
HAL Id: hal-01614448
https://hal.science/hal-01614448

Submitted on 18 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Action Model Acquisition using Sequential Pattern
Mining

Ankuj Arora, Humbert Fiorino, Damien Pellier, Sylvie Pesty

To cite this version:
Ankuj Arora, Humbert Fiorino, Damien Pellier, Sylvie Pesty. Action Model Acquisition using Sequen-
tial Pattern Mining. German Conference on Artificial Intelligence, Sep 2017, Dortmund, Germany.
pp.107 - 143. �hal-01614448�

https://hal.science/hal-01614448
https://hal.archives-ouvertes.fr

Action Model Acquisition using Sequential Pattern
Mining

Ankuj Arora, Humbert Fiorino, Damien Pellier and Sylvie Pesty

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
firstname.lastname@univ-grenoble-alpes.fr

Abstract. This paper presents an approach to learn the agents’ action model (ac-
tion blueprints orchestrating transitions of the system state) from plan execution
sequences. It does so by representing intra-action and inter-action dependencies
in the form of a maximum satisfiability problem (MAX-SAT), and solving it with
a MAX-SAT solver to reconstruct the underlying action model. Unlike previous
MAX-SAT driven approaches, our chosen dependencies exploit the relationship
between consecutive actions, rendering more accurately learnt models in the end.

1 Introduction

In the planning community, intelligent agents require an action model to plan and solve
real world problems. It is, however, becoming increasingly cumbersome to codify this
model, and is more efficient to learn these action blueprints from plan execution se-
quences. This learning provides an opportunity for the evolution of the model towards
a version more consistent and adapted to its environment, augmenting the possibility of
success of the plans. Our approach, called SRMLearn (Sequential Rules-based Model
Learner), uses alternating state-action representations as input to learn an action model
as the output. It proceeds as follows: it represents a set of intra-action and inter-action
dependencies in the form of constraints of a weighted maximum satisfiability problem.
This problem is then solved with the help of a MAX-SAT solver, the solved constraints
being used to reconstruct the underlying action model. This paper is divided into the
following sections: we present some related work in section 2, and define our learning
problem in section 3. We then detail our approach in section 4, and present our empir-
ical evaluations in section 5. We conclude the paper with some perspectives and future
work in section 6.

2 Related Work

Learning action models in the field of Automated Planning (AP) has a considerable his-
tory. Some prominently used machine learning (ML) techniques to learn action models
include: inductive techniques (e.g. PELA [7]), reinforcement learning techniques (e.g.
LOPE [6]) and so on. More specific to our case, various approaches have used the
MAX-SAT framework to learn deterministic actions (e.g. ARMS [10]), macro-actions
[12], models in Hierarchical Task Networks (HTNs) [11] and so on. In particular, our

approach is on the same lines of ARMS, which also generates intra-action and inter-
action constraints (mined with the Apriori algorithm [1]). As compared to ARMS, we
hypothesize and experimentally demonstrate that short term dependencies among con-
secutively executing action pairs are a stronger indicator of correlation between actions,
leading to improved learning.

3 Preliminaries and Problem Formulation

We begin by providing some definitions of key concepts. Predicates are properties that
constitute the world state and actions. Here, each action a∈A where A = {a1, a2, . . . , an},
n being the maximum number of actions in the domain. An action model m is the
blueprint of all the domain-applicable actions, each action defined as an aggregation of:
(i) the action name (with zero or more typed variables as parameters), and (ii) predi-
cates in the form of preconditions (pre list i.e. predicates whose satisfaction determines
the applicability of the action) and effects (add and del list i.e. predicates added and
deleted respectively from the current world state by action execution). A plan is a se-
quence of actions π = [a1, a2, . . . , an] that drives the system from the initial state to a
goal state. Each such sequence consisting of (i) the initial state of the world, (ii) alter-
nating action and state representations, and (iii) a desired goal state; constitutes a trace
of a trace set T. A sequential rule ax → ay is a relationship between two actions ax,
ay ∈ A such that if ax occurs in a sequence, then ay will occur successively in the same
sequence. Two measures are defined for sequential rules, these are (i) support(ax →
ay) = |ax → ay|/|T |, and (ii) confidence(ax → ay) = |ax → ay|/|ax|. Given
the aforementioned information, our learning problem is as follows: given a set of plan
traces T, the objective is to learn the underlying action model m which best explains
the observed plan traces. AP uses a certain number of domains from the International
Planning Competition (IPC), out of which we use the gripper domain to illustrate SRM-
Learn (see Figure 1). In this domain, the task of the robot is to move an object from one
room to another, the principal domain actions being move, pick and drop.

4 Approach

Our approach is divided into three phases (see Figure 2) which are elaborated in the
forthcoming subsections.

4.1 Annotation and Generalization

Firstly, each trace is taken one by one, and each action as well as each predicate from
the initial, goal and intermediate states is scanned to substitute the instantiated param-
eters with corresponding variable types, producing generalized actions and predicates.
We then associate each action with its relevant predicates, where a predicate is said
to be relevant to an action if they share the same variable types. The set of relevant
predicates to an action ai ∈ A can be denoted as relPreai

. With generalized actions
and predicates, a candidate action dictionary is built for the actions, where the key is
the name of the action ai and the value is a list of all relevant predicates to that action
relPreai

(see Figure 1).

Fig. 1: Illustration of our learning problem. The learnt action model is written in PDDL
(Planning Domain Description Language) [9] and conforms to the semantics of STRIPS
[3].

4.2 Constraint Generation

In this phase, we account for certain intra-action hard constraints and inter-action soft
constraints.

Hard constraints In order to satisfy the the semantics defined in section 3, each
action in A must satisfy certain intra-action constraints. Thus, for each action ai ∈
[a1, a2, . . . , an] and each relevant predicate p ∈ relPreai : (i) p cannot be in the add
list and the del list for the same action, and (ii) p cannot be in the add list and the pre
list for the same action.

Soft Constraints The soft constraints among the actions may be short-term or long-
term.

Short-Term Constraints We hypothesize that if a sequential pair of actions appears fre-
quently in the traces, there must be a reason for their frequent co-existence. We thus
employ an algorithm called TRuleGrowth [5, 4] used for mining sequential rules com-
mon to several sequences that appear in a trace set. Given (1) a trace set T, and (2)
two user-specified thresholds, namely support and confidence as input, TRuleGrowth
outputs all sequential rules having a support and confidence higher than support and
confidence respectively. Starting with 20 traces, we consistently double the number
of traces till we reach 200. In the process, we identify frequent sequential rules (action

Fig. 2: Approach phases of SRMLearn

pairs) which consistently maintain the confidence and support over an increasing num-
ber of traces. These frequent pairs can be suspected to share a “semantic” relationship
among themselves. These relationships are quantified by the ARMS [10] system, and
serve as heuristics to explain the frequent co-existence of these actions. These heuris-
tics produce good results in the case of the ARMS system, which serves as incentive for
re-using them. More precisely, if there is an action pair (ai, aj), 0 ≤ i < j ≤ (n − 1)
where n is the total number of actions in the plan; and prei, addi and deli represent
ai’s pre, add and del list, respectively:

– A predicate p such that (p ∈ relPreai , p ∈ relPreaj) added by the first action
(p ∈ addi), which serves as a prerequisite for the second action aj (p ∈ prej),
cannot be deleted by the first action ai.

– A relevant predicate p (p ∈ relPreai , p ∈ relPreaj) added by the first action ai
also appears in the pre list of the second action aj .

– A predicate p that is deleted by the first action ai is added by the second action aj .
– The above plan constraints can be combined into one constraint and restated as:
∃p((p ∈ (prei ∩ prej)∧ p 6∈ (deli))∨ (p ∈ (addi ∩ prej))∨ (p ∈ (deli ∩ addj)))

Long-Term Constraints We introduce this set of constraints to explore the relationships
between a chain of actions constituting a plan.

– If a predicate p is observed to be true for the last action an of a plan sequence and
p is a relevant predicate to a1, . . . , ai, . . . , an where 0 ≤ i < n, then the predicate
p must exist in the add list of ai. This can be expressed as p ∈ adda1

∨ adda2
∨

. . . ∨ addan−1
.

– Predicates constituting the initial state of the plan are preconditions of the first
executed action in the plan [10].

– If a predicate p is observed to be true in the intermediate states right before an
action ak of a plan sequence, and p is a relevant predicate to ak+1, . . . , an, then
the predicate p must serve as a precursor to these following actions. This can be
expressed as p ∈ (preak+1

∨ preak+2
∨ . . . ∨ prean

).

5 Evaluation

We evaluate the accuracy of SPMSAT. For this, we construct a CNF formula consisting
of a conjunction of the hard and soft constraints generated in Phase 2, each associated

with a specific weight. The weights of the hard constraints and the long term constraints
are “hyperparameters” which must be continuously tweaked and fine tuned to obtain
the most accurate model. The weight of the short term constraints are equivalent to
the support of the rules which are associated with the frequent action pairs obtained
with the TRuleGrowth algorithm. The support is chosen because it is an indicator of
the frequency of the action pair over the entire trace set. This CNF formula is then
fed to a weighted MAX-SAT solver which finds a truth assignment that maximizes
the total weight of the satisfied constraints, thus producing as output the constraints
which evaluate to true. The true constraints are used to reconstruct the entire model,
termed as the empirical model. This model is compared with artificial models which
are considered as the ground truth. Let diffpreai

represent the syntactic difference in
pre lists of action ai in the ground truth model and the empirical model. Each time
the pre list of the ideal model presents a predicate which is not in the pre list of the
empirical model, the count diffpreai is incremented by one. Similarly, each time the
pre list of the empirical model presents a predicate which is not in the pre list of the
ideal model, the count diffpreai

is incremented by one. Similar counts are estimated
for the add and del lists as diffaddai

and diffdelai
respectively. This total count is

then divided by the number of relevant constraints for that particular action relConsai

to obtain the cumulative error per action. This error is summed up for every action and
averaged over the number of actions of the model to obtain an average error E for the
entire model.

Fig. 3: Error comparison in
parking domain

Fig. 4: Error comparison in mprime do-
main

The cumulative error for the model is thus represented by:

E =
1

n

n∑
i=1

diffPreai + diffAddai + diffDelai

relConsai

(1)

We evaluate the performance of SRMLearn with our implementation of ARMS over
five domains as follows: for each of the domains, we set the number of traces as (20,
50, 100, 200), generate and solve constraints with the help of two SAT solvers ([2,
8]), and calculate the cumulative error for SRMLearn and ARMS. It should be noted
that the key difference between SRMLearn and ARMS lies in SRMLearn’s additional

long term constraints and chosen data mining algorithm (TRuleGrowth). The evaluation
domains include depots, parking, mprime, gripper and satellite and are represented in
the figures 3, 4, 5, 6 and 7. As can be seen, the error percentages with SRMLearn are
lower than with ARMS, indicating that frequent sequential action pairs mined with the
TRuleGrowth algorithm demonstrate a stronger correlation than those mined with the
Apriori algorithm.

Fig. 5: Error comparison in
depots domain

Fig. 6: Error comparison in gripper do-
main

Fig. 7: Error comparison in satellite domain

6 Conclusion

This paper presents an approach called SRMLearn which learns the agents’ action
model by encoding the inter and intra-action dependencies in the form of a maximum
satisfiability problem (MAX-SAT) and solves it with a weighted MAX-SAT solver to
reconstruct the underlying model. Experimental results reinforce our hypothesis that
exploiting relationships between consecutive actions improves the learning accuracy.
In future work, we intend to extend SRMLearn to learn temporal action models com-
prising durative actions.

References

1. Agrawal, R. and Srikant, R., 1994. Fast algorithms for mining association rules. In VLDB,
Vol. 1215, pp. 487-499.

2. Borchers, B. and Furman, J., 1998. A two-phase exact algorithm for MAX-SAT and weighted
MAX-SAT problems. Journal of Combinatorial Optimization, 2(4), pp. 299-306.

3. Fikes, R.E. and Nilsson, N.J., 1971. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3-4), pp. 189-208.

4. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W. and Tseng, V.S., 2014.
SPMF: a Java open-source pattern mining library. Journal of Machine Learning Research,
15(1), pp. 3389-3393.

5. Fournier-Viger, P., Wu, C.W., Tseng, V.S. and Nkambou, R., 2012. Mining sequential rules
common to several sequences with the window size constraint. In Canadian Conference on
Artificial Intelligence, pp. 299-304.

6. Garcı́a-Martı́nez, R. and Borrajo, D., 2000. An integrated approach of learning, planning, and
execution. Journal of Intelligent & Robotic Systems, 29(1), pp.47-78.

7. Jiménez, S., Fernández, F., and Borrajo, D., 2008. The PELA architecture: integrating plan-
ning and learning to improve execution. In AAAI.

8. Kautz, H.A., Selman, B. and Jiang, Y., 1996. A general stochastic approach to solving prob-
lems with hard and soft constraints. Satisfiability Problem: Theory and Applications, 35, pp.
573-586.

9. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D. and
Wilkins, D., 1998. PDDL-the planning domain definition language.

10. Yang, Q., Wu, K. and Jiang, Y., 2007. Learning action models from plan examples using
weighted MAX-SAT. Artificial Intelligence, 171(2-3), pp. 107-143.

11. Yoon, S. and Kambhampati, S., 2007. Towards model-lite planning: A proposal for learning
& planning with incomplete domain models. In ICAPS Workshop on Artificial Intelligence
Planning and Learning.

12. Zhuo, H.H., Nguyen, T.A. and Kambhampati, S., 2013, August. Refining Incomplete Plan-
ning Domain Models Through Plan Traces. In IJCAI, pp. 2451-2458.

