
closed system made up of the beam in its entirety from  = 0x  to  = x L : 

 =elas extK D PΨ + +   (4.7) 
where 

• 
2

0

1=
2

L

elas
d dx
dt S

τ
µ

Ψ ∫ : power associated with the elastic potential energy, 

• 2

0

1=
2

LdK S u dx
dt

ρ∫  : power associated with the kinetic energy, 

• D : power dissipated by the fracture, 
• = ( ) ( = 0, )extP F t u x t⋅  : total power of the external efforts. 
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We show that the dissipated power D  by the crack-tip is [14] 

 
2 2

2

1 ( ( ), )= 1
2

a t t aD a
S c

τ
µ

 
− 

 


  (4.8) 

Fracture energy 
The dissipation D  in the crack-tip breaks up (2.13) into: 

 =D a G  (4.9) 
where G  is the fracture energy [3]. From (4.8), it is shown to be: 

 
2 2

2

1 ( ( ), )= 1
2

a t t aG
S c

τ
µ

 
− 

 


 (4.10) 

G , being positive (2.13), leads to a theoretical limit of the propagation velocity, ( )a t c≤ . 
In addition, the shock relation in the crack-tip results in: 

 
2

2= 1 a
c

τ τ+ −  
− 

 


 (4.11) 

where τ +  and τ −  respectively denote the shearing ahead and behind the crack-tip. 
 
Consequently, the fracture energy can be represented as: 

 
1= =
2

G
S

τ τ ε τ
µ

−
+ − +  (4.12) 

and can thus be identified as the product of the deformation factor ε −  and the stress factor τ + . This 

expression is comparable with the Irwin formula [18], 
1 = 

8
ukG K Kσ

µ
+

. 

 
4.2 Thermomechanical Coupling Aspect 
 
4.2.1 Temperature Field at Crack-tip 

The problem to be solved contains only a nonhomogeneity, and the internal source Φ  has the 
following form: 

 = = ( = ( ))k S T c S T with a G x a tρ δ∆ − Φ Φ   (4.13) 
that we can resolve by, among others [19, 20], the impulse method (punctual source, instantaneous). 

 
Indeed, if ( , )T x tδ  is the response to the Dirac impulse, the solution ( , )T x t  is given by 

 
0

( , ) = = ( ) ( ) ( )
t

t
T x t T f T t f d with f t a heat sourceδ δ ς ς ς∗ −∫  (4.14) 

 
For a propagating crack, the source is defined by ( ) = ( )f t G a t , and it is mobile from: 

 
0

( , ) = ( ( ), ) ( )
t

T x t T x a t G a dδ ς ς ς ς− −∫   (4.15) 

 
Resolution 

The response to the Dirac impulse ( , )T x tδ  in space and at time = 0t , ( = ( )) ( )x a t tδ δ , is: 

 

2

41( , ) =
2

c x
k tT x t e

S c k t

ρ

δ π ρ

−

 (4.16) 

 
Thus, the solution ( , )T x t  is: 
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2[ ( )]
4 ( )

0

1( , ) = ( )
2 ( )

c x a
t k tT x t e G a d

S c k t

ρ ς
ς ς ς

π ρ ς

−
−

−

−∫   (4.17) 

 
 
This expression does not admit an analytical response even for a constant crack propagation 

velocity. 
 
 
However, we can numerically integrate it with, for example, = = = = 1k c Sρ  (adimensional 

solution). Fig.5 shows the temperature profile at = 0x  with t  variable. We note a convergence 

toward a constant temperature, 1 = 
2

T . 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Adimensional solution of temperature at origin. 
 

 
Furthermore, Fig.6 shows numerical solutions with = (1,2, )x   and t  variable. We once 

again note a convergence at   t →∞  but with temperature peaks at the moments of the passage of the 
crack to the considered X-coordinates. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6 Adimensional solution of temperature in = (1,2, )x  . 
4.2.2 Fracture Process 
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To study the influence of temperature on crack propagation, it is thus necessary to precisely 
define a fracture criterion. Here, we choose the fracture energy G  and its critical value cG . 

 
The fracture energy G  is related to the strain and the stress at the crack-tip (4.12). Then, the 

propagation criterion starting from the critical fracture energy cG  is: 

 

2

2

14= ( ) < ( ) = 0
1

14= ( ) = ( ) > 0
1

c

c

a
cG F x c t G a taS
c
a
cG F x c t G a taS
c

µ

µ

 −
− ⋅ ⇒

 +


 −
 − ⋅ ⇒

+











 (4.18) 

 
from which the resolution of a nonlinear differential equation of order I implies ( )a t  (Fig.7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig.7 Arrival of the wavefront at the crack-tip and propagation. 
 

 
For fracture, what interests us more particularly is the temperature immediately ahead of the 

crack-tip, as this temperature will define the properties of the resistance where the crack will be 
prolonged. The solution is regular (not temperature singularity at the crack-tip), and the temperature 

AT  at the crack-tip is expressed as: 

 

2[ ( ) ( )]
4 ( )

0

1( ) = ( )
2 ( )

c a t a
t k t

AT t e G a d
S c k t

ρ ς
ς ς ς

π ρ ς

−
−

−

−∫   (4.19) 

If G  and a  are constant, (4.19) is analytically integrated, and we find: 

 ( ) =
2A

G a cT t erf t
c S k

ρ
ρ

 
  
 


 (4.20) 

with 
2

0

2=
z

erf z e dξ ξ
π

−∫  (error function) and a limit at t →∞ , Alim
T , which is given by: 
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 =Alim

GT
c Sρ

 (4.21) 

 
This limiting temperature is two times the limit values for fixed x  (Fig.8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig.8 Adimensional solution of limiting temperature. 
 

Furthermore, we deduce the characteristic time cart  required to reach this limiting temperature: 

 2

0.91=car
kt

c aρ 
 (4.22) 

 
If this time is very small, the temperature at the crack-tip will be given directly by the limit and 

will depend linearly on G , which can vary over longer times. 
 
For example, on a bar of dimension = 0,35L m  and 4 2= 2.10S cm− , we obtain the following 

values: 
 

Table 2 Characteristic time and limiting temperature for steel and polyethylene. 
 
 1[ . ]a m s−  G[Pa.m] Tcar[s] TAlim[°C] 

Steel 800.00 468.75 1.58 10-11 62.00 
Polyethylene 100.00 4,200.00 1.94 10-11 13.00 

 
 
These values are representative only of the considered example because the solution strongly 

depends on the chosen parameters. 
 
If cart  is very large, then complex coupling occurs during propagation. The temperature will 

increase with the crack position. Thus, even if G  and a  are constant, the temperature will 
regularly increase, and therefore, it is possible to reach a thermal transition that will modify the 
propagation criterion. 
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To study this effect, it is necessary to first define all the relations between the criterion and the 

temperature; however, it is not very probable to obtain an analytical expression of the propagation 
even with a simple dependence. 

 
For example, in the case of a bar impacted by another bar, the loading in effort is constant, and the 

equation of propagation is written as: 

 

2

2
4=

4

c

c

GF
a S

GFc
S

µ

µ

−

+


 (4.23) 

 
We find a simple relation between a  and cG . Nothing prevents variations of cG  over time, 

with the crack adapting to the speed (as opposed to an explicit dependence on time). 
 
Thus, if the criterion of propagation with respect to the transition temperature cT  can be 

expressed as, for example, 

 
< =
> = 2

c c

c c

T T G G
T T G G

⇒
 ⇒

 (4.24) 

the equation of propagation becomes: 

 

2

2
2=

2

c

c

GF
a S

GFc
S

µ

µ

−

+


 (4.25) 

 
Assuming that the relation between T  and G  is always given by the limit reached 

instantaneously (4.21), T  increases and is given by 2 cT  for = 2 cG G : 

 
2= >c

c
GT T
c Sρ

 (4.26) 

 
When G  reaches 2 cG , a  can be zero; this corresponds to the arrest of crack propagation. 

Then, the temperature decreases, involving a decrease in cG  and thus a possible reinitiation of crack 
propagation. There is thus an equilibrium regime with slowed-down propagation. 

 
If the crack tends to stop, the temperature will be blocked at cT , cG  will be fixed at the value 

corresponding to cT  (4.21), and a  can be deduced from cG . 
 
If a  is null again, then the propagation must be slow with a possibility of heat diffusion to 

remain under cT . 
 
In summary, the general analysis of the fracture process can be represented as shown in Fig.9. 
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[Case 1] [Case 2] 
 

Fig.9 Propagation criterion with respect to the transition temperature cT . 
 

This one-dimensional modelling of thermomechanical coupling in dynamic fracture is useful for 
calculating the orders of magnitude, temperature, and characteristic time and for evaluating the effect 
of temperature on crack propagation with temperature-dependent criteria. 
 
5.Conclusions 

This study proposes an analytical model for thermal fields that combines crack energy flow with a 
heat equation using thermomechanical coupling. A methodology is proposed for analysing thermal 
fields. 

 
The mechanical fields approach an equilibrium state for a short time during crack propagation 

until those at the crack tip are affected by the boundary. The temperature field developed in 
thermomechanically coupled problems can provide information about the energy consumption in the 
material, and techniques such as an instant measurement of the temperature field can serve as a 
powerful tool for understanding the dynamic fracture. 

 
This study does not fully solve the problem of thermomechanical coupling in dynamic fracture. It 

might model dynamic elastoplastic rupture more finely by introducing a thermoviscoplastic effect 
because the viscosity decreases with temperature. Confined plasticity problems are taken into 
account if the crack energy flow is interpreted in a more general manner as the power consumed by 
unit advancement of a crack. In the future, it might be useful to more precisely study the effects of 
coupling in the propagation phase in a one-dimensional model. 
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