
HAL Id: hal-01614455
https://hal.science/hal-01614455v1

Submitted on 27 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A MILP approach for robust transfer line design
Aleksandr Pirogov, Evgeny Gurevsky, André Rossi, Alexandre Dolgui

To cite this version:
Aleksandr Pirogov, Evgeny Gurevsky, André Rossi, Alexandre Dolgui. A MILP approach for robust
transfer line design. 7th International Conference on Industrial Engineering and Systems Management
(IESM 2017), Oct 2017, Saarbrücken, Germany. �hal-01614455�

https://hal.science/hal-01614455v1
https://hal.archives-ouvertes.fr

A MILP approach for robust transfer line design
(presented at the 7th IESM Conference, October 11–13, 2017, Saarbrücken, Germany)

Aleksandr Pirogov∗, Evgeny Gurevsky†, André Rossi‡ and Alexandre Dolgui∗
∗ LS2N, IMT Atlantique, Nantes, France
† LS2N, Université de Nantes, France
‡ LERIA, Université d’Angers, France

Abstract—We address the design stage of transfer lines subject
to precedence constraints, fixed cycle time, limited number of
machines and uncertain tasks. The objective is to build the line
configuration, so as to maximize its robustness, i.e., its ability
to withstand task time variability. To do this, we formulate
a mixed-integer linear program (MILP), where the concept of
stability radius is used as robustness measure and calculated in
two classic metrics, l1 and l∞. To handle these two MILP models,
the commercial solver CPLEX 12.6.2 is used. The corresponding
computational results are reported and discussed at the end of
this paper.

Keywords—transfer lines, robust optimization, stability radius

I. INTRODUCTION

Transfer lines are automated flow-oriented manufacturing
systems, dedicated to yield a large quantity of product and
usually designed for a period of 7-10 years (7 days a week
and 24 hours a day) of functioning. The machines of such a
line are organized in a linear manner, connected by a conveyor
belt without intermediate buffers. Each of them is equipped
by one or several blocks, where production tasks are executed
in parallel using multi-spindle heads. We consider the lines
where the blocks of any machine are activated sequentially in a
predefined order, one by one without significant interruptions.
As concerns production parts, they start their execution, in
a raw state, on the first machine and pass through all of
them in the order of their location so as to be turned into a
finished state. The machines work simultaneously, performing
their own and same set of tasks on successive parts. The
machine completes its execution on the current part when
all its blocks have been activated and have accomplished
their operation. Since the considered lines are paced, all parts
situated on the conveyor belt are transferred simultaneously
to the next corresponding machines, when the functioning
of these latter are completed. The time period between two
successive transfers is called the cycle time, which is equal to
the working time of the most loaded machine and determines,
among others, the moment for one outgoing and new one
incoming parts.

As regards the production tasks, they can not be executed
in an arbitrary manner, but subject to precedence constraints,
usually described by a directed acyclic graph, where the set of
vertexes (resp. arcs) represents the set of tasks (resp. a partial
order of tasks execution). Thus, for example, the arc (i, j)
means that the task j can not be performed before the task i,
but i and j can be executed simultaneously inside a block.

The design of such a line can be usually viewed as an
optimization problem, which, with respect to a given produc-
tion goal and subject to known industrial constraints, consists

in assigning all production tasks to blocks and allocate these
latter to machines, determining inside them the order of blocks
activation. The first works, appeared in international refereed
journals and dealing with the representation of the design stage
for transfer lines as optimization problem, were published by
Dolgui et al. in [4]–[6], where the authors consider a cost-
oriented objective function aiming to minimize a weighted sum
of the numbers of used machines and blocks, respectively.
These pioneer journal articles have finally motivated many
other studies on this problem, among which we can cite the
works of Battaı̈a et al. on reductions approaches in [2], [3],
Guschinskaya et al. on meta-heuristic methods in [8], [9], and
Dolgui and Ihnatsenka on a branch-and-bound algorithm in
[7].

For all mentioned above papers, the task processing time
was considered to be deterministic and the number of available
machines was supposed to be unlimited, but in reality this is
not necessarily truthful. Thus, for example, production space
restrictions often impose the limits on the number of used ma-
chines. As for task processing times, they can be modified from
their nominal values because of numerous delays and micro-
stoppages during manufacturing or because of the changes of
product specification required by customer. In this work, we
show how to integrate these two important industrial aspects
into the design stage of transfer lines through an original robust
approach, which has a significant advantage for its application
with respect to classic stochastic [1] or fuzzy [10] methods,
consisting in the fact that there is no need to possess reliable
historical data on the variability of task processing times.
Namely, we model our purpose as optimization problem within
the framework of mixed-integer linear programming (MILP),
seeking a transfer line configuration with fixed number of
machines, which is able to support, without violating its
admissibility, the greatest amplitude of task time variability.
The numerical value of this amplitude is customary called in
the literature as the stability radius and usually calculated for
two classic metrics, l1 and l∞. As in our previous paper [11],
dealing with assembly lines, in this article, we continue to
demonstrate that the stability radius can be also used as a
useful and veritable measure of solution robustness, contrary
to the popular works on scheduling problems with uncertain
jobs, published in [12], where it was studied as an indicator
of sensitivity for already known optimal solutions.

The rest of the paper is organized as follows. Section II
describes the main notations of the studied optimization prob-
lem and formalizes the notion of stability radius. Section III
introduces the necessary decision variables and presents a
MILP model for each metric of stability radius computing.
Computational results, provided by the commercial solver

CPLEX 12.6.2, are given in Section IV. Conclusion and
perspectives are delivered in Section V.

II. PROBLEM STATEMENT

Below, we introduce some useful notations, which are nec-
essary to the further formalization of the studied optimization
problem.

• V = {1, 2, . . . , n} is the set of necessary tasks;

• Ṽ ⊆ V is the set of all uncertain tasks, whose pro-
cessing time can be modified during manufacturing;

• W = {1, 2, . . . ,m} is the set of available machines;

• tj is the nominal processing time of the task j ∈ V ;

• ξj is a non-negative variation of the processing time

of the uncertain task j ∈ Ṽ ;

• ρ1 (resp. ρ∞) is the value of stability radius, computed
in the metric l1 (resp. l∞);

• T is the cycle time;

• rmax is the maximal number of tasks, which can be
assigned to block;

• bmax is the maximal number of blocks, which can be
allocated into one machine;

• G = (V,A) is a directed acyclic graph representing
the precedence constraints, where A is the set of arcs.

The value of bmax is not given a priori, but it can not

be greater than max
{
k

∣∣ ∑k
i=1 tπi

≤ T
}

, where πi is the

task index of the permutation of V with respect to the non-
decreasing order of their processing times. The latter expres-
sion corresponds to the case of tasks allocation to machine,
without violating the cycle time and requiring the greatest
number of blocks. In what follows, we will use this upper
bound as the value of bmax.

The knowledge of bmax permits us to simplify the repre-
sentation of line configuration as shown in Figure 1, where

• U = {1, 2, . . . ,mbmax} is the set of indices of all
potential blocks;

• U(p) = {(p − 1) · bmax + 1, . . . , p · bmax} is the set
of indices of all blocks potentially belonging to the
machine p, p ∈ W .

1 2 bmax (m− 1)bmax + 1 (m− 1)bmax + 2 mbmax

MachinesBlocks

Fig. 1: Enumeration of the set of blocks

Based on the introduced notations, the studied problem can
be formally viewed as the assignment of all tasks to blocks on
the pre-defined line configuration, shown in Figure 1, subject
to the cycle time and precedence constraints, which maximizes
the value of ρ1 (resp. ρ∞) and preserves the assignment
admissibility, whatever the total amplitude of uncertain tasks

variations
∑

j∈Ṽ
ξj (resp. max

j∈Ṽ
ξj) not exceeding ρ1 (resp.

ρ∞).

Let us consider an illustrative example, shown in Figure 2,
where an allocation of the set of tasks {1, 2, . . . , 6} is given.
For the presented example, the cycle time is equal to 8.5,
indicated by a vertical dotted line, there are no precedence
constraints and only one machine having two blocks is used.
The first block contains the tasks 1, 2 and 5, while the second
block is made of the tasks 2, 4 and 6. Each block is contoured
by a dashed line. The tasks are represented by rectangles,
whose length determines the corresponding processing time.
The uncertain tasks {1, 4, 5} are colored in gray. It is not
difficult to see that for any total variation ξ1 + ξ4 + ξ5 ≤ 2,
the allocation remains admissible, but a slightly greater value,
where, for example, ξ1 = 2 + δ, ξ4 = 0, ξ5 = 0, violates
its admissibility. This means that the stability radius in the l1-
metric equals 2. Regarding the l∞-metric, it is easy to see that
the considered allocation supports any variation ξ1, ξ4, and ξ5
not exceeding 1.5, however it is not especially true for little
bigger values, where, for example, ξ1 = 1.5+ δ, ξ4 = 1.5+ δ,
ξ5 = 0. The latter, following the definition of stability radius,
indicates that ρ∞ = 1.5.

00 1 2 3 4 5 6 7 8

1

2

5

6

4

3

Fig. 2: Example of tasks allocation

III. MILP FORMULATIONS

In this section, the MILP models for two metrics l1 and
l∞, noted respectively by P1 and P∞, are described.

P1 is formulated on the following decision variables:

• ρ1 ≥ 0 is the stability radius value to maximize;

• xj,k is a binary variable that is set to one if and only
if the task j is allocated to the block k;

• yk is equal to 1 if the block k is not empty and 0,
otherwise;

• τk ≥ 0 determines the time of the block k;

• ∆p ≥ 0 represents the minimal value of save time
among all the blocks allocated into the machine p;

• ap is a non-negative variable that is positive if the
machine p has at least one assigned uncertain task.

The notions of block time and block save time are ex-
plained in Figure 3, where the block save time corresponds to
the difference between block time and the longest processing
time among the uncertain tasks assigned to this block. Thus,
in Figure 3, the save time is equal to 1.5 for this first block
and 0 for the second one.

00 1 2 3 4 5 6 7 8

1.5

τ1 τ2

1

3

5

6

2

4

Fig. 3: Illustration of block time and block save time

An important result, simplifying the modeling of P1, can
be expressed by the following theorem.

Theorem 1. The stability radius ρ1 is calculated as follows

ρ1 = min
p∈W̃

⎛

⎝T −
∑

k∈U(p)

τk +∆p

⎞

⎠ , (1)

where W̃ is a set of machines having at least one uncertain
task.

P∞ is formulated on the variables xj,k, yk and τk with the
same sense as for P1 and the following additional ones:

• ρ∞ ≥ 0 is the stability radius value to maximize;

• ξj,k is the variation of the task j on the block k.

A. MILP formulation for P1

Objective function:

Maximize ρ1

Each task has to be allocated to exactly one block:
∑

k∈U

xj,k = 1, ∀j ∈ V (2)

No more than rmax tasks can be included to block :
∑

j∈V

xj,k ≤ rmax, ∀k ∈ U (3)

The block having at least one assigned task is considered as
not empty, otherwise empty:

xj,k ≤ yk, ∀k ∈ U, ∀j ∈ V (4)

yk ≤
∑

j∈V

xj,k, ∀k ∈ U (5)

Any block has to be empty, if the previous block on the same
machine is empty:

yk+1 ≤ yk, ∀p ∈ W, ∀k ∈ U(p) \ {pbmax} (6)

The block time is the maximal processing time over the tasks
allocated to this block:

tj · xj,k ≤ τk, ∀k ∈ U, ∀j ∈ V (7)

The definition of the minimal save time for each machine:

∆p ≤ T · (1− yk) + τk − tj · xj,k, (8)

∀p ∈ W, ∀k ∈ U(p), ∀j ∈ Ṽ

The load of any machine can not be greater than the cycle
time: ∑

k∈U(p)

τk ≤ T, ∀p ∈ W (9)

Precedence constraints:

|U|∑

q=k

xi,q ≤

|U|∑

q=k

xj,q, ∀(i, j) ∈ A, ∀k ∈ U \ {1} (10)

Constraint (11) sets ap according to its definition, and ap is
used in constraint (12) to compute ρ1 by Theorem 1:

xj,k ≤ ap, ∀p ∈ W, ∀k ∈ U(p), ∀j ∈ Ṽ (11)

ρ1 ≤ T · (2− ap)−
∑

k∈U(p)

τk +∆p, ∀p ∈ W (12)

To reduce the search space, it is possible to improve this
model using the so-called assignment intervals:

xj,k = 0, ∀j ∈ V, ∀k /∈ Q(j) (13)

where Q(j) = [lj , uj] is the interval of indexes of the blocks
able to accommodate the task j, j ∈ V . Here,

lj =

⌈
|P (j) ∪ {j}|

rmax

⌉
,

uj = mbmax + 1−

⌈
|S(j) ∪ {j}|

rmax

⌉
,

P (j) and S(j) are the sets of predecessors and successors of
the task j in the precedence graph, respectively.

B. MILP formulation for P∞

The main idea of the MILP formulation for P∞ is focused
on the fact that the processing time of all uncertain tasks can be
increased by ρ∞ without loosing the feasibility for the optimal
solution.

Constraints (2) – (6), (9) and (10) are the same for models
P∞ and P1. The difference is expressed by constraints (14) –
(17).

Objective function:

Maximize ρ∞

The block time is determined separately for blocks with
uncertain tasks and without them:

tj · xj,k + ξj,k ≤ τk, ∀k ∈ U, ∀j ∈ Ṽ (14)

tj · xj,k ≤ τk, ∀k ∈ U, ∀j ∈ V \ Ṽ (15)

Variation of any uncertain task can not exceed the cycle time
value, whatever its allocation:

ξj,k ≤ T · xj,k, ∀k ∈ U, ∀j ∈ Ṽ (16)

As mentioned above, the processing time of any uncertain task
can be increased by the value of ρ∞:

ρ∞ =
∑

k∈U

ξj,k, ∀j ∈ Ṽ (17)

IV. COMPUTATIONAL RESULTS

A set of 12 randomly generated benchmark instances has
been used to examine the MILP model of P1 and P∞, where
we distinguish 5 small and 7 medium size of them. Their
main parameters are given in Table I, whose columns comprise
the instance number #, its number of tasks n, number of
fixed machines m, the cycle time T and the order strength

of the precedence constraints, OS = 2|A|
n(n−1) , represented by

the graph G = (V,A) and expressed in percents.

TABLE I: Benchmark instances

n m T OS,%

Small size

1 8 4 25.5 75.00
2 11 6 10.5 58.18
3 9 5 9 83.33
4 11 4 67.5 60.00
5 7 4 9 52.38

Medium size

6 29 11 37.5 50.74
7 28 8 162 22.49
8 21 7 19.5 70.95
9 32 9 2100 83.47
10 25 8 19.5 71.67
11 30 11 37.5 44.83
12 35 10 60 59.90

The computational results were carried out on a Mac-
Book Pro having Intel Core i5 2.7 GHz and 8 GB RAM.
The commercial solver CPLEX 12.6.2 was used through the
Concert Technology C++ modeling layer for addressing the
MILP models.

For each benchmark instance, six tests were generated by
varying the number of uncertain tasks |Ṽ | ∈ {⌈n

4 ⌉, ⌈
n
2 ⌉} and

the maximal number of tasks per block rmax ∈ {1, 2, 3}. The
results for each series are reported respectively in Tables II–
VII, where for each metric, three columns indicate respectively
the lower and upper bounds on the optimal value of stability
radius, provided by CPLEX, as well as the corresponding CPU
time (sec.), which is less than 600 sec., if an optimal solution
was found before reaching this test time limit. In the case,
where CPLEX was not able to find either lower or upper
bound, the abbreviation “n/a” is put in the corresponding cell
of the Table.

Analyzing the obtained results, we can remark that an opti-
mal solution was found for all series of small size benchmark
instances for P1 and P∞ within the limits of 2.51 sec. As
concerns the medium size benchmark instances, the situation
is different. Thus, for P1, an optimal solution was found
only for the 8th instance of each series, except the last one.
For P∞, we can note some improvements, but the necessary
time for finding optimal solutions remains quite high. Another
interesting observation is the greater the rmax value, the easier
P∞ to solve. The summary of found feasible and optimal
solutions is given in Table VIII.

V. CONCLUSION

This paper deals with finding a transfer line configuration
having the greatest stability radius subject to various industrial

TABLE II: |Ṽ | = ⌈n
4 ⌉ and rmax = 1

LB1 UB1 CPU LB∞ UB∞ CPU

1 4.5 4.5 0.02 4.5 4.5 0.04
2 1.5 1.5 0.29 1.5 1.5 0.31
3 1 1 0.03 1 1 0.03
4 41.5 41.5 1.07 21.5 21.5 1.04
5 0 0 0.03 0 0 0.01

6 1.5 74.6 600 6.75 12.5 600
7 40 409.9 600 33 55 600
8 6.5 6.5 175.7 4.25 4.25 321.57
9 148 4091.6 600 400 700 600
10 4.5 13 600 3.25 6.5 600
11 2.5 87.9 600 5.75 18.5 600
12 n/a n/a 600 n/a n/a 600

TABLE III: |Ṽ | = ⌈n
4 ⌉ and rmax = 2

LB1 UB1 CPU LB∞ UB∞ CPU

1 13.5 13.5 0.09 13.5 13.5 0.02
2 4.5 4.5 1.24 4.5 4.5 0.13
3 3 3 0.05 3 3 0.04
4 55.5 55.5 1.61 55.5 55.5 0.3
5 4 4 0.06 4 4 0.01

6 12.5 74.6 600 12.5 12.5 55.99
7 55 444.8 600 55 92 600
8 10.5 10.5 243.97 10.5 10.5 10.01
9 454 4200 600 700 700 315.56
10 6.5 13 600 6.5 6.5 7.84
11 8.5 102.3 600 18.5 18.5 34.65
12 n/a n/a 600 3 60 600

TABLE IV: |Ṽ | = ⌈n
4 ⌉ and rmax = 3

LB1 UB1 CPU LB∞ UB∞ CPU

1 13.5 13.5 0.11 13.5 13.5 0.02
2 4.5 4.5 0.66 4.5 4.5 0.14
3 3 3 0.06 3 3 0.03
4 55.5 55.5 1.75 55.5 55.5 0.2
5 4 4 0.1 4 4 0.02

6 12.5 75 600 12.5 12.5 43.45
7 55 324 600 55 92 600
8 10.5 10.5 213.28 10.5 10.5 2.67
9 454 5719.1 600 700 700 98.87
10 6.5 37.3 600 6.5 6.5 10.42
11 14.5 75 600 18.5 18.5 14.62
12 n/a n/a 600 1 174.4 600

TABLE V: |Ṽ | = ⌈n
2 ⌉ and rmax = 1

LB1 UB1 CPU LB∞ UB∞ CPU

1 4.5 4.5 0.02 2.25 2.25 0.02
2 1.5 1.5 0.37 1.25 1.25 0.57
3 1 1 0.03 0.5 0.5 0.03
4 23.5 23.5 1.11 12.75 12.75 2.01
5 0 0 0.04 0 0 0.03

6 3.5 75 600 3.17 12.5 600
7 n/a n/a 600 9.75 55 600
8 3.5 3.5 453.08 1.75 6.2 600
9 84 4599.7 600 80 700 600
10 1.5 12.5 600 3.17 12.5 600
11 3.5 74.3 600 3.75 12.5 600
12 n/a n/a 600 n/a n/a 600

constraints. The stability radius is evaluated in both l1 and l∞

TABLE VI: |Ṽ | = ⌈n
2 ⌉ and rmax = 2

LB1 UB1 CPU LB∞ UB∞ CPU

1 13.5 13.5 0.06 13.5 13.5 0.04
2 4.5 4.5 1.65 4.5 4.5 0.14
3 3 3 0.07 3 3 0.05
4 29.5 29.5 1.93 29.5 29.5 0.78
5 3 3 0.05 3 3 0.03

6 3.5 75 600 12.5 12.5 335.45
7 47 429.8 600 49.5 55 600
8 6.5 6.5 167.47 6.5 6.5 22.22
9 242 5369.6 600 700 700 250.02
10 6.5 13 600 6.5 6.5 9.46
11 6.5 75 600 12.5 18.5 140.05
12 n/a n/a 600 n/a n/a 600

TABLE VII: |Ṽ | = ⌈n
2 ⌉ and rmax = 3

LB1 UB1 CPU LB∞ UB∞ CPU

1 13.5 13.5 0.1 13.5 13.5 0.02
2 4.5 4.5 1.76 4.5 4.5 0.31
3 3 3 0.07 3 3 0.05
4 29.5 29.5 2.51 29.5 29.5 0.32
5 3 3 0.04 3 3 0.02

6 12.5 75 600 12.5 12.5 117.42
7 55 324 600 55 55 190.39
8 6.5 7.5 600 6.5 6.5 18.52
9 700 4200 600 700 700 89.29
10 6.5 36 600 6.5 6.5 21.27
11 5.5 102.6 600 12.5 12.5 39.15
12 1 174.2 600 4 20 600

TABLE VIII: Number of found solutions

|Ṽ | ⌈n

4
⌉ ⌈n

2
⌉

rmax 1 2 3 1 2 3
Feasible solutions for P1 11 11 11 10 11 12
Optimal solutions for P1 6 6 6 6 6 5

Feasible solutions for P∞ 11 12 12 11 11 12
Optimal solutions for P∞ 6 11 11 5 10 11

metrics. For each metric, the corresponding MILP model was
elaborated. Numerical results show that the used commercial
solver can find an optimal solution for small size instances
in less than 3 sec., but unfortunately not able to provide
satisfactory outcomes for medium size ones.

The proposed MILP models are a first attempt for applying
robust optimization approaches for transfer line design. The
second natural step of our future research is a detailed analysis
of the studied problem in order to find its new structural and
combinatorial properties permitting to develop more efficient
resolution methods, based on appropriate reduction rules.

ACKNOWLEDGEMENT

This work was partially supported by the council of the
french region “Pays de la Loire”.

REFERENCES

[1] K. Ağpak and H. Gökçen, A chance-constrained approach to stochastic
line balancing problem, European Journal of Operational Research,
180(3): 1098–1115, 2007.

[2] O. Battaı̈a and A. Dolgui, Reduction approaches for a generalized line
balancing problem, Computers & Operations Research, 39(10): 2337–
2345, 2012.

[3] O. Battaı̈a, E. Gurevsky, F. Makssoud and A. Dolgui, Equipment lo-
cation in machining transfer lines with multi-spindle heads, Journal of
Mathematical Modelling and Algorithms in Operations Research, 12(2):
117–133, 2013.

[4] A. Dolgui, B. Finel, F. Vernadat, N. Guschinsky, G. Levin, A heuristic
approach for transfer lines balancing, Journal of Intelligent Manufactur-
ing, 16(2): 159–172, 2005.

[5] A. Dolgui, B. Finel, N. N. Guschinsky, G. M. Levin, F. B. Vernadat, MIP
approach to balancing transfer lines with blocks of parallel operations,
IIE Transactions, 38(10): 869–882, 2006.

[6] A. Dolgui, N. Guschinsky, G. Levin, J.-M. Proth. Optimisation of multi-
position machines and transfer lines, European Journal of Operational
Research, 185(3): 1375–1389, 2008.

[7] A. Dolgui and I. Ihnatsenka, Branch and bound algorithm for a transfer
line design problem: Stations with sequentially activated multi-spindle
heads, European Journal of Operational Research, 197(3): 1119–1132,
2009.

[8] O. Guschinskaya, A. Dolgui, N. Guschinsky and G. Levin, A heuristic
multi-start decomposition approach for optimal design of serial machin-
ing lines, European Journal of Operational Research, 189(3): 902–913,
2008.

[9] O. Guschinskaya, E. Gurevsky, A. Dolgui and A. Eremeev, Metaheuristic
approaches for the design of machining lines, International Journal of
Advanced Manufacturing Technology, 55(1-4): 11–22, 2011.

[10] Y. Kara, T. Paksoy and C.-T. Chang, Binary fuzzy goal programming
approach to single model straight and U-shaped assembly line balancing,
European Journal of Operational Research, 195(2): 335–347, 2009.

[11] A. Rossi, E. Gurevsky, O. Battaı̈a and A. Dolgui, Maximizing the
robustness for simple assembly lines with fixed cycle time and limited
number of workstations, Discrete Applied Mathematics, 208: 123–136,
2016.

[12] Y. Sotskov, N. Sotskova, T.-C. Lai and F. Werner, Scheduling under
Uncertainty: Theory and Algorithms, Belorusskaya nauka, Minsk, 2010.

