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Abstract

In tokamaks plasmas, turbulent transport is triggered above a threshold in the temperature gra-
dient and leads to stiff profiles. This particularity, neglected so far in the problem of magnetic island
stabilization by a localized heat source, is investigated analytically in the present paper. We show that
the efficiency of the stabilization is larger than previously estimated due to the reduced turbulence
level inside the island.

The production of fusion energy in tokamaks requires the confinement of a hot plasma medium in
nested magnetic surfaces. Magnetic islands can be damped using the injection of a localized current
drive at their O-point, or by a localized heating Kurita et al. (1994); Hegna and Callen (1997); Lazzari
and Westerhof (2009). In this later case, the stabilizing effect is provided by the reduction of the local
plasma resistivity that depends on the temperature change produced by the local heating, and therefore
on the properties of the heat transport that is mainly originating from turbulent processes. Theory
Rebut et al. (1988); Dimits et al. (2000); Garbet et al. (2004) and experiments Imbeaux et al. (2001)
show that turbulent transport is triggered above a critical temperature gradient, and leads to resilient
(also refered to as stiff) profiles above this threshold, with a stiffness that is expected to be large in
ITER Kinsey et al. (2011). Inside magnetic islands, where the temperature profile is flattened, a reduced
diffusivity is expected Hornsby et al. (2011) and effectively measured Inagaki et al. (2004); Ida et al.
(2012). The consequences of this kind of transport rule has recently been investigated for nonlinear
island saturation Fitzpatrick (2017). Here we show analytically that profile stiffness leads to much more
efficient stabilization process by localized heating than anticipated when considering a uniform diffusivity.

1 Stiffness model

We adopt a simple model for the heat diffusivity, that incorporates plasma stiffness in the vicinity of a
reference state where turbulent transport equilibrates the incoming heat flux:

χ⊥ = χ0
⊥
∣∣T ′/T ′eq∣∣σ−1

(1)

where T is the temperature and the prime refers to the derivative relative to the radial co-ordinate,
σ is the stiffness, the ”eq” subscript refers to the equilibrium situation without magnetic island and
without additional heating from RF waves, and χ0

⊥ is the heat diffusivity in this reference case. In this
representation, anomalous transport starts growing above a critical gradient

∣∣T ′crit/T ′eq∣∣ = 1−1/σ, with a
soft transition between sub- and over-critical regimes. This formulation is consistent with the definition
of stiffness given in Kinsey et al. (2011). The effect of local heating on island stabilization has only been
addressed in the case σ = 1 in previous works.

The energy balance equilibrates the heat flux with the volumic heat source H:

∇ · (Nχ⊥∇T ) = −H (2)

with N the plasma density. Without island, after integrating on the plasma volume inside a radial
position r we obtain

−T ′(r) =

∫ r
0
dr′J (r′)H(r′)

J (r)N(r)χ⊥(r)
=

P (r)

(2π)2J (r)N(r)χ⊥(r)
(3)
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with P (r) the power injected inside r and J the Jacobian of the co-ordinate system (r, θ, ϕ), with θ and
ϕ the poloidal and toroidal angles, that in the large aspect ratio limit is J ≈ rR with R the major radius
of the torus. At equilibrium, H = Heq and

−T ′eq(r) =

∫ r
0
dr′J (r′)Heq(r

′)

J (r)N(r)χ0
⊥(r)

=
Peq(r)

(2π)2J (r)N(r)χ0
⊥(r)

(4)

When the plasma is heated by RF waves, H = Heq +HRF , P = Peq + PRF and

−T ′(r) =
Peq(r)

(2π)2J (r)N(r)χ0
⊥(r)

(
1 +

PRF
Peq

)1/σ

(5)

The gradient increase due to the RF heating is reduced as expected when the stiffness is large.

2 Heating at the O-point of an island

We now consider the magnetic equilibrium of a tokamak with major radius R and minor radius a, a
toroidal magnetic field Bz, a safety factor q and magnetic shear s = (r/q)dq/dr in the large aspect ratio
limit. The magnetic perturbation with poloidal and toroidal mode numbers m and n associated with the
magnetic island localized at r = rs where q = m/n is B̃ = ∇ × ψ̃ez. The magnetic flux surfaces are
labelled by Ω with Ω = 8(x/w)2 − cos(mα) with x = r − rs, α = θ − (n/m)ϕ, and w the island total
width. We have the relation

ψ̃

Bz
= −w

2

16

ns

Rm
cos(mα) (6)

In the following we use the notations g(α) ≡ cos(mα) and ψ1 ≡ w2

16
Bzns
Rm . After integrating equation 2 in

the interval (2
√

2 x±/w) = ±Ω, we obtain:

(
−dT
dΩ

)
=

(
Peq/(2π)2

)1−1/σ

Nχ0
⊥Js

(
w

4
√

2

)1+1/σ


∫ Ω

−1
dΩ′J

∮
dαH(Ω′,α)√

Ω′+g∮
dα (Ω + g)

σ/2


1/σ

(7)

with Js the Jacobian at the resonant surface. We assume that there is no other heat source in the island
than RF power, with a constant value of HRF in the region Ω ∈ [−1,Ωc] or µ = (Ω + 1)/2 ∈ [0, µc], with
µc < 1. This mimics a perfect O-point heating, and leads to

−dT
dΩ

=
P

1−1/σ
eq P

1/σ
RF (Ω)

(2π)2Nχ0
⊥Js

w

4
√

2

{
π

Iσ(Ω)

}1/σ

(8)

= (−T ′s)
(
P totRF

Peq

)1/σ
w

4
√

2

{
π

Iσ(Ω)

E(µ) + (µ− 1)K(µ)

E(µc) + (µc − 1)K(µc)

}1/σ

(9)

where T ′s = T ′eq(rs) and

Iσ(Ω) =

∮
dα (Ω + g(α))

σ/2
(10)

= 22+σ/2µ1/2+σ/2Jσ(µ) (11)

Jσ(µ) =

∫ π/2

0

dθ
cosσ+1 θ√
1− µ sin2 θ

(12)

and K and E are the complete elliptic integrals of the first and second kind respectively:

K(µ) =

∫ π/2

0

dθ√
1− µ sin2 θ

(13)

E(µ) =

∫ π/2

0

dθ

√
1− µ sin2 θ (14)
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3 Rutherford equation

The Rutherford equation is obtained via the integration of the Maxwell-Ampère law

−∇2
⊥ψ̃ = µ0J̃‖ (15)

Here we focus on the contribution of the perturbed ohmic current, due to the perturbed parallel electric
field Ẽ‖ and perturbed plasma resistivity η̃, using the Spitzer resistivity dependence on temperature

η ∝ T−3/2:

J̃Ω = Ẽ‖/η − JΩη̃/η (16)

= η−1∂tψ1 〈g〉+ JΩ
3

2

〈
T̃ /T

〉
(17)

with the flux surface average operator:

〈A〉 =

(∮
dα A/

√
Ω + g

)
/

(∮
dα/

√
Ω + g

)
(18)

Introducing the tearing stability index ∆′ Furth et al. (1963) and the normalized island width W = w/a,
we obtain from the standard asymptotic matching procedure Rutherford (1973)

I1τR∂tW = a∆′ + a∆′Ω (19)

with τR = µ0a
2/η the resistive time and

I1 =
√

2

∫ ∞
−1

dΩ

∮
dα

2π

g 〈g〉√
Ω + g

≈ 0.82 (20)

a∆′Ω =
24

W
√

2

q

s

µ0RJΩ

Bz

∫ ∞
−1

dΩ

∮
dα

2π

g
〈
T̃ /T

〉
√

Ω + g
(21)

We consider a large island (compared with the characteristic transport scale length Fitzpatrick (1995)),
so that the temperature profile without RF heating is flat inside the island. The perturbed temperature

is determined from
〈
T̃ /T

〉
= (T (Ω)− T (Ω = 1))/Ts, leading to〈

T̃

T

〉
(µ) =

−T ′s
Ts

w

4

(
π

4

P totRF

Peq

)1/σ

Fσ(µ, µc) (22)

with

Fσ(µ < µc, µc) =

∫ µc

µ

dµ′

µ′1/2

{
1

µ′1/2Jσ(µ′)

E(µ′) + (µ′ − 1)K(µ′)

E(µc) + (µc − 1)K(µc)

}1/σ

+

∫ 1

µc

dµ′

µ′1/2

{
1

µ′1/2Jσ(µ′)

}1/σ

(23)

Fσ(µ > µc, µc) =

∫ 1

µ

dµ′

µ′1/2

{
1

µ′1/2Jσ(µ′)

}1/σ

(24)

Note that the symmetry in x of the temperature perturbation that is assumed here implies that the
impact of the O-point heating on the bootstrap current perturbation Fitzpatrick (1995) is zero within
this model.

The stabilizing contribution due to a localized heating can finally be expressed as

a∆′Ω = −FΩ

(
µc,

P totRF

Peq
, σ

)
a

J
q

s

µ0RJΩ

Bz

Peq
Nχ0
⊥Ts

(25)

FΩ =
3

4π2
IΩ(µc, σ)

(
4

π

)1−1/σ (
P totRF

Peq

)1/σ

(26)
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Figure 1: IΩ = f(µc) and the fit given by equation 30 for σ = 1 and σ = 8.

with IΩ(µc, σ) = I1(µc, σ) + I2(µc, σ) + I3(µc, σ) and

I1(µc, σ) =

∫ µc

0

dµ [2E(µ)−K(µ)]

∫ µc

µ

dµ′

µ′1/2

{
1

µ′1/2Jσ(µ′)

E(µ′) + (µ′ − 1)K(µ′)

E(µc) + (µc − 1)K(µc)

}1/σ

(27)

I2(µc, σ) =

(∫ µc

0

dµ [2E(µ)−K(µ)]

)(∫ 1

µc

dµ′

µ′1/2

{
1

µ′1/2Jσ(µ′)

}1/σ
)

(28)

I3(µc, σ) =

∫ 1

µc

dµ [2E(µ)−K(µ)]

∫ 1

µ

dµ′

µ′1/2

{
1

µ′1/2Jσ(µ′)

}1/σ

(29)

The function IΩ is computed numerically and fitted with a simple formulae in the range µc ∈ ]0, 1[
(39 points) and σ ∈ [1, 9] (9 points) with Mathematica Inc. (2016) (figure 1), so that the function FΩ can
be approximated by:

FΩ

(
µc,

P totRF

Peq
, σ

)
≈ 3

4π2

[
0.804 +

0.600

σ
− 1.091

µc
σ

+ 0.242
(µc
σ

)2

− 0.228
µc
σ

ln
µc
σ

](
P totRF

Peq

)1/σ

(30)

and FΩ

(
µc,

P tot
RF

Peq
, σ →∞

)
tends to be a constant, independent of both P totRF and µc. For σ = 1, the

numerical evaluation of FΩ compares well with the results reported in Lazzari and Westerhof (2010),
taking into account the modulation that is implicitely assumed in our model where the RF power is
delivered only around the O-point. The time fraction where RF power is on is indeed fon = π−1 arccos(1−
2µc), and the effective stabilization is a∆′Ω(σ) × fon, except if a continuous O-point injection can be
achieved Kasparek et al. (2016).

4 Implications

The importance of profile stiffness on the island stabilization capability by RF heating is illustrated by
computing the quantity a∆′Ω(σ) × fon as a function of µc and P totRF /Peq (figure 2), as well as the ratio
∆′Ω(σ)/∆′Ω(σ = 1) (figure 3). We take as a typical value σ = 8 expected in ITER Kinsey et al. (2011).
For moderate values of P totRF /Peq (typically below unity), profile resilience is favourable since the heat
diffusivity remains low inside the island as long as the temperature gradient stays below its equilibrium
value, thus enhancing the effect of the RF power. For a typical medium size tokamak experiment (i.e.
Asdex-Upgrade), taking B = 2.5T , R = 1.7m, a = 0.5m, r = 0.2m, q = 3/2, s = 1, JΩ = 5× 105A/m2,
N = 6×1019m−3, T = 2keV , χ0

⊥ = 2m2/s, P totRF = 2MW , Peq = 10MW , and µc = 0.25, we have a 33%
modulation scheme and an average stabilizing contribution from ohmic heating of a∆′Ω(σ)× fon ≈ −58
for σ = 8 instead of (-20) for σ = 1. The importance of the heating contribution to island stabilization
with RF is therefore larger than computed so far, at least in the condition of perfect O-point heating, i.e.
when power modulation is used.
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