

Inter-comparison of cosmogenic in-situ 3He, 21Ne and 36Cl at low latitude along an altitude transect on the SE slope of Kilimanjaro volcano (3°S, Tanzania)

Irene Schimmelpfennig, Alice Williams, Raphael Pik, Pete Burnard, Samuel Niedermann, Robert Finkel, Björn Schneider, Lucilla Benedetti

▶ To cite this version:

Irene Schimmelpfennig, Alice Williams, Raphael Pik, Pete Burnard, Samuel Niedermann, et al.. Intercomparison of cosmogenic in-situ 3He, 21Ne and 36Cl at low latitude along an altitude transect on the SE slope of Kilimanjaro volcano (3°S, Tanzania). Quaternary Geochronology, 2011, 6 (5), pp.425 - 436. 10.1016/j.quageo.2011.05.002 . hal-01614523

HAL Id: hal-01614523 https://hal.science/hal-01614523

Submitted on 2 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Inter-comparison of cosmogenic in-situ ³ He, ²¹ Ne and * Cl at low latitude
2	along an altitude transect on the SE slope of Kilimanjaro volcano (3°S,
3	Tanzania)
4	
5	
6	Irene Schimmelpfennig ^{a,b} , Alice Williams ^a , Raphaël Pik ^a , Pete Burnard ^a , Samuel Niedermann ^e ,
7	Robert Finkel ¹ , Björn Schneider, Lucilla Benedetti ¹
8	
9	CDDC LIDD 2200 CNIDG N. LL : :// 15 N. / D. L. D. 54501
10	CRPG, UPR 2300 CNRS, Nancy Universités, 15 rue Notre Dame des Pauvres, 54501
11 12	Vandoeuvre-lès-Nancy, France
12	^b CEREGE, UMR 6635 CNRS, Université Paul Cézanne, Europôle de l'Arbois, 13545 Aix en
14	Provence, France
15	
16	^e Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum GFZ, Telegrafenberg,
17	14473 Potsdam, Germany
18	
19	⁴ Earth and Planetary Science Department, University of California Berkeley, Berkeley, CA
20	94720-4767, USA
21	
22	Vrije Universiteit, Department of Isotope Geochemistry, de Boelelaan 1085, 1081 HV
23	Amsterdam, The Netherlands
24 25	* corresponding author. Present address: LDEO, Columbia University, Route 9W, Palisades,
23 26	NY 10964, USA; Tel.: ++1 845 365 8653; Fax: ++1 845 365 8155; E-mail:
20 27	schimmel@ldeo.columbia.edu
28	
29	
30	
31	
-	
32	

33 Abstract

34

35 Because the intensity and energy spectrum of the cosmic ray flux are affected by atmospheric 36 depth and geomagnetic-field strength, cosmogenic nuclide production rates increase 37 considerably with altitude and to a lesser degree with latitude. The scaling methods used to 38 account for spatial variability in production rates assume that all cosmogenic nuclides have 39 the same altitude dependence. In this study we evaluate whether the production rates of 40 cosmogenic ³⁶Cl, ³He and ²¹Ne change differently with altitude, which is plausible due to the 41 different threshold energies of their production reactions. If so, nuclide-specific scaling factors 42 would be required. 43 Concentrations of the three cosmogenic nuclides were determined in mafic phenocrysts over 44 an altitude transect between 1000 and 4300 m at Kilimanjaro volcano (3° S). Altitude-45 dependence of relative production rates was assessed in two ways: by determination of 46 concentration ratios and by calculation of apparent exposure age ratios for all nuclide pairs. 47 The latter accounts for characteristics of ³⁶Cl that the stable nuclides ³He and ²¹Ne do not 48 possess (radioactive decay, high sensitivity to mineral composition and significant 49 contributions from production reactions other than spallation). All ratios overlap within error 50 over the entire transect, and altitudinal variation in relative production rates is not therefore 51 evident. This suggests that nuclide-specific scaling factors are not required for the studied 52 nuclides at this low latitude location. However, because previous studies have documented 53 anomalous altitude-dependent variations in ³He production at mid-latitude sites, the effect of 54 latitude on cross-calibrations should be further evaluated.

55 We determined cosmogenic ²¹Ne/³He concentration ratios of 0.1864 ± 0.0085 in pyroxenes and 56 0.377 ± 0.018 in olivines, agreeing with those reported in previous studies.

57	Despite the absence of independently determined ages for the studied lava surfaces, the
58	consistency in the data-set should enable progress to be made in the determination of the
59	production rates of all three nuclides as soon as the production rate of one of the nuclides has
60	been accurately defined.
61	To our knowledge this is the first time that ³⁶ Cl has been measured in pyroxene. The Cl
62	extraction method was validated by measuring ³⁶ Cl in co-existing plagioclase phenocrysts in
63	one of the samples.
64	
65	
66	Key words: Cosmogenic nuclides; Chlorine-36, Helium-3, Neon-21; Cross-calibration;

67 Pyroxene; Olivine; Kilimanjaro; Altitude dependent scaling

68 1. Introduction

70 Accurate application of the surface-exposure dating technique, using terrestrial cosmogenic 71 nuclides (TCN) such as ³⁶Cl, ³He, ²¹Ne, ¹⁰Be or ²⁶Al, requires precise and accurate knowledge of 72 the production rate of the nuclide of interest (the number of atoms produced per gram of target 73 material per year) and the variation of this production rate in space and time (scaling). 74 Reference production rates have been determined to allow application of the TCN method 75 anywhere on Earth (see review in Gosse and Phillips, 2001). These are extrapolated to a 76 particular location using scaling factors calculated according to one of the published scaling 77 models (e.g. Stone, 2000, Dunai, 2001a, Desilets and Zreda, 2003, Lifton et al., 2005). 78 Experimental calibrations of reference production rates are made by (1) measuring the 79 concentration of the nuclide of interest in a geological sample from an independently dated 80 surface at a specific geographic location, and (2) scaling the calculated time-integrated local 81 production rate to the traditional reference position at sea-level and high latitude (SLHL) and 82 to the present (Gosse and Phillips, 2001). 83 It is clearly imperative that scaling methods accurately quantify the spatial and temporal 84 variability of TCN production on Earth. Recently however, some authors have cast doubt on 85 our understanding of this variability, suggesting it could be one of the main causes for 86 inconsistencies between calibrated SLHL production rates, thereby constituting a major 87 source of uncertainty in TCN exposure ages (Balco et al., 2008, 2009, Schimmelpfennig et al., 88 2011). 89 Published scaling methods generally assume that the scaling factor for a particular type of 90 nuclear-reaction (neutron- or muon-induced) is valid for all TCN and independent of the 91 target element on which the reaction occurs. For example, at any given location production of 92 ¹⁰Be by spallation of Si and O is scaled using the same factor as production of ³⁶Cl by spallation

93 of Ca. However, this approach is controversial and the need for nuclide specific scaling 94 factors, as first discussed by Dunai (2001b), is currently being debated. The argument is based 95 on two aspects of TCN production. First, excitation functions for the various TCN production 96 reactions are known to be different (e.g. Desilets et al., 2006, Amidon et al., 2008 and 97 references therein). This means that the threshold energies (minimum energies of secondary 98 nucleons required for the reactions) and cross sections (probabilities of the occurrence of the 99 reaction at a certain nucleon energy) differ between the various production reactions. Second, 100 it has been hypothesized that the energy spectrum of the secondary nucleons shifts towards 101 lower energies with increasing atmospheric depth (Desilets and Zreda, 2003). For example, 102 the threshold energy for the production of "Cl from spallation of K (about 5 MeV) is lower 103 than that from spallation of Ca (about 20 MeV; see excitation functions in Fig. 2 in Desilets et 104 al., 2006). It might therefore be expected that the ratio of ³⁶Cl production from K to that from 105 Ca will increase with increasing atmospheric depth (i.e. decreasing altitude). If so, nuclide-106 and even target-element-specific scaling factors would be needed. 107 One way of assessing TCN production and the global consistency in scaling is to determine 108 relative production rates of different TCN in geomorphic surfaces. These cross-calibrations 109 do not necessarily require that surfaces be independently dated nor perfectly preserved. 110 Measurements of multiple TCN in the same or in different mineral phases from a single 111 sample can be used to refine poorly known SLHL production rates using TCN with well-112 constrained production rates (e.g. Amidon et al., 2009, Balco and Shuster, 2009, Goethals et 113 al., 2009). In addition, performing cross-calibrations over a range of altitudes, latitudes or 114 exposure times enables assessment of any spatial and/or temporal dependence in the 115 production of the different TCN. For example, Gayer et al. (2004) measured ³He/¹⁰Be in 116 Himalayan garnets over an altitude transect between 3000 and 4600 m and determined 117 production ratios higher than previously documented (Cerling and Craig, 1994). The apparent

118 ³He overproduction, which seemed to be prevalent at high altitude, was tentatively attributed 119 to a significant difference in the threshold energies for the production of the two nuclides. 120 More recently, Dunai et al. (2007) considered a second cosmogenic ³He production 121 mechanism, via low-energy neutron capture on ⁶Li, to explain the higher ³He production 122 reported in Gayer et al. (2004). Some later studies were unable to identify an altitude-123 dependence unique to ³He production (Blard et al., 2006, Vermeesch et al., 2009). In others, 124 higher than expected apparent ³He production rates were also inferred: at high altitudes in the 125 Himalayas (Amidon et al., 2008) and on the Puna plateau in Argentina (Niedermann et al., 126 2009), and even at lower altitudes in the Coso Volcanic field and the Bishop Tuff (both in 127 California, USA; Amidon et al., 2009, Niedermann et al., 2009). 128 In this study, we evaluate whether relative production rates of TCN change with altitude at a 129 low-latitude site (3°S) and if overproduction of ³He at high altitudes occurs. We cross-130 calibrate production of ³He, ²¹Ne and ³⁶Cl in lava-flow and glacial surfaces outcropping over an 131 altitude profile between 1000 and 4300 m, on the slopes of Mt. Kilimanjaro, Tanzania. All 132 three nuclides can be measured in clinopyroxene phenocrysts and this mineral phase provides 133 the most complete data set in this study. In addition, ³He was measured in olivine phenocrysts 134 in all samples except one, and "Ne was measured in olivines at two different altitudes. 135 To our knowledge, this is the first time that ³⁶Cl has been measured in a mafic mineral phase. 136 To validate the method, "Cl was measured in plagioclase phenocrysts coexisting with 137 pyroxenes in one of the samples.

138

140 **2.** Geological setting and sampling

142 Based on an initial project objective of calibrating absolute and relative production rates of 143 TCN at a low-latitude site and over a large altitude transect, sampling was undertaken in 2005 144 at Mount Kilimanjaro, Tanzania (3°S) (Fig. 1). This large shield volcano, Africa's highest 145 mountain (5892 m), is located at the eastern end of the Ngorongoro-Kilimanjaro Volcanic 146 Belt, which forms one arm of the triple rift-system that characterizes the eastern branch of the 147 East African Rift System. Kilimanjaro consists of three NW-SE aligned volcanic peaks, Shira 148 (3962 m), Kibo (5892 m) and Mawenzi (5149 m), constructed in multiple phases. The first 149 phase took place between 2.5 Ma and 1.9 Ma at the Shira vent (Nonnotte et al., 2008). A large 150 sector collapse signalled the end of this phase, after which volcanic activity shifted eastwards 151 to the Kibo and Mawenzi peaks, at around 1 Ma. Activity at Mawenzi ceased around 500 ka, 152 but continued at Kibo with two major periods of volcanic activity occurring between 460 ka 153 and 340 ka. The final stages of volcanism at Kilimanjaro consisted of the eruption of basaltic 154 flows and scoria from small parasitic cones located on the volcano flanks, between around 155 200 ka and 150 ka (Nonnotte et al., 2008). 156 For this study, we principally targeted cones and lava flows from this last volcanic period in a 157 region known as the Rombo Zone, located on the south-eastern flank, south of Mawenzi Peak 158 (Downie and Wilkinson, 1972). This zone comprises olivine- and pyroxene-rich basanitic and 159 ankaramitic flows erupted from parasitic cones distributed over a large elevation range, from 160 < 1500 to > 4500 m. Suitable exposure of lava-flow surfaces is limited however between 1700

- and 2500 m due to the presence of a dense tropical rainforest (Fig. 1). Flow-top preservation
- 162 is also compromised above \sim 3700 m as a result of significant glacial activity during the
- 163 Quaternary (Shanahan and Zreda, 2000).

164 While an effort was made to sample pristine flow-top features for absolute calibration of TCN 165 production rates, at many sites this was not possible. Between 2700 and 3200 m, well-166 preserved ropy tops of lava-flows (Fig. A1 in Appendix) out-crop at the bases of parasitic 167 cones. However, accessing the inner, degassed parts of the flow in order to extract rock 168 suitable for precise Ar/Ar or K/Ar dating was difficult, and most flows were also too small 169 and thin to have well developed massive interiors. As such, our efforts to obtain independent 170 ages and absolute production rates for these flows were unsuccessful. For the parasitic cones 171 erupted in the Rombo Zone, the only precise published eruption ages are K/Ar ages of 165 ± 5 172 ka and 195 ± 5 ka for two basaltic flows (Nonnotte et al., 2008), but their surfaces were not 173 appropriate for exposure dating. For the investigation of relative TCN production rates, 174 however, it is possible to use surfaces, such as glacially-polished surfaces, for which the 175 eruption age of the lava-flow is not necessarily equal to the apparent exposure age. 176 Eight surface samples were collected at six different altitudes between 1000 and 4300 m 177 (Table 1 and Fig. 1). Half of the samples were taken from well-preserved surfaces of two 178 lava-flows (TZ10, TZ12, TZ13 and TZ14), two from eroding surfaces (TZ09, TZ17) and two 179 from glacially polished surfaces (TZ15, TZ19). Based on field observations, the maximum 180 rock thickness removed from the lava-flow at the lowest sample site at 1013 m altitude 181 (TZ09) is estimated to be 30 cm. The surface of sample TZ17 also appeared to be slightly 182 degraded in the field and the outcrop was surrounded by scoria and gravel deposits. Sample 183 TZ15 was taken from a glacially polished doleritic dyke bearing large plagioclase laths in 184 addition to pyroxene and minor olivine. A formation age of 527 ± 3 ka was determined for the 185 dyke by ³⁹Ar/⁴⁰Ar dating (see Appendix). The exposure age of the surface can be expected to be 186 significantly younger. The highest sample (TZ19) also exhibits slight glacial polishing. More 187 detailed descriptions and photographs of sample sites are given in the Appendix.

- 189 Fig. 1 about here -
- 190 Table 1 about here -
- 191
- **3. Methods**
- 193

3.1 Physical sample preparation

195 Prior to sample preparation, pieces of whole rock from each surface were set-aside for thin-196 section preparation and bulk-rock composition analyses. For TCN analyses, the top 5 to 10 cm 197 of each whole rock sample was sawn off, then crushed and wet-sieved to remove dust 198 particles and the finest grain sizes (< 125μ m). A hand-magnet was passed over all fractions to 199 remove magnetic groundmass. Using a binocular microscope, olivine and pyroxene 200 phenocrysts were hand-picked to obtain pure mineral separates, with care taken to ensure 201 complete removal of altered crystals and crystals with adhering groundmass. For "Cl analyses, 202 approximately 5 to 10 g of pure pyroxene phenocrysts were handpicked from the coarsest 203 fractions. For sample TZ15, a Frantz magnetic separator was used to separate several grams of 204 0.5-mm sized plagioclase phenocrysts from the more magnetic mafic minerals. Plagioclases 205 were handpicked in order to maximize sample purity. For noble gas extractions, 206 approximately 2 g of the coarsest pure fractions were cleaned in acetone and set aside for in 207 vacuo crushing and determination of magmatic helium isotope ratios. For the melt extractions, 208 up to 3 g of phenocrysts from the 0.5 to 0.7 mm size fraction were cleaned in acetone, hand-209 crushed and sieved to 0.1 - 0.3 mm and then re-picked and cleaned once more in acetone, to 210 ensure the highest degree of sample purity.

211

213 **3.2** Chemical "Cl extraction and measurement

Chemical extraction of *Cl was conducted at CEREGE (Aix en Provence, France). The
procedure is detailed in the Appendix. Several procedural blanks were performed in order to
assess cleanliness during chemical extraction and to correct sample measurements for
laboratory *Cl and stable Cl sources.
Concentrations of *Cl and Cl were determined using the Lawrence Livermore National
Laboratory FN accelerator mass spectrometer (LLNL-CAMS, USA). Isotope dilution
(addition of a *Cl-enriched carrier) allows simultaneous determination of *Cl and Cl

221 concentrations. ³⁶Cl/³⁵Cl ratios were determined by normalizing to a ³⁶Cl standard prepared by

222 K. Nishiizumi (Sharma et al., 1990). The stable ratio ¹⁵Cl/¹⁷Cl was also normalized to this

standard, assuming a natural ratio of 3.127. Measured ratios and their uncertainties are

presented in Table A1 in the Appendix. The precision of the ³⁵Cl/³⁷Cl ratios accounts for 2% or

225 less (standard deviation of repeat measurements). The precision of the ³⁶Cl/³⁵Cl ratios ranges

from 2 to 7%.

Blank ${}^{36}Cl/{}^{35}Cl$ ratios range between 7×10^{15} and 9×10^{15} , and are one to two orders of

228 magnitude lower than the sample ³⁶Cl/³⁵Cl ratios (Table A1). The resulting blank-corrected ³⁶Cl

and Cl concentrations range from $(0.63 \text{ to } 5.25) \times 10^{\circ}$ atoms 36 Cl g⁻¹ and from 1 to 10 ppm Cl,

230 respectively (Table A1). The ³⁶Cl concentrations are also given in Table 3.

231

232 **3.3 Noble gas measurements**

233 Helium measurements were carried out using the Helix Split Flight Tube and Helix Multi-

collector mass spectrometers (GV instruments) at CRPG (Nancy, France) and a VG-5400

235 mass spectrometer at GFZ (Potsdam, Germany) (Table A3 in the Appendix shows where each

236 measurement was made). Neon measurements were performed with the VG-5400 mass

237 spectrometer at GFZ. While samples were degassed in a single step at CRPG, a two-step

heating procedure (900°C and 1750°C) was used at GFZ in order to separate a possible high
atmospheric Ne component from the major cosmogenic fraction. Mass spectrometers were
cross-calibrated by way of internal standard replication and measurement of CRONUS-EU
mineral standards. Further details of these inter-comparisons and of the noble gas extraction
and measurement procedures in the two laboratories can be found in the Appendix.

243

244 <u>Determination of cosmogenic ³He concentrations</u>

Concentrations of cosmogenic ³He in pyroxene and olivine are traditionally calculated from
melt and crush measurements using an equation that corrects for the trapped (magmatic) He
component (Kurz, 1986):

248

249
$${}^{3}He_{cos} = {}^{3}He_{m} - {}^{4}He_{m} \times ({}^{3}He/{}^{4}He)_{mag}$$
 Eq. 1

250

251 where ³He_{cos} is the cosmogenic ³He concentration, ³He_m and ⁴He_m are the concentrations of ³He 252 and 'He measured from melt extractions and $({}^{3}\text{He}/{}^{4}\text{He})_{me}$ is the magmatic ${}^{3}\text{He}/{}^{4}\text{He}$ value, 253 normally determined from phenocryst crush extractions. Because of insufficient sample 254 material and low He yields, not all (³He/⁴He)_{me} values in this study were determined by 255 crushing. Isochron intercepts according to the method by Blard and Pik (2008) were used for 256 samples TZ17 and TZ19 (Fig. A2 in Appendix). For samples TZ09 and TZ15 the value for 257 (³He/⁴He)_{mg} was estimated. A description of the magmatic ³He/⁴He determinations is given in 258 the Appendix. 259 A critical step in the determination of cosmogenic ³He is the correction for the implanted or

260 ingrown radiogenic 'He ('He*), which may be significant even in very young rocks (e.g. Dunai

and Wijbrans, 2000, Blard and Farley, 2008, Blard and Pik, 2008). In this study, for partially

eroded volcanic surfaces (TZ09 and TZ17) and glacially polished surfaces (TZ15 and TZ19),

⁴He^{*} was estimated from whole-rock and phenocryst U and Th concentrations following 263 264 Farley et al. (2006). The calculated 'He* was subtracted from the 'He_m abundance prior to 265 using Eq. 1. For TZ09, TZ17 and TZ19, the magnitude of 'He* correction ranged between 4% 266 and 25% of total 'He_m; for pyroxene and olivine replicates of TZ15 it was calculated to be 53% 267 to 68% based on the rock formation age of \sim 525 ka (see discussion in section 4.2). For the 268 non-eroded volcanic surfaces (TZ10, 12, 13, 14) we applied the R-factor correction of Blard 269 and Pik (2008). The R-factor is a function of the production rate ratio between 'He* and 'He., 270 which is constant over time for non-eroded volcanic surfaces, and (³He/⁴He)_{me}. The R-factor 271 values for all four samples are > 0.98 (see Table A3 in the Appendix), which corresponds to a 272 ⁴He* correction of < 2%. 273 Helium data were systematically obtained for pyroxenes and olivines, except for sample TZ09 274 where only pyroxenes were available in sufficient quantity. Full raw data and calculated 275 cosmogenic ³He concentrations are presented in Table A3. Concentrations of ³He_m range from 276 $(9.6 \text{ to } 99.8) \times 10^{\circ}$ at g⁺ in pyroxenes and from $(13.1 \text{ to } 97.9) \times 10^{\circ}$ at g⁺ in olivines. 277 Relative ³He_m production in the two minerals is compared in Fig. 2. As observed in previous 278 studies (e.g. Blard et al., 2005, Fenton et al., 2009), for most samples, cosmogenic ³He 279 concentrations in cogenetic olivines and pyroxenes are identical within analytical uncertainty. 280 The exceptions are samples TZ13 and TZ10, where the concentrations in olivine are $\sim 8\%$ 281 lower than in pyroxene, and sample TZ15, where a difference of $\sim 17\%$ is observed. The latter 282 might be explained by an inaccurate magmatic He correction due to the high 'He* correction 283 estimated for this sample. 284 For those sites where two samples were taken from a single flow (TZ10 and TZ12 at 2740m; 285 TZ13 and TZ14 at 3050m) the 3 He_{con} concentrations in pyroxenes differ by 10% (TZ10 and 286 TZ12) and 7% (TZ13 and TZ14) and in the olivines of TZ13 and TZ14 by 12%. The

287 concentrations in the olivines of TZ10 and TZ12 agree within analytical uncertainties (1σ) .

289 - Fig. 2 about here -

290

291 Determination of cosmogenic ²¹Ne concentrations

In young (< 500 ka) basalts concentrations of cosmogenic ²¹Ne are calculated using:

293

294
$${}^{21}Ne_{cos} = [({}^{21}Ne/{}^{20}Ne)_m - ({}^{21}Ne/{}^{20}Ne)_{tr}] \times {}^{20}Ne_m$$
 Eq. 2

295

296 (Niedermann, 2002), where ²¹Ne_{cos} is the cosmogenic ²¹Ne concentration, (²¹Ne/²⁰Ne)_m and ²⁰Ne_m 297 are the measured Ne isotope ratio and concentration from melt extractions, and $(^{2}Ne/^{2}Ne)_{r}$ is 298 the trapped ²¹Ne/ ²⁰Ne value. Most subaerially erupted basalts have a trapped Ne isotopic 299 composition similar to that of atmospheric Ne (e.g. Dunai and Porcelli, 2002, Althaus et al., 300 2003), with isotope ratios of ${}^{21}Ne/{}^{30}Ne = 0.00296$ and ${}^{22}Ne/{}^{30}Ne = 0.1020$ (Eberhardt et al., 301 1965). It is assumed in this calculation that the nucleogenic ²¹Ne component is insignificant. 302 Neon isotope data are presented in Table A4 and in Fig. 3. All isotope data have been 303 corrected for isobaric interferences, mass discrimination effects and analytical blanks (see 304 Appendix). Examination of neon measurements on a three-isotope plot enables assessment of 305 the neon inventory in a sample. In Fig. 3, olivine and pyroxene data are defined by a linear 306 regression line y = 1.0539x + 0.0994, which is the same, within error, as the spallation line for 307 pyroxenes ($[1.069 \pm 0.035]x + 0.099$) reported by Schäfer et al. (1999). The regression line 308 passes through the air component and no nucleogenic or mantle component is identified in the 309 heating steps. This supports our assumption that the trapped component has an atmospheric 310 composition.

311 Concentrations of ²¹Ne_{ss} range from (2.79 to 19.0) × 10⁶ at g⁻¹ in pyroxenes and from (24.8 to

 $312 \quad 34.9) \times 10^6$ at g⁺ in olivines (Table 3). In the four samples containing cogenetic olivine and

313	pyroxene, ${}^{21}Ne_{cos}(px)/{}^{21}Ne_{cos}(ol)$ range from 0.50 to 0.54. These are indistinguishable from the
314	values predicted by modelling ²¹ Ne _{cos} production rates for the olivines (Fo ₈₁) and pyroxenes
315	(En ₄₁₋₄₃) in this study $({}^{21}Ne_{cs}(px)/{}^{21}Ne_{cs}(ol) = 0.50$ to 0.53) using major element compositions
316	determined by microprobe and the elemental production rates of Masarik (2002) (see Table
317	2c). Our values are also the same within analytical error as (i) a measured ratio of 0.49 ± 0.07 ,
318	deduced from the ²¹ Ne concentrations in cogenetic olivines (Fo ₈₂) and pyroxenes (En ₄₄) of
319	sample 250406-16 in Fenton et al. (2009), and (ii) a calculated ratio of 0.56 ± 0.18 ,
320	determined from experimentally calibrated ²¹ Ne production rate values for olivines and
321	pyroxenes ($P^{21}Ne_{cos}(Fo_{81}) = 45 \pm 4$ atoms g ⁻¹ a ⁻¹ , Poreda and Cerling, 1992; $P^{21}Ne_{cos}(En_{43-44}) =$
322	25 ± 8 atoms g ⁻¹ a ⁻¹ , Fenton et al., 2009). The large uncertainty associated with the
323	experimental production rate ratio is mainly a function of the 32% uncertainty in the
324	independent lava-flow age determined in the study of Fenton et al. (2009). Despite the
325	differences in pyroxene composition among the samples and experimental production rates,
326	our mean value of 0.52 ± 0.02 thus seems a reasonable estimate of the relative production
327	ratio of ²¹ Ne in olivines (Fo ₈₁₋₈₂) and pyroxenes (En ₄₁₋₄₄).
328	Both olivine ${}^{21}Ne_{cos}$ concentrations and pyroxene ${}^{21}Ne_{cos}$ concentrations of samples TZ10 and
329	TZ12 (flow at 2740 m) agree within analytical error (1σ) . Also, for the samples taken from
330	the flow at 3050 m (TZ13 and TZ14), the olivine ${}^{21}Ne_{cos}$ concentrations in the two samples are
331	identical within uncertainties, but the concentration of ${}^{21}Ne_{cos}$ in the pyroxenes is 12% higher in
332	TZ14 than in TZ13.
333	
224	

334 - Fig. 3 about here -

336 **3.4 Major and trace elements**

337 For the calculations of cosmogenic ³⁶Cl, chemical compositions of the mineral aliquots and of

338 bulk-rock were analyzed at the Service d'Analyse des Roches et des Minéraux du CNRS

- 339 (CRPG, Nancy, France). Major elements were determined by ICP-OES and trace elements by
- 340 ICP-MS, except Li (atomic absorption), B (colorimetry), H₂O (Karl Fischer titration) and Cl
- 341 (spectrophotometry). Bulk-rock concentrations of the major elements and of H, Li, B, Sm,
- 342 Gd, U, Th and Cl are given in Table A2. These are required for calculating low-energy

343 neutron distributions at the land/atmosphere interface. Aliquots of the etched mineral grains,

- 344 taken before their complete dissolution, represent the part of sample dissolved for *Cl
- 345 extraction and served for the analysis of the corresponding target element concentrations (Ca,

346 K, Ti and Fe). These concentrations (Table 2a) and the Cl concentrations, determined by

347 isotope dilution during AMS measurements (Table A1), were used to calculate *Cl production

348 from all production mechanisms in the dissolved samples.

349 U and Th concentrations in groundmass and phenocryst separates, required for calculation of

- ³⁵⁰ ⁴He* (as described in the previous section), were measured by ICP-MS at CRPG using the
- 351 procedure optimized for low abundances in (U-Th)/He dating (Carignan et al., 2001; Kraml et
- al., 2006). Measured U and Th concentrations are listed in Table 2b (minerals) and Table A2
- 353 (groundmass). Li concentrations in the phenocrysts are required to estimate the cosmogenic
- ³⁵⁴ ³He production from thermal and epithermal neutron capture on ⁶Li. The concentrations were
- 355 measured at CRPG and are listed in Table 2b.
- 356 The compositions of chemically untreated olivine and pyroxene phenocrysts were determined
- 357 by electron microprobe at l'Université Henri Poincaré, Nancy (Table 2c) and served to assess
- 358 dependence of ²Ne production on mineral composition (see previous section). Elemental
- 359 production rates estimated for ²¹Ne by Masarik (2002) are also given in Table 2c.
- 360

361 - Table 2 about here –

362

363 - Table 3 about here -

364

365 4. Approaches to TCN cross-calibrations

366

A common approach for comparing different TCN production rates in the same sample is to 367 368 calculate ratios of cosmogenic nuclide concentrations. This approach has previously been 369 adopted for cross-calibration of ³He and/or ²¹Ne production rates with ¹⁰Be (Gayer et al., 2004, 370 Kober et al., 2005, Farley et al., 2006, Amidon et al., 2008, Amidon et al., 2009), and for 371 evaluation of relative ³He and ²¹Ne production rates (Fenton et al., 2009). When cross-372 calibrating TCN in several samples along an altitude transect, an increasing or decreasing 373 trend versus altitude would indicate that the nuclides have different altitude dependences 374 (Gayer et al., 2004, Amidon et al., 2008). 375 In these studies, the compared nuclides are primarily produced by spallation reactions. In the 376 case of the noble gases ³He and ²Ne, trapped nucleogenic and radiogenic contributions were 377 subtracted prior to cross-calibration, so that only cosmogenic components were taken into 378 account. Predominantly spallation-produced nuclides such as ³He, ²¹Ne and ¹⁰Be should 379 accumulate in a given sample with a constant ratio. However, despite the fact that these 380 nuclides are predominantly spallogenic in origin, there are nevertheless variations in 381 production rate related to the chemical composition of the mineral involved. 382 1) Cosmogenic production of ³He by thermal neutron capture on ⁶Li has been shown to be 383 potentially significant in Li-rich minerals and rocks (Dunai et al., 2007) and may require a 384 correction. This approach has not been done in the pioneer paper of Gayer et al. (2004) but 385 has since been addressed (e.g. Amidon et al., 2009). However, Li concentrations in mafic

minerals such as olivine and pyroxenes are generally low (< 10 ppm). In this study Li
concentrations range between 2 and 7 ppm (Table 2b) and thus contribute less than 1% to the
³He budget.

2) Even though ³He and ²¹Ne are commonly calibrated for a given mineral phase, their

390 production rates also depend on the mineral chemical composition (e.g. Masarik and Reedy,

391 1996). He is mainly produced from O and Si, as well as from Mg, Fe, Al and Ca, with

392 relatively uniform elemental production rates. In contrast, ²¹Ne is not produced from O, but

393 from Na, Mg, Al, Si, Ca and Fe with significant variations between elemental production rates

394 (e.g. Masarik and Reedy, 1996, Masarik, 2002, see Table 2c). The production rate of ²¹Ne is

395 therefore more sensitive than that of ³He to variations in mineral composition. As a

396 consequence, if the composition of a mineral phase varies significantly within the sample set,

³He/²Ne ratios may also vary significantly.

398

399 While relative ³He, ²¹Ne and ¹⁰Be production rates are only slightly dependent on mineral

400 chemistry, the situation is significantly more complex for ^{se}Cl. In order to compare spallogenic

401 nuclides with ^{se}Cl, three issues have to be considered.

402 i) Mineral composition is more important when comparing cosmogenic noble gas

403 concentrations to those of ³⁶Cl. ³⁶Cl is produced from fewer target elements than ³He and ²¹Ne,

404 dominantly from Ca, K and ^sCl (review in Schimmelpfennig et al., 2009), making its

405 production rate extremely sensitive to the mineral composition.

406 ii) The noble gases ³He and ²¹Ne are stable TCN, while ¹⁰Be and ³⁶Cl are radioactive.

407 Concentration ratios of a stable and a radioactive nuclide will not remain constant over long

408 exposure durations due to decay of the radionuclide. In the case of "Be, which has a half-life

409 of 1.39 Ma (Chmeleff et al., 2010, Korschinek et al., 2010), this becomes significant for

410 exposure ages longer than 100 ka, while in the case of the shorter-lived *Cl (half-life 301 ka),

411 the effect is significant for even shorter exposure durations. In addition, the effect depends on 412 erosion (Goethals et al., 2009), whereas the stable nuclides (³He, ²¹Ne) accumulate with a 413 constant ratio, irrespective of erosion rate. For example, the concentration ratio of *Cl/*He or ³⁶Cl/²¹Ne is approximately 12% smaller than their production ratio for a 100 ka old surface 414 415 eroding at <1 m/Ma; at lower ages or higher erosion rates the difference becomes smaller 416 (according to Goethals et al., 2009; the muogenic *Cl contribution is neglected here). 417 Therefore, radioactive decay should be taken into account when comparing TCN 418 concentrations, especially if the samples have a range of exposure ages as they do in this 419 study. 420 iii) Cosmogenic ³⁶Cl is not only produced by spallation. A significant ³⁶Cl contribution is also 421 derived from slow negative-muon capture by Ca, and to a lesser degree by K (review in 422 Schimmelpfennig et al., 2009). Because the altitude-dependence of the muon flux is weaker 423 than that of the fast neutrons (e.g. Stone, 2000), with increasing altitude the production of "Cl 424 by spallation increases at a higher rate than ^{sc}Cl production by muon-capture. Hence, over a 425 given altitude transect, total ^{sc}Cl production will not be proportional to the production of TCN 426 derived almost purely from spallation. ³⁶Cl is also produced by thermal and epithermal neutron 427 capture on the trace element ³⁵Cl, and a significant proportion of ³⁶Cl can result from a high 428 level of Cl (>50 ppm) in a sample (Schimmelpfennig et al., 2009). However, as for ³He 429 production due to ⁶Li, when Cl concentrations in a sample are low (a few ppm) this 430 mechanism contributes generally insignificantly to the ³⁶Cl production. Variations in ³⁶Cl 431 concentrations in samples of the same lithology might therefore be a consequence of varying 432 Cl concentrations. 433

435 4.1 Comparing cosmogenic ³⁶Cl, ³He and ²¹Ne concentrations

436 Because of the favourable chemical composition of the pyroxene phenocrysts in our samples 437 (notably low Cl, low K concentrations and similar Ca concentrations) we first directly 438 compare the ratios of the cosmogenic ³⁶Cl, ³He and ²¹Ne concentrations (Fig. 4), ignoring the 439 effects of radioactive decay, erosion and muogenic ³⁶Cl contribution. The ³⁶Cl contribution 440 from Ca spallation is maximized by extraction from the Cl-poor, Ca-rich pyroxenes (max. 10 ppm Cl, see Table A1). Hence, spallation of Ca contributes between 86% and 90% of *Cl in 441 442 these samples, while the contribution from spallation of K is < 1% and that from spallation of 443 Ti and Fe together is about 3% (calculated using the ^{se}Cl calculation spreadsheet published in 444 Schimmelpfennig et al., 2009). The contributions from thermal and epithermal neutron 445 capture on ⁶Li and ³⁶Cl, respectively, are < 1% for ³He and 3.7% or less for ³⁶Cl. The Li-derived 446 ³He contribution is based on Li concentrations measured in the minerals, Table 2b, and 447 calculated using a version of CHLOE (Phillips and Plummer, 1996) modified for ³He 448 production (R. Pik and P. Burnard, unpublished). The "Cl contributions due to slow negative-449 muon capture are 10% at 1000 m altitude and decrease to 5% at 4300 m. As a consequence we 450 might expect a slight overestimate of the ³⁶Cl to noble gas nuclide ratios at low altitudes 451 relative to high altitudes due to the muogenic ³⁶Cl contribution. 452 Since, to our knowledge, ³⁶Cl has never been measured in pyroxene before, we validate this 453 method by measuring *Cl in co-genetic plagioclases in sample TZ15. Feldspar is an accepted 454 ³⁶Cl target mineral (Stone et al., 1996, Evans et al. 1997, Schimmelpfennig et al. 2009). The 455 ³⁶Cl concentrations in both mineral phases of TZ15 are given in Table A1 in the Appendix. 456 Since the Ca concentrations are higher in the pyroxene by almost a factor of two and also the 457 K and Cl concentrations differ between both mineral phases, ³⁶Cl concentrations cannot be 458 directly compared. We therefore calculated the apparent exposure ages from these two

459 minerals using the ³⁶Cl calculation spreadsheet (Schimmelpfennig et al., 2009) and the SLHL

460 production rate for spallation of Ca by Stone et al. (1996), which yields 14.4 ± 1.1 ka for 461 pyroxene and 14.3 ± 1.1 ka for plagioclase, confirming that pyroxene is a suitable mineral for 462 *Cl surface exposure age determinations.

Fig. 4 shows the ratios of the cosmogenic nuclide concentrations versus altitude. In pyroxene, 463 464 the mean values of the ratios and their standard deviations are 0.0582 ± 0.0061 (n=8) for 465 ${}^{36}Cl/{}^{3}He$, 0.1864 ± 0.0085 (n=6) for ${}^{21}Ne/{}^{3}He$ and 0.301 ± 0.020 (n=6) for ${}^{36}Cl/{}^{21}Ne$. For each of 466 the three TCN ratios, all individual measurements, except the *Cl/3He ratio of TZ15, lie within 467 the standard deviation of the respective mean values and therefore do not show any altitudinal 468 dependence. It should be noted that TCN concentration ratios are composition-dependent, 469 particularly when "Cl and "Ne are involved, and they should not be expected to be the same in 470 different mineral phases or in pyroxenes with significantly different compositions. In this 471 study, the compositions of the pyroxene minerals are very similar, only TZ09 (En₄₅) and TZ15 472 (En_{44}) diverge slightly from the other samples (En_{41-43}) . Significant differences are observed in 473 the Ca, Fe and Al concentrations (Table 2), each of them being an important target element 474 for at least one of the TCN in this study. Theoretical calculations of mineral production rates, 475 based on these compositions and on the elemental production rates by Masarik (2002), predict 476 that the ³⁴Cl/³He and ³⁴Cl/³Ne ratios of these two samples should be about 10% to 15% lower 477 than those of the other samples.

⁴⁷⁸ ^aNe/³He was also determined in olivine from four of the samples: TZ10 and TZ12 from the ⁴⁷⁹ 2740 m sample site and TZ13 and TZ14 from the 3000 m site (Table 3b, Fig. 4b). At higher ⁴⁸⁰ altitudes, only ³He could be determined in olivines. ^aCl could not be measured in olivine since ⁴⁸¹ this mineral contains no abundant target element for production of this nuclide. A mean ⁴⁸² ^aNe/³He value of 0.377 ± 0.018 was determined and all four measurements lie within the ⁴⁸³ standard deviation of the mean value. No variation is observed between the two sample ⁴⁸⁴ locations.

486 - Fig. 4 about here -

487

488 4.2 Comparing apparent "Cl, "He and "Ne exposure ages

489 If erosion is negligible, samples collected from a single lava-flow or glacially created surface 490 should yield the same exposure age irrespective of TCN or mineral phase. All composition-, 491 production pathway- and decay-related differences between the nuclides should be accounted 492 for in the exposure age calculation. Errors in scaling factors for spallation reactions will 493 cancel out provided the same scaling method is applicable for all reactions. A separate scaling 494 factor is required for production of ³⁶Cl from muons. However, errors in the muon scaling 495 factor are expected to have only a minor influence on calculated exposure age ratios, because 496 ³⁶Cl contributions from muons are not higher than 5-10%. We choose the scaling method of 497 Stone (2000), because all the SLHL production rates considered below were originally scaled 498 according to either Stone (2000) or to Lal (1991); these two methods are equivalent to each 499 other. The applied scaling factors are listed in Table 1. 500 The selection of SLHL production rates poses a more serious challenge, because for each 501 nuclide several experimentally calibrated and modelled production rates exist, covering a 502 quite large range of values. We will limit our study to select a single SLHL production rate for 503 each nuclide. If the SLHL production rates of all nuclides were perfectly known and all 504 nuclides were equally altitude-dependent, the exposure age ratios should be equal to 1 (cf. Fig. 505 5). Systematic discrepancies would indicate that one or both SLHL production rates are

506 inaccurate. Without an independent age control it is, however, not possible to determine

507 which production rate is correct.

508 For ³⁶Cl, production rates are not mineral- but target-element-specific. Spallation of Ca is the

509 most important production mechanism in our pyroxenes. We use the production rate for

510 spallation of Ca with a value of 48.8 ± 1.7 atoms (g Ca)⁻¹ a⁻¹ (Stone et al., 1996). For ³He, we 511 use the production rate of 128 ± 5 atoms (g mineral)⁴ a⁴ (Blard et al., 2006). This production 512 rate is assumed to be valid for pyroxene as well as olivine because cosmogenic ³He 513 concentrations are identical within analytical uncertainty in the cogenetic olivines and 514 pyroxenes of our study (Fig. 2). For ²¹Ne, both modelled elemental production rates and 515 experimentally calibrated mineral-specific production rates are available. Here, we use the 516 calibrated SLHL production rate of 25 ± 8 atoms (g pyroxene)⁺ a⁺ of Fenton et al. (2009). The 517 compositions of pyroxenes in Fenton et al. (2009) (En_{4344}) fall within the range of those in our 518 study (En₄₁₋₄₅). 519 The resulting apparent exposure ages range between 14 ka and 170 ka (Table 4). For each 520 nuclide pair, the exposure age ratios are then calculated. These are plotted as a function of 521 altitude in Fig. 5. This graph shows a similar pattern to the concentration plot, indicating that 522 the radioactive decay of ^{se}Cl (as can be expected for relatively young exposure ages), 523 differences in mineral composition and the ³⁶Cl production by slow muon capture have only a 524 minor impact on the altitudinal trend of these data. 525 Despite this overall similarity, exposure age ratios appear to exhibit a slight dependence on

altitude. Notably ³⁶Cl/³He decreases with altitude; this trend is essentially defined by samples

527 TZ09 (1000 m) and TZ15 (4100 m), with 30% difference between these two samples without

528 overlap of the estimated uncertainties. However, the TZ15 ³⁶Cl/²¹Ne age ratio is

529 indistinguishable from those at lower altitudes. An error in the calculation of the ³He age of

530 TZ15 is therefore possible. Since TZ15 was taken from a polished glacial surface of an old

531 dyke (see section 2, formation age >> exposure age), it is subject to an uncertain correction

532 for radiogenic ⁴He^{*}, which affects the cosmogenic ³He concentration estimation (section 3.3).

533 The black circles at the altitude of TZ15 in Fig. 5a and b represent the age ratios when

assuming the highest correction for radiogenic ⁴He* based on measured U and Th

535 concentrations, the ⁴⁰Ar/³⁹Ar age and the minimum grain size of the phenocrysts (2 mm). The 536 open circles mark the ratios if no such correction is done, thus indicating the trend towards 537 higher ratios if the radiogenic 'He* correction was overestimated. Furthermore, the surface of 538 the TZ09 flow was clearly eroded. Erosion can have an effect on ratios involving *Cl, because 539 it has a shorter half-life than the other nuclides and because the *Cl contribution from slow 540 negative-muon capture is less dependent on erosion than the ³⁶Cl contribution from spallation 541 due to the longer attenuation length of the muons. Consequently, if erosion is not taken into 542 account then the calculated apparent "Cl exposure age is higher relative to the calculated 543 apparent ³He exposure age. The ratio of the apparent exposure ages of TZ09 is displayed in 544 Fig. 5a by the black circle, while the open diamond represents the ratio if erosion is taken into 545 account. For this calculation we assumed an eroded rock layer of 30 cm, which corresponds to 546 the estimated maximum erosion based on field evidence.

547 When these considerations are taken into account all exposure age ratios overlap within their 548 uncertainties over the examined altitude range. No clear altitudinal variation in nuclide 549 production can be demonstrated without ambiguity, regardless of the production rate or 550 nuclide pair examined. Also, no correlation of the ratios with the different exposure durations 551 of the surfaces can be observed.

At present, accurate independent age constraints are not available for the sampled lava flows, preventing us from evaluating SLHL production rates. The production rates chosen here result in exposure ages that mostly agree between all three nuclides (Table 4), i.e. the exposure age ratios presented in Fig. 5 are generally equal to 1. But it is important to stress that this would also have been the case if for all three nuclides accordingly lower or higher SLHL production rates had been chosen and that this does not affect the evaluation of the altitude dependence of the relative nuclide production rates.

560 - Table 4 -

561

562 - Fig. 5 about here -

563

564 5. Comparison with other cross-calibrations

565

A significant altitudinal variation of the relative production rates of ³He compared to other 566 567 nuclides, as was proposed by Gayer et al. (2004) and Amidon et al. (2008), is not documented 568 by the Kilimanjaro data set. Even though the altitude range of samples TZ10 to TZ19 is 569 similar to that of the Himalayan samples (3000 - 4600 m in Gayer et al., 2004, and 3200 -570 4800 m in Amidon et al., 2008) and Amidon et al. (2008) documented an increase in the 571 ³He/¹⁰Be concentration ratio of up to 40% for their transect, all exposure age ratios in our study 572 agree at the 1σ level for the corresponding altitude range (2700 - 4300 m) (Fig. 5). Regarding 573 only the nominal values of the *Cl/³He exposure age ratios over the whole altitude range in 574 our study (1000 – 4300 m), i.e. ignoring the overlapping uncertainties, results in a 17% 575 increase. However, this variation is much less than that documented for the Himalayan 576 transects (Fig. 6). Possible explanations could be that i) no significant differences in relative 577 production rates exist and the anomaly in the nuclide ratios of the Himalayan samples is due 578 to factors other than changes in the nucleon energy spectrum; ii) the altitude dependences of 579 ³⁶Cl, ²¹Ne and ³He production are more similar than for ¹⁰Be and ³He; or iii) a latitude effect must 580 be considered, since the Himalaya sites are at higher latitudes (27-28°N) than Mt. Kilimanjaro 581 $(3^{\circ}S)$. Due to the decreasing shielding effect of the geomagnetic field with increasing latitude, 582 the cosmic ray flux becomes stronger. As a consequence, the flux at 4000 m altitude and a 583 latitude of 30° is about 35% higher than at the same altitude and a latitude of 3° (according to 584 the scaling method by Stone, 2000). Also, at high latitudes the energy spectrum of the flux

585 becomes on average less energetic (Gosse and Phillips, 2001). This could explain different 586 altitude dependences of the relative production rates, even though the altitudes are very 587 similar for all studies considered here. However, the possibility of such a latitude effect has to 588 be further investigated. 589 The mean values of the ²¹Ne/³He concentration ratios in pyroxene (0.1864 \pm 0.0085) and 590 olivine (0.377 ± 0.018) are slightly lower but in agreement within 1σ with those of a number 591 of studies undertaken at mid latitudes and altitudes between 1000 and 2000 m, e.g. Fenton et 592 al. (2009) (0.204 \pm 0.014 in pyroxene and 0.400 \pm 0.029 in olivine), Poreda and Cerling 593 $(1992) (0.41 \pm 0.05 \text{ in olivine})$ and Kounov et al. $(2007) (0.225 \pm 0.027 \text{ in pyroxene})$, 594 suggesting that the production rates of ³He and ²¹Ne in these minerals have the same altitude 595 and latitude dependences. However, two studies from Antarctica reported significantly higher 596 ²¹Ne/³He ratios in pyroxene from altitudes around 1000 – 2000 m (0.22-0.26 in Bruno et al., 597 1997; 0.21 - 0.26 in Schäfer et al., 1999). The compositions of their pyroxenes are 598 significantly different from those in our study, but theoretical calculations based on these 599 compositions and the elemental production rates of Masarik (2002) predict ²¹Ne/³He ratios 600 lower than those in our study. The compositional differences cannot therefore explain the 601 discrepancy in the ratios. Other possible explanations are (i) the latitude effect proposed 602 before, suggesting that the production rate of ²¹Ne increases at a higher rate than that of ³He 603 with increasing latitude, or (ii) significant fractions of plagioclase and quartz in the Antarctic 604 pyroxene separates, as suggested by Niedermann et al. (2007). The presence of plagioclase 605 and quartz would lower the ³He concentration, because these minerals are less retentive for 606 Helium than pyroxene. Several studies (Margerison et al., 2005, Niedermann et al., 2007, 607 Oberholzer et al., 2008) reported difficulties in obtaining pure pyroxene separates from the 608 sampled Antarctic dolerite, and ²¹Ne/³He ratios of four pure pyroxene separates re-measured

from the sample suite of Schäfer et al. (1999) are indeed lower (0.181-0.217, Niedermann et
al., 2007) than in the earlier study.

611 Staudacher and Allègre (1993) measured significantly lower ²¹Ne/³He ratios in olivine (0.23 -612 0.30) at latitude 21°S and altitudes around 2300 m. Neither the mineral compositions, which 613 are very similar in their and our study, nor the hypothesized latitude effect seem likely to 614 explain this discrepancy. Assumedly, the calculations of their cosmogenic noble gas 615 concentrations were subject to inaccurate correction for non-cosmogenic components. 616 To our knowledge, Licciardi et al. (2008) is the only study in which "Cl has been co-calibrated 617 with another nuclide, ³He. ³⁶Cl was measured in basaltic whole rock, while ³He was determined 618 in olivine phenocrysts of the same samples (Licciardi et al., 2006). However, a comparison 619 between the relative production rates of ³⁶Cl and ³He in their study and ours cannot be 620 performed for several reasons. ³⁶Cl concentrations are not given in Licciardi et al. (2008). 621 Also, the basalts have varying Cl concentrations (up to 61 ppm), which result in *Cl 622 contributions from capture of low-energy neutrons on ³⁵Cl of up to 26%, so that ³⁶Cl/³He 623 concentration ratios could not be expected to be constant from sample to sample. Finally, all 624 samples come from a narrow range of altitudes (20-460 m) excluding altitude dependent 625 comparisons.

626

627 - Fig. 6 about here -

628

629 6. Conclusions

630 This is the first study that deals with the cross-calibration of three cosmogenic nuclides (*Cl,

⁶³¹ ³He and ²¹Ne) in minerals over a large altitudinal profile (1000 - 4300 m) at low latitude (3° S).

632 All three nuclides have been measured in pyroxene phenocrysts, and ³He and ²¹Ne have

633 additionally been measured in olivine at two elevations. ³⁶Cl has also been determined in

634 plagioclase co-existing with pyroxene in one of the samples. Calculated exposure ages from
635 both minerals yield the same result confirming the reliability of ³⁶Cl measurements in
636 pyroxene.

637 Cosmogenic ²¹Ne/³He concentration ratios in pyroxene are 0.1864 ± 0.0085 and those in

638 olivine are 0.377 ± 0.018 , agreeing with previously determined ratios of these nuclides

639 (Poreda and Cerling, 1992, Kounov et al., 2007, Fenton et al., 2009). In our samples, the

640 ${}^{36}\text{Cl/}{}^{34}\text{He}$ and ${}^{36}\text{Cl/}{}^{21}\text{Ne}$ concentration ratios are 0.0582 ± 0.0061 and 0.301 ± 0.020 , respectively.

641 These concentration ratios can be very different between samples, since the *Cl production

rate in a mineral depends strongly on the target element concentrations.

643 No significant altitude dependence of the relative production of any of the nuclides can be

observed, in contrast to altitude-dependent variations documented in previous studies (Gayer

et al., 2004, Amidon et al., 2008). Our observation is based on nuclide concentration ratios

and calculated apparent exposure age ratios plotted versus the elevations of the sample sites.

647 This suggests that production rates of the investigated nuclides are proportional to each other

between mid and high altitudes at low latitude, implying that no nuclide-specific scaling

649 factors are needed at this site. However, the latitude effect for cross-calibrations has to be

650 further evaluated.

Although independently determined ages for the studied lava surfaces are not available at present, the consistency in the data-set should enable progress to be made in the determination of the production rates of all three nuclides as soon as the production rate of one of the nuclides has been accurately defined.

655

659	F. Palhol and B. Marty are thanked for assistance in the field. This research would never have
660	been possible without the enormous help from the University of Dar es Salaam, TANAPA,
661	and Kilimanjaro National Park in Tanzania. We would particularly like to mention Dr. J.
662	Wakibara (TANAPA), Fred Mangasini (University of Dar es Salaam) and Chamba Makene
663	(Geological Survey of Tanzania), as well as Kilimanjaro guides R. Mtui and Zakaria and their
664	team of porters at Marangu. Back in the laboratories, thanks goes to E. Davy for sample
665	preparation, E. Schnabel for measurements at GFZ, B. Tibari and L. Zimmermann for help at
666	CRPG, T. Guilderson and T. Brown as well as all the staff of the CAMS-LLNL for ³⁶ Cl
667	measurements and J. Wijbrans at Vrije Universiteit, Amsterdam, for ⁴⁰ Ar/ ³⁰ Ar analyses and
668	discussion. Finally, David Shuster and an anonymous reviewer are gratefully acknowledged
669	for their thorough and very constructive reviews that greatly improved the manuscript. This
670	project was conducted as part of the CRONUS-EU Research Training Network (EU FP6
671	Marie Curie Actions, project 511927).
672	
673	
674	References:
675	
676	Althaus, T., Niedermann, S., Erzinger, J., 2003. Noble gases in olivine phenocrysts from drill core samples of the
677	Hawaii Scientific Drilling Project (HSDP) pilot and main holes (Mauna Loa and Mauna Kea, Hawaii).
678	Geochemistry Geophysics Geosystems 4, 8701, doi: 10.1029/2001GC000275.
679	
680	Amidon, W., Farley, K., Burbank, D., Prattsitaula, B., 2008. Anomalous cosmogenic 'He production and
681	elevation scaling in the high Himalaya. Earth and Planetary Science Letters 265 (1-2), 287-301.
682	

683	Amidon, W. H., Rood, D. H., Farley, K. A., 2009. Cosmogenic 'He and "Ne production rates calibrated against
684	"Be in minerals from the Coso volcanic field. Earth and Planetary Science Letters 280 (1-4), 194-204.
685	
686	Balco, G., Shuster, D. L., 2009. Production rate of cosmogenic "Ne in quartz estimated from "Be, "Al, and "Ne
687	concentrations in slowly eroding Antarctic bedrock surfaces. Earth and Planetary Science Letters 281 (1-2), 48-
688	58.
689	
690	Balco, G., Stone, J., Lifton, N., Dunai, T., 2008. A complete and easily accessible means of calculating surface
691	exposure ages or erosion rates from "Be and "Al measurements. Quaternary Geochronology 3 (3), 174-195.
692	
693	Balco, G., Briner, J., Finkel, R. C., Rayburn, J. A., Ridge, J. C., Schaefer, J. M., 2009. Regional beryllium-10
694	production rate calibration for late-glacial northeastern North America. Quaternary Geochronology 4 (2), 93-107.
695	
696	Blard, P. H., Farley, K. A., 2008. The influence of radiogenic 'He on cosmogenic 'He determinations in volcanic
697	olivine and pyroxene. Earth and Planetary Science Letters 276 (1-2), 20-29.
698	
699	Blard, P. H., Pik, R., 2008. An alternative isochron method for measuring cosmogenic 'He in lava flows.
700	Chemical Geology 251, 20-32.
701	
702	Blard, P. H., Lavé, J., Pik, R., Quidelleur, X., Bourlés, D., Kieffer, G., 2005. Fossil cosmogenic 'He record from
703	K-Ar dated basaltic flows of Mount Etna volcano (Sicily, 38°N): Evaluation of a new paleoaltimeter. Earth and
704	Planetary Science Letters 236, 613-631.
705	
706	Blard, P. H., Pik, R., Lavé, J., Bourlès, D. L., Burnard, P., Yokochi, R., Marty, B., Trusdell, F., 2006.
707	Cosmogenic 'He production rates revisited from evidences of grain size dependent release of matrix-sited helium.
708	Earth and Planetary Science Letters 247 (3-4), 222-234.
709	
710	Bruno, L.A., Baur, H., Graf, T., Schlüchter, C., Signer, P., Wieler, R., 1997. Dating of Sirius Group Tillites in
711	the Antarctic Dry Valleys with cosmogenic 'He and "Ne. Earth and Planetary Science Letters 147, 37–54.

713	Carignan, J., Hild, P., Mevelle, G., Morel, J., Yeghicheyan, D., 2001. Routine analyses of trace elements in
714	geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS; a
715	study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostandards Newsletter 25, 187-
716	198.
717	
718	Cerling, T. E., Craig, H., 1994. Cosmogenic 'He production rates from 39°N to 46°N latitude, western USA and
719	France. Geochimica et Cosmochimica Acta 58, 249-255.
720	
721	Chmeleff, J., von Blanckenburg, F., Kossert, K., Jakob, D., 2010. Determination of the "Be half-life by
722	multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research
723	Section B 268, 192-199.
724	
725	Desilets, D., Zreda, M., 2003. Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and
726	applications to in situ cosmogenic dating. Earth and Planetary Science Letters 206, 21-42.
727	
728	Desilets, D., Zreda, M., Prabu, T., 2006. Extended scaling factors for in situ cosmogenic nuclides: New
729	measurements at low latitude. Earth and Planetary Science Letters 246 (3-4), 265-276.
730	
731	Downie, C., Wilkinson, P., 1972. The Geology of Kilimanjaro. The Department of Geology, The University of
732	Sheffield, Sheffield, 253 pp.
733	
734	Dunai T. J., 2001a. Influence of secular variation of the geomagnetic field on production rates of in situ produced
735	cosmogenic nuclides. Earth and Planetary Science Letters 193, 197-212.
736	
737	Dunai T.J, 2001b. Reply to comment on 'Scaling factors for production rates of in situ produced cosmogenic
738	nuclides: a critical reevaluation' by Darin Desilets, Marek Zreda and Nathaniel Lifton. Earth and Planetary
739	Science Letters 188, 289-298.
740	
741	Dunai T.J., Wijbrans, J.R., 2000. Long-term cosmogenic ³ He production rates (152 ka-1.35 Ma) from ^a Ar/ ^a Ar
742	dated basalt flows at 29°N latitude. Earth and Planetary Science Letters 176, 147-156.

744	Dunai, T.J., Porcelli, D., 2002. Storage and transport of noble gases in the subcontinental lithosphere. Reviews in
745	Mineralogy and Geochemistry 47, 371-409.
746	
747	Dunai, T. J., Stuart, F. M., Pik, R., Burnard, P., Gayer, E., 2007. Production of 'He in crustal rocks by
748	cosmogenic thermal neutrons. Earth and Planetary Science Letters 258 (1-2), 228-236.
749	
750	Eberhardt, P., Eugster, O., Marti, K., 1965. A redetermination of the isotopic composition of atmospheric neon.
751	Zeitschrift für Naturforschung 20a, 623-624.
752	
753	Evans, J. M., Stone, J. O., Fifield, L. K., Cresswell, R. G., 1997. Cosmogenic «Cl production in K-feldspar.
754	Nuclear Instruments and Methods in Physics Research Section B 123, 334-340.
755	
756	Farley, K. A., Libarkin, J., Mukhopadhyay, S., Amidon, W., 2006. Cosmogenic and nucleogenic 'He in apatite,
757	titanite, and zircon. Earth and Planetary Science Letters 248 (1-2), 451-461.
758	
759	Fenton, C. R., Niedermann, S., Goethals, M. M., Schneider, B., Wijbrans, J., 2009. Evaluation of cosmogenic
760	³ He and ^a Ne production rates in olivine and pyroxene from two Pleistocene basalt flows, western Grand Canyon,
761	AZ, USA. Quaternary Geochronology 4, 475-492.
762	
763	Gayer, E., Pik, R., Lavé, J., France-Lanord, C., Bourlès, D., Marty, B., 2004. Cosmogenic 'He in Himalayan
764	garnets indicating an altitude dependence of the 'He/"Be production ratio. Earth and Planetary Science Letters
765	229 (1-2), 91-104.
766	
767	Goethals, M. M., Hetzel, R., Niedermann, S., Wittmann, H., Fenton, C. R., Kubik, P. W., Christl, M., von
768	Blanckenburg, F., 2009. An improved experimental determination of cosmogenic "Be/" Ne and "Al/" Ne
769	production ratios in quartz. Earth and Planetary Science Letters 284, 187-198.
770	
771	Gosse, J. C., Phillips, F. M., 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary
772	Science Reviews 20, 1475-1560.

774

775	and "Ne in sanidine and in situ cosmogenic 'He in Fe-Ti-oxide minerals. Earth and Planetary Science Letters 236
776	(1-2), 404-418.
777	
778	Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., Wallner, A., Dillmann,
779	I., Dollinger, G., Lierse von Gostomski, C., Kossert, K., Maiti, M., Poutivtsev, M., Remmert, A., 2010. A new
780	value for the half-life of "Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nuclear
781	Instruments and Methods in Physics Research Section B 268, 187-191.
782	
783	Kounov, A., Niedermann, S., de Wit, M. J., Viola, G., Andreoli, M., Erzinger, J. (2007). Present denudation rates
784	at selected sections of the South African escarpment and the elevated continental interior based on cosmogenic
785	³ He and ^a Ne. South African Journal of Geology 110, 235-248.
786	
787	Kraml, M., Pik, R., Rahn, M., Carignan, J., Keller, J., 2006. A potential single grain *Ar/*Ar, (U-Th)/He and FT
788	age standard: the Limberg t3 tuff. Geostandards and Geoanalytical Research 30, 73-86.
789	
790	Kurz, M. D., 1986. In situ production of terrestrial cosmogenic helium and some applications to geochronology.
791	Geochimica et Cosmochimica Acta 50, 2855-2862.
792	
793	Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth
794	and Planetary Science Letters 104, 424-439.
795	
796	Licciardi, J., Kurz, M., Curtice, J., 2006. Cosmogenic 'He production rates from Holocene lava flows in Iceland.
797	Earth and Planetary Science Letters 246 (3-4), 251-264.
798	
799	Licciardi, J., Denoncourt, C., Finkel, R., 2008. Cosmogenic «Cl production rates from Ca spallation in Iceland.
800	Earth and Planetary Science Letters 267 (1-2), 365-377.
801	

Kober, F., Ivy-Ochs, S., Leya, I., Baur, H., Magna, T., Wieler, R., Kubik, P. W., 2005. In situ cosmogenic "Be

803	and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth
804	and Planetary Science Letters 239, 140-161.
805	
806	Margerison, H. R., Phillips, W. M., Stuart, F. M., Sugden, D. E., 2005. Cosmogenic 'He concentrations in ancient
807	flood deposits from the Coombs Hills, northern Dry Valleys, East Antarctica: interpreting exposure ages and
808	erosion rates. Earth and Planetary Science Letters 230, 163-175.
809	
810	Masarik, J., 2002. Numerical simulation of in-situ production of cosmogenic nuclides. Geochimica et
811	Cosmochimica Acta 66 (S1), Goldschmidt Conference Abstract A491.
812	
813	Masarik, J., Reedy, R. C., 1996. Monte Carlo simulation of in-situ-produced cosmogenic nuclides. Radiocarbon
814	38, 163-164.
815	
816	Niedermann, S., 2002. Cosmic-ray-produced noble gases in terrestrial rocks: Dating tools for surface processes.
817	Reviews in Mineralogy and Geochemistry 47, 731-784.

Lifton, N., Bieber, J., Clem, J., Duldig, M., Evenson, P., Humble, J., Pyle, R., 2005. Addressing solar modulation

818

802

819 Niedermann, S., Goethals, M. M., Pilz, P., 2009. Evidence for a high ³He or low ^aBe production rate from

820 cosmogenic nuclide cross-calibration. Geochimica et Cosmochimica Acta 73 (13, Suppl. 1), Goldschmidt

821 Conference Abstract A940.

822

Niedermann, S., Schaefer, J. M., Wieler, R., Naumann, R., 2007. The production rate of cosmogenic 38Ar from
calcium in terrestrial pyroxene. Earth and Planetary Science Letter 257, 596–608.

825

826 Nonnotte, P., Guillou, H., Gall, B. L., Benoit, M., Cotten, J., Scaillet, S., 2008. New K-Ar age determinations of

827 Kilimanjaro volcano in the North Tanzanian diverging rift, East Africa. Journal of Volcanology and Geothermal

828 Research 173 (1-2), 99-112.

829

830 Oberholzer, P., Baronik, C., Salvatore, M.C., Baur, H., Wieler, R., 2008. Dating late-Cenozoic erosional surfaces

831 in Victoria Land, Antarctica, with cosmogenic neon in pyroxene. Antarctic Science 20, 89-98.

833	Phillips, F. M., Plummer, M. A., 1996. CHLOE: A program for interpreting in-situ cosmogenic nuclide data for
834	surface exposure dating and erosion studies. Abstracts of the 7th international conference on Accelerator Mass
835	Spectrometry, 98-99.
836	
837	Poreda, R. J., Cerling, T. E., 1992. Cosmogenic neon in recent lavas from the western United States. Geophysical
838	Research Letters 19, 1863-1866.
839	
840	Schäfer, J. M., Ivy-Ochs, S., Wieler, R., Leya, I., Baur, H., Denton, G. H., Schlüchter, C., 1999. Cosmogenic
841	noble gas studies in the oldest landscape on earth: surface exposure ages of the Dry Valleys, Antarctica. Earth
842	and Planetary Science Letters 167 (3-4), 215-226.
843	
844	Schimmelpfennig, I., Benedetti, L., Finkel, R., Pik, R., Blard, P. H., Bourlès, D., Burnard, P., Williams, A., 2009.
845	Sources of in-situ *Cl in basaltic rocks. Implications for calibration of production rates. Quaternary
846	Geochronology 4, 441-461.
847	
848	Schimmelpfennig, I., Benedetti, L., Garreta, V., Pik, R., Blard, P. H., Burnard, P., Bourlès, D., Finkel, R.,
849	Ammon, K., Dunai, T., 2011. Calibration of cosmogenic *Cl production rates from Ca and K spallation in lava
850	flows from Mt. Etna (38°N, Italy) and Payun Matru (36°S, Argentina). Geochimica et Cosmochimica Acta 75,
851	2611-2632.
852	
853	Shanahan, T. M., Zreda, M., 2000. Chronology of Quaternary glaciations in East Africa. Earth and Planetary
854	Science Letters 177 (1-2), 23-42.
855	
856	Sharma, P., Kubik, P. W., Fehn, U., Gove, H. E., Nishiizumi, K., Elmore, D., 1990. Development of «Cl
857	standards for AMS. Nuclear Instruments and Methods in Physics Research Section B 52, 410-415.
858	
859	Staudacher, T., Allègre, C.J., 1993. The cosmic ray produced 'He/"Ne ratio in ultramafic rocks. Geophysical
860	Research Letters, 20, 1075-1078.
861	

862 Stone, J. O., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105 (B10),
863 23753-23759.

- 865 Stone, J. O., Allan, G. L., Fifield, L. K., Cresswell, R. G., 1996. Cosmogenic ^aCl from calcium spallation.
- 866 Geochimica et Cosmochimica Acta 60 (4), 679-692.
- 867
- 868 Vermeesch, P., Baur, H., Heber, V. S., Kober, F., Oberholzer, P., Schaefer, J. M., Schlüchter, C., Strasky, S.,
- 869 Wieler, R., 2009. Cosmogenic ³He and ^aNe measured in quartz targets after one year of exposure in the Swiss
- 870 Alps. Earth and Planetary Science Letters 284 (3-4), 417-425.
- 871
- 872
- 873

874 <u>Table captions:</u>

875

876

877 negative muon induced reactions calculated according to Stone (2000), sample thickness and thickness
878 correction factors for spallation reactions.
879

Table 1: Sample details. Geographic sample locations, scaling factors for neutron induced and slow

880 Table 2: Element concentrations in minerals. a) Concentrations of target elements for "Cl production in

881 pretreated pyroxene separates (px) and one plagioclase separate (plg) before *Cl extraction, determined by

882 ICP-OES at the SARM (CRPG, France). "< D.L." = "below detection limit". b) Concentrations of U, Th

and Li in chemically untreated pyroxene (px) and olivine (ol) separates, determined by ICP-MS (U, Th)

and atomic absorption (Li) at SARM. c) Concentrations of target elements for "Ne production in

885 chemically untreated pyroxene and olivine separates determined by electron microprobe at the Université

886 Henri Poincaré on 6-8 grains (mean values and their standard deviations). Calculated elemental

887 production rates for "Ne according to Masarik (2002) are also shown.

888

889 Table 3: Cosmogenic components of the measured *Cl, 'He and *Ne concentrations and their ratios, with

890 mean values and standard deviations, in a) pyroxene and b) olivine separates. Note that the «Cl

891 concentrations of samples TZ10 and TZ12 are mean values of the two replicates of each (Table A1) with

892 the corresponding standard deviations.

893

894 Table 4: Apparent exposure ages calculated using the cosmogenic *Cl, 'He and "Ne concentrations in

895 pyroxene (Table 3) and the SLHL production rates detailed in the footnotes. *Cl exposure ages were

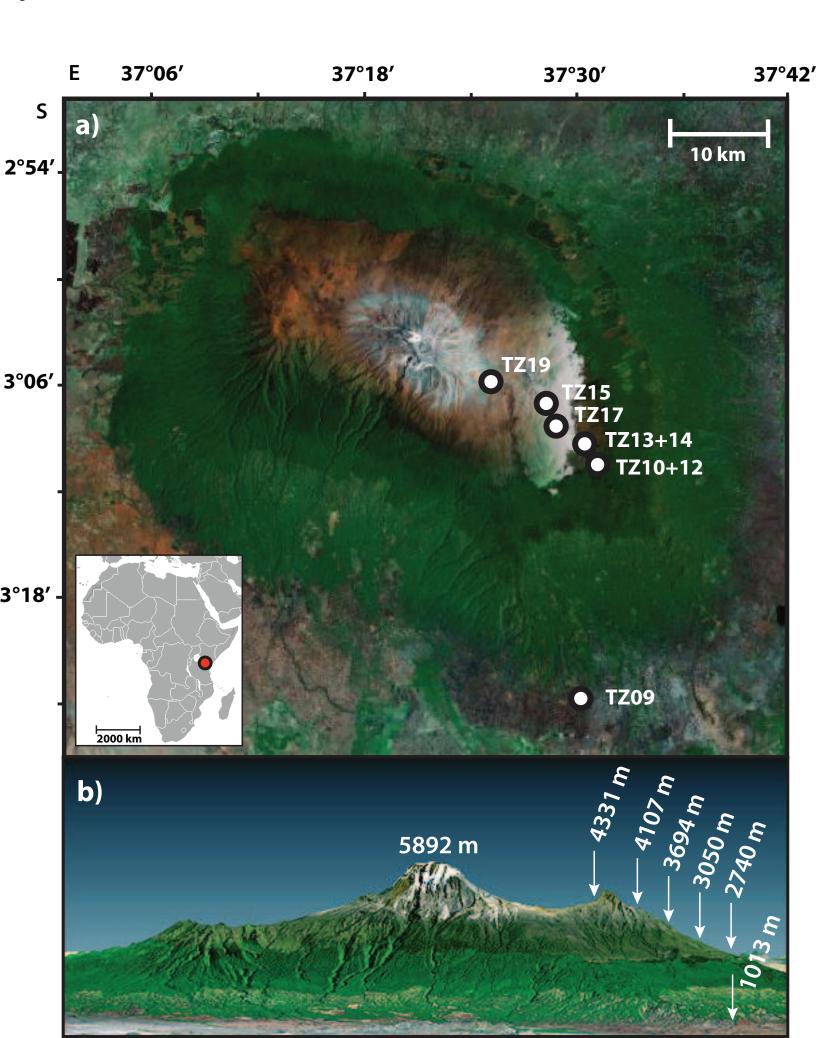
896 calculated with the *Cl calculation spreadsheet (Schimmelpfennig et al., 2009). Note that the *Cl exposure

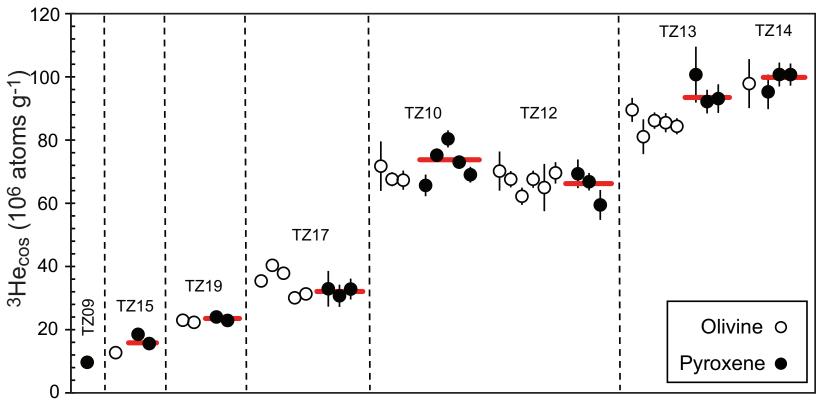
ages for samples TZ10 and TZ12 are mean values of the exposure ages of the two replicates of each with

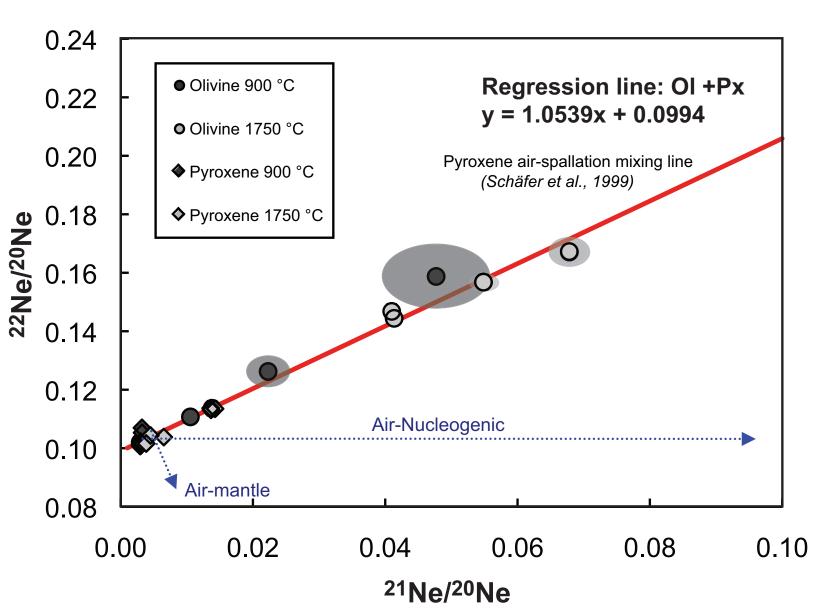
898 the corresponding standard deviations. The uncertainties (1σ) of the exposure ages do not include the

899 uncertainties in the SLHL production rates, but those in the cosmogenic nuclide concentrations and for

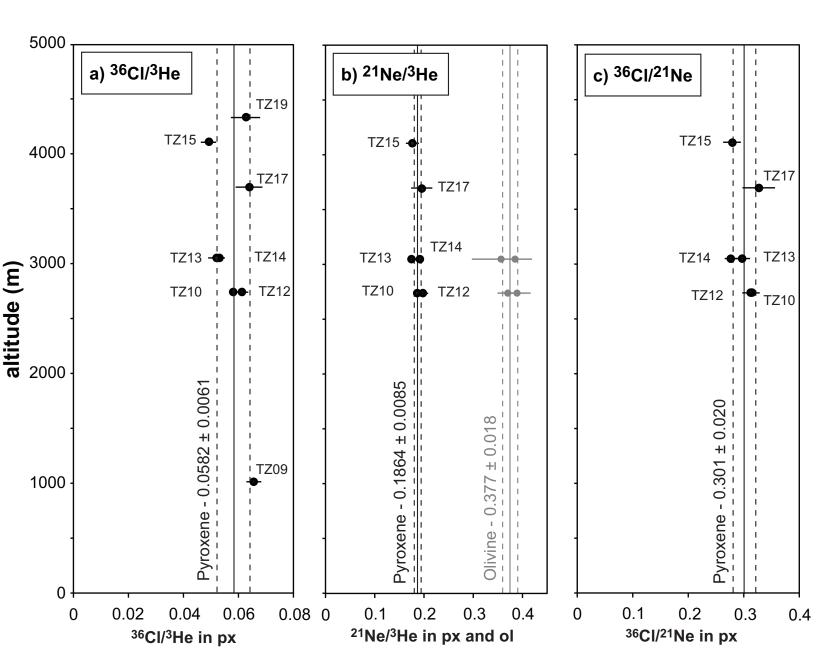
900 *Cl those in the contributions of the production reactions other than spallation.

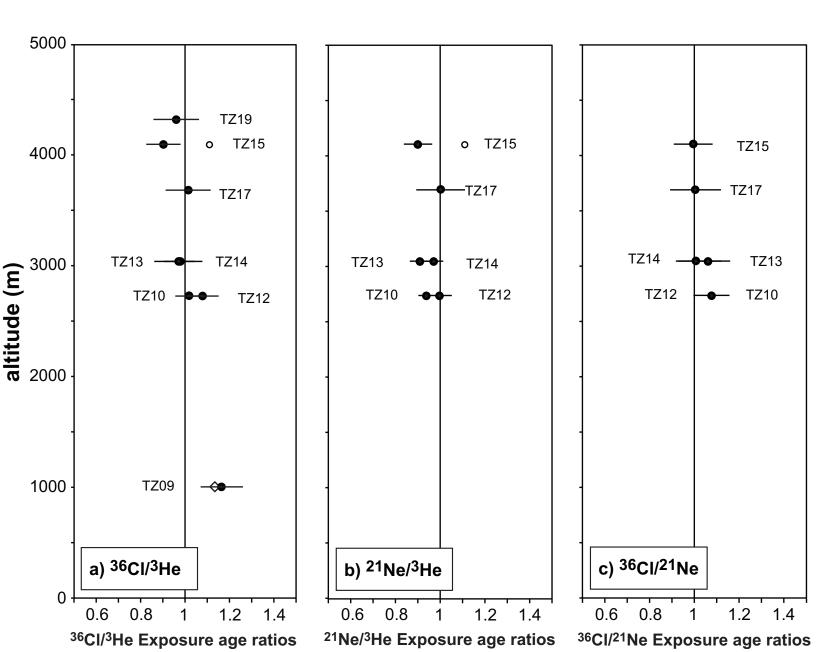

901


902 Figure captions


903

904	Fig. 1: Sample location. a) Google Maps satellite image of Mt. Kilimanjaro, Tanzania. b) Side face (NW-
905	SE) of Mt. Kilimanjaro (Image PIA03355, Courtesy NASA/JPL-Caltech), showing its peaks Shira, Kibo
906	and Mawenzi as well as the sample locations and altitudes. Topography is vertically exaggerated two
907	times.
908	
909	Fig. 2: Cosmogenic 'He concentrations in olivine and pyroxene phenocrysts. The red lines represent the
910	mean values of the concentrations in pyroxene. For sample TZ09 ³ He was only measured in pyroxene.
911	
912	Fig. 3: Neon three-isotope diagram showing data from olivines and pyroxenes at two temperature steps.
913	The regression line defines a spallation line, which passes through the air component and is
914	indistinguishable from the air-spallation mixing line of Schäfer et al. (1999).
915	
916	Fig. 4: TCN ratios, calculated from the total cosmogenic ³ He, ^a Ne and ^a Cl concentrations, as a function of
917	altitude. Black circles correspond to the ratios in pyroxene, gray circles to those in olivine. The continuous
918	and dashed lines indicate the means of the ratios and their standard deviations, respectively, with values
919	given to the left.
919 920	given to the left.
	given to the left. Fig. 5: Exposure age ratios calculated from cosmogenic ^{se} Cl, ^s He and ^{se} Ne concentrations in pyroxene.
920	
920 921	Fig. 5: Exposure age ratios calculated from cosmogenic "Cl, "He and "Ne concentrations in pyroxene.
920 921 922	Fig. 5: Exposure age ratios calculated from cosmogenic ³⁴ Cl, ³ He and ³⁴ Ne concentrations in pyroxene. Production rates used are: 48.8 atoms (g Ca) ⁴ a ⁴ for ³⁴ Cl (Stone et al., 1996), 128 atoms (g mineral) ⁴ a ⁴ for
920921922923	Fig. 5: Exposure age ratios calculated from cosmogenic ³⁴ Cl, ³ He and ³⁴ Ne concentrations in pyroxene. Production rates used are: 48.8 atoms (g Ca) ⁴ a ⁴ for ³⁴ Cl (Stone et al., 1996), 128 atoms (g mineral) ⁴ a ⁴ for ³ He (Blard et al., 2006) and 25 atoms (g mineral) ⁴ a ⁴ for ³⁴ Ne (Fenton et al., 2009). Standard deviations of
920921922923924	Fig. 5: Exposure age ratios calculated from cosmogenic ^{se} Cl, ³ He and ^a Ne concentrations in pyroxene. Production rates used are: 48.8 atoms (g Ca) ⁴ a ⁴ for ^{se} Cl (Stone et al., 1996), 128 atoms (g mineral) ⁴ a ⁴ for ³ He (Blard et al., 2006) and 25 atoms (g mineral) ⁴ a ⁴ for ^a Ne (Fenton et al., 2009). Standard deviations of these production rates are not propagated in the ratio uncertainties (see Table 4). The black circles at the
 920 921 922 923 924 925 	Fig. 5: Exposure age ratios calculated from cosmogenic "Cl, "He and "Ne concentrations in pyroxene. Production rates used are: 48.8 atoms (g Ca)" a" for "Cl (Stone et al., 1996), 128 atoms (g mineral)" a" for "He (Blard et al., 2006) and 25 atoms (g mineral)" a" for "Ne (Fenton et al., 2009). Standard deviations of these production rates are not propagated in the ratio uncertainties (see Table 4). The black circles at the altitude of sample TZ15 in panels a) and b) represent the age ratios when assuming the highest possible
 920 921 922 923 924 925 926 	Fig. 5: Exposure age ratios calculated from cosmogenic *Cl, 'He and *Ne concentrations in pyroxene. Production rates used are: 48.8 atoms (g Ca)' a' for *Cl (Stone et al., 1996), 128 atoms (g mineral)' a' for 'He (Blard et al., 2006) and 25 atoms (g mineral)' a' for "Ne (Fenton et al., 2009). Standard deviations of these production rates are not propagated in the ratio uncertainties (see Table 4). The black circles at the altitude of sample TZ15 in panels a) and b) represent the age ratios when assuming the highest possible correction for radiogenic 'He*, while the open circles mark the ratios if no such correction is done (see text
 920 921 922 923 924 925 926 927 	Fig. 5: Exposure age ratios calculated from cosmogenic «Cl, [.] He and "Ne concentrations in pyroxene. Production rates used are: 48.8 atoms (g Ca) [.] a [.] for «Cl (Stone et al., 1996), 128 atoms (g mineral) [.] a [.] for [.] He (Blard et al., 2006) and 25 atoms (g mineral) [.] a [.] for "Ne (Fenton et al., 2009). Standard deviations of these production rates are not propagated in the ratio uncertainties (see Table 4). The black circles at the altitude of sample TZ15 in panels a) and b) represent the age ratios when assuming the highest possible correction for radiogenic He*, while the open circles mark the ratios if no such correction is done (see text for details). The black circle at the altitude of TZ09 in panel a) represents the age ratio ignoring erosion,
 920 921 922 923 924 925 926 927 928 	Fig. 5: Exposure age ratios calculated from cosmogenic «Cl, [.] He and "Ne concentrations in pyroxene. Production rates used are: 48.8 atoms (g Ca) [.] a [.] for «Cl (Stone et al., 1996), 128 atoms (g mineral) [.] a [.] for [.] He (Blard et al., 2006) and 25 atoms (g mineral) [.] a [.] for "Ne (Fenton et al., 2009). Standard deviations of these production rates are not propagated in the ratio uncertainties (see Table 4). The black circles at the altitude of sample TZ15 in panels a) and b) represent the age ratios when assuming the highest possible correction for radiogenic He*, while the open circles mark the ratios if no such correction is done (see text for details). The black circle at the altitude of TZ09 in panel a) represents the age ratio ignoring erosion,
 920 921 922 923 924 925 926 927 928 929 	Fig. 5: Exposure age ratios calculated from cosmogenic «Cl, He and «Ne concentrations in pyroxene. Production rates used are: 48.8 atoms (g Ca)· a· for «Cl (Stone et al., 1996), 128 atoms (g mineral)· a· for ¹ He (Blard et al., 2006) and 25 atoms (g mineral)· a· for «Ne (Fenton et al., 2009). Standard deviations of these production rates are not propagated in the ratio uncertainties (see Table 4). The black circles at the altitude of sample TZ15 in panels a) and b) represent the age ratios when assuming the highest possible correction for radiogenic He*, while the open circles mark the ratios if no such correction is done (see text for details). The black circle at the altitude of TZ09 in panel a) represents the age ratio ignoring erosion, while the open diamond represents the ratio if erosion is taken into account (see text for details).
 920 921 922 923 924 925 926 927 928 929 930 	Fig. 5: Exposure age ratios calculated from cosmogenic «Cl, He and «Ne concentrations in pyroxene. Production rates used are: 48.8 atoms (g Ca) ⁴ a ⁴ for «Cl (Stone et al., 1996), 128 atoms (g mineral) ⁴ a ⁴ for ⁴ He (Blard et al., 2006) and 25 atoms (g mineral) ⁴ a ⁴ for «Ne (Fenton et al., 2009). Standard deviations of these production rates are not propagated in the ratio uncertainties (see Table 4). The black circles at the altitude of sample TZ15 in panels a) and b) represent the age ratios when assuming the highest possible correction for radiogenic ⁴ He [*] , while the open circles mark the ratios if no such correction is done (see text for details). The black circle at the altitude of TZ09 in panel a) represents the age ratio ignoring erosion, while the open diamond represents the ratio if erosion is taken into account (see text for details).


- 933 (Amidon et al., 2008) is indicated in gray. Note that here "Be/³He concentration ratios are compared to
- 934 **•Cl/He exposure age ratios.**



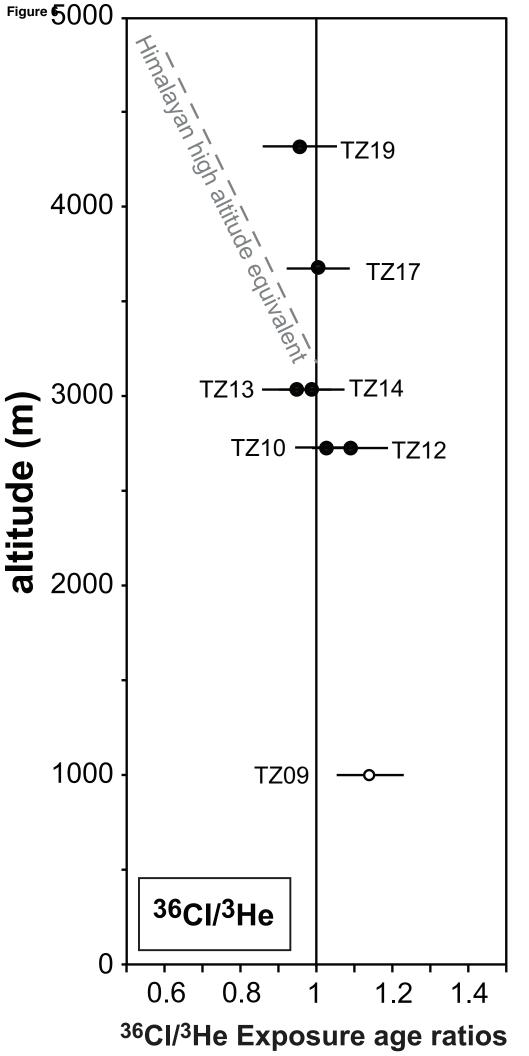


Table 1

Sample	latitude	longitude	altitude	scaling	scaling	thickness	thickness
•	South	East	[m]	neutrons	muons	[cm]	correction
TZ09	03° 23′.740	37° 30′.248	1013	1.27	0.95	5.3	0.957
TZ10	03° 10′.490	37° 31′.180	2740	3.94	1.95	5.8	0.953
TZ12	03° 10′.490	37° 31′.180	2740	3.94	1.95	5.7	0.953
TZ13	03° 09′.319	37° 30′.411	3050	4.69	2.19	4.5	0.963
TZ14	03° 09′.319	37° 30′.411	3050	4.69	2.19	5.1	0.958
TZ17	03° 08′.308	37° 28′.791	3694	6.56	2.75	6.8	0.945
TZ15	03° 07′.020	37° 28′.234	4107	8.02	3.16	4.2	0.965
TZ19	03° 05′.791	37° 25′.240	4331	8.90	3.39	7.2	0.942

Тa	ble 2						b) =	1		-	
d)"	ble 2 Sample	Ca	K	Ti	Fe		b) Sam	-	U	Th	Li
		[%]	[%]	[%]	[%]				pm]	[ppm]	[ppm]
	TZ09-px	13.87±0.28	< D.L.	0.88 ± 0.04	5.71±0.1	1	TZ09	9-рх 0	.039	0.156	3.2
	TZ10A-px	15.71±0.31	< D.L.	1.37±0.07	4.66 ± 0.0)9	TZ12	2-рх 0	.079	0.443	2.9
	TZ10B-px	15.69±0.31	< D.L.	1.38±0.07	4.68 ± 0.0)9	TZ14	1-px 0	.113	0.455	2.3
	TZ12A-px	15.56±0.31	< D.L.	1.37 ± 0.07	4.65 ± 0.0)9	TZ17	7-рх 0	.100	0.460	-
	TZ12B-px	15.48±0.31	< D.L.	1.33 ± 0.07	4.77 ± 0.1	0	TZ15	5-рх 0	.086	0.282	4.5
	TZ13-px	15.19±0.30	< D.L.	1.16±0.06	4.64 ± 0.0)9	TZ19	9-рх 0	.123	0.546	7.0
	TZ14-px	15.14±0.30	< D.L.	1.11 ± 0.05	4.58 ± 0.0)9	TZ12	2-ol 0	.042	0.059	-
	TZ17-px	15.22±0.31	0.04 ± 0.01	1.16±0.06	4.57 ± 0.0)9	TZ14	1-ol 0	.038	0.062	2.4
	TZ15-px	13.06±0.26	< D.L.	0.98 ± 0.05	7.61±0.1	5	TZ17	7-ol 0	.068	0.030	2.0
	TZ19-px	15.44±0.31	< D.L.	1.49±0.07	5.32 ± 0.1	0	TZ15	5-ol 0	.086	0.165	6.8
	TZ15-plg	7.46±0.15	0.50 ± 0.02	0.10 ± 0.01	0.45 ± 0.0	01	TZ19	9-ol 0	.035	0.038	2.4
c)	Sample	Mg	Al	Si	Ca		Fe	Na	_		
		[%]	[%]	[%]	[%]		[%]	[%]			
	TZ10/12-px	8.06±0.43	3.70±0.30	22.24±0.52	16.23±0.22	4.6	60±0.40	0.55±0.04	1		
	TZ13/14-px	8.85±0.58	3.03±0.50	23.23±0.62	15.73±0.34	4.2	20±0.48	0.56±0.02	2		
	TZ17-px	10.04±0.24	1.97±0.26	24.32±0.25	15.34±0.21	3.3	3±0.13	0.51±0.03	3		
	TZ15-px	9.17±0.68	1.65±0.24	23.92±0.46	14.45±0.54	7.0)3±1.47	0.35±0.03	3		
	TZ10/12-ol	26.13±0.64	0.01±0.03	18.76±0.24	0.39±0.30	12.	96±1.03	0.02±0.03	3		
	TZ13/14-ol	25.79±0.73	0.01±0.03	18.64±0.17	0.26±0.14	13.4	46±1.06	0.02±0.02	2		
	elemental								_		
	prod. rates	^a 175.1	62.4	41.7	1.8		0.2	102.0	_		
	a lotomo 21No	(a clomont)-1 a	11								

^a [atoms ²¹Ne (g element)⁻¹ a⁻¹]

Table 3 a) Pyroxene

Sample	[³⁶ Cl] (px)	[³ He] _{cos} (px)	[²¹ Ne] _{cos} (px)	[³⁶ Cl]/[³ He] (px)	[²¹ Ne]/[³ He] (px)	[³⁶ Cl]/[²¹ Ne] (px)
	[10 ⁶ atoms g ⁻¹]	[10 ⁶ atoms g ⁻¹]	[10 ⁶ atoms g ⁻¹]			
TZ09	0.631±0.017	9.60±0.29		0.0658±0.0027		
TZ10	4.246 ± 0.065	73.8±1.1	13.52±0.44	0.0576 ± 0.0012	0.1834± 0.0066	0.314±0.011
TZ12	4.029 ± 0.074	66.2±2.1	12.91±0.60	0.0608 ± 0.0022	0.195 ± 0.011	0.312±0.016
TZ13	4.94 ± 0.12	93.5±2.7	16.62±0.67	0.0529 ± 0.0020	0.1780 ± 0.0089	0.297±0.014
TZ14	5.25 ± 0.10	99.8±2.3	18.96±0.69	0.0526± 0.0016	0.1899±0.0082	0.277±0.011
TZ17	2.059 ± 0.059	32.1±2.2ª	6.30±0.53	0.0642 ± 0.0048	0.196±0.021	0.327±0.029
TZ15	0.781 ± 0.021	15.84 ± 0.78	2.79±0.14	0.0493 ± 0.0028	0.176±0.012	0.279±0.016
TZ19	1.47 ± 0.10	23.5 ± 1.1ª		0.0626 ± 0.0052		
mean ±	st.dev			0.0582 ± 0.0061	0.1864 ± 0.0085	0.301 ± 0.020

b) Olivine

Sample	[³ He] _{cos} (ol) [10 ⁶ atoms g ⁻¹]	$[^{21}Ne]_{cos}$ (ol) [10 ⁶ atoms g ⁻¹]	[²¹ Ne]/[³ He] (ol)	
TZ10	67.7±1.8	26.8±1.4	0.396±0.023	
TZ12	66.9±1.4	24.8± 1.2	0.371±0.019	
TZ13	85.7±1.4	32.8± 1.4	0.383±0.017	
TZ14	97.9±7.7	34.9± 2.2	0.357±0.061	
TZ17	34.88 ± 0.54			
TZ15	13.13 ± 0.59			
TZ19	22.84 ± 0.52			
mean ± st.dev			0.377 ± 0.018	

^a Magmatic ³He/⁴He values were determined applying the isochron method by Blard and Pik (2008)

Table 4

Sample	³⁶ Cl (px) ^a	³ He (px) ^b	²¹ Ne (px) ^c
	[ka]	[ka]	[ka]
TZ09	71.7±5.4	61.7± <mark>1.9</mark>	
TZ10	156.1± <mark>9.1</mark>	154± <mark>2.3</mark>	144.3± <mark>4.7</mark>
TZ12	148.7± <mark>8.7</mark>	137.9± 4.4	137.6± <mark>6.4</mark>
TZ13	157±13	161.9± <mark>4.7</mark>	147.5± <mark>5.9</mark>
TZ14	171±14	173.7± <mark>4.0</mark>	168.9± <mark>6.1</mark>
TZ17	40.9 ± 3.0	40.4± <mark>2.8</mark>	40.6± <mark>3.4</mark>
TZ15	14.4 ± 1.0	15.98±0.78	14.43± <mark>0.72</mark>
TZ19	21.1±2.0	21.90±1.0	

^a ³⁶Cl SLHL production for spallation of Ca 48.8±1.7 atoms ³⁶Cl (g Ca)⁻¹ a⁻¹ according to Stone et al. (1996)
^b ³He SLHL production for pyroxene 128±5 atoms ³He (g px)⁻¹ a⁻¹ according to Blard et al. (2006)
^c ²¹Ne SLHL production for pyroxene 25±8 atoms ²¹Ne (g px)⁻¹ a⁻¹ according to Fenton et al. (2009)

Supplementary Data Click here to download Supplementary Data: Supplementary_Material.pdf