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STABLE MANIFOLDS OF TWO-DIMENSIONAL

BIHOLOMORPHISMS ASYMPTOTIC TO FORMAL CURVES

LORENA LÓPEZ-HERNANZ, JASMIN RAISSY, JAVIER RIBÓN,

AND FERNANDO SANZ-SÁNCHEZ

Abstract. Let F ∈ Diff(C2, 0) be a germ of a holomorphic diffeomorphism
and let Γ be an invariant formal curve of F . Assume that the restricted
diffeomorphism F |Γ is either hyperbolic attracting or rationally neutral non-
periodic (these are the conditions that the diffeomorphism F |Γ should satisfy,
if Γ were convergent, in order to have orbits converging to the origin). Then
we prove that F has finitely many stable manifolds, either open domains or
parabolic curves, consisting of and containing all converging orbits asymptotic
to Γ. Our results generalize to the case where Γ is a formal periodic curve of
F .

1. Introduction

Let F ∈ Diff(Cn, 0) be a germ of a holomorphic diffeomorphism. A stable set of
F is a subset B ⊂ V of an open neighborhood V of 0 where F is defined, which
is invariant, i.e. F (B) ⊂ B, and such that the orbit of each point of B converges
to 0. If B is an analytic, locally closed submanifold of V then we say that B is a
stable manifold of F (in V ).

In the case of one-dimensional diffeomorphisms, the existence of stable manifolds
depends mainly on the multiplier λ = F ′(0) ∈ C. More precisely, F has non-trivial
stable manifolds when F is (hyperbolic) attracting (|λ| < 1), in which case a whole
neighborhood of 0 ∈ C is a stable manifold, or rationally neutral (λ is a root
of unity) and non-periodic, in which case the “attracting petals” of Leau-Fatou
Flower Theorem [11, 8] are stable manifolds. In the remaining cases, (hyperbolic)
repelling (|λ| > 1), periodic or irrationally neutral (|λ| = 1 and λ is not a root of
unity), the origin itself is the only stable manifold of F in any neighborhood (a
result by Pérez-Marco [14] in the last case).

In the two-dimensional case, the problem of the existence of stable manifolds of
F has been addressed by several authors. The existence of one-dimensional stable
manifolds, usually called parabolic curves (when they do not contain the origin),

has been studied for example by Ueda [19] when F is semihyperbolic; by Écalle [7],
Hakim [9], Abate [1], Abate, Bracci and Tovena [2], Molino [13], Brochero, Cano
and López [6] and López and Sanz [12] when F is tangent to the identity; by Bracci
and Molino [5] when F is quasi-parabolic. The existence of open stable manifolds
has been treated for example by Ueda [18] in the semihyperbolic case; by Weickert
[21], Hakim [9], Vivas [20], Rong [16] in the tangent to the identity case.
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dad, Spain, process MTM2016-77642-C2-1-P; first and second authors, by MATHAmSud 2014
grant “Geometry and Dynamics of Holomorphic Foliations”; second author, by ANR project
LAMBDA, ANR-13-BS01-0002.
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In this paper, we study the case of a planar diffeomorphism F ∈ Diff(C2, 0)
and we look for stable manifolds consisting of orbits which are asymptotic to a
given invariant formal curve Γ. Going one step further, our interest is to describe a
family of such stable manifolds whose union “captures” any orbit asymptotic to Γ.
Following the terminology adopted by Ueda in [18], we construct a “base of the set
of orbits asymptotic to Γ” which is a union of stable manifolds. Our assumptions
in order to guarantee the existence of such stable manifolds are just the necessary
conditions inherited from the one-dimensional dynamics induced by F on Γ. No
further hypotheses on the linear part DF (0) are required.

Let us describe our main result in more precise terms. At the end of the in-
troduction we discuss its relation with some of the results which appear in the
references mentioned above.

Recall that a formal curve Γ at 0 ∈ C2 is a reduced principal ideal of C[[x, y]].
It is called irreducible if Γ is a prime ideal. We say that Γ is invariant by F , or
F -invariant, if Γ ◦ F = Γ. If Γ is irreducible and F -invariant then we can consider
the restriction F |Γ, which is a formal diffeomorphism in one variable (see Section
2).

A formal irreducible curve Γ0 is called m-periodic if Γ0 ◦ F
m = Γ0 and m is the

minimum positive integer holding such property. In that case, the formal curve

Γ =

m−1⋂

j=0

Γ0 ◦ F
j

is F -invariant. Let us point out that if Γ0 defines an analytic curve V (Γ0) then
V (Γ) = ∪m−1

j=0 F
j(V (Γ0)). Thus V (Γ) is the minimal F -invariant curve containing

V (Γ0). Equivalently, Γ is the maximal F -invariant ideal contained in Γ0, being this
conclusion also valid in the formal setting. We say that Γ is the invariant curve
associated to Γ0. In this case, the irreducible components of Γ are the m-periodic
curves Γj := Γ0 ◦ F j for j = 0, ...,m− 1.

Given a m-periodic curve Γ0 of F , a non-trivial orbit O of F is said to be
asymptotic to the associated invariant curve Γ if it converges to the origin and, for
any finite composition of blow-ups of points σ : M → C2, the ω-limit of the lifted
sequence σ−1(O) is contained in the finite set determined by the components of Γ
in the exceptional divisor σ−1(0) (see Section 2 for details).

Our main result is the following:

Theorem 1. Consider F ∈ Diff(C2, 0) and let Γ0 be a formal m-periodic curve of
F whose associated invariant curve is denoted by Γ. Assume that the restriction
Fm|Γ0 is either attracting or rationally neutral and non-periodic. Then, in any
sufficiently small open neighborhood V of 0, there exists a non-empty finite family
of pairwise disjoint stable manifolds S1, ..., Sr ⊂ V of F of pure positive dimension
and with finitely many connected components such that the orbit of every point in
Sj is asymptotic to Γ and such that any orbit of F asymptotic to Γ is eventually
contained in S1 ∪ · · · ∪ Sr.

It is worth mentioning that a diffeomorphism F ∈ Diff(C2, 0) always has a formal
periodic curve by a result of Ribón [15], although they may be all divergent and
non-invariant.
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Remark 1. In order to show Theorem 1 it suffices to consider irreducible invariant
curves, i.e. m = 1. Indeed, assume that Γ0 is m-periodic and apply the theorem to
Fm and the Fm-invariant irreducible curve Γ0. Let F0 = {S1, ..., Sr} be a family
of stable manifolds of Fm obtained for a domain V in which every F j , for j =
1, ...,m−1, is defined and injective, and put F = {∪m−1

j=0 F
j(S1), . . . ,∪

m−1
j=0 F

j(Sr)}.
Then F is a family with the required properties of Theorem 1 for F and the invariant
curve Γ. Notice that, since each component of Γ is invariant by Fm, the points
determined by Γ in the exceptional divisor after blow-ups are fixed points for the
corresponding transform of Fm (see Section 2). Thus, an orbit O = {Fn(p)}n≥0 of
F is asymptotic to Γ if and only if each one of the m orbits Oj = {Fnm+j(p)}n≥0

of Fm for j = 0, ...,m− 1 is asymptotic to one and only one of the components of
Γ. Hence, the orbit under Fm of a point in F j(Si) is asymptotic to Γj = F j(Γ0)
for any j = 0, ...,m− 1 and any i = 1, ..., r and thus F j(Si)∩F k(Sl) = ∅ whenever
i 6= l and j, k ∈ {0, . . . ,m− 1}.

As a consequence of Remark 1, we assume from now on that all formal irreducible
periodic curves are invariant.

Roughly speaking, Theorem 1 can be interpreted by saying that the condition en-
suring the existence of stable manifolds in dimension 1 also provides (applied to F |Γ)
stable manifolds of orbits asymptotic to Γ. More precisely, if Γ were convergent,
the hypotheses in Theorem 1 would be necessary conditions in order to have stable
orbits inside Γ. Although these hypotheses are not necessary in general, if they
are not satisfied then one can find simple examples where no orbit asymptotic to Γ
exists. In the case where F |Γ is hyperbolic, being attracting is a necessary condition
for having orbits asymptotic to Γ (see Section 3). In the case where F |Γ is periodic
(and hence rationally neutral), since the set of fixed points of a diffeomorphism
is an analytic set, either F is itself periodic or Γ is convergent. In the first case,
there are no non-trivial orbits converging to the origin; in the second case, there are
examples with no asymptotic orbits (for instance F (x, y) = (−x, 2y) and Γ = (y))
and examples with asymptotic orbits (for instance F = Exp(y(x2∂/∂x + y∂/∂y))
and Γ = (y)). In the case where F |Γ is irrationally neutral, although we can also
find simple linear examples with no asymptotic orbits, we do not know if there are
examples with asymptotic orbits.

In the proof of Theorem 1, we consider separately the two situations for F |Γ,
namely hyperbolic or rationally neutral, since the arguments and the structure of
the stable manifolds Sj are notably different in both cases.

In Section 3 we study the case where F |Γ is hyperbolic attracting. The result is a
consequence of the classical Stable Manifold and Hartman-Grobman Theorems for
diffeomorphisms. We show that Γ is an analytic curve which contains eventually any
orbit of F which is asymptotic to Γ. Indeed the hyperbolic case can be characterized
in terms of the family of stable manifolds F = {S1, . . . , Sr} provided by Theorem 1
in the following way: F |Γ is hyperbolic if and only if Sj is a germ of analytic curve
at 0 for some 1 ≤ j ≤ r and in this case F = {Γ \ {0}}. We also prove that Γ
is either non-singular or a cusp yp = xq in some coordinates and that, in this last
case, F is analytically linearizable.

The case where F |Γ is rationally neutral is more involved and is treated in
Sections 4, 5, 6 and 7. Observe first that, considering an iterate of F and using
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similar arguments to the ones in Remark 1, we may assume that F |Γ is a parabolic
formal diffeomorphism, i.e. (F |Γ)′(0) = 1.

In Section 4, we show that, after finitely many blow-ups along Γ, we can consider
analytic coordinates (x, y) at the origin such that Γ is non-singular and tangent to
the x-axis and F is of the form

(1)
x ◦ F (x, y) = x− xk+p+1 +O(xk+p+1y, x2k+2p+1)
y ◦ F (x, y) = µ(y + xka(x)y +O(xk+p+1y, xk+p+2))

where k ≥ 1, p ≥ 0 and a(x) is a polynomial of degree at most p with a(0) 6= 0.
Notice that k and p depend only on F and Γ, since k + 1 is the order of F and
k + p+ 1 is the order of the restriction F |Γ.

Let A(x) = A0 +A1x+ · · ·+Apx
p be the polynomial defined by the formula

logµ+ xk (A0 +A1x+ · · ·+Apx
p) = Jk+p

(
log

(
µ
(
1 + xka(x)

)))
,

where Jm denotes the truncation of a series up to degree m. The idea behind this
definition is that the jets of order k+p+1 of F and of the exponential of the vector
field

Z = −xk+p+1 ∂

∂x
+ (logµ+ xkA(x))y

∂

∂y

coincide, and the dynamics of F and Exp(Z) are somewhat related. Let us describe
briefly the behavior of the orbits of the toy model Exp(Z) converging to the origin
and asymptotic to the invariant curve y = 0, which plays the role of Γ. Given
such an orbit O = {(xn, yn)}, the sequence {xn} is an orbit of the one-dimensional
parabolic diffeomorphism x 7→ Exp(−xk+p+1 ∂

∂x ) and hence it converges to 0 ∈ C

along a well defined real limit direction, necessarily one of the k + p half-lines
ξR+ with ξk+p = 1, called the attracting directions (they correspond to the central
directions of the attracting petals in Leau-Fatou Flower Theorem). On the other
hand, Z has a first integral H(x, y) = yh(x), where

h(x) = exp

(∫
logµ+ xkA(x)

xk+p+1
dx

)
,

and the behavior of the orbits of Exp(Z), since they are contained in fibers of H ,
depends on the asymptotics of H in a neighborhood of the corresponding attracting
direction ℓ. Making a linear change of variables so that ℓ = R+, we say that ℓ is
a node direction if (ln |µ|,Re (A0) , ...,Re (Ap−1)) < 0 in the lexicographic order.
Otherwise, we say that ℓ is a saddle direction.

Consider the simplest case where |µ| 6= 1 (i.e. F is semi-hyperbolic). Then ℓ is a
saddle or a node direction if |µ| > 1 or |µ| < 1, respectively. There exists a sector
Ω ⊂ C bisected by ℓ in which either h(x) or 1/h(x) is a flat function depending
on whether ℓ is a saddle or a node direction, respectively. Thus, the fibers of H in
Ω× C behave correspondingly as a saddle (only y = 0 is bounded) or a node (any
fiber is bounded and asymptotic to y = 0). In the general case, one can show a
similar description for the fibers of H in Ω×C, where Ω is a domain of C containing
ℓ which is not necessarily a sector. Moreover, Ω× C eventually contains any orbit
{(xn, yn)} of Exp(Z) such that {xn} has ℓ as a limit direction. We obtain that Ω×C

(respectively Ω × {0}) is a stable manifold of Exp(Z) when ℓ is a node direction
(respectively saddle direction) composed of orbits asymptotic to the curve y = 0.
The family of these stable manifolds satisfies the conclusions of Theorem 1.
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For a general diffeomorphism F written in the reduced form (1), we obtain a
similar description of the orbits asymptotic to Γ. In fact, we construct a family
{Sℓ} of stable manifolds of F , where ℓ varies in the set of attracting directions
ℓ = ξR+, with ξk+p = 1, satisfying the assertion of Theorem 1. The case of a
saddle direction is treated in Section 5, where we obtain that Sℓ is one-dimensional
and simply connected (a so-called parabolic curve). The case of a node direction is
studied in Section 6, where we obtain that Sℓ is a simply connected open set.

As a consequence of our main result, in Section 7 we prove the following theorem,
which generalizes results in [5] and [12].

Theorem 2. Let Γ be an irreducible formal invariant curve of F ∈ Diff(C2, 0) such
that F |Γ is parabolic, with F |Γ 6= id, and assume that spec(DF (0)) = {1, µ}, with
|µ| ≥ 1. Then there exists a parabolic curve for F , which is asymptotic to Γ.

We end this introduction discussing some special situations for the diffeomor-
phism F already treated in the literature and their relation with our approach to
find stable manifolds.

- In the semi-hyperbolic attracting case (|µ| < 1), every attracting direction is a
node direction. We obtain r = k + p open stable manifolds whose union forms a
base for the set of orbits of F asymptotic to Γ. This case is the one considered by
Ueda in [18], and our unified point of view recovers his result (observe that in the

semi-hyperbolic case, the Poincaré-Dulac normal form F̃ of F has a unique formal
invariant curve Γ̃ such that the restriction F̃ |Γ̃ is parabolic and hence so does F ).

- In the semi-hyperbolic repelling case (|µ| > 1), every attracting direction is a
saddle direction and we obtain r = k + p parabolic curves, defined as graphs of
holomorphic functions over open sectors in the x-variable, whose union is a base of
the set of orbits asymptotic to Γ. This case is also treated by Ueda in [19] and we
again recover his conclusion.

- In the case spec(DF (0)) = {1} and p = 0 (Briot-Bouquet case), we have

that every attracting direction is a saddle direction. We obtain, as in Écalle [7]
and Hakim [9], that there exist k parabolic curves of F whose union is a base of
convergent orbits asymptotic to Γ (notice that the tangent direction of Γ in this
case is a “characteristic direction” of F ). This result was used by Abate [1] (see
also [6]) to show that every tangent to the identity diffeomorphism with isolated
fixed point has a parabolic curve.

- In the case spec(DF (0)) = {1, µ}, with |µ| = 1, µ is not a root of unity and
p = 0, every attracting direction is a saddle direction. In this case, Bracci and
Molino [5] proved the existence of k parabolic curves of F . Since in this case there
exists a formal invariant curve Γ such that F |Γ is parabolic, using the Poincaré-
Dulac normal form, our approach recovers their result and generalizes it to the case
p > 0.

- In the case spec(DF (0)) = {1} and Re(A0) > 0, a particular case of a saddle
direction, López and Sanz proved in [12] the existence of a parabolic curve of F
asymptotic to Γ. Following the same arguments (which are in turn a modification
of Hakim’s proof in [9]) we recover that result and generalize it for an arbitrary
saddle direction.

- In the case spec(DF (0)) = {1} and Re(A0) < 0, a particular case of a node
direction, Rong proved in [16] the existence of an open stable manifold. Notice that,
since A0 6= 0, applying Briot-Bouquet’s theorem [4] to the infinitesimal generator
of F we conclude that there always exists a formal invariant curve Γ such that F |Γ
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is parabolic. Hence, our approach recovers Rong’s result and generalizes it for an
arbitrary node direction.

2. Diffeomorphisms, invariant curves and blow-ups

Let F ∈ Diff(C2, 0) be a germ of a holomorphic diffeomorphism at the origin
of C2. In this article we make use repeatedly of the behavior of F under blow-up.
Although quite well known (see for instance [15]), let us summarize the principal
properties, in order to fix notations and to establish a convenient terminology.

Let π : C̃2 → C2 be the blow-up at the origin of C2 and denote by E = π−1(0)

the exceptional divisor. Then F̃ = π−1 ◦F ◦ π extends to an injective holomorphic

map in a neighborhood of E in C̃2 that leaves the divisor E invariant and so that

F̃ |E is the projectivization of the linear map DF (0) in the identification E ≃ P1
C
.

Hence, a point p ∈ E is a fixed point for F̃ if and only if p corresponds to the
projectivization of an invariant line ℓ of DF (0). In this case we will say, in analogy
with the standard terminology for curves, that p is a first infinitely near fixed point

of F and that the germ Fp of F̃ at p is the transform of F at p. Repeating the
operation of blowing-up, we can recursively define sequences {pn}n≥0 of infinitely
near fixed points of F and corresponding transforms Fpn

putting p0 = 0 and, for
n ≥ 1, taking pn as a first infinitely near point of Fpn−1 (considered as an element

of Diff(C2, 0) after taking analytic coordinates at pn−1).
Let us recall how the eigenvalues of the differential of a diffeomorphism vary

under blow-ups. Let λ, µ be the eigenvalues of DF (0) and let p be an infin-
itely near fixed point of F corresponding to an invariant line ℓ of DF (0) asso-
ciated to the eigenvalue λ; then the differential of the transform Fp has eigenvalues
{λ, µ/λ}, where µ/λ is the eigenvalue associated to the tangent direction of the
exceptional divisor E at p. This can be seen by the following simple computation.
Choose coordinates (x, y) at 0 ∈ C2 such that ℓ is tangent to the x-axis and write
F (x, y) = (F1(x, y), F2(x, y)) and DF (0)(x, y) = (λx + ay, µy), where a ∈ C. Con-
sider coordinates (x′, y′) at p so that π is written as π(x′, y′) = (x′, x′y′). Then

F̃ = π−1 ◦ F ◦ π is written locally at p as

(2) F̃ (x′, y′) =

(
F1(x

′, x′y′),
F2(x

′, x′y′)

F1(x′, x′y′)

)
,

so that we obtain DF̃ (p)(x′, y′) = (λx′, µλy
′ + bx′) for some b ∈ C, which gives the

result (notice that E = {x′ = 0} in these coordinates).

Let Γ be an (irreducible) formal curve at 0 ∈ C2. By definition, once we fix
coordinates (x, y) at the origin, Γ is a principal ideal of C[[x, y]], generated by an
irreducible non-constant series f(x, y). The multiplicity of Γ is the positive integer
ν = ν(Γ) such that f ∈ m

ν \ mν+1, where m is the maximal ideal of C[[x, y]]. The
formal curve Γ is non-singular if and only if ν = 1. If we write f = fν + fν+1 + · · ·
as a sum of homogeneous polynomials, then fν = (ax+ by)ν where a, b ∈ C are not
both zero. The line ax+ by = 0 is the tangent line of Γ (in the coordinates (x, y)).

A formal curve Γ is uniquely determined by a parametrization, i.e. a pair γ(s) =
(γ1(s), γ2(s)) ∈ C[[s]]2 \ {0} with γ(0) = (0, 0) such that h ∈ Γ if and only if
h(γ(s)) = 0. We can always consider a parametrization γ(s) which is irreducible
(i.e. it cannot be written as γ(s) = σ(sl) where σ(s) is another parametrization of
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Γ and l > 1). In fact, if γ(s) is an irreducible parametrization of Γ then any other
parametrization γ̃(s) of Γ is written as γ̃(s) = γ(θ(s)) for a unique θ(s) ∈ C[[s]]
with θ(0) = 0. If γ(s) is irreducible, the multiplicity ν of Γ is the minimum
of the orders of the series γ1(s), γ2(s) ∈ C[[s]] and the tangent line is given by
[γ1(s)/s

ν , γ2(s)/s
ν ]|s=0 ∈ P

1
C
.

A formal curve Γ is also uniquely determined by its sequence {qn}n≥0 of infinitely

near points, obtained by blow-ups as follows. Put q0 = 0. If π : C̃2 → C2 is the
blow-up of C2 at the origin, q1 ∈ π−1(0) is the point corresponding to the tangent
line of Γ in the identification π−1(0) ≃ P1

C
. There is a unique irreducible formal

curve Γ1 at q1 such that Γ1 is different from the exceptional divisor at q1 and which
satisfies π∗Γ ⊂ Γ1, where π

∗Γ = {h ◦ π : h ∈ Γ}, called the strict transform of Γ.
Then, recursively for n ≥ 2, qn is the point corresponding to the tangent line of
Γn−1 and Γn is the strict transform of Γn−1 by the blow-up at qn−1.

In the following proposition, we present several equivalent definitions for a formal
curve to be invariant for a diffeomorphism. Although quite well known, we include
its proof for the sake of completeness.

Proposition 2.1. Consider F ∈ Diff(C2, 0) and let Γ be an irreducible formal
curve at the origin of C2. The following properties are equivalent:

(a) For any h ∈ Γ, one has h ◦ F ∈ Γ.
(b) Given a parametrization γ(s) of Γ, there exists θ(s) ∈ C[[s]] with θ(0) = 0 and

θ′(0) 6= 0 such that F ◦ γ(s) = γ ◦ θ(s).
(c) The sequence of infinitely near points of Γ is a sequence of infinitely near fixed

points of F .

If any of the conditions above holds, we say that Γ is an invariant formal curve of
F .

Proof. Notice first that in (a) it is sufficient to consider h a fixed generator of
Γ. Also, in (b) it suffices to consider γ(s) a fixed irreducible parametrization: if
γ̃(s) is another parametrization, then γ̃(s) = γ(τ(s)) where τ(s) ∈ C[[s]] has order
l > 0. Hence, assuming (b) for γ(s), F ◦ γ̃(s) = γ(θ(τ(s))) and, since θ ◦ τ(s)
and τ(s) have the same order, there exists some α(s) ∈ C[[s]] with α(0) = 0 and
(α′(0))l = θ′(0) 6= 0 such that θ ◦ τ(s) = τ ◦α(s). This shows property (b) for γ̃(s).

Let us prove the equivalence between (a) and (b). Let h be a generator of
Γ and let γ(s) be an irreducible parametrization of Γ. Then we have property
(a) if and only if h ◦ F (γ(s)) = 0, which is equivalent to saying that F ◦ γ(s)
is a parametrization of Γ, which, in turn, is equivalent to the existence of some
θ(s) ∈ C[[s]] with θ(0) = 0 such that F ◦ γ(s) = γ(θ(s)). The additional condition
θ′(0) 6= 0 in this last case is a consequence of the fact that the minimum of the
orders of the components of F ◦ γ(s) and of γ(s) are the same.

Let us prove the equivalence between (b) and (c). First, assume that property
(b) holds and let γ(s) be an irreducible parametrization of Γ. On the one hand,
property (b) for γ(s) implies that the tangent line of Γ is an invariant line of DF (0).
Thus, if q1 is the first infinitely near point of Γ, q1 is an infinitely near fixed point
of F . On the other hand, one can see that γ̃(s) = π−1 ◦γ(s) is a parametrization of
the strict transform Γ1 of Γ by the blow-up π at the origin which moreover satisfies
Fq1 ◦ γ̃(s) = γ̃ ◦ θ(s). Repeating the argument, we prove (c). Now assume that
(c) holds. Notice that the last argument presented above shows that property (b)
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is stable both under blow-up and blow-down, i.e. property (b) holds for F and
Γ at the origin if and only if it holds for the transform Fq1 of F and the strict
transform Γ1 of Γ at the first infinitely near point q1 of Γ. Then, using reduction
of singularities of formal curves, we can assume that Γ is non-singular. Let us
show in this case that (c) implies (a), which is equivalent to (b). Consider formal
coordinates (x̂, ŷ) such that Γ is generated by ŷ and write F = (F1(x̂, ŷ), F2(x̂, ŷ))
in those coordinates. The sequence of infinitely near points of Γ is given by the
centers qn of the charts (x̂n, ŷn) for which the corresponding composition of blow-
ups is written as (x̂n, ŷn) 7→ (x̂n, (x̂n)

nŷn) and the expression of the corresponding
transformed diffeomorphism at qn is obtained repeating n times the computation
in (2). In particular, if qn is an infinitely near fixed point of F then F2(x̂, x̂

nŷ) is
divisible by x̂n for any n. Thus ŷ divides F2(x̂, ŷ), which shows property (a). �

If Γ is a formal invariant curve of a diffeomorphism F , the series θ(s) ∈ C[[s]]
given by property (b) in Proposition 2.1 can be considered as a formal diffeomor-

phism in one variable, i.e. θ(s) ∈ D̂iff(C, 0). Note that the class of formal conjugacy
of θ(s) is independent of the chosen parametrization γ(s) in (b). Any representative
of this class will be called the restriction of F to Γ and denoted by F |Γ. Notice
that if α ∈ Z then Γ is invariant by Fα and

(F |Γ)
α = Fα|Γ.

The number λΓ = θ′(0) ∈ C∗, called the inner eigenvalue, is intrinsically defined
and invariant under blow-ups (since θ(s) is stable under blow-ups as mentioned in
the proof of Proposition 2.1).

On the other hand, let λ(Γ) be the eigenvalue of the differential DF (0) corre-
sponding to the tangent direction of Γ, that we call the tangent eigenvalue. The
relation between the inner and the tangent eigenvalues is given by the following
lemma, which can be proved by a simple computation.

Lemma 2.2. If ν is the multiplicity of Γ and λΓ, λ(Γ) are respectively the inner
and the tangent eigenvalues of Γ, then we have (λΓ)

ν = λ(Γ).

In particular, λΓ = λ(Γ) if Γ is non-singular. The equality is not necessarily
true when Γ is singular. Consider for instance the linear diffeomorphism F (x, y) =
(x,−y). For any natural odd number n ≥ 3, the curve Γn generated by the poly-
nomial xn − y2 is invariant for F and tangent to the x-axis, an eigendirection with
associated eigenvalue equal to 1, whereas λΓn

= −1 for any such n. Notice that
this example also shows that the tangent eigenvalue λ(Γ) is not invariant under
blow-up (after some blow-ups, the formal curve becomes non-singular and hence
λΓ and λ(Γ) eventually coincide).

Definition 2.3. Let Γ be a formal invariant curve of F ∈ Diff(C2, 0) and let λΓ be
the inner eigenvalue. We say that Γ is hyperbolic if |λΓ| 6= 1 (attracting if |λΓ| < 1
and repelling if |λΓ| > 1), and that Γ is rationally neutral if λΓ is a root of unity;
in the particular case λΓ = 1, we say that Γ is parabolic.

Notice that the condition of Γ being hyperbolic, rationally neutral or parabolic
is stable under blow-ups.

We discuss now the concept of asymptotic orbit which appears in the statement
of Theorem 1. In fact, we will consider such property for larger stable sets of a
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diffeomorphism F ∈ Diff(C2, 0). Recall from the introduction that a stable manifold
of F (in U) is an analytic locally closed submanifold S in a neighborhood U where
F is defined such that F (S) ⊂ S and such that, for any point a = a0 ∈ S, the
orbit {an = Fn(a)}n converges to the origin. The smallest non-trivial example of
a zero-dimensional stable manifold is an orbit which converges and is not reduced
to the origin, called a (non-trivial) stable orbit of F . Another interesting example
is a parabolic curve, defined as a connected and simply connected stable manifold
of pure dimension one not containing the origin.

Definition 2.4. Let S be a stable set of F such that 0 6∈ S. We say that S has
the property of iterated tangents if the following holds: if π1 : M1 → C2 is the
blow-up at the origin and S1 = π−1

1 (S), then S1 ∩ π−1
1 (0) is a single point p1; if

π2 : M2 → M1 is the blow-up at p1 and S2 = π−1
2 (S1), then S2 ∩ π−1

2 (p1) is a
single point p2; and so on. The sequence of points {pn}n so constructed is called
the sequence of iterated tangents of the stable manifold S. Given a formal curve
Γ at 0 ∈ C2, we say that S is asymptotic to Γ if S has the property of iterated
tangents and its sequence of iterated tangents is equal to the sequence of infinitely
near points of Γ.

Notice that if S is a stable manifold with the property of iterated tangents, then
any stable orbit O ⊂ S also has the property (and the same sequence of iterated
tangents), but the converse does not need to be true. On the other hand, if {pn}
is the sequence of iterated tangents of a stable manifold S, then each pn is a fixed
point of the corresponding transform of F at the point pn. Thus, by Proposition 2.1,
if S is asymptotic to a formal curve Γ then Γ is an invariant curve of F .

Stable orbits of a diffeomorphism need not have the property of iterated tangents.
We can take for instance a linear diffeomorphism F (x, y) = (ax, ae2πiθy), where
a ∈ C satisfies 0 < |a| < 1 and θ is irrational. Since the origin is a global attractor
for F , any orbit of F is a stable orbit, but only those orbits contained in one of
the (invariant) coordinate axes have the property of iterated tangents. In fact, if
{(xn, yn)} is an orbit of F with xnyn 6= 0 for any n, we have [xn : yn] = [c :
e2πinθ] ∈ P1

C
for some non-zero constant c, which has infinitely many accumulation

points when n goes to infinity.
On the other hand, there may exist stable orbits with iterated tangents which

are not asymptotic to any formal curve. As an example, we can consider a linear
diffeomorphism F (x, y) = (ax + ay, ay), where 0 < |a| < 1. The orbits of F are
asymptotic to the exceptional divisor after a blow-up at the origin, but they are
not asymptotic to a formal curve in the ambient space. More precisely, the unique
formal invariant curve Γ of F is the x-axis. Any non-trivial orbit O of F is stable
and tangent to Γ, i.e. its transform π−1(O) by the blow-up π at the origin is a stable
orbit of the transformed diffeomorphism Fp1 , where p1 corresponds to [1 : 0]. One
can see that if O is not contained in Γ then π−1(O) is asymptotic to the exceptional
divisor E = π−1(0).

It is worth to notice that the property of being asymptotic to a formal curve Γ
in Definition 2.4 corresponds actually to the standard analytic meaning of having
Γ as “asymptotic expansion”. To fix ideas, if Γ is non-singular and we consider
a parametrization of the form γ(s) = (s, h(s)) where h(s) =

∑
n≥1 hns

n ∈ C[[s]],

then a non-trivial orbit O = {(xn, yn)} is asymptotic to Γ if and only if for any
N ∈ N there exist some CN > 0 and some n0 = n0(N) ∈ N such that, for any
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n ≥ n0, we have
∣∣yn − (h1xn + h2x

2
n + · · ·+ hNx

N
n )

∣∣ ≤ CN |xn|
N+1.

A similar condition (see [12]) can be considered for a parabolic curve asymptotic
to a formal curve Γ. It is worth to remark that our definition of parabolic curve
asymptotic to a formal curve coincides with that of “robust parabolic curve” in [3].

We can now restate our main result Theorem 1. Since we use different arguments,
we consider the two different situations in separate statements.

Theorem 2.5 (Γ-hyperbolic case). Let F ∈ Diff(C2, 0) and let Γ be an invariant
formal curve of F . Assume that Γ is hyperbolic attracting. Then Γ is a germ of an
analytic curve at the origin such that a (sufficiently small) representative of it is a
stable manifold of F and contains the germ of any orbit of F asymptotic to Γ.

Theorem 2.6 (Γ-rationally neutral case). Consider F ∈ Diff(C2, 0) and let Γ
be an invariant formal curve of F . Assume that Γ is rationally neutral and that
the restricted diffeomorphism F |Γ is not periodic. Then, for any sufficiently small
neighborhood V of the origin, there exists a non empty finite family of mutually
disjoint stable manifolds {S1, ..., Sr} in V of pure positive dimension satisfying:

(i) Every orbit in the union S =
⋃r

j=1 Sj is asymptotic to Γ.

(ii) S contains the germ of any orbit of F asymptotic to Γ.
(iii) If n is the order of the inner eigenvalue λΓ as a root of unity, then each Sj

is a finite union of n connected and simply connected mutually disjoint stable
manifolds Sj1, . . . , Sjn of the iterated diffeomorphism Fn (i.e. either parabolic
curves or open stable sets of Fn). In fact, Sji = F (Sj,i−1) for i = 2, ..., n and
for any j.

Moreover, if dim(Sj) = 1 then Sj is asymptotic to Γ. If dim(Sj) = 2, one can also
choose Sj to be asymptotic to Γ.

In Section 3 we prove Theorem 2.5 and other related questions concerning the
case where Γ is hyperbolic. The proof of Theorem 2.6 is more involved and will
be carried on in Sections 4 to 7. As mentioned in the introduction, by the same
arguments used in Remark 1, to show Theorem 2.6 it suffices to consider the case
λΓ = 1 (Γ-parabolic case).

3. Γ-hyperbolic case

In this section, we assume that Γ is a hyperbolic formal invariant curve of F ∈
Diff(C2, 0), i.e. |(F |Γ)′(0)| 6= 1.

We prove Theorem 2.5 and other results related to this case. They are conse-
quences of classical theorems involving local hyperbolic dynamics and normal forms.
To summarize, we first show that Γ is an analytic curve at the origin as a conse-
quence of the Stable Manifold Theorem. Moreover, some manipulations regarding
the Poincaré-Dulac normal form allow us to show that Γ is either non-singular or
a cusp yp = xq in some coordinates and that, in this last case, F is analytically
linearizable. In the attracting case |(F |Γ)′(0)| < 1, we obtain, as an application of
Hartman-Grobman Theorem, that all stable orbits of F which are asymptotic to
Γ are contained in Γ. This result forbids the existence of two-dimensional stable
manifolds formed by orbits asymptotic to Γ, that can appear in the parabolic case
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λΓ = 1 as we shall see in Section 6. Finally, we characterize the attracting hyper-
bolic case as the unique where there exists an analytic curve at the origin which is
a stable set.

Proposition 3.1. Let Γ be a formal invariant curve of F ∈ Diff(C2, 0). Suppose
that spec(DF (0)) = {λ(Γ), µ} where the tangent eigenvalue λ(Γ) satisfies |λ(Γ)| <
min(1, |µ|). Then Γ is a non-singular analytic curve. Moreover it is the unique
formal periodic curve whose tangent line is not the eigenspace associated to µ.

Proof. Set λ = λ(Γ), and denote by {pn}n≥0 the sequence of infinitely near points
of Γ. To prove the uniqueness statement, we will show that the sequence {pn}
depends only on F . The eigenvalues λ and µ are different, thus there are two
eigenspaces of dimension 1. Since Γ is not tangent to the eigenspace associated to
µ by hypothesis, it follows that the tangent line of Γ is the eigenspace of DF (0)
associated to λ. In particular such direction, and then p1, depend only on DF (0).
If Fp1 is the transform of F at p1, we have that spec(DFp1 (p1)) = {λ, µ/λ}. If Γ1 is
the strict transform of Γ, then by the invariance of the inner eigenvalue under blow-
ups |λΓ1 | = |λΓ| < 1 and, since λ(Γ1) is a power of λΓ1 and |µ/λ| > 1, it follows that
λ = λ(Γ1). Therefore Γ1 is tangent to the eigenspace of DFp1(p1) associated to λ
and hence p2 depends only on DFp1(p1) and then on F . By induction, denoting by
Fpj+1 the transform of Fpj

and by Γj+1 the strict transform of Γj , we obtain that

(3) spec(DFpj+1 (pj+1)) =
{
λ,

µ

λj+1

}

and then λ is the eigenvalue associated to the tangent line of Γj+1 at pj+1 for any
j ≥ 0. In particular, the sequence {pn}n of infinitely near points of Γ depends
only on F . Moreover, since the tangent line of Γj is not tangent to the exceptional
divisor for all j, it follows that Γ is non-singular.

Since |λp| < min(1, |µp|), the curve Γ is the unique formal F p-invariant curve
that is not tangent to the eigenspace of µ for any p ∈ N. Moreover the properties
|λ| < 1 and |λ| < |µ| imply that Γ is a non-singular analytic curve by the Stable
Manifold Theorem [17, Theorem 6.1]. �

Next we see that any formal hyperbolic invariant curve can be reduced to the
setting of Proposition 3.1 via blow-ups.

Proposition 3.2. Let Γ be a formal hyperbolic invariant curve of F ∈ Diff(C2, 0).
Then Γ is an analytic curve.

Proof. Suppose spec(DF (0)) = {λ, µ} with λ = λ(Γ). We can suppose |λ| < 1 up
to replacing F with F−1 if |λ| > 1. Also, by reduction of singularities, we may
assume that Γ is non-singular. Thus, using the same notations as in the proof
of Proposition 3.1, λΓj

= λ for any j and the divisor at pj has inner eigenvalue

µ/λj . Take j ∈ N such that |λ| < |µ/λj |. Therefore Γj and then Γ are analytic by
Proposition 3.1. �

Corollary 3.3. Let Γ be an analytic curve at the origin that is a stable set for
F ∈ Diff(C2, 0). Then |λ(Γ)| < 1.

Proof. The result is a consequence of the analogous one for the one-dimensional
diffeomorphism f = F |Γ. Up to conjugacy we can suppose f ∈ Diff(C, 0). Let U
be a bounded open neighborhood of the origin that is a stable set for f . Cauchy’s
integral formula implies that the sequence of derivatives of the sequence {fn}n≥1 is
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uniformly bounded in compact subsets of U . Thus the sequence {fn}n≥1 is normal
and as a consequence {fn}n≥1 converges to 0 uniformly in compact subsets of U .
Another application of Cauchy’s integral formula shows limn→∞(fn)′(0) = 0. Since
(fn)′(0) = λnΓ, we deduce |λΓ| < 1. �

As a consequence of Proposition 3.2, we see that the unique asymptotic manifold
associated to a hyperbolic invariant curve is the curve itself.

Proposition 3.4. Let Γ be an invariant curve of F ∈ Diff(C2, 0) with |λ(Γ)| < 1.
Then any stable orbit of F asymptotic to Γ is contained in Γ.

Proof. Using the arguments of Proposition 3.2 and the notations of the proof of
Proposition 3.1, consider j ∈ N such that |µ/λj | > 1. Equation (3) and Hartman-
Grobman theorem imply that the unique orbits of Fpj

that converge to pj are those
contained in Γj . Consider a point q whose orbit O = {Fn(q)}n is asymptotic to Γ,
and denote by πl : Ml → Ml−1 the blow-up at pl−1 for 1 ≤ l ≤ j, where M0 = C2

and p0 = 0. Since O is asymptotic to Γ, (π1 ◦ · · · ◦ πj)−1(Fn(q)) tends to pj when
n→ ∞, so (π1 ◦ · · · ◦ πj)−1(O) ⊂ Γj and therefore O is contained in Γ. �

Remark 3.5. Let Γ be an invariant curve of F ∈ Diff(C2, 0) with |λ(Γ)| < 1.
Even if there are no asymptotic stable manifolds of dimension 2, let us consider the
“closest” case. This is the (hyperbolic) node case, corresponding to |µ| < |λ(Γ)| < 1.
In this case, the tangent line ℓ of Γ is an attractor for the dynamics induced by
DF (0) in the space P1

C
of directions. In fact, the origin is an attractor for the map F

and any orbit converges to the origin with tangent ℓ. Of course, this convergence is
not asymptotic since the hierarchy of the eigenvalues is disrupted by blow-up. More
precisely, the inequality |µ| < |λ(Γ)| is not stable by blow-up. Indeed such property
is key in the proof of Proposition 3.4. On the other hand, in the Γ-parabolic case
λ(Γ) = 1, since the inner eigenvalue is stable under blow-ups, the tangent eigenvalue
of Γ and all of its strict transforms are equal to 1, and then equation (3) implies
that the inequality |µ| < 1 is preserved under blow-ups at the infinitely near points
of Γ. Then, with the notations of Proposition 3.1, the tangent line ℓj of Γj is always
an attractor for the action induced by DFpj

(pj) in the space of directions at pj for
j ≥ 0. Since all the iterated tangents are attractors, it becomes possible to find
open stable manifolds in which all the orbits are asymptotic to Γ (we will show in
Section 6 that they actually exist). Let us remark that asymptotic convergence is
not necessarily related to the dynamics of DF (0), for instance it can also happen
in the case λ(Γ) = 1 and |µ| = 1 as we will see in the next sections.

The next result shows that if a formal hyperbolic invariant curve is singular,
then both the dynamics and the curve are very special.

Proposition 3.6. Let Γ be a hyperbolic invariant curve of F ∈ Diff(C2, 0). Suppose
that Γ is singular. Then there exist coprime natural numbers q > p > 1 such that,
up to an analytic change of coordinates, we have that F (x, y) = (λ(Γ)x, µy), where
λ(Γ)q = µp, and that Γ is the curve yp = xq.

Proof. We denote λ = λ(Γ) and spec(DF (0)) = {λ, µ}. We can suppose |λ| < 1
without loss of generality. By Proposition 3.1, we have |µ| ≤ |λ| < 1. Since the
eigenvalues ofDF (0) have modulus less than 1, the diffeomorphism F is analytically
conjugated to its Poincaré-Dulac normal form (cf. [10, Theorem 5.17]). This normal
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form is either F (x, y) = (λx, µy) or F (x, y) = (λx, µ(y + xm)), where µ = λm. Let
us show that the second case is impossible. Indeed, in that case

F (x, y) = (λx, µy) ◦ Exp

(
xm

∂

∂y

)
= Exp

(
xm

∂

∂y

)
◦ (λx, µy)

is the Jordan-Chevalley decomposition of F (see [15]). Since any invariant curve of

F is also invariant by the unipotent part Fu(x, y) = Exp
(
xm ∂

∂y

)
and then by the

vector field X = xm ∂
∂y (cf. [15, Propositions 2 and 3]), we deduce that x = 0 is the

unique F -invariant curve, which is impossible since Γ is singular.
Let γ(s) = (sp, γ2(s)) be an irreducible parametrization of Γ, where γ2(s) =∑∞
j=1 cjs

j ∈ C[[s]]. Since F (γ(s)) = (λsp, µγ2(s)) is again a parametrization of Γ,

we obtain that µγ2(s) = γ2(λ
1/ps), where λ1/p is a p-th root of λ. Hence cj 6= 0

implies µp = λj for any j ∈ N. We deduce that γ(s) = (sp, cqs
q) for some q ∈ N

with λq = µp. Since γ is irreducible, p and q are coprime. Moreover, q > p, because
|µ| < |λ|, and p > 1, because Γ is singular. The curve Γ is equal to yp = xqcpq , and
then conjugated by a linear map (x, y) 7→ (αx, y) to yp = xq. �

Remark 3.7. Let Γ be a hyperbolic invariant curve of F ∈ Diff(C2, 0). Then there
exists a non-singular hyperbolic invariant curve Γ′ such that λ(Γ) = λ(Γ′). Indeed,
if Γ is singular then we can suppose F (x, y) = (λ(Γ)x, µy), by Proposition 3.6, and
then we define Γ′ = {y = 0}.

4. Γ-parabolic case: reduction of the diffeomorphism

Consider a diffeomorphism F ∈ Diff(C2, 0) and a formal invariant curve Γ which
is parabolic (i.e. (F |Γ)′(0) = 1) and such that F |Γ 6= id. Note that the tangent
eigenvalue λ(Γ) is 1, by Lemma 2.2, and put spec(DF (0)) = {1, µ}.

Definition 4.1. We say that the pair (F,Γ) is reduced if Γ is non-singular and
there exist coordinates (x, y) at 0 ∈ C2 such that F is written as

x ◦ F (x, y) = x− xk+p+1 +O(xk+p+1y, x2k+2p+1)

y ◦ F (x, y) = µ
[
y + xka(x)y +O(xk+p+1y) + b(x)

]
,

where k ≥ 1, p ≥ 0, b(x) ∈ C{x} and a(x) is a polynomial of degree at most p with
a(0) 6= 0, and such that Γ has order of contact at least k + p + 2 with the x-axis.
The polynomial µ

(
1 + xka(x)

)
is called the principal part of the pair (F,Γ).

Observe that the integers k and p are independent of the coordinates (x, y), since
k+1 is the order of F and k+ p+1 is the order of the formal diffeomorphism F |Γ.

Remark 4.2. Suppose that (F,Γ) is reduced, with the same notations of Defini-
tion 4.1, and denote by m ≥ k + p+ 2 the order of contact of Γ with the x-axis, so
that Γ admits a parametrization of the form γ(s) = (s, γ2(s)), where the order of
γ2(s) is m. Then, the order ν0(b) of b at 0 satisfies ν0(b) = m, in the case µ 6= 1,
and ν0(b) ≥ m+ k, in the case µ = 1.

In this section, we will prove that there exists a finite sequence of changes of

coordinates and blow-ups at the infinitely near points of Γ such that the pair (F̃ , Γ̃),

where F̃ is the transform of F and Γ̃ is the strict transform of Γ, is reduced.
Observe first that, after a finite number of blow-ups centered at the infinitely

near points of Γ, we can assume that Γ is non-singular and transversal to the
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exceptional divisor, which is given by {x = 0} in some analytic coordinates (x, y).
In these coordinates, Γ admits a parametrization γ(s) of the form γ(s) = (s, γ2(s)),
with γ2(s) ∈ sC[[s]].

Denote by r+1 ≥ 2 the order of the formal diffeomorphism F |Γ (which is well de-
fined since F |Γ 6= id) and consider the change of variables (x, y) 7→ (x, y − Jr+1γ2(x)),
where Jl denotes the jet of order l. In the new coordinates, the curve Γ admits
a parametrization γ̄(s) = (s, γ̄2(s)), where the order of γ̄2 is at least r + 2. Since
F (s, γ̄2(s)) = (θ(s), γ̄2(θ(s))) for some θ(s) = s + αsr+1 + · · · with α 6= 0, we
conclude that F is written in the new coordinates as

x ◦ F (x, y) = x+ αxr+1 +O(y, xr+2)

y ◦ F (x, y) = µ
[
y + y

∑

j≥1

cjx
j +O(y2, xr+2)

]
.

Set t = min{j ≥ 1 : cj 6= 0}, if the series
∑

j≥1 cjx
j does not vanish, and t = ∞

otherwise. Put k = r and p = 0 if t ≥ r, and k = t and p = r − t otherwise. We
have then

x ◦ F (x, y) = x+ αxk+p+1 +O(y, xk+p+2)

y ◦ F (x, y) = µ
[
y + cxky +O(xk+1y, y2, xk+p+2)

]
,

where k ≥ 1, p ≥ 0, α 6= 0 and, if p ≥ 1, then c 6= 0; moreover, the order of contact
of Γ with the x-axis is at least k + p+ 2.

Consider now the sequence φ of blow-ups centered at the first k+p+1 infinitely
near points of Γ. Observe that each of these blow-ups increases the exponent of x
in every term in x◦F with positive degree in the variable y and every term in y ◦F
with degree at least 2 in the variable y. Moreover, the coefficient c does not change

if p ≥ 1. Hence, the transform F̃ of F by φ is written in some coordinates (x, y) as

x ◦ F̃ (x, y) = x+ xk+p+1 (α+O(x, y))

y ◦ F̃ (x, y) = µ
[
y + axky +O(xk+1y, xk+p+1y2, x)

]
,

where again k ≥ 1, p ≥ 0, α 6= 0 and, if p ≥ 1, then a = c 6= 0. In these

coordinates, the strict transform Γ̃ of Γ is parametrized by γ̃(s) = (s, γ̃2(s)), where
γ̃2(s) has order at least 1. Finally, after a polynomial change of coordinates of the
form (x, y) 7→ (βx + P (x), y − Jk+p+1γ̃2(x)), where β ∈ C∗ and P (x) ∈ x2C[x], we
obtain

x ◦ F̃ (x, y) = x− xk+p+1 +O(xk+p+1y, x2k+2p+1)

y ◦ F̃ (x, y) = µ
[
y + xka(x)y +O(xk+p+1y) + b(x)

]
,

where k ≥ 1, p ≥ 0, a(x) is a polynomial of degree at most p such that a(0) 6= 0

in case p ≥ 1 and the order of contact of Γ̃ with the x-axis is at least k + p + 2.

Hence, (F̃ , Γ̃) is reduced unless a(0) = 0; in this case, necessarily p = 0, and we

get a reduction for (F̃ , Γ̃) after a change of coordinates to increase by one unit the

order of contact of Γ̃ with the x-axis and a blow-up.

Consider a reduced pair (F,Γ). We define the attracting directions of (F,Γ) as
the k + p half lines ξR+, where ξk+p = 1. This definition is motivated by the
following: when Γ is convergent, the one-dimensional diffeomorphism F |Γ is of the
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form F |Γ(x) = x − xk+p+1 + O(xk+p+2) so, by Leau-Fatou Flower Theorem, the
real tangents of its orbits are exactly the attracting directions of (F,Γ), and we find
stable manifolds of dimension one in sectors bisected by each one of them.

We will classify the attracting directions in two types as follows. Consider
A0, A1, ..., Ap ∈ C such that

logµ+ xk (A0 +A1x+ · · ·+Apx
p) = Jk+p

(
log

(
µ
(
1 + xka(x)

)))
,

where µ
(
1 + xka(x)

)
is the principal part of the pair (F,Γ). Note that A0 = a(0) 6=

0. The polynomial logµ + xk (A0 +A1x+ · · ·+Apx
p) is called the infinitesimal

principal part of (F,Γ). Observe that, if we put Fid(x, y) = (x, µ−1y) ◦ F (x, y),
then Fid is tangent to the identity and the jet of order k+ p+1 of its infinitesimal
generator X is exactly

Jk+p+1X = −xk+p+1 ∂

∂x
+ xk (A0 +A1x+ · · ·+Apx

p) y
∂

∂y
.

Definition 4.3. An attracting direction ℓ = ξR+ is a node direction for (F,Γ) if
(
ln |µ|,Re

(
ξkA0

)
, ...,Re

(
ξk+p−1Ap−1

))
< 0

in the lexicographic order; otherwise, it is a saddle direction. In the case |µ| = 1,
we define the first asymptotic significant order of ℓ as p, if Re(ξk+jAj) = 0 for all
0 ≤ j ≤ p − 1, or as the first index 0 ≤ rℓ ≤ p − 1 such that Re(ξk+rℓArℓ) 6= 0,
otherwise.

Note that, when |µ| 6= 1, all attracting directions have the same character: they
are node directions in case |µ| < 1 and saddle directions in case |µ| > 1. In the
case |µ| = 1 and p = 0, every attracting direction ℓ is a saddle direction, with first
significant order rℓ = 0.

In the next two sections we will prove the existence, for a reduced pair (F,Γ), of
a stable manifold of F in a neighborhood of every attracting direction ℓ, which has
dimension one or two depending on whether ℓ is a saddle or a node direction.

Remark 4.4. In order to study asymptotic properties along Γ it will be interesting
to consider further refinements of a reduced pair (F,Γ), in which the order of contact
of Γ with the x-axis can be assumed to be arbitrarily high. Let us explain how to
obtain such transformations. Let γ(s) = (s, γ2(s)) be a parametrization of Γ,
where the order of γ2(s) is at least k+ p+2. Given m ≥ 2, a change of coordinates
(x, y) 7→ (x, y − Jk+p+m−1γ2(x)) transforms F into

x ◦ F (x, y) = x− xk+p+1 +O(xk+p+1y, x2k+2p+1))

y ◦ F (x, y) = µ
[
y(1 + xka(x)) +O(xk+p+1y, xk+p+m)

]
.

Notice that this change of coordinates preserves the principal part (and hence the
infinitesimal one) of (F,Γ) for all m ≥ 2. For technical reasons, we will also need
to impose the conditions

x ◦ F (x, y) = x− xk+p+1 +O(x2k+p+1y, x2k+2p+1) and Re(Ap) > 0

on a reduced pair (F,Γ), where Ap is the coefficient of the term of degree k + p
in the infinitesimal principal part of (F,Γ). These two conditions can be obtained
after a polynomial change of variables as above, to increase the order of contact of
Γ with the x-axis, and a finite number of blow-ups at the infinitely near points of
Γ, each of which increases by one unit both Ap and the exponent of x in the terms
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in x ◦ F with positive degree in the variable y. Observe that these blow-ups only
change the coefficient Ap in the infinitesimal principal part of (F,Γ) and leave the
other ones unaltered. Therefore, although the infinitesimal principal part changes,
the node or saddle character of each attracting direction does not.

5. Γ-parabolic case: existence of parabolic curves

In this section, we prove that if Γ is a parabolic formal invariant curve of F ∈
Diff(C2, 0) such that (F,Γ) is reduced, then for every saddle attracting direction
there exists a one-dimensional stable manifold of F asymptotic to Γ.

Theorem 5.1. Consider F ∈ Diff(C2, 0) and a formal invariant curve Γ of F
such that the pair (F,Γ) is in reduced form in some coordinates (x, y). For each
attracting direction of (F,Γ) which is a saddle direction, there exists a parabolic
curve of F asymptotic to Γ. More precisely, if ℓ is a saddle attracting direction
of (F,Γ), then there exist a connected and simply connected domain R ⊂ C, with
0 ∈ ∂R, that contains ℓ and a holomorphic map ϕ : R → C such that the set

S = {(x, ϕ(x)) : x ∈ R}

is a parabolic curve of F asymptotic to Γ. Moreover, if {(xn, yn)} is an orbit of F
asymptotic to Γ such that {xn} has ℓ as tangent direction, then (xn, yn) ∈ S for all
n sufficiently big.

The rest of the section is devoted to the proof of Theorem 5.1. The strategy of
the proof is analogous to the one used in [12], which is inspired by the techniques
used by Hakim in [9].

Up to a linear change of coordinates, we can assume without loss of generality
that ℓ = R+; in the case |µ| = 1, we denote by r its first significant order. For
d, e, ε > 0, we define the set Rd,e,ε as follows.

• If |µ| > 1 or |µ| = 1 and r = 0, then

Rd,e,ε = {x ∈ C : |x| < ε,−dRe(x) < Im(x) < eRe(x)}.

• If |µ| = 1, r ≥ 1 and Im(a(0)) > 0, then

Rd,e,ε = {x ∈ C : |x| < ε,−dRe(x) < Im(x) < eRe(x)r+1}.

• If |µ| = 1, r ≥ 1 and Im(a(0)) < 0, then

Rd,e,ε = {x ∈ C : |x| < ε,−dRe(x)r+1 < Im(x) < eRe(x)}.

As mentioned in Remark 4.4, to prove the asymptoticity of the parabolic curve
we will need to consider successive changes of coordinates in which the order of
contact of Γ with the x-axis is arbitrarily high. Therefore, we consider an arbitrary
m ≥ p + 2. By Remark 4.4, after a polynomial change of variables and a finite
sequence of blow-ups centered at the infinitely near points of Γ we can find some
coordinates (xm, ym), with (x, y) = φ(xm, ym) = (xm, x

t
mym + P (xm)) for some

t ∈ N and some polynomial P of order at least k + p+ 2, such that F is written

xm ◦ F (xm, ym) = F1 (xm, ym) = xm − xk+p+1
m +O(x2k+p+1

m ym, x
2k+2p+1
m )

ym ◦ F (xm, ym) = F2 (xm, ym) = µ
[
ym + xkma(xm)ym +O(xk+p+1

m ym, x
k+p+m
m )

]
,

Γ has order of contact at least k + p+m with the xm-axis and Re(Ap) > 0, where
Ap is the coefficient of the term of degree k+p in the infinitesimal principal part of
(F,Γ). Note that it suffices to prove Theorem 5.1 in the new coordinates (xm, ym).
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In fact, if Sm is a parabolic curve of the transform of F by φ then φ(Sm) is a
parabolic curve of F . Moreover, φ(Sm) is asymptotic to Γ if and only if Sm is
asymptotic to the strict transform of Γ and, since the x-variable is preserved by φ,
the fact that Sm is a graph over a domain R ⊂ C and the property of Sm eventually
containing any asymptotic orbit whose sequence of first components is tangent to
ℓ are both preserved by φ. For simplicity, we also denote the new coordinates by
(x, y). By the definition of a saddle direction, we have that either |µ| > 1 or |µ| = 1
and Re(Aj) = 0 for j = 0, . . . , r − 1 and Re(Ar) > 0, where

logµ+ xkA(x) = logµ+ xk (A0 +A1x+ · · ·+Apx
p)

is the infinitesimal principal part of (F,Γ). Notice that A0 = a(0) 6= 0.
We shall need the following technical lemmas.

Lemma 5.2. Suppose |µ| = 1 and r > 0. Then there exists a germ of diffeomor-
phism of the form ρ(x) = x+

∑∞
j=2 ρjx

j such that

A0ρ(x)
k = xkA(x),

with ρj ∈ R for any 2 ≤ j ≤ r and ρr+1 6∈ R. Moreover, Im(A0) Im(ρr+1) < 0.

Proof. The existence of ρ follows since the vanishing order and the principal terms
of A0x

k and xkA(x) at 0 coincide. The properties of ρj for 0 ≤ j ≤ r + 1 follow
easily solving

A0


x+

∞∑

j=2

ρjx
j




k

= xk(A0 +A1x+ · · ·+Apx
p)

recursively. Indeed, we obtain A1 = kA0ρ2 and Aj = A0(kρj+1 + Pj(ρ2, . . . , ρj))
for any 2 ≤ j ≤ p where Pj is a polynomial with real coefficients. �

Lemma 5.3. Suppose r > 0. Consider a real analytic curve κ at 0 ∈ C given by
{
x ∈ C : Im(x) = κr+1 Re(x)

r+1 + κr+2 Re(x)
r+2 + · · ·

}
.

Let ρ(x) = x+
∑∞

j=2 ρjx
j , where ρ2, . . . , ρr ∈ R and ρr+1 6∈ R. Then ρ(κ) is of the

form {x ∈ C : Im(x) = (κr+1 + Im(ρr+1))Re(x)
r+1 + · · · }.

Proof. Let τ(Re(x)) = Re(x) + i
∑∞

j=r+1 κj Re(x)
j be a parametrization of κ. The

jet of order r + 1 of the parametrization ρ ◦ τ of the curve ρ ◦ κ is given by

Jr+1(ρ◦τ) = Re(x)+

r∑

j=2

ρj Re(x)
j+Re(ρr+1)Re(x)

r+1+i (κr+1 + Im(ρr+1)) Re(x)
r+1,

and the result follows. �

Lemma 5.4. If |µ| = 1, then

Rd,e,ε ⊂ {x ∈ C : Re(xkA(x)) > 0}

for d, e, ε sufficiently small.

Proof. The result is clear if r = 0. Suppose r ≥ 1, and assume without loss of
generality that Im(A0) < 0. If ρ is the diffeomorphism of Lemma 5.2, it suffices to
show that ρ(Rd,e,ε) ⊂ {x ∈ C : Im(xk) > 0}. By Lemma 5.3, the set ρ(Rd,e,ε) is
enclosed between two curves of the form

Im(x) = (−d+ Im(ρr+1))Re(x)
r+1 + · · · and Im(x) = 2eRe(x).
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Since Im(ρr+1) > 0, if d, e, ε are small enough we conclude that Im(xk) > 0 for any
x ∈ ρ(Rd,e,ε). �

Lemma 5.5. F1(Rd,e,ε ×B(0, ε)) ⊂ Rd,e,ε for d, e, ε > 0 sufficiently small.

Proof. The set Rd,e,ε is the intersection of the three sets A = {x ∈ C : |x| <
ε,Re(x) > 0}, B = {x ∈ C : Im(x) > −dRe(x)α} and C = {x ∈ C : Im(x) <
eRe(x)β}, where either {α, β} = {1, r+1} or α = β = 1. Let us show that F1(x, y)
belongs to those sets for any (x, y) ∈ Rd,e,ε × B(0, ε) if d, e, ε > 0 are sufficiently
small.

Note that F1(x, y) = x − xk+p+1 + O(xk+p+2) for any (x, y) ∈ Rd,e,ε × B(0, ε).
Thus, Re(F1(x, y)) = Re(x) + O(xk+p+1) in Rd,e,ε × B(0, ε), so it is positive if
d, e, ε > 0 are sufficiently small. Since F1(x, y)/x = 1 − xk+p + O(xk+p+1), we
deduce |F1(x, y)| ≤ |x| if (x, y) ∈ Rd,e,ε × B(0, ε) for d, e, ε > 0 small enough. In
particular, F1(x, y) ∈ A for any (x, y) ∈ Rd,e,ε ×B(0, ε).

Let us show F1(Rd,e,ε ×B(0, ε)) ⊂ B. Fix 0 < δ < 1 such that (k+ p+1)δ > α.
We split Rd,e,ε × B(0, ε) in two subsets, namely R1 = {(x, y) ∈ Rd,e,ε × B(0, ε) :
Im(x) < −δdRe(x)α} and R2 = (Rd,e,ε ×B(0, ε)) \R1. In R2, we have

Im(F1(x, y)) + dRe(F1(x, y))
α = Im(x) + dRe(x)α +O(xk+p+1)

≥ d(1− δ)Re(x)α +O(xk+p+1) > 0

if d, e, ε > 0 are small enough, since α < k + p + 1. Thus we obtain F1(R2) ⊂ B.
Let us focus on R1. First we consider the case α = 1. The inequality

Im(log(F1(x, y)) − log x) = Im

(
log

F1(x, y)

x

)
= − Im(xk+p) +O(xk+p+1) > 0

holds in R1 for d, e, ε > 0 small enough; it implies that arg(F1(x, y)) > arg(x) so

Im(F1(x, y)) + dRe(F1(x, y))

Re(F1(x, y))
>

Im(x) + dRe(x)

Re(x)

and in particular F1(R1) ⊂ B. Suppose α > 1. Given (x, y) ∈ R1, we denote
γ = Im(x)/Re(x)α, which satisfies −d < γ < −δd. We have, writing x = Re(x) +
iγRe(x)α, that

Im(F1(x, y)) = Im(x)− Im(xk+p+1) +O(xk+p+2)

= Im(x)− γ(k + p+ 1)Re(x)k+p+α +O(xk+p+α+1)

and that

Re(F1(x, y))
α =

(
Re(x)− Re(xk+p+1) +O(xk+p+2)

)α

= Re(x)α − αRe(x)k+p+α +O(xk+p+α+1).

Therefore,

Im(F1(x, y)) + dRe(F1(x, y))
α = Im(x) + dRe(x)α

− [(k + p+ 1)γ + dα] Re(x)k+p+α +O(xk+p+α+1)

for (x, y) ∈ R1. We denote δ′ = d[(k + p + 1)δ − α], which satisfies δ′ > 0 by the
choice of δ. We obtain

Im(F1(x, y))+dRe(F1(x, y))
α ≥ Im(x)+dRe(x)α+δ′ Re(x)k+p+α+O(xk+p+α+1) > 0

for all (x, y) ∈ R1 if d, e, ε > 0 are small enough. In particular, F1(R1) ⊂ B.
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Analogously we can show that F1(Rd,e,ε × B(0, ε)) ⊂ C, and the Lemma is
proved. �

We consider 0 < ε < 1 and fix d, e > 0 small enough so that Lemmas 5.4 and
5.5 hold (notice that this does not depend on m). Consider the Banach space

Bm
ε =

{
u ∈ O(Rd,e,ε,C) : sup

{
|u(x)|

|x|m−1
: x ∈ Rd,e,ε

}
<∞

}

with the norm ‖u‖ = sup
{

|u(x)|
|x|m−1 : x ∈ Rd,e,ε

}
and its closed subset

Hm
ε = {u ∈ Bm

ε : ‖u‖ ≤ 1, |u′(x)| ≤ |x|m−p−2 ∀x ∈ Rd,e,ε}.

If we denote fu(x) = F1(x, u(x)), then fu(Rd,e,ε) ⊂ Rd,e,ε for every u ∈ Hm
ε , by

Lemma 5.5. Moreover, as in Leau-Fatou Flower Theorem, there exists a constant
C > 0 such that if x0 ∈ Rd,e,ε and u ∈ Hm

ε , and we denote xj = fu(xj−1), then

(4) lim
j→∞

(k + p)jxk+p
j = 1 and |xj |

k+p ≤ C
|x0|k+p

1 + j|x0|k+p

for all j ∈ N. Therefore, if u ∈ Hm
ε is a solution of the equation

(5) u(fu(x)) = F2(x, u(x)),

then the set Sm = {(x, u(x)) : x ∈ Rd,e,ε} is a parabolic curve of F .
Define

E(x) = exp

(
−

∫
A(x)

xp+1
dx

)
.

We have, as in [12, Lemma 3.7],

(6) E(x)E(F1(x, y))
−1 = exp(−xkA(x)) +O(xk+p+1 , xky).

Lemma 5.6. If ε > 0 is small enough and we put xj = fu(xj−1) for j ≥ 1, for any
u ∈ Hm

ε , we have:

(i) For any real number s > k+ p there exists a constant Ks > 0, independent of
u, such that for any x0 ∈ Rd,e,ε,∑

j≥0

|xj |
s ≤ Ks|x0|

s−k−p.

(ii) There exists a constant M > 0 independent of u such that, for any x0 ∈ Rd,e,ε

and for any j ≥ 0,
∣∣µ−jE(x0)E(xj)

−1
∣∣ ≤M.

Proof. Part (i) follows from the inequality in (4), as in [9, Corollary 4.3]. To prove
part (ii), observe that

E(x0)E(x1)
−1 = exp

(
−xk0A(x0)

)
+ θu(x0),

where |θu(x0)| ≤ K|x0|k+p+1 for any x0 ∈ Rd,e,ε and any u ∈ Hm
ε , with someK > 0

independent of u. If |µ| > 1, since
∣∣exp

(
−xk0A(x0)

)∣∣ ≤ exp
(
K ′εk

)
for someK ′ > 0,

we have
∣∣µ−1 exp

(
−xk0A(x0)

)∣∣ ≤ 1 if ε is small enough. If |µ| = 1, since Rd,e,ε ⊂

{x ∈ C : Re(xkA(x)) > 0} by Lemma 5.4, we have
∣∣µ−1 exp

(
−xk0A(x0)

)∣∣ ≤ 1.
Therefore, for ε > 0 small enough, we obtain

∣∣µ−jE(x0)E(xj)
−1

∣∣ ≤
j−1∏

l=0

(1 +K|xl|
k+p+1) ≤

∞∏

l=0

(1 +K|xl|
k+p+1).
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The convergence of the infinite product follows from part (i). �

Define

H(x, y) = y − µ−1E(x)E(F1(x, y))
−1F2(x, y) ∈ C{x, y}.

Using equation (6), the identity µ
(
1 + xka(x)

)
= Jk+p

(
exp

(
logµ+ xkA(x)

))
and

the expression of F2, we obtain that

H(x, y) = O(xk+p+1y, xky2, xk+p+m).

Proposition 5.7. If ε > 0 is sufficiently small and we put xj = fu(xj−1) for j ≥ 1,
for any u ∈ Hm

ε and any x0 ∈ Rd,e,ε, then the series

Tu(x0) =
∑

j≥0

µ−jE(x0)E(xj)
−1H(xj , u(xj))

is normally convergent and defines an element Tu ∈ Hm
ε . Moreover, T : u 7→ Tu is

a contracting map from Hm
ε to itself and u ∈ Hm

ε is a fixed point of T if and only
if u satisfies equation (5).

Proof. The normal convergence of the series Tu(x0) and the fact that Tu ∈ Hm
ε for

all u ∈ Hm
ε , if ε is sufficiently small, are proved as in [12, Proposition 3.9].

To show that T is a contraction, consider u, v ∈ Hm
ε and write Tu(x0)−Tv(x0) =

U1 + U2, with

U1 =
∑

j≥0

µ−jE(x0)E(xj)
−1 [H(xj , u(xj))−H(zj, v(zj))]

U2 =
∑

j≥0

µ−j
[
E(x0)E(xj)

−1 − E(x0)E(zj)
−1

]
H(zj , v(zj)),

where xj = f j
u(x0) and zj = f j

v (x0). Arguing as in [12, Proposition 3.9], we prove
that there exists B1 > 0 such that |U1| ≤ B1|x0|m‖u− v‖. To bound U2, write

r(x) = −

∫
A(x)

xp+1
dx =

1

xp
(
p−1A0 + (p− 1)−1A1x+ · · ·+Ap−1x

p−1
)
−Ap log x.

As an application of Taylor’s formula, we obtain

r(x1) = r(x0) + xk0A(x0) + θu(x0),

where |θu(x0)| ≤ c|x0|k+p+1 for some constant c > 0 independent of u. If we put

E(x0)E(xj)
−1 − E(x0)E(zj)

−1 = expa− exp b,

with a = r(x0)− r(xj) and b = r(x0)− r(zj), we have

|µ|−j
∣∣E(x0)E(xj)

−1 − E(x0)E(zj)
−1

∣∣ = |µ|−j |expa− exp b|

≤ |µ|−j |a− b| max
ζ∈[a,b]

| exp ζ|.

If |µ| = 1, since Re(xkA(x)) > 0 for all x ∈ Rd,e,ε by Lemma 5.4, we have that
Re(r(x0)− r(x1)) ≤ |θu(x0)| and therefore

Re(r(x0)− r(xj)) ≤

j−1∑

l=0

c|xl|
k+p+1 ≤ 1
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if ε is sufficiently small, by Lemma 5.6. Analogously, Re(r(x0) − r(zj)) ≤ 1, and
hence [a, b] ⊂ {x ∈ C : Re(x) ≤ 1} so

|µ|−j max
ζ∈[a,b]

| exp ζ| ≤ e.

If |µ| > 1, there exists a constantK > 0 such that |xkA(x)| ≤ Kεk for all x ∈ Rd,e,ε,
so

Re(r(x0)− r(xj)) ≤

j−1∑

l=0

(
Kεk + c|xl|

k+p+1
)
≤ jKεk + 1

if ε is small enough, by Lemma 5.6. Analogously, Re(r(x0) − r(zj)) ≤ jKεk + 1,
and hence

|µ|−j max
ζ∈[a,b]

| exp ζ| ≤ |µ|−j exp
(
jKεk

)
e = exp

(
(Kεk − ln |µ|)j

)
e ≤ e

for ε > 0 sufficiently small. Therefore,

|µ|−j
∣∣E(x0)E(xj)

−1 − E(x0)E(zj)
−1

∣∣ ≤ e|r(zj)− r(xj)|

and, arguing as in [12, Proposition 3.9], there exists a constant B2 > 0 such that
|U2| ≤ B2|x0|m‖u− v‖. Therefore, |Tu(x0)− Tv(x0)| ≤ (B1 +B2)|x0|m‖u− v‖, so
T is a contraction if ε is small enough.

Finally, rewriting

Tu(x0) = E(x0)
∑

j≥0

(
µ−jE(xj)

−1u(xj)− µ−(j+1)E(xj+1)
−1F2(xj , u(xj))

)

= u(x0)− µ−1E(x0)E(x1)
−1F2(x0, u(x0)) + µ−1E(x0)E(x1)

−1Tu(x1)

we conclude that u ∈ Hm
ε satisfies equation (5) if and only if u is a fixed point

of T . �

The existence of a solution u ∈ Hm
ε of equation (5) (and hence of a parabolic

curve for F ) follows from Proposition 5.7, by Banach fixed point theorem. The
property of the parabolic curve being asymptotic Γ can be proved exactly as in [12]
(showing that Sm = Sm′ for m′ ≥ m by uniqueness of the fixed point and that Sm

is tangent to Γ up to an order which increases with m).
To complete the proof of Theorem 5.1, it only remains to show that if {(xj , yj)}

is an orbit of F asymptotic to Γ such that {xj} has R+ as tangent direction, then
(xj , yj) ∈ Sm for j sufficiently big. To prove it, we will need the two following
lemmas.

Lemma 5.8. If {(xj , yj)} is a stable orbit of F such that {xj} has R+ as tangent
direction and |yj | < |xj |

p+1 for all j, then

lim
j→∞

Im(xj)

Re(xj)r+1
= 0.

Proof. We denote by −ρ+ (k+ p+1)/2 the coefficient of x2k+2p+1 in F1(x, y) and
consider

ψ(x) =
1

(k + p)xk+p
+ ρ log x.
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Using the fact that |yj | < |xj |p+1 for all j, we can see that ψ(x1) = ψ(x0) + 1 +

O(xk+p+1
0 ), so ψ(xj)− j is bounded for any j, by Lemma 5.6. Therefore,

1

(k + p)xk+p
j

= (j +O(1))
(
1 +O(xk+p

j log xj)
)
.

Since limj→∞(k + p)jxk+p
j = 1, by (4), we get

1

(k + p)xk+p
j

= (j +O(1))

(
1 +O

(
1

j
log j

))
= j +O(log j)

and hence

xj = (k + p)−1/(k+p)j−1/(k+p)

(
1 +O

(
log j

j

))
.

The quotient Im(xj)/Re(xj)
r+1 satisfies then

Im(xj)

Re(xj)r+1
=

(k + p)−
1

k+p j−
1

k+pO
(

log j
j

)

(k + p)−
r+1
k+p j−

r+1
k+p

(
1 +O

(
log j
j

)) = (k + p)
r

k+p j
r

k+pO

(
log j

j

)
.

Since r < k + p, Im(xj)/Re(xj)
r+1 tends to 0 when j → ∞. �

Lemma 5.9. If |µ| = 1 there exists a constant c > 0 such that, if d, e, ε are small
enough, then for every x ∈ Rd,e,ε we have

Re(xkA(x)) ≥ c|x|k+r .

Proof. If r = 0, we have

Re(xkA(x)) ≥ Re(A0x
k)/2 ≥ c|x|k

for x ∈ Rd,e,ε if d, e, ε are small enough, where c = Re(A0)/3.
If r > 0, using the diffeomorphism ρ(x) = x+

∑
j≥2 ρjx

j of Lemma 5.2, it suffices

to show that Re(A0x
k) ≥ c|x|k+r for every x ∈ ρ(Rd,e,ε), for some c > 0. Without

loss of generality, we can assume Im(A0) < 0, so Im(ρr+1) > 0. The set ρ(Rd,e,ε)
is enclosed between two curves of the form

Im(x) = (−d+ Im(ρr+1))Re(x)
r+1 + · · · and Im(x) = 2eRe(x),

by Lemma 5.3. Notice that −d+ Im(ρr+1) is positive if d is sufficiently small. The
elements of ρ(Rd,e,ε) satisfy d′|x|r < argx < π/(2k) for some d′ > 0 if d, e, ε are
small enough. Then, since sine is an increasing function in (0, π/2), we obtain

Re(A0x
k) = − Im(A0)|x|

k sin(k arg x) ≥ − Im(A0)|x|
k sin(kd′|x|r) ≥ c|x|k+r

in ρ(Rd,e,ε) if d, e, ε are small enough, where c = − Im(A0)kd
′/2. �

Let {(xj , yj)} be an orbit of F asymptotic to Γ, such that {xj} has R+ as tangent
direction. We consider the sectorial change of coordinates (x, y) ∈ Rd,e,ε×B(0, ε) 7→
(x, y − u(x)), where u ∈ Hm

ε is the solution of equation (5), so that the parabolic
curve Sm becomes the x-axis and F is written as

F1(x, y) = x− xk+p+1 +O(x2k+p+1y, x2k+2p+1)

F2(x, y) = µy
[
1 + xka(x) +O(xk+p+1)

]
.
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Since {(xj , yj)} is asymptotic to Γ and Sm = (y = 0) is also asymptotic to Γ, we
have that |yj| < |xj |p+1 if j is big enough. Then, by Lemma 5.8, for any d, e, ε > 0
we have that xj ∈ Rd,e,ε if j is big enough. Then, we have

|µ|
∣∣∣1 + xkj aj(x) +O(xk+p+1

j )
∣∣∣ = |µ|

∣∣∣exp
(
xkjA(xj)

)
+O(xk+p+1

j )
∣∣∣ > 1

for j big enough, since either |µ| > 1 or |µ| = 1 and Re(xkjA(xj)) ≥ c|xj |
k+r, by

Lemma 5.9. Therefore, the orbit {(xj , yj)} can only converge to 0 if yj = 0 for all
j big enough. This ends the proof of Theorem 5.1.

6. Γ-parabolic case: existence of open stable manifolds

In this section, we show that if Γ is a parabolic formal invariant curve of F ∈
Diff(C2, 0) such that (F,Γ) is reduced, then for every node attracting direction there
exists a two-dimensional stable manifold of F in which every orbit is asymptotic to
Γ.

Theorem 6.1. Consider F ∈ Diff(C2, 0) and a formal invariant curve Γ of F
such that the pair (F,Γ) is in reduced form in some coordinates (x, y). For each
attracting direction of (F,Γ) which is a node direction, there exists an open stable
manifold of F where every orbit is asymptotic to Γ. More precisely, if ℓ is a node
attracting direction of (F,Γ), then there exist a connected and simply connected
domain R ⊂ C, with 0 ∈ ∂R, that contains ℓ and some integers M ≥ k+ p+2 and
q ≥ p+ 1 such that the set

S = {(x, y) : x ∈ R, |y − JMγ2(x)| < |x|q} ,

where γ(s) = (s, γ2(s)) is a parametrization of Γ, is an open stable manifold of
F where every orbit is asymptotic to Γ. Moreover, if {(xn, yn)} is an orbit of F
asymptotic to Γ such that {xn} has ℓ as tangent direction, then (xn, yn) ∈ S for all
n sufficiently big.

The rest of the section is devoted to the proof of Theorem 6.1. Up to a linear
change of coordinates, we can assume without loss of generality that ℓ = R+; in
the case |µ| = 1, we denote by r its first significant order. Observe that r < p. For
d, e, ε > 0, we define the set Rd,e,ε as follows.

• If |µ| < 1 or |µ| = 1 and r = 0, then

Rd,e,ε = {x ∈ C : |x| < ε,−dRe(x) < Im(x) < eRe(x)}.

• If |µ| = 1, r ≥ 1 and Im(a(0)) > 0, then

Rd,e,ε = {x ∈ C : |x| < ε,−dRe(x)r+1 < Im(x) < eRe(x)}.

• If |µ| = 1, r ≥ 1 and Im(a(0)) < 0, then

Rd,e,ε = {x ∈ C : |x| < ε,−dRe(x) < Im(x) < eRe(x)r+1}.

As mentioned in Remark 4.4, to prove the asymptoticity of the orbits inside
the stable manifold we will need to consider successive changes of coordinates in
which the order of contact of Γ with the x-axis is arbitrarily high. Therefore, we
consider an arbitrary m ≥ p + 2. By Remark 4.4, after a polynomial change of
variables and a finite sequence of blow-ups we can find some coordinates (xm, ym),
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with (x, y) = φ(xm, ym) = (xm, x
t
mym + JMγ2(xm)) for some t ≥ 0 and some

M ≥ k + p+ 2, such that F is written

xm ◦ F (xm, ym) = F1 (xm, ym) = xm − xk+p+1
m +O(x2k+p+1

m ym, x
2k+2p+1
m )

ym ◦ F (xm, ym) = F2 (xm, ym) = µ
[
ym + xkma(xm)ym +O(xk+p+1

m ym, x
k+p+m
m )

]
,

Γ has order of contact at least k + p+m with the xm-axis (in this case, unlike the
case of a saddle attracting direction, we do not need the condition Re(Ap) > 0 on
the coefficient Ap in the infinitesimal principal part). We define, for d, e, ε > 0,

Sm
d,e,ε =

{
(xm, ym) ∈ C

2 : xm ∈ Rd,e,ε, |ym| < |xm|p+1
}
.

If we show that, in the coordinates (xm, ym), the set Sm
d,e,ε is a stable manifold where

every orbit is asymptotic to Γ and which eventually contains every orbit {(xn, yn)}
asymptotic to Γ such that {xn} has ℓ as tangent direction, then the set φ(Sm

d,e,ε)

will satisfy the required properties of Theorem 6.1 in the coordinates (x, y). We will
work therefore in the coordinates (xm, ym), that we still denote (x, y) for simplicity.
By the definition of a node direction, we have that either |µ| < 1 or |µ| = 1 and
Re(Aj) = 0 for j = 0, . . . , r − 1 and Re(Ar) < 0, where

logµ+ xkA(x) = logµ+ xk (A0 +A1x+ · · ·+Apx
p)

is the infinitesimal principal part of (F,Γ). Note that A0 = a(0) 6= 0.

Proposition 6.2. If d, e, ε > 0 are small enough, then

F (Sm
d,e,ε) ⊂ Sm

d,e,ε.

Proof. Arguing exactly as in Lemma 5.5, we have that

F1(S
m
d,e,ε) ⊂ Rd,e,ε

if d, e, ε > 0 are sufficiently small. If (x, y) ∈ Sm
d,e,ε, using the identity µ

(
1 + xka(x)

)
=

Jk+p

(
µ exp

(
xkA(x)

))
, we have that

∣∣∣∣
F2(x, y)

F1(x, y)p+1

∣∣∣∣ =
∣∣∣∣∣
µy

(
exp(xkA(x)) +O(xk+p+1)

)
+O(xk+p+m)

(x − xk+p+1 +O(x2k+2p+1))p+1

∣∣∣∣∣

≤ |µ|
∣∣∣ y

xp+1

∣∣∣
∣∣exp(xkA(x)) +O(xk+p+1)

∣∣ |1 +O(xk+p)|+O(xk+m−1)

< |µ|
∣∣exp(xkA(x)) +O(xk+p+1)

∣∣ |1 +O(xk+p)|+O(xk+m−1).

If |µ| < 1, we conclude that
∣∣F2(x, y)/F1(x, y)

p+1
∣∣ < 1 if ε > 0 is small enough, so

F (Sm
d,e,ε) ⊂ Sm

d,e,ε. If |µ| = 1, arguing as in Lemma 5.9 (with the only difference that

in this case Re(Ar) < 0 and Im(A0) Im(ρr+1) > 0, where ρ is the diffeomorphism
of Lemma 5.2), there exists a constant c > 0 such that

Re(xkA(x)) ≤ −c|x|k+r

for all x ∈ Rd,e,ε, if d, e, ε are small enough. Then, we get
∣∣∣∣
F2(x, y)

F1(x, y)p+1

∣∣∣∣ ≤
(
1− c|x|k+r + |O(xk+r+1)|

)
|1 +O(xk+p)|+O(xk+m−1)

≤ 1− c|x|k+r +O(xk+r+1) < 1

for any (x, y) ∈ Sm
d,e,ε, if d, e, ε > 0 are small enough, so F (Sm

d,e,ε) ⊂ Sm
d,e,ε. �
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Consider d, e, ε > 0 such that Proposition 6.2 holds. For any (x0, y0) ∈ Sm
d,e,ε,

arguing as in the classical Leau-Fatou Flower Theorem, we have that limj→∞(k +

p)jxk+p
j = 1, where (xj , yj) = F (xj−1, yj−1), and therefore, by the definition of

Sm
d,e,ε, we have that limj→∞(xj , yj) = 0, so Sm

d,e,ε is a stable manifold of F . More-

over, if {(xj , yj)} is an orbit of F asymptotic to Γ such that {xj} has R+ as tangent
direction, then xj ∈ Rd,e,ε if j is big enough, by Lemma 5.8, and |yj | < |xj |p+1 if j
is big enough, since the order of contact of Γ with the x-axis is at least k + p+m.
Hence, (xj , yj) ∈ Sm

d,e,ε if j is sufficiently big.
The rest of the proof is devoted to showing that every orbit in Sm

d,e,ε is asymptotic
to Γ. We define, as in the proof of Theorem 5.1,

E(x) = exp

(
−

∫
A(x)

xp+1
dx

)
.

Lemma 6.3. Suppose |µ| = 1 and r > 0. Then there exists a germ of diffeomor-
phism of the form ζ(x) = x+

∑∞
j=2 ζjx

j such that

−
A0

pζ(x)p
=

∫
Jp−1A(x)

xp+1
dx,

with ζj ∈ R for any 2 ≤ j ≤ r and ζr+1 6∈ R. Moreover, Im(A0) Im(ζr+1) < 0.

Proof. The existence of ζ follows from the fact that the meromorphic functions

−A0/(px
p) and

∫ Jp−1A(x)
xp+1 dx have the same principal term. The properties of ζj ,

0 ≤ j ≤ r + 1, follow easily solving the equation recursively. Indeed, we obtain
A1 = −(p− 1)A0ζ2 and Aj = A0 (−(p− j)ζj+1 + Pj(ζ2, . . . , ζj)) for any 2 ≤ j < p
where Pj is a polynomial with real coefficients. �

Lemma 6.4. Let (x0, y0) ∈ Sm
d,e,ε and set (xj , yj) = F j(x0, y0) for any j ≥ 0.

Then

lim
j→∞

|µ|j

∣∣∣∣∣
E(x0)

−1E(xj)

xlj

∣∣∣∣∣ = 0

for any l ≥ 0.

Proof. Assume first that |µ| < 1. From equation (6), we obtain

µE(x0)
−1E(x1) = µ exp

(
xk0A(x0)

)
+ θ(x0),

where |θ(x0)| ≤ K|x0|k+p+1 for some K > 0. Then,
∣∣µE(x0)

−1E(x1)
∣∣ ≤ δ for some

δ < 1, if ε is small enough. Hence,

|µ|j

∣∣∣∣∣
E(x0)

−1E(xj)

xlj

∣∣∣∣∣ ≤ δj
1

|xj |l
,

which tends to 0 when j → ∞, since limj→∞(k + p)jxk+p
j = 1 and δ < 1.

Assume now that |µ| = 1. We define the set R̃d,e,ε ⊆ Rd,e,ε as follows. Let

ζ(x) = x+
∑

j≥2 ζjx
j be the diffeomorphism of Lemma 6.3. If r = 0, then R̃d,e,ε =

Rd,e,ε. If r ≥ 1 and Im(A0) > 0, then

R̃d,e,ε = Rd,e,ε ∩ {x ∈ C : Im(x) < ẽRe(x)r+1},

where 0 < ẽ < − Im(ζr+1). If r ≥ 1 and Im(A0) < 0, then

R̃d,e,ε = Rd,e,ε ∩ {x ∈ C : Im(x) > −d̃Re(x)r+1},
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where Im(ζr+1) > d̃ > 0. Notice that, by Lemma 5.8, xj ∈ R̃d,e,ε for j sufficiently
big.

If r = 0, then we have

|E(x)| ≤ exp

(
Re(A0)

2p

1

|x|p

)

for each x ∈ R̃d,e,ε for d, e, ε small enough, and then limj→∞ |E(xj)/x
l
j | = 0 for

any l ≥ 0.
If r > 0, then thanks to Lemma 6.3 it suffices to show

lim
x→0

x∈ζ(R̃d,e,ε)

∣∣∣∣
E(ζ−1(x))

ζ−1(x)l

∣∣∣∣ = 0

for any l ≥ 0. Notice that E(ζ−1(x)) = exp (A0/(px
p)−Ap log x+ ν(x)) where ν

is a holomorphic function defined in a neighborhood of 0. Hence it suffices to prove

lim
x→0

x∈ζ(R̃d,e,ε)

∣∣∣∣
exp(A0/(px

p))

xl

∣∣∣∣ = 0

for any l ≥ 0. We have
∣∣∣∣exp

(
A0

pxp

)∣∣∣∣ = exp

(
Re

(
A0

pxp

))
= exp

(
1

p|x|2p
Re(A0x

p)

)
.

The inequality Re(A0x
p) ≤ −c|x|p+r holds in a neighborhood of 0 in ζ(R̃d,e,ε) for

some c > 0 analogously as in the proof of Lemma 5.9. Since
∣∣∣∣exp

(
A0

pxp

)
1

xl

∣∣∣∣ ≤ exp

(
−c

p|x|p−r

)
1

|x|l
,

which tends to 0 when x→ 0, we obtain limj→∞ |E(xj)/x
l
j | = 0 for any l ≥ 0. �

Consider (x0, y0) ∈ Sm
d,e,ε and denote (xj , yj) = F j(x0, y0) for j ≥ 0. Let us

prove that the orbit {(xj , yj)} is asymptotic to Γ. Recall that we are considering
coordinates (x, y) = (xm, ym) for which the order of contact of Γ with the x-axis is
at least k + p +m. In other words, if γ(s) = (s, γ2(s)) is a parametrization of Γ,
then γ2 is at least of order k+ p+m. We will show that, given any N ≥ m+1, we
have

|yj − Jk+p+N−1γ2(xj)| < |xj |
N+1

if j is big enough. If we work in the coordinates (xN , yN ) given by (xN , yN) =
(xm, ym − Jk+p+N−1γ2(xm)), that we will still denote (x, y) for simplicity, we need
to show that |yj| < |xj |N+1 if j is big enough. Observe that, since the order of
γ2(s) is at least k+p+m in the coordinates (xm, ym), in the new coordinates (x, y)
we have |yj | < 2|xj |

p+1.
Note that, because of Lemma 5.8, xj ∈ Rd,e,ε for any d, e, ε > 0, if j is big

enough. If we denote

Dd,e,ε =
{
(x, y) ∈ C

2 : x ∈ Rd,e,ε, |y| < |x|N+1
}
,

then, with the same proof of Proposition 6.2, we have that F (x, y) ∈ Dd,e,ε for
any (x, y) ∈ Dd,e,ε, if d, e, ε > 0 are small enough. Therefore, it suffices to show
that (xj , yj) ∈ Dd,e,ε for infinitely many indexes j ∈ N. Suppose this last property
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does not hold. Then, up to replacing (x0, y0) with one of its iterates, there exists a
domain

U = {(x, y) ∈ C
2 : |x|N+1 ≤ |y| < 2|x|p+1}

such that (xj , yj) ∈ U for any j ≥ 0.
Let us see how y/E(x) changes under iteration. We set

H(x, y) = y − µ−1E(x)E(F1(x, y))
−1F2(x, y).

As in the proof of Theorem 5.1, we have

1− µ−1

(
F2(x, y)

E(F1(x, y))

)(
y

E(x)

)−1

=
H(x, y)

y
= O(xk+p+1 , xky, xk+p+my−1),

so H(x, y)/y = O(xk+p+1) for every (x, y) ∈ U . Therefore we obtain
∣∣∣∣
y1

E(x1)

∣∣∣∣ = |µ|
(
1 +O(xk+p+1

0 )
) ∣∣∣∣

y0
E(x0)

∣∣∣∣
for any j ≥ 0. This leads us to∣∣∣∣

yj
E(xj)

∣∣∣∣ = |µ|j (1 +O(x0))

∣∣∣∣
y0

E(x0)

∣∣∣∣
for any j ≥ 0 by Lemma 5.6. Then we obtain∣∣∣∣∣

yj

xN+1
j

∣∣∣∣∣ =
∣∣∣∣
yj

E(xj)

∣∣∣∣

∣∣∣∣∣
E(xj)

xN+1
j

∣∣∣∣∣ ≤ 2|µ|j
∣∣∣∣
y0

E(x0)

∣∣∣∣

∣∣∣∣∣
E(xj)

xN+1
j

∣∣∣∣∣

for any j ≥ 0. Applying Lemma 6.4, we obtain that limj→∞ yj/x
N+1
j = 0, con-

tradicting the fact that (xj , yj) ∈ U for any j ≥ 0. This shows that every orbit in
Sm
d,e,ε is asymptotic to Γ and ends the proof of Theorem 6.1.

Remark 6.5. The open stable manifold S obtained in Theorem 6.1 is not asymp-
totic to Γ. Let us see that we can replace S with another stable manifold that
is asymptotic to Γ and contains eventually every orbit {(xn, yn)} asymptotic to Γ
such that {xn} has ℓ as a tangent direction. Denote

Uj = S ∩
{
(x, y) ∈ C

2 : ε/2j+2 < |x| < ε/2j
}

for j ≥ 0. We have Uj ∩ Uj+1 6= ∅ by construction and F (Uj) ∩ Uj 6= ∅ because
F (S) ⊂ S and |x ◦ F (x, y) − x| ≤ c|x|k+p+1 for some c > 0 and for all (x, y) ∈ S.
For any N ≥ 1, we define

VN =
{
(x, y) ∈ C

2 : |y − JNγ2(x)| < |x|N
}
,

where γ(s) = (s, γ2(s)) is a parametrization of Γ. Fix j ≥ 0. There exists kj ∈ N

such that
F k(x, y) ∈ V1 ∩ · · · ∩ Vj+1

for all (x, y) ∈ Uj and k ≥ kj . The property is clear for the neighborhood of a single

point (x, y) ∈ Uj and hence it holds for any point of Uj by compactness of Uj. We
define Wj = ∪∞

k=kj
F k(Uj) for j ≥ 0 and W = ∪∞

j=0Wj . By construction the set W

is an open set. Moreover F (Uj) ∩ Uj 6= ∅ implies that Wj is connected. The sets
Wj and Wj+1 have common points for any j ≥ 0 since Uj ∩ Uj+1 6= ∅. Thus W is
a connected open set. Finally we claim that given any N ≥ 1, a neighborhood of 0
in W is contained in VN . Fix N ≥ 1. By compactness of Uj for j ≥ 0 we obtain
that a neighborhood of 0 in W0 ∪ · · · ∪WN−2 is contained in VN . By construction
∪∞
k=N−1Wk is contained in VN and hence a neighborhood of 0 in W is contained
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in VN . By the previous discussion the set W is asymptotic to Γ. Now, given any
orbit {(xn, yn)} satisfying the hypotheses in Theorem 6.1 we know that (xj , yj)
belongs to S for j sufficiently big. This implies that there exist j0, k0 ∈ N such that
(xj0 , yj0) ∈ Uk0 . Clearly the orbit {(xn, yn)} is eventually contained in Wk0 and
then in W .

7. Γ-parabolic case: conclusion

As a consequence of the results obtained in Sections 4, 5 and 6, we have the
following result, from which Theorem 2.6 and Theorem 2 follow.

Theorem 7.1. Consider F ∈ Diff(C2, 0) and let Γ be an invariant formal curve of
F , such that (F |Γ)′(0) = 1 and F |Γ 6= id. Denote by r+1 the order of F |Γ. Then, for
any sufficiently small neighborhood of the origin, there exists a family {S1, . . . , Sr}
of connected and simply connected mutually disjoint stable manifolds of pure positive
dimension where every orbit is asymptotic to Γ and such that S1 ∪· · · ∪Sr contains
the germ of any orbit of F asymptotic to Γ. If dim(Sj) = 1 then Sj is asymptotic
to Γ and if dim(Sj) = 2 then Sj can be chosen to be asymptotic to Γ. Moreover,
if spec(DF (0)) = {1, µ}, with |µ| ≥ 1, then at least ⌈r/4⌉ stable manifolds Sj have
dimension one, where ⌈r/4⌉ is the least integer greater or equal than r/4.

Proof. Let φ be a sequence of holomorphic changes of coordinates and blow-ups

such that the pair (F̃ , Γ̃) is reduced, where F̃ is the transform of F and Γ̃ is the
strict transform of Γ. Denote by k + 1 and by k + p + 1 the orders of F and of
F |Γ, respectively. Notice that k + p = r, since the restriction F |Γ is preserved

under blow-ups. Since φ(S̃) is a stable manifold of F for every stable manifold S̃

of F̃ , the existence of the family {S1, . . . , Sr} of pairwise disjoint connected and
simply connected stable manifolds where every orbit is asymptotic to Γ follows
immediately from Theorems 5.1 and 6.1. The one-dimensional stable manifolds are
asymptotic to Γ, by Theorem 5.1, and the two-dimensional ones can be chosen to
be asymptotic to Γ, by Remark 6.5.

Let O be an orbit of F asymptotic to Γ. In some coordinates (x, y), the transform

F̃ of F satisfies x ◦ F̃ (x, y) = x− xk+p+1 +O(xk+p+1y, x2k+2p+1). Since φ−1(O) =

{(xn, yn)} is an orbit of F̃ asymptotic to Γ̃, we have that |yn| ≤ |xn| if n is big
enough, so, arguing as in Leau-Fatou Flower Theorem, the sequence {xn} has one

of the attracting directions of (F̃ , Γ̃) as tangent direction. Applying Theorems 5.1
and 6.1, we conclude that O is eventually contained in S1 ∪ · · · ∪ Sk+p.

To complete the proof of the Theorem, assume that spec(DF (0)) = {1, µ}, with
|µ| ≥ 1. Observe that, since the inner eigenvalue is 1, this condition is stable under
blow-up. To prove that in this case at least one of the stable manifolds S1, . . . , Sk+p

has dimension one, it suffices to show that at least one of the attracting directions

of (F̃ , Γ̃) is a saddle direction, by Theorem 5.1. If |µ| > 1 or |µ| = 1 and p = 0,
every attracting direction is a saddle direction, so every Sj has dimension one.
Assume that |µ| = 1 and p ≥ 1, and let logµ+ xk (A0 +A1x+ · · ·+Apx

p) be the

infinitesimal principal part of (F̃ , Γ̃). Notice that A0 6= 0. We denote by a the
number of attracting directions ξR+ such that Re(ξkA0) > 0. The number a is
a lower bound for the number of saddle directions, and is equal to ♯{0 ≤ j < r :

Re(e
2πijk

r A0) > 0}. We denote g = gcd(r, k), r′ = r/g and k′ = k/g. Notice that
r′ ≥ 2 since p ≥ 1. Also, since r′ and k′ are coprime, η is a root of unity of order
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r′ if and only if so is ηk
′

. Hence, we obtain

a = g ♯{0 ≤ j < r′ : Re(e
2πijk′

r′ A0) > 0} = g ♯{0 ≤ j < r′ : Re(e
2πij

r′ A0) > 0}.

Suppose r′ 6= 2. There are at least ⌈r′/4⌉ roots of unity ξ of order r′ such that
Re(ξA0) > 0. Hence we obtain a ≥ gr′/4 = r/4.

Suppose r′ = 2. This case happens if and only if k = p. Hence either Re(A0) 6= 0
(and then there are k one-dimensional stable manifolds and k two-dimensional ones)
or Re(ξkA0) = 0 for any attracting direction ξR+. In this last case, if Aj = 0
for all 1 ≤ j ≤ p − 1 then every attracting direction is a saddle direction, so
every Sj has dimension one. Otherwise, we consider the first index red t, with
1 ≤ t ≤ p − 1, such that At 6= 0. Analogously as above there are at least ♯{0 ≤

j < r : Re(e
2πij(k+t)

r At) > 0} saddle directions. We denote g′ = gcd(r, k + t) =
gcd(2k, k + t). Since r/g′ > 2k/k = 2 we can apply the argument in the previous
paragraph to show that there are at least g′(r/g′)/4 = r/4 saddle directions. �
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Département de Mathématiques, Orsay, 1985.
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