
HAL Id: hal-01614391
https://hal.science/hal-01614391v1

Submitted on 10 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Column Generation for Outbound Baggage Handling at
Airports

Markus Frey, Rainer Kolisch, Christian Artigues

To cite this version:
Markus Frey, Rainer Kolisch, Christian Artigues. Column Generation for Outbound Baggage Handling
at Airports. Transportation Science, 2017, 35p. �10.1287/trsc.2017.0739�. �hal-01614391�

https://hal.science/hal-01614391v1
https://hal.archives-ouvertes.fr

Column Generation for Outbound Baggage

Handling at Airports

Frey Markus, Kolisch Rainer1 and Christian Artigues 2

1TUM School of Management, Technische Universität München,
Munich, Germany,

markus.frey@tum.de, rainer.kolisch@tum.de

2LAAS–CNRS/Université de Toulouse, CNRS, Toulouse, France
artigueslaas.fr

Abstract

The planning of outbound baggage handling at international air-
ports is challenging. Outgoing flights have to be assigned and scheduled
to handling facilities at which the outgoing baggage is loaded into con-
tainers. To avoid disruptions of the system the objective is to minimize
workload peaks over the entire system. The resource demand of the
jobs, which have to be scheduled, is depending on the arrival process
of the baggage. In this paper we present a time-indexed mathemati-
cal programming formulation for planning the outbound baggage. We
propose an innovative decomposition procedure in combination with a
column generation scheme to solve practical problem instances. The
decomposition significantly reduces the symmetry effect in the time-
indexed formulation and also speeds up the computational time of
the corresponding Dantzig-Wolfe formulation. To further improve our
column generation algorithm we propose state-of-the-art acceleration
techniques for the primal problem and pricing problem. Computa-
tional results based on real data from a major European Airport show
that the proposed procedure reduces the maximal workloads by more
than 60% in comparison to the current assignment procedure used.

keywords: outbound baggage handling; binary programming;
column generation; cutting planes

1

1 Introduction

The number of flight passengers worldwide is rapidly growing at about 5.3%
per year (see SITA (2014)), which is challenging for the existing infrastruc-
ture at international airports. The increasing number of travelers corre-
sponds to a growing volume of baggage transferred through the terminal.
Airports have three baggage streams: Inbound baggage, transfer baggage
and outbound baggage. While inbound baggage is brought from incoming
flights to the baggage claim hall where passengers pick up their baggage,
transfer baggage is brought with baggage-tugs from the flight to infeed-
stations, located at the apron, where the baggage is transferred into the
Baggage Handling System (BHS). The BHS is a conveyor belt network trans-
porting baggage through the terminal to any destination within particular
periods of time. Like the check-in baggage, entering the BHS through check-
in counters, the transfer baggage is labeled as outbound baggage once it has
entered the BHS. Outbound baggage, comprised of transfer and check in
baggage, represents the greatest baggage volume to be handled at hub air-
ports.

In this paper we will focus on the planning of outbound baggage. Af-
ter receiving outbound baggage from check-in passengers or transfer flights,
the BHS transports the outbound baggage to its destinations, a handling
facility or a central storage system. If baggage for an outgoing flight arrives
at the check-in or at a transfer infeed-station during the flight’s baggage
handling period, which begins one to three hours before the scheduled de-
parture time and ends 10 to 15 minutes before a flight’s departure time, the
arriving baggage is directed to the assigned handling facility, where ground
handlers sort and load the incoming bags into containers. In the case bags
arrive before baggage handling has started, the bags are directed to a central
storage system, where they are stored until baggage handling begins. For
example, the capacity of storage system at in Terminal 2 of Munich Airport
is limited to about 3, 000 bags, which is rather small in comparison to the
total amount of approximately 30, 000 bags which arrive per day. Figure 1
illustrates the outbound baggage flow before (see Figure 1 (a)) and after the
start of a flight’s baggage handling (see Figure 1 (b)). At the end of the
baggage handling process, the containers are transported to the airplane to
be loaded into the cargo hold.

The handling facility, also denoted carousel, is an ovalshaped conveyor
belt on which several flights can be processed at one time (see Figure 3). A
slide system connects the BHS conveyor belt with the carousel’s conveyor
belt. Bags from the BHS which are transferred to the carousel via the slide

2

BHS

Outbound

baggage

C2

C1

C3

Storage

system

(a)

BHS

Outbound

baggage

C2

C1

C3

Storage

system

(b)

Figure 1: Outbound baggage stream of a flight through the BHS before (a)
and after the start of the baggage handling and storage depletion (b). The
oval- shaped forms indicate the three available carousels C1 to C3.

system are picked up from the carousel’s conveyor belt by workers and loaded
into containers. If the arrival rate of bags to the carousel exceeds the loading
rate of the workers at the carousel, the number of bags on the carousel
is increasing. The number of bags on the carousel defines the carousel’s
workload. If the workload of a carousel reaches the carousel’s capacity, i.e.
the maximum number of bags which can be on the carousel, the bags in the
BHS’ conveyor system are no longer forwarded to the carousel’s conveyor
belt and remain in the BHS until the workload on the carousel falls below
its capacity. From a technical perspective, since infeed stations and the
carousels are connected by the same lane system, additional bags in the
BHS increase the danger of bottlenecks in the network, which may result in
delays and disruptions in the outbound baggage handling process. Delayed
baggage might not arrive at the assigned carousel in time and, hence, can
not be loaded on the corresponding airplane lowering the service quality
of the airport. From the employees’ perspective, high workload peaks may
lead to an unfair distribution of work among the workers. To avoid both
problems, airports seeks to keep the workload on the carousels under given
target value during the peak periods of the baggage flow. For example, if
we consider Figure 2, showing the amount of baggage arriving at Terminal
2 of Munich Airport during a day, we can identify three peaks, one in the
morning, one in the afternoon and one in the evening.

To staff the workers at the carousels adequately, it is important for
ground handlers to know the assigned carousels and departing flights’ bag-
gage handling periods several hours before the handling of the flights starts.
Therefore, this paper focuses on generating a robust plan for the outbound
baggage handling for the whole planning day which can be used as a basis
for ground handler staffing. The planning of outbound baggage handling

3

0 06:00 a.m. 10:00 a.m. 02:00 p.m. 06:00 p.m. 10:00 p.m. 11:00 p.m.
0

50

100

150

200

250

300

Time

A
m

o
u
n
t
o
f
b
a
g
g
a
g
e

1 2 3

Figure 2: Average arrival curve of baggage during the course of a day

comprises the assignment of flights to the carousels, the scheduling of the
start time of flights’ handling process and the start time for the storage
depletion. Most airports generate a daily plan by using simple allocation
heuristics which is then manually re-optimized by a dispatcher. Because
the general problem is NP-hard to solve (see §3) and over 350 flights at 22
carousels have to be handled per day on average at an international Air-
port such as Terminal 2 at Munich Airport, the generated plans result in
poor solutions with high workloads on the carousels leading to the problems
described above. As the number of available carousels is rather small in
comparison to the number of outgoing flights and an expansion of the han-
dling facilities is very costly, the airport seeks to find advanced approaches
which reduce the workload peaks subject to the given infrastructure. In
this paper, we present a model and a solution procedure to assign outgoing
flights to the carousels and schedule the baggage handling, taking into ac-
count the BHS’ capacities and the arrival profiles of the baggage streams.
The objective is to obtain a workload below a given target value across all
carousels during the main peak periods of the day.

Literature on planning the outbound baggage handling processes is very
scarce. Abdelghany et al. (2006) and Ascó et al. (2013) (see also Ascó et al.
(2011)) propose greedy assignment algorithms to assign baggage handling
facilities to departing flights assuming a given service periods for flights’
baggage handling. However, they neither consider capacities of the airport’s
infrastructure for baggage handling nor the dynamics of the baggage arrival
process in their planning. Furthermore, instead of assuming given handling
periods for flights’ baggage handling, we determine the schedule for baggage
handling, which makes our approach more flexible. A preliminary mixed-
integer program for a similar problem statement to ours is presented by Frey

4

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

Flight i1

Legend:

Flight i2
Flight i3

WS 1 WS 2

WS 4 WS 3

Figure 3: Feasible assignment of three flights at a carousel with 20 parking
positions and four working stations

and Kolisch (2010) and Frey et al. (2010) but no efficient method is proposed
to solve the problem.

Our main contributions in this paper are as follows:

(1) A time-indexed formulation (TIF) for the outbound baggage handling
problem (OBHP) considering the dynamics of the incoming baggage
stream and the capacities of airport’s infrastructure is presented;

(2) Structural properties and the problem complexity are established;

(3) An efficient solution methodology based on guided column generation
is presented which speeds up the convergence time of a standard col-
umn generation implementation;

(4) The proposed solution procedure outperforms the airport’s manually
generated solution by 65.23% in average.

The remainder of this paper is organized as follows. In §2 we provide a
formal problem description of the OBHP. The time-indexed mathematical
model is presented in §3, where we also discuss structural properties in §3.2
and exhibit dominance criteria to strengthen the solution space in §3.3. The
solution procedure is proposed in §4, which decomposes the model into a
master problem (MP) and three scheduling subproblems. Techniques to im-
prove the column quality are discussed in §5, and §6 presents computational
experiments. Conclusions are drawn in §7.

2 Problem description

The set of all outgoing flights is denoted by F = {1, . . . , F}. As airports
plan flights’ outbound baggage handling in periods, e.g. 5 minutes, baggage

5

handling for all flights takes place within a discrete planning horizon T =
{t0, . . . , tT } with t0 = 0 < t1 < . . . < tT . All time points are evenly
spaced in time, and each time tk represents the begin of period [tk, tk+1[for
k = 0, . . . , T − 1. The capacity of the central storage system is given by Ks.

Once baggage enters the BHS, it is transferred to the storage system or
to the corresponding carousel slides. To meet a given service quality, the
baggage transfer has to take place within a given time window (see Tarău
et al. (2011)), e.g. 3 to 7 minutes at Terminal 2 of Munich Airport. As
the period length of each t is about the size of the time window for the
baggage transfer, it is reasonable to estimate the baggage transfer time by
means of the average transfer time. Hence, the amount of baggage Ai =
(Ai,t)t=0,...,T−1 arriving during period t at the central storage or any carousel
is given by the amount of baggage arriving at the check-in counter or transfer
infeed-stations plus the average transfer time of baggage. As the arrival time
of passengers at the check-in counter and the arrival time of transfer flights
is uncertain, arrival process Ai is a random parameter which has to be
estimated properly (see §6.1).

To avoid a high utilization, airport’s objective is to obtain an utiliza-
tion near or below a target utilization uta < 1 across all carousels during
working day’s main disjunctive peak periods T1, . . . , TM with M ≥ 1 and
T =

⋃M
m=1 Tm (see Figure 2). Next, we give a detailed description of the

assignment process of flights to the carousels and the scheduling of flight
baggage handling; the required notation for the assignment and scheduling
is summarized in Table 1.

Table 1: Carousel type and flight parameters

Carousel type r ∈ R

Kcb
r Conveyor belt capacity

Kpp
r Number of parking positions for containers

Kws
r Number of working stations

Kppws
r Number of parking positions in a working station segment

Flight i ∈ F

Ai Baggage arrival vector
Pi Number of required containers[
Wmin
i,r ,Wmax

i,r

]
Minimal and maximal number of required working stations at carousels type r[

Wmin
i ,Wmax

i

]
Minimal and maximal number of required working stations across all carousels[

Ses
i , S

ls
i

]
Time window to start flight’s baggage handling

Se
i End time of flight i’s baggage handling

6

Flight assignment to the carousels In the assignment decision each
flight is assigned to a carousel c ∈ C = {1, . . . , C} with two long-sides,
where each long-side of a carousel is comprised of a limited number of work-
ing stations and offers space for a limited number of flight containers on its
parking positions lined-up along the long-side of a carousel’s conveyor belt.
On both sides, a carousel has the same number of working stations as well
as the same number of parking positions. For example, the carousel in Fig-
ure 3 offers two working stations and 10 parking positions on each side. We
distinguish between R = {1, . . . , R} carousel types where the set of carousels
of type r ∈ R is denoted by Cr = {1, . . . , Cr} with Cr1 ∩ Cr2 = ∅ for each
pair r1, r2 ∈ R with r1 6= r2; index rc indicates the type of carousel c. The
carousel types differ in the number of offered parking positions Kpp

r , work-
ing stations Kws

r and the number of bags Kcb
r which can be on a carousel’s

conveyor belt in a period (see Table 1). A carousel’s parking position can
accommodate one container at a time. The number of required containers
for flight i, given by Pi, is provided by the airline and considers sorting crite-
ria for baggage such as first, economy or transfer baggage. To meet airline’s
defined sorting criteria when loading baggage, the airport is forced to place
all Pi containers simultaneously at the carousel at a time. Each flight has
to be assigned to exactly one carousel, but a carousel can handle more than
one flight at a time. At a working station, workers load bags circling on the
conveyor belt into containers. To ensure that each bag is placed into the
right container, each bag and container is identified with a unique bar-code.
With a hand-held scanning device of a working station, a worker scans the
bar-code of a bag and a container. If the two codes match, the bag is loaded
into the containers. For security reasons, a working station is equipped with
exactly one scanning device which can only be used for one flight at a time.
Once a working station is assigned to a flight, the working station can not
interrupt the handling for the assigned flight.

In addition to the carousels’ resource capacities, the assignment has to
obey assignment regulations described in the following: To ease the towing
of flight containers with a baggage tug to the aircraft, the containers are
sequentially ordered. If flight’s containers are assigned to both sides of the
carousel, then the container rows are lined up opposite of each other and
start at the rightmost or leftmost parking position on each side such that the
two container rows of the flight remain easily accessible for a baggage-tug
(see flight i2 in Figure 3). Each working station belongs to a segment of the
carousel’s conveyor belt and has a given number of Kppws

r uniquely adjacent
parking positions lined-up along its segment. In Figure 3, for example, each
working station has five adjacent parking positions. To reduce bags’ lift

7

distances for workers from the conveyor belt to the containers, a flight can
only be handled at a working station if at least one of the flight’s containers
is placed on one of the parking positions in its segment. A flight’s container-
row can overlap with parking positions of another working stations segment
without using its working station (see flight i1 in Figure 3). Moreover, the
airport does not allow a worker to load baggage for parking positions of
two working station segments, i.e. a worker can serve at most 2 ·Kppws

r − 1
parking positions. Thus, the minimal number of working stations Wmin

i,r for
flight i requiring Pi containers at a carousel type r is equal to the number of
working station segment which could be completely covered by the flight’s

containers, i.e. Wmin
i,r = max

{⌊
Pi

Kppws
r

⌋
, 1
}

. For flight i1 in Figure 3, for

example, we have Wmin
i,r =

⌊
7
5

⌋
= 1. Furthermore, given the assignment

regularities, the maximal number of working stations for flight i at carousel

type r is given by Wmax
i,r =

⌈
Pi

Kppws
r

⌉
+ 1>1(Pi); 1B(x) is equal to 1 if x ∈ B,

and 0 otherwise. For example, given the carousel type of Figure 3, flight i1’s
container rows could be placed on parking positions 5 to 11 such that up
to Wmax

i1,r
= 7

5 + 1 = 3 working station segments are reached.

Flights baggage handling schedule The start time of flight i’s baggage
handling has to be within time window

[
Ses
i , S

ls
i

]
. The earliest and latest

start time for flight i’s baggage handling, Ses
i and Sls

i , respectively, are set
according to flight i’s expected number of bags (see Table 3 (a)). The
depletion of flight i’s stored bags can only start, if flight i’s baggage handling
has already been started. As soon as flight i’s storage depletion begins, all
stored bags of flight i are transferred with a given transfer rate from the
central storage to the assigned carousel. To demonstrate the effect of the
two scheduling decisions, start time of a flight’s baggage handling and start
time of the storage depletion, consider the baggage arrival process Ai =
(3, 2, 1, 0, 0, 0) for a flight i. Let us assume that the flight is assigned to
one working station offering a loading rate of one bag per period. For the
central storage system we assume a capacity of at least three bags and a
transfer rate of one bag per period to the carousel. If the start time of the
baggage handling and the start time of the storage depletion is zero (see
Figure 4 (a)), three bags arrive on carousel’s conveyor belt in period ∆0

from which one bag can be immediately loaded. Thus, two bags remain
on the conveyor belt until period ∆1 in which two additional bags arrive
leading to a workload of three. The calculation of the workload in the next
periods is accordingly. If the start time of the baggage handling and the
start time of the storage depletion are postponed by one and three periods,

8

respectively, the three bags arriving in period ∆0 are stored in the central
storage system resulting in a maximal workload of one in total (see Figure 4
(b)). The baggage handling for flight i ends at time Se

i which is set some

Time horizonTime horizon

#Bags

sh = sd = 0

0

1

2

3

(a)

Time horizon

#Bags

sh = 1 sd = 3

0

1

2

3

(b)

Figure 4: The corresponding workload for baggage arrival process Ai =
(3, 2, 1, 0, 0, 0), if the start time of the baggage handling sh and the start
time storage depletion sd is 0 (see (a)), and the start time of the baggage
handling and storage depletion are different with sh = 1 and sd = 3 (see
(b)). Gray shaded bars show the number of bags from the previous period

time periods, e.g. 10 minutes, before the scheduled departure time to have
time to transport and load flight i’s containers into airplane’s cargo hold.

In the following, we denote a baggage handling schedule by start time
tuples τ = 〈sh

τ , s
d
τ 〉, where decision sh

τ and sd
τ stand for the start time of the

baggage handling at a carousel and start time of storage depletion, respec-
tively. We denote by Si the set of flight i’s feasible start time tuples. A start
time tuple τ is feasible for flight i iff sh

τ ∈
[
Ses
i , S

ls
i

]
, and Se

i−∆(sh
τ) > sd

τ ≥ sh
τ

where ∆(sh
τ) represents an offset for the storage depletion, guaranteeing that

all stored baggage up to time sh
τ is transferred from the storage system to

the carousel several periods, e.g. 30 minutes, before baggage handling ends.
The later part of the paper requires to distinguish between feasible start
time tuples for different number of assigned working stations. Therefore,
we introduce subset Si(w) ⊆ Si denoting the subset of feasible start time
tuples, if w working stations assigned are assigned to flight i. Start time

9

tuples τ1, τ2 ∈ Si are ordered with relation � where τ1 � τ2 iff sh
τ1 < sh

τ2 or
iff sh

τ1 = sh
τ2 and sd

τ1 ≤ s
d
τ2 .

3 Mathematical model

To solve the OBHP, we will show in §3.1 that it is sufficient to solve a
TIF. The TIF constraints the assignment of flights to the carousels such
that the carousels’ capacities in terms of number of parking positions and
working stations are not violated as well as the scheduling of flights’ baggage
handling at the carousels subject to the capacity of the central storage.
Having a feasible solution for the TIF, the required order of containers at
the carousels can be derived by a post-processing procedure in polynomial
time as we will show in Theorem 3. For the TIF, we provide a mathematical
analysis in §3.2. As the model includes a high number of variables, we
present in §3.3 dominance criteria to strengthen the solution space.

3.1 Time indexed formulation

Threshold values U = {u1, . . . , uk} with 0 < u1 < . . . < uK measure the
excess from target utilization uta of each carousel during any time interval
1 ≤ m ≤M . A deviation greater than uk incurs a penalty of 0 < p1 < . . . <
pk < . . . < pK for k = 1, . . . ,K.

The number of feasible start time tuples for each flight i in set Si is

bounded by maxi∈F {|Si|} ≤ maxi∈F

{∑
0≤z≤Sls

i −Ses
i
Se
i − (Ses

i + z)
}

. Given

flight i’s arrival process Ai, a feasible start time tuple τ ∈ Si and a given
number of working stations w, we can derive the following two parameters
for flight i (see Appendix B):

• Γi,wt,τ – flight i’s workload on a carousel during period t;

• Φi
t,τ – the amount of flight i’s stored baggage in the central storage

system during period t.

The key decision variable for the presented TIF is the four indexed binary
variable xi,c,w,τ , which is equal to 1 if flight i is processed at carousel c ∈ C
using w working stations and employs start time tuple τ . Binary auxiliary
variable yc,k,,m is equal to 1, if the utilization of carousel c exceeds target
utilization uta by uk in time interval m. The TIF can now be stated as
follows

minimize
∑
c∈C

∑
1≤k≤K

∑
1≤m≤M

pk · yc,k,m (1)

10

subject to∑
c∈C

∑
Wmin
i,r ≤w≤Wmax

i,r

∑
τ∈Si(w)

xi,c,w,τ = 1 ∀ i ∈ F (2)

∑
i∈F :Ses

i ≤t<Se
i

∑
Wmin
i,r ≤w≤Wmax

i,r

∑
τ∈Si(w):shτ≤t

w · xi,c,w,τ ≤ Kws
r ∀ r ∈ R, c ∈ Cr, t ∈ T

(3)∑
i∈F :Ses

i ≤t<Se
i

∑
Wmin
i,r ≤w≤Wmax

i,r

∑
τ∈Si(w):shτ≤t

Pi · xi,c,w,τ ≤ Kpp
r ∀ r ∈ R, c ∈ Cr, t ∈ T

(4)∑
i∈F :Ses

i ≤t<Se
i

∑
c∈C

∑
Wmin
i,r ≤w≤Wmax

i,r

∑
τ∈Si(w)

Φi
t,τ · xi,c,w,τ ≤ Ks ∀ t ∈ T (5)

1

Kcb
r

·
∑

i∈F :Ses
i ≤t<Se

i

∑
Wmin
i,r ≤w≤Wmax

i,r

∑
τ∈Si(w)

Γi,wt,τ · xi,c,w,τ −
∑

1≤k≤K
uk · yc,k,m ≤ uta

∀ r ∈ R, c ∈ Cr, 1 ≤ m ≤M, t ∈ Tm (6)∑
1≤k≤K

yc,k,m ≤ 1 ∀ c ∈ C, 1 ≤ m ≤M (7)

xi,τ,c,w ∈ {0, 1} ∀ i ∈ F , c ∈ C, τ ∈ Si,Wmin
i,rc ≤ w ≤W

max
i,rc (8)

yc,k,m ∈ {0, 1} ∀ c ∈ C, 1 ≤ k ≤ K, 1 ≤ m ≤M (9)

Objective function (1) minimizes the sum of all penalty values for the vi-
olation of threshold value in the M time intervals. Constraints (2) ensure
that for each flight i ∈ F a feasible start time tuple of set Si is selected and
each flight i is assigned to one carousel and to Wmin

i,r ≤ w ≤ Wmax
i,r working

stations. Capacity constraints (3) and (4) impose the resource restrictions
given by the available number of working stations and parking positions at a
carousel, respectively. The capacity of the central storage system is bounded
by constraints (5). Constraints (6) set the violation of the threshold value
during time interval m. The threshold value for the capacity violation in
each time interval 1 ≤ m ≤M is selected in constraints (7).

A solution of the TIF does not consider the assignment rules described
in §2. However, given a feasible solution for problem formulation (1)-(9) it
is always possible to map it into a solution respecting the assignment rules
in a post-processing step.

Theorem 1. Given a TIF optimal solution it is always possible obtain an
optimal OBHP solution in polynomial time.

11

The proof of Theorem 1 (see Appendix A) is constructive and contains
a polynomial time assignment algorithm to obtain a feasible solution for the
OBHP.

3.2 Model analysis

The TIF contains at most (3 · F ·maxi∈F {|Si|}+K ·M) · C variables and
T · (C · (2 +M) + 1)+C ·M+F constraints. Consider a real-world scenario
with 350 flights, a flights’ baggage handling time window of 120 minutes and
22 carousels for a planning horizon of 236 periods, where we plan from 03:00
a.m. to 10:40 p.m. in five minutes intervals. If the number of threshold
values and time intervals is equal to three, the TIF leads to at most 554, 598
variables and 34, 246 constraints.

As part of the TIF, the question arises whether a feasible solution exists,
i.e. whether F flights (items) can be assigned and scheduled to C carousels
(bins). Hence, the decision problem can be reduced from the Bin-Packing
Problem, which is known to be NP-complete (see Garey and Johnson (1979))
yielding the TIF’s and, hence, OBHP’s complexity.

Theorem 2. The OBHP is NP-complete.

However, the NP-completeness is not only established because of the
assignment problem, but also the scheduling problem is NP-hard to solve.
Assume a feasible assignment of flights to carousels is given and the schedul-
ing decision to start flights’ baggage handling still has to be done such that
a minimized utilization is obtained. Let us consider one carousel only and
assume that each flight i ∈ F (items) stores si bags (item size) in the cen-
tral storage at time t0. At the carousel with F working stations we assume
a loading rate of B bags per period with B ≥ si and the stored bags can
be sent within the time intervals t1 to tT (bins) to the carousel. Then the
answer to the question weather it is possible to obtain a workload of 0 on
the carousel would also provide a answer to the decision problem whether it
is possible to store the items in the T bins.

Theorem 3. Given a feasible assignment of flights to the carousels, the
scheduling problem to obtain a minimized workload is NP-complete.

3.3 Preprocessing

We strengthen the solution space by tightening the bound for the storage
capacity in constraints (5) and by reducing the number of decision variables
xi,τ,c,w. In the central storage system, all bags of a flight i arriving up to

12

period Ses
i − 1 have to be stored independently of selected start time tuple

τ ∈ S. Taking all flights into account, which can start their baggage handling
only after time t, storage capacity Ks in constraints (5) can be strengthened
by Ks

t = Ks −
∑

i∈F :t<Ses
i

∑
t∈T :t<Ses

i
Ai,t for all t > 0. For t = 0 we set

Ks
0 = Ks−

∑
i∈F A

early
i where Aearly

i stands for the amount of early baggage
which has arrived before time 0. The number of variables xi,τ,c,w heavily
depends on the cardinality of sets Si. To reduce the number of feasible
start time tuples, and thus, the number of variables, we strengthen the time
windows for the baggage handling and we exhibit dominance criteria for two
different start time tuples of the same flight i.

Earliest start time Assume for flight i ∈ F that no bag has arrived up to
the earliest baggage handling starting time Ses

i . Thus, if baggage handling is
delayed by one period to Ses

i +1, there will be no consumption of the central
storage capacity by flight i. At the same time, the time span in which flight
i is assigned to the carousel is decreased. As the objective function does not
increase when starting flight i at Ses

i + 1 instead of Ses
i , the earliest start

time can be set to Ses
i = Ses

i + 1. The update is repeated as long as no bags
have arrived to the current earliest start time for baggage handling.

Latest start time Assume that flight i is scheduled with the latest possi-
ble start time tuple τ ls

i = 〈Sls
i , S

ls
i 〉 while all other flights which can be han-

dled in parallel with flight i start the baggage handling and the storage deple-
tion at the earliest possible time. If the capacity of the storage system is vio-
lated at any time t ∈

[
Sls
i , S

e
i

[
, the latest start time of a flight i does not lead

to a feasible solution. Therefore, flight i’s latest start time can be left-shifted
by one period. Let FparF

i be the the subset of flights which can be handled

in parallel with flight i. If inequality

(∑
j∈FparF

i
Φj

t,τmin
j

)
+ Φi

t,τ ls
i
≤ Ks

t

with τmin
j = min {τ ∈ Sj | τ � τ ′ for all τ ′ ∈ Sj} is violated for at least

one t ∈ [Ses
i , S

e
i], the latest start time is updated to Sls

i = Sls
i − 1. The

update is repeated as long as the capacity of the central storage system is
violated when start time tuple τ ls

i is selected.

Arbitrary start time tuple Consider two start time tuples τ1 and τ2

with the same start time for the baggage handling and in which the start
time of the storage depletion in τ1 is earlier then in τ2. Assuming that
the workload imposed by start time tuple τ1 is less than or equal to the
workload imposed by start time tuple τ2 in any period, i.e. Γi,w̄t,τ1 ≤ Γi,w̄t,τ2 for

13

one Wmin ≤ w̄ ≤ Wmax. While both start time tuples occupy the assigned
carousel for the same period of time, start time tuple τ1 uses the storage for
a shorter period than start time tuple τ2 and leads to a lower workload on
the carousel. Start time tuple τ1 is therefore preferable to, or dominates,
start time tuple τ2.

Proposition 1. Let τ1, τ2 ∈ Si be two feasible start time tuples for flight
i ∈ F with shτ1 = shτ2 and sdτ1 < sdτ2. If there is a Wmin

i ≤ w̄ ≤ Wmax
i such

that Γi,w̄t,τ1 ≤ Γi,w̄t,τ2 for all t ∈ T , then τ2 can be removed from set Si(w) for
w̄ ≤ w ≤Wmax

i without excluding the optimal solution.

Proposition 1 is not valid for two start time tuples τ1, τ2 ∈ Si with
sh
τ1 < sh

τ2 , as a postponed start for baggage handling may violate the central
storage’s capacity. However, if start time tuple τ2 never leads to a violation
of the storage capacity, and if the workload imposed by τ2 is less then or
equal to the workload imposed by τ2 in any period, then tuple τ2 dominates
tuple τ1 as the flight is assigned to the carousel for a shorter time period
with no drawback in terms of the objective function and storage capacity.

Proposition 2. Let τ1, τ2 ∈ Si be two feasible start time tuples for flight i ∈
F with τ1 ≺ τ2. Assume there is a Wmin

i ≤ w̄ ≤ Wmax
i such that Γi,w̄t,τ1 ≥

Γi,w̄t,τ2 for all t ∈ T , and inequality
(∑

j∈FparF
i

Φj
t,τmax
j

)
+ Φi

t,τ2 ≤ Ks
t , with

τmax
j = max {τ ∈ Sj | τ � τ ′ for all τ ′ ∈ Sj(w̄)}, is satisfied for any t ∈[
Ses
i , s

d
τ2 + pdi (s

h
τ2)− 1

]
where pdi (s

h
τ) ≥ 0 is the duration to send all stored

bags to the assigned carousel if the baggage handling start at shτ . Then tuple
τ1 can be removed from sets Si(w) for all w̄ ≤ w ≤Wmax

i without excluding
the optimal solution.

In our computational study in §6, Proposition 1 and 2 lead to a column
reduction of 35.16% and 11.25%, respectively (see Table 7 and 4).

4 Solution methodology

Solving the TIF with a branch-and-cut algorithm as it is implemented in off
the shelf MIP-Solvers such as CPLEX results in a bad convergence behavior
with high computational times. Reasons are the OBHP’s complexity, the
large number of variables and the large number of equivalent assignment
patterns of flights to the carousels due to the symmetry effect, i.e. during
the branch-and-cut procedure an given assignment of flights to the carousels
and flights’ baggage handling schedule are investigated more than one time.
Indeed, we could not solve any real-world instance using CPLEX.

14

To overcome these problems, we provide a Dantzig-Wolfe formulation of
the TIF leading to a reduction of symmetry. The resulting MP requires the
definition of a duty d ∈ Dr representing a feasible assignment of flights to a
carousel of type r ∈ R and schedule for flights’ baggage handling period. A
duty d contains the information

• Θa
d =

(
Θa
d,i

)
i∈F

– Θa
d,i is equal to 1, if flight i is contained in duty d;

• Θs
d =

(
Θs
d,t

)
t∈T

– Θs
d,t gives the number of bags in the central storage

of flights assigned to duty d during time period t;

• Hd – penalty value for the threshold violations summed up over all
time intervals.

Then, binary variable zd is 1, if duty d ∈ D =
⋃
r∈RD′r is selected, and

0 otherwise. The MP, which is equivalent to the TIF, can now be stated as

minimize
∑
r∈R

∑
d∈Dr

Hd · zd (10)

subject to∑
r∈R

∑
d∈Dr

Θa
d,i · zd = 1 ∀ i ∈ F (11)

∑
r∈R

∑
d∈Dr

Θs
d,t · zd ≤ Ks

t ∀ t ∈ T (12)

∑
d∈Dr

zd ≤ |Cr| ∀ r ∈ R (13)

zd ∈ {0, 1} ∀ d ∈ Dr (14)

Constraints (11) assign each flight i to one duty. The storage capacity
is bounded in constraints (12). Constraints (13) restrict the number of
available carousels of each type r. Objective function (10) minimizes the
sum of penalties for the utilization across all carousels.

The number of feasible duties for each carousel type is exponential in
size, why we restrict the duties of each type r considered in the MP for-
mulation to a subset D′r ⊆ Dr, leading to the restricted MP (RMP). As D′
may not contain duties resulting in an optimal or even feasible solution, we
generate new columns by means of column generation (see Desaulniers et al.
(2005) or Lübbecke and Desrosiers (2005) among others). Hence, the linear
relaxation of RMP (L-RMP) yields the dual variables of constraints (11)

15

to (13) as query to find new duties having negative reduced cost in one of
the R pricing problems (PP) (see §4.1). If one negative reduced cost column
for type r is found, we add this column RMP.

To obtain a low penalty value for the threshold violations, the column
generation will only assign few flights to a duty which, however, may be at
odds with the requirement to find a feasible solution. As a consequence, a
standard column generation implementation shows slow convergence times
(see §6.2, Table 5). To “simplify” the answer in finding a feasible solution
in shorter time, we relax the NP-hard problem of finding a minimized uti-
lization. Given any feasible solution for MP, let ufix

l be the current maximal
utilization on the carousels across all time intervals where index l ≥ 0 repre-
sents an iteration counter. To relax the minimization problem of carousels’
utilization, the considered threshold values for RMP are restricted to sub-
set Um = {uk−n, . . . , uk} ⊆ U for each time interval m with k − 1 ≥ n ≥ 0
and each uk ∈ Um satisfy uta + uk ≤ ufix. For example, let us consider
Figure 5 in which we minimize carousels’ utilization for one time interval,
i.e. M = 1. In iteration 1, RMP is restricted to subset U1 = {uK} and
the maximal utilization of the carousels is bounded by ufix

l (see Figure 5
(a)). Once we have found a feasible solution, we improve the solution by re-
scheduling flights’ baggage handling while keeping the assignment of flights’
to carousels fixed to the assignment given by RMP’s solution; the effect of
re-scheduling can be seen in Figure 4. In Figure 5 (a) we reach utilization u∗1
by re-scheduling flights’ baggage handling. Given the the new solution, we
set the upper bound for the maximal allowed utilization ufix

l+1 ≤ ufix
l for

iteration l + 1 to the maximal utilization across all time intervals reached
in the solution of iteration l. To further improve the solution, the thresh-
old value subset Um is updated for each time interval 1 ≤ m ≤ M such
that Um 6= {∅} and uta +uk ≤ ufix

l+1 for all uk ∈ Um. RMP with the updated

set Um and upper bound ufix
l+1 is run again to further improve the solution

(see Figure 5 (b)). In this manner, we bound RMP from above, relax its
feasibility problem and iteratively improve the objective function such that
column generation is guided to the target value uta (see see Figure 5 (c)).

In the guided column generation (GCG) three types of subproblems are
considered: RMP’s PP generating new columns (see §4.1), two scheduling
problems improving the solution found by RMP (see §4.2), and updating
threshold value subset U ′m for the carousels’ utilization in each time interval
(see §4.3).

16

updates

utilization

0 1 2 3 4 5

0

1

2

3
ufix
1

u

u∗
1

uta + uK

uta + uk

uta

(a) RMP restricted to subset U1 = {uK}

updates

utilization

0 1 2 3 4 5

0

1

2

3

ufix
2 = u∗

1

u
u∗
2

uta + uK

uta + uk

uta

(b) Update upper bound to ufix
2 = u∗1 and restrict

RMP to subset U2 = {uk}

updates

utilization

0 1 2 3 4 5

0

1

2

3

u∗
1

u∗
2

u∗
3

u∗
4

u∗
5

uta + uK

uta + uk

uta

(c) Course of the GCG until target value is reached

Figure 5: Example for GCG for M = 1; thick lines represent the considered
threshold values in RMP

4.1 Pricing problem

We restrict the dual space of dual variable corresponding to constraints (11)
to the negative side of the dual polyhedron by replacing the “=” constraint
by the“≥” constraint. Thus, each flight is assigned to at least one duty. As
we minimize the utilization, flights assigned to more than one duty can be
removed by which the objective function does not increase (see Ben Amor
et al. (2006)).

Let λ = (λi)i∈F ∈ RF+, µ = (µt)t∈T ∈ RT− and ν = (νr)r∈R ∈ RR− be
the dual variables of constraints (11) to (13), respectively. In the PP, a
duty d is represented by vector xd,r = (xd,r,i,w,τ)i∈F ,τ∈Si(w),Wmin

i,r ≤w≤Wmax
i,r

,

where xd,r,i,w,τ is 1, if flight i belongs to duty d with w working stations

17

assigned to flight i at a carousel of type r and start time tuple τ is selected,
and 0 otherwise. Auxiliary binary vector yd,r = (yd,r,k,m)1≤k≤K,1≤m≤M is 1
at entry yd,r,k,m, if duty d, corresponding to a carousel of type r, causes a
violation of uk in time interval m, and 0 otherwise. For time interval m,
let Km denote the indexes belonging to the subset of threshold values Um.
Moreover, to speed up the computing time of the PP, we bound the maximal
allowed carousel utilization in iteration l by ufix

l . The corresponding subset of
possible duties is given by D(ufix

l). Then, a duty of carousel type 1 ≤ r ≤ R
with negative reduced cost is a negative solution of one of the restricted PP
(RPP)

rcr(xd,r, yd,r) = min

 ∑
1≤m≤M

∑
k∈K′m

pk · yd,r,k,m− (15)

∑
i∈F

∑
Wmin
i,r ≤w≤Wmax

i,r

∑
τ∈Si(w)

xd,r,i,w,τ · ρr,i,w,τ + νr

 | d ∈ Dr(ufix
l)

with ρr,i,w,τ =

(
λi +

∑
t∈T

(
µt · Φi

t,τ

))
. In the RPP we have to assign a given

number of items (flights) with a given size (number of containers and working
station) to a given number of capacitated bins (carousels). Thus, the RPP
is a generalization of the Multi-dimensional Knapsack Problem (MDKP)
which is known to be NP-complete (see Garey and Johnson (1979)). As we
have to solve the RPP in each iteration R-times, we present a LP-heuristic
to solve RPP in §5.4.

4.2 Flight scheduling problem

Whenever RMP finds a feasible solution, we solve the flight scheduling
problem (FSP) to gain further improvements. Given RMP’s assignment of
flights to the carousels, the FSP re-schedules flights’ baggage handling pe-
riods and re-assigns the working stations to flights. The FSP has the same
number of constraints as the OBHP, and due to Theorem 3, the FSP is NP-
complete. However, as the assignment of flights to the carousels is provided
in the FSP, the number of variables is reduced to (3 · F ·maxi∈F {|Si|}+K ′ ·M)
with K ′ ≤ K. Moreover, as only a subset of threshold values are considered
in the objective function, we can apply CPLEX to solve FSP. If FSP leads
toa new upper bound ufix

l+1 < ufix
l across all time intervals, we run the descent

scheduling problem.

18

4.3 Descent scheduling problem

Once a new improved solution was found in iteration l leading to a new
upper bound ufix

l+1 < ufix
l , the set of threshold values Um have to be updated.

First, all threshold values leading to a violation of upper bound ufix
l+1 are

removed, i.e. all uk ∈ Um with uta +uk > ufix. To add new threshold values
for RMP, we consider the threshold values leading to the next improvement
of the objective value. The most obvious but rather brute-force threshold
value which could be added is uk with uta +uk < ufix

l+1 and uta +uk+1 ≥ ufix
l+1.

This threshold value, however, may not be appropriate, due to the irregular
arrival of flights’ baggage. For example, consider three flights where each
flight causes a workload of four bags in the same period, independently
of the chosen start time tuple. Given two carousels with a capacity of 12
bags each and the threshold value set U = {0.2, 0.4}. Assume that in the
current solution all three flights are assigned to the same carousel such that
an utilization of 100% is reached, i.e. if we consider one time interval, we
obtain ufix

l = 1. To obtain an improvement, we could add threshold value 0.4
to U1. However, by swapping one flight to the second carousel the actual
utilization that we can reach is 2

3 . We should therefore rather add threshold
value 0.2 to U1. To obtain the next threshold values, we apply the DSP.

Let Tm(ufix
l+1) be the points in time interval m in which utilization ufix

l+1

is reached. For example, let us assume a maximal utilization of ufix
l+1 = 3.

Then, given the utilization shown in Figure 4 (b) we have Tm(3) = {1, 2}.
In the DSP, decision variable xi,w,τ is 1, if flight i is planned with w working
stations and start time tuple τ . For each period in time interval 1 ≤ m ≤M ,
t ∈ Tm(ufix

l+1) and carousel type r ∈ R, we solve the DSP (DSP(r, t))

minimize zDSP(r, t) = v (16)

subject to (2)− (5) restricted to r, t∑
i∈F :Ses

i ≤t<Se
i

∑
Wmin
i,r ≤w≤Wmax

i,r

∑
τ∈Si(w)

Γi,wt,s · xi,w,τ + v =
⌊
Kb
r · ufix

⌋
(17)

1 ≤ v ≤
⌊
Kb
r · ufix

⌋
(18)

xi,w,τ ∈ {0, 1} ∀ i ∈ F : Ses
i ≤ t < Se

i ,W
min
i,r ≤ w ≤Wmax

i,r , τ ∈ Si(w).

(19)

Constraints (2) to (5) ensure the resource capacities of the carousels and
central storage system for the considered carousel type r and time period t.
Constraints (17) determine the descent direction value v leading to the next
threshold value which can be reached. Constraints (18) and (19) set the

19

domains of the variables. As in DSP only a subset of flights are considered
we can solve DSP efficiently with CPLEX.

For each time interval m we distinguish three cases when updating
threshold value sets Um: Either, there is at least one carousel type r such
that DSP(r, t) is feasible for all t ∈ Tm(ufix

l+1), or DSP is not feasible for m
and any carousel type r ∈ R, or there exists no feasible solution for DSP
in all time intervals. In the first case, let uk be the largest threshold value
with uta + uk ≤ ufix

l+1. For the next iteration, we include threshold value uk

up to threshold value uk−n with uk−n > max
r∈R,t∈Tm(ufix

l+1)

{
b zDSP(r,t)

Kcb
r
c
}

in Um.

In the second case, we set Um =
{
ufix
l+1

}
for all upcoming iterations, i.e. in

time interval m no improvement can be obtained anymore. In the last case,
the objective value cannot be further minimized and the optimal solution of
the OBHP is found.

5 Implementation details

In this section we present details of our column generation implementation.
In §5.1, a sequential allocation heuristic is presented to produce initial start
columns. The heuristic is based on the procedure currently used in practice.
To increase the chance of finding a feasible solution for RMP, the variety of
duties from two consecutive column generation iterations is increased in §5.2
by means of the Chebyshev center cutting-plane method (CCCPM) of Lee
and Park (2011). To search for a feasible solution in RMP, we apply a primal
set-covering heuristic presented in §5.3. In §5.4 a greedy based MIP-heuristic
for the RPP is presented speeding up each iteration of column generation.
As GCG may not lead to an immediate improvement, we embed the GCG
in a branch-and-price framework described in §5.5.

5.1 Initial columns

To obtain initial columns for RMP we apply a greedy heuristic in which all
flights are increasingly ordered according to the latest start time of baggage
handling and the scheduled departure time serves as tie breaker. When
flight i ∈ F is next in the greedy order, the start time for the baggage
handling as well as the storage depletion is set in the middle of the flight’s
baggage handling time window and the minimal number of working stations
is assigned. Let τ̄i denote the selected start time tuple for flights i ∈ Fas

c

already assigned to a carousel c and let Cpos be the subset of feasible carousel
in terms of parking positions and working stations for flight i. Then, flight i

20

is assigned to the carousel leading to the best leveling for the amount of
baggage during flight i’s baggage handling which is carousel

c∗ = arg min
c∈Cpos

∑
t∈T

 ∑
j∈Fas

c :shτ̄j
≤t<Se

i

Aj,t + 1[shτ̄i ,S
e
i [

(t) ·Ai,t
Kcb
rc

2 ; (20)

The sum of the inner most term on the right hand side of equation (20)
yields the utilization at carousel c over planning horizon T . As high uti-
lization values have to be avoided, the utilization values are penalized by
the quadratic function at any time t (see e.g. Rieck et al. (2012)). If it is
not possible to assign a flight i due to a resource conflicts at a carousel,
the starting time of the baggage handling and the storage depletion is post-
poned by 1 period and (20) is evaluated again. If the resource conflict at
the carousels cannot be resolved for a flight or the capacity of the central
storage system is violated by the flight, we assign the flights to a dummy
carousel with infinite capacity. The dummy duty is inserted into the RMP
to guarantee that a solution exists; the use of this duty is penalized in the
objective function. In a post-processing step we assign not used working
stations sequentially to those flights causing the highest workload on the
carousels.

5.2 Chebyshev center cutting-plane method

Reduced costs (15) allow a flight i ∈ F only to be assigned to a duty if
inequality λi ≥

∑
t∈T µt · Φi

t,τ holds. However, because of dual degeneracy
this inequality is often valid only for a small subset of flights which leads
to duties with a small flight density. To enforce this inequality for a larger
subset of flights we “artificially” increase dual values λi by Lee and Park
(2011)’s cutting-plane method which sets the dual variables to the gravity
point of L-RMP’s dual polyhedron, the so called Chebyshev center.

Let ‖x‖2 be the 2-norm of a vector x, b be the vector of the right hand
side of constraints (11) – (13) and ZLB a lower bound for L-RMP’s objective
function value. To get the gravity point in the dual polyhedron, consider
the Chebyshev centered restricted dual problem

maximize z (21)

subject to∑
i∈F

Θa
d,i · λi −

∑
t∈T

Θs
d,t · µt − νr + ‖(Θa

d,Θ
s
d, 1)‖2 · z ≤ Hd ∀ d ∈ D′r(ufix

l), r ∈ R

(22)

21

− λi + αa
i · z ≤ 0 and − µt + αs

t · z ≤ 0 ∀ i ∈ F (23)

−
∑
i∈F

λi +
∑
t∈T

Ks
t · µt +

∑
r∈R

Cr · νr + αobj · ‖b‖2 · z ≤ −Z
LB (24)

λ, µ, ν, z ≥ 0. (25)

To obtain an increased assignment variety of flights, we extend Lee and Park
(2011)’s method by constraints (23), which set the distance for a dual point
from the non-negativity hyperplanes of λ and µ to at least αa · z and αs · z,
respectively. As the constraints do not influence objective function (21),
proximity parameters αa and αs can be set ≥ 0 without cutting off the op-
timal solution. Lee and Park (2011) use the proximity value αobj > 0 (see
Theorem 3 of Lee and Park (2011)) to move the point either closer to ZLB

by lowering its value or to move the point closer to the current polyhedral
describing hyperplanes by increasing αobj. To increase the assignment va-
riety, we choose αa

i randomly within interval (0, 1] for each flight i ∈ F
after each column generation iteration, while αs

t is set to 0 for all t ∈ T ,
which motivates the dual variables to satisfy inequality λi ≥

∑
t∈T µt ·Φi

t,τ .

Proximity parameter αobj is increased by an increment after each column
generation iteration, as proposed by Lee and Park (2011).

The column generation principle is applied to the primal problem of the
Chebyshev centered restricted dual problem is denoted as the Chebyshev
centered restricted MP (CCRMP) yielding the a feasible lower bound for
MP (see Lee and Park (2011)). When applying column generation, duties
with negative reduced cost are added to the linear relaxed CCRMP (L-
CCRMP). If no such duty exists and z > 0, lower bound ZLB is updated
with ZLB =

∑
i∈F λi+

∑
t∈T K

s
t ·µt+

∑
r∈RCr ·νr. Otherwise, when z = 0,

value ZLB yields the lower bound and column generation is stopped.

5.3 Primal set-covering heuristic

To accelerate the search for a feasible solution in RMP, we make use of the
framework for a primal heuristic proposed by Joncour et al. (2010). In our
primal heuristic, a set-covering heuristic, presented in Appendix C selects
those duties containing the most number of flights not already covered. The
corresponding zd-variables in the L-CCRMP are set to 1 in order to set
up a primal search tree, i.e. the nodes of a branch represent these fixed
duties. To explore the neighborhood of a partial solution, backtracking as a
diversification mechanism is applied in which a tabu list avoids choosing the
same duties selected in previous branches. The tabu list at a node contains
all children of the node as well as the union of the tabu lists of the ancestor

22

nodes; the tabu list is empty at the root node. A node that is not the first
child node of its parent node is explored only if the size of its tabu list is
smaller or equal to maxDiscrepency = 6 and its tree depth is smaller or
equal to maxDeepth = bC2 c.

Given fixed variables zd, column generation is applied to seek for a fea-
sible solution by generating appropriate columns for the partial solution.
The residual L-CCRMP is re-optimized as long as the L-CCRMP becomes
either feasible or the RPP does not return a column with negative reduced
costs. In the latter case, the next branch is examined. If there is no branch
left, we proceed with column generation for the next nextIterations = 2 ·C
iterations until a new search tree is built. Because feasibility of RMP can
be achieved after the addition of a new duty, the set-covering heuristic is
applied after each column generation iteration.

5.4 Pricing problem heuristic

In the RPP we have to add containers and working stations (items) of flights
to a carousel with limited resources (knapsack) over the planning horizon.
Hence, the RPP is at least as hard to solve as a MDKP which is known
to be NP-hard (see Garey and Johnson (1979)). In particular, L-CCRMP
produces a great number of ρ-values ≥ 0 increasing RPP’s computational
intractability. As there is no need to solve RPP exactly until the last iter-
ation of column generation, an approximated solution is used which finds
good solutions in an acceptable time. We implement a heuristic based on
linear programming and adapted the adaptive fixing procedure of Bertsimas
and Demir (2002) for the MDKP. The heuristic iteratively rounds variables
of the linear programming relaxation of the PP. In our pre-experiments, the
procedure yields much better solutions for RPP than any other greedy based
algorithms for the MDKP (see Khan et al. (2002) and Akbar et al. (2006)).
When the PP heuristic does not return a duty with negative reduced cost, we
solve RPP by means of CPLEX to proof either the optimality of L-CCRMP
or to generate a new duty.

5.5 Branch-and-price framework

The column generation terminates as soon as each RPP does not provide
a column with negative reduced cost meaning that the LP bound of L-
CCRMP and, thus, RMP is reached. If no feasible solution is found at
the end of column generation, the solution space is partitioned with the
multi-pattern branching of Elhedhli et al. (2011) who extend the two-pattern

23

branching rule of Ryan and Foster (1981) (see also Vanderbeck and Wolsey
(1996), Barnhart et al. (1998)). As search strategy we apply depth-first
branching. During the branch-and-price algorithm we can prune an exam-
ined node if RMP’s LP-bound is greater or equal to current upper bound ufix

l ,
RMP is not feasible or RMP returns a feasible (integer) solution.

6 Computational study

In this section we report empirical results of the proposed model and so-
lution methodology. For computations we employ an Intel Dual Core 2.8
GHz workstation with 2 GB of RAM memory running on a Windows 7 plat-
form. The mathematical model and algorithms are implemented in JAVA
language. LP and MIP problems are solved by CPLEX 12.4.

In §6.1 we provide a description of the underlying data. An experimen-
tal study in §6.2 compares the performance of the GCG, a standard column
generation (SCG) procedure for RMP in which all threshold values are con-
sidered in the PP (see §4.1) and the TIF. The performance of the GCG with
all implementation details of §5 for real-world scenarios is shown in §6.3.

6.1 Data base

All test instances are derived from 2010 data of Terminal 2 of Munich Air-
port. The planning horizon is set from 03:00 am to 10:40 pm, i.e. T = 236
for periods of 5 minutes length. As shown in Figure 2 the planning horizon
is divided into 3 time intervals, in which the target value for the utilization
is set to uta = 0.5. The threshold values for the deviations from the target
value are Um = {u1, . . . , u13} = {0.1, 0.2, . . . , 0.9, 1, 2, 10, 100} in each time
interval 1 ≤ m ≤ 3. To minimize the utilization and to reach the target
value of 0.5 in each of the 3 time intervals, we penalize a deviation of uk
with pk = kk for k ∈ {1, . . . , 13}. All presented results are rounded after the
second decimal place. In the following, we provide a description of the bag-
gage arrival process, of airport’s infrastructure and the considered outgoing
flights.

Arrival process The OBHP’s solution quality depends to a great extend
on the baggage arrival process Ai for each flight i ∈ F (see Appendix B).
The arrival process consists of the dynamic and stochastic baggage arrival
process at the check-in and of transfer flights. According to Stolletz (2011)
(see Robertson et al. (2002)) the arrival process of passengers and, hence,

24

Table 2: Average RMSE and the average a(i)-values of 1,000 flights

50% 70% 80% 90%

E(A) < 50 [50, 100] > 100 < 50 [50, 100] > 100 < 50 [50, 100] > 100 < 50 [50, 100] > 100

RMSE 0.58 1.03 1.72 0.60 1.03 1.72 0.68 1.11 1.86 0.91 1.42 2.37
ā 0.10 0.19 0.34 0.07 0.15 0.27 0.06 0.12 0.21 0.04 0.08 0.14

the arrival process of check-in baggage, shows predictable a arrival pattern
depending on a flight’s destination and scheduled time of departure. Using
our data from Terminal 2, a study revealed that the same holds true for
the arrival time of incoming flight following a gamma-distribution. Thus,
to obtain an estimation for flight i’s baggage arrival process Ai for a plan-
ning day, we accumulate flight i’s historical amount of baggage arriving in 5
minute intervals before the scheduled departure time. A flight i is thereby
uniquely identified by its flight number, flight destination, departure day and
departure time. To avoid seasonal dependencies (e.g. vacations, holidays,
festivals, etc.), data collection is restricted to a maximal 3 months before
the planning day. Having the accumulated amount of baggage in each time
interval, we derive the 50% (5), 70% (7), 80% (8) and 90% (9) quantile for
the estimation of Ai. The quantiles represent the different robustness de-
grees of the obtained solution. The higher the quantile the lower the chance
that the amount of arrived baggage and, thus, the calculated utilization at
the carousels are underestimated. On a planning day, we calculate the aver-
age underestimation of the historical arrival process Ah

i from the estimated

arrival process Ai with a(i) = 1
T ·
∑

t∈T

(
Ah
i,t −Ai,t

)+
. Table 2 reports the

average root mean squared error (RMSE) and the average underestimation
(ā) of the historical arrival process of 1, 000 flights according to the expected
amount of baggage E(A). The results show that the higher the quantile the
lower the underestimation of the amount of baggage.

Infrastructure The layout for the handling facilities is based on the one
of Terminal 2 of Munich Airport with 22 carousels and 3 carousel types (see
Table 3 (a)). The capacity of the central storage is bounded by 3, 500 bags,
while the storage depletion rate is 19 bags per 5 minute. Each working
station has a working rate of 8 bags per 5 minute.

Outgoing flights For each flight the time window for the start of the
baggage handling is derived from the minimal and maximal duration for

25

Table 3: Carousels (a) and flights’ handling periods in minutes (min) (b)

(a) Carousels

Capacity

Type r Kpp
r Kws

r Kca
r

1 8 4 20
2 12 4 25
3 24 6 40

(b) Handling periods

Handling period (min)

E(A) Min Max

< 50 30 60
[50, 100] 60 120
> 100 120 180

the baggage handling periods which depends on flight’s expected amount of
baggage (see Table 3 (b)). The scheduled time of departure of the flight as
well as the number of containers required for each flight is taken from the
historical data.

6.2 Experimental study

All column generation implementations are initialized with greedy heuristic
of §5.1, the primal set-covering heuristic of §5.3 searches for feasible solutions
and the PP is solved as described in §5.4. We denote the test instances
with I-n(q) where n stands for the instance number and q ∈ {5, 7, 8, 9}
represents the used quantile to estimate flights’ baggage arrival process.
For the generation of test instances I-1(q) to I-8(q), we systematically vary
the number of flights and the number of handling facilities. The flights
are randomly selected from a pool of 413 different flights for each instance
number. For each instance, Table 4 shows in row “C(r)” the number of
carousels and the corresponding type (r) as defined in Table 3 (a). As
indicator for the hardness of an instance, row “LB” shows the LP-bound for
the minimal number of required carousels for each instance. The last row
“Pro. 1/2” gives the average percentage reduction of the start time tuple
sets for Proposition 1 and 2, respectively.

Table 4: Experimental instance information with the reduction of the start
time tuples due to Propositions 1 and 2 in %

Instance I-1(q) I-2(q) I-3(q) I-4(q) I-5(q) I-6(q) I-7(q) I-8(q)

F 25 50 100 150 200 250 300 413
C(r) 10(2) 10(2) 10(2) 7(1)/10(2) 7(1)/10(2) 7(1)/10(2) 7(1)/10(2) 7(1)/10(2)
LB 1 1.89 3.83 4.67 6.33 8.33 12.72 14.17

Pro. 1/2 40.28/14.63 39.88/12.03 42.49/12 42.64/12.24 42.33/11.77 41.16/12.23 42.37/11.97 44.17/12.40

26

Table 5 shows the results for comparison between the GCG, the SCG
and the TIF for the instances I-1(q) to I-4(q). In both column generation
implementations, we make no use of the CCCPM and as soon as the LP-
bound is reached the procedures terminate. Columns “Cols” and “Time (s)”
report the total number of generated columns and the computing time (in
seconds) until the LP-bound is reached. From the best solution found we
report in column “u∗” the highest utilization across all time intervals. Some
instances solved by means of SCG did not reach the LP-bound within 1
hour time. For those instances, indicated by“‡”, the computation time until
the best utilization obtained in column “u∗” is reported in column “Time
(s)”. The LP-bound of the column generation and the TIF is reported
in columns “LP-CG” and “LP”, respectively. Column “Upd” shows the
number of updates of the threshold value sets. The results reveal that the

Table 5: Comparison between the GCG, SCG and the TIF

GCG SCG TIF

Inst u∗ Time (s) Cols Upd u∗ Time (s) Cols LP-CG u∗ Time (s) LP

I-1(5) 0.18 2.53 28 2 0.36 148.37 1,878 4.8 · 10−3 0.18 12.42 4.8 · 10−3

I-1(7) 0.18 3.51 50 2 0.26 113.89 1,814 4.2 · 10−3 0.18 12.80 4.2 · 10−3

I-1(8) 0.24 4.07 28 2 0.3 106.62 1,886 8.2 · 10−3 0.24 4.98 8.2 · 10−3

I-1(9)‡ 0.31 3.34 50 3 0.74 8.86 258 6.2 · 10−3 0.31 0.1 2.2 · 10−3

I-2(5) 0.22 3.94 142 3 0.5 507.58 3,387 8.8 · 10−3 0.22 66.26 6.8 · 10−3

I-2(7) 0.22 4.42 105 2 0.72 405.37 3,314 9.3 · 10−3 0.22 55.64 6.2 · 10−3

I-2(8)‡ 0.26 5.18 106 2 1.18 26.86 101 7 · 10−3 0.26 310.24 7 · 10−3

I-2(9) 0.26 6.56 102 2 1.9 320.19 2,306 0.03 0.26 280.69 0.01

I-3(5) 0.22 35.18 236 3 1.24 2,982.78 5919 9.8 · 10−3 0.22 560.02 6.8 · 10−3

I-3(7)‡ 0.2 15.66 201 2 0.34 292.92 330 8.2 · 10−3 0.2 724.19 5 · 10−3

I-3(8)‡ 0.26 19.57 371 4 1.66 139.34 266 0.01 0.26 644.36 9.6 · 10−3

I-3(9)‡ 0.29 32.68 529 6 2.14 168.74 258 0.01 0.29 655.37 7.6 · 10−3

I-4(5)‡ 0.22 48.60 402 3 0.62 352.30 432 8.5 · 10−3 0.22 1434.42 5.4 · 10−3

I-4(7)‡ 0.24 30.98 656 5 1.02 161.87 332 0.03 0.24 1,463.66 0.01
I-4(8)‡ 0.24 44.88 476 5 0.78 570.27 683 8.2 · 10−3 0.24 1,523.49 8.2 · 10−3

I-4(9) 0.28 57.87 878 7 2.32 2,794.70 5,274 0.06 0.28 1,553.45 0.03

GCG requires not only less columns than the column generation for RMP to
reach the LP-solution but also generates better columns in terms of finding
a feasible solution with the primal set-covering heuristic of §5.3. All found
solutions for GCG are optimal as the target value 0.5 is reached. In contrast,
the SCG does not even reach the LP-bound in half of the instances. The
LP-bound obtained by MP and TIF is rather loose in comparison to the
optimal solution. However, MP’s LP bound clearly dominates TIF’s LP-
bound backing the LP-theory (see Nemhauser and Wolsey (1999)).

27

In Table 6, we compare the branch-and-price framework described in §5.5
with GCG and the CCCPM (BB-GCG) and without the CCCPM (BB-
GCG+). As instances I-1(q) to I-4(q) already could be solved to optimality
without the CCCPM, we use the more difficult instances I-5(q) to I-10(q)
for which a SCG did not converge at all. Instances not solved to optimality
with BB-GCG+ and BB-GCG are indicated with “†” and “‡”, respectively.
In column “Nodes” the number of visited nodes is reported, while column
“∅Cols” shows the average number of generated columns in each node.

Table 6: Comparison between BB-GCG and BB-GCG+

BB-GCG+ BB-GCG

Inst u∗ Time (s) ∅Cols Nodes u∗ Time (s) ∅Cols Nodes

I-5(5) 0.22 96.11 824 0 0.22 156.62 392 0
I-5(7) 0.24 98.19 1,105 0 0.24 83.9 331 0
I-5(8) 0.26 82.93 906 0 0.26 295.33 604 0
I-5(9) 0.28 112.18 843 0 0.28 186.72 686 0

I-6(5) 0.22 135.77 1,214 0 0.22 141.06 471 0
I-6(7) 0.24 145.87 942 0 0.24 169.65 442 0
I-6(8) 0.26 173.85 1,267 0 0.26 307.52 836 0
I-6(9) 0.58 172.46 878 0 0.58 169.44 406 0

I-7(5) 0.22 224.99 710 0 0.22 1642.21 972 0
I-7(7) 0.24 262.96 629 0 0.22 479.23 677 0
I-7(8) 0.26 278.44 560 0 0.26 607.55 697 0

I-7(9)†‡ 0.58 297.56 499 104 0.58 417.54 210.2 91

I-8(5) 0.22 449.27 919 0 0.22 360.68 733 0
I-8(7) 0.24 349.64 668 0 0.24 227.73 1184 0
I-8(8) 0.24 1,245.85 1,014 0 0.24 446.48 905 0

I-8(9))†‡ 0.96 436.71 613 103 0.7 280 376 90

I-9(5) 0.22 732.78 877 100 0.22 586.08 978 20
I-9(7) 0.24 3,179.72 1,049 83 0.24 614.80 933 64

I-9(8)† 0.56 3,571.46 988 95 0.26 2,772.77 1747 87

I-9(9)†‡ 0.58 1,753.24 734 100 0.58 1,417.95 1053 131

Using CCCPM reduces the number of examined nodes due to the in-
creased assignment variety during the first run of column generation which
increases also the chance of finding a feasible solution with the primal set-
covering heuristic of §5.3. However, due to the higher number of dual vari-
ables which have to be considered in the RPP, in some instances the time
per column generation in BB-GCP is higher than in BB-GCG+.

28

6.3 Real-world study

For the real-world instances we randomly selected 7 arbitrary planning days
from our historical data and the original layout configuration of Terminal 2 in
Munich Airport is applied (see Table 7). The instances are solved by means
BB-GCG containing all implementation details of §5. The results are shown

Table 7: Real-world instance with the reduction of the start time tuples due
to Proposition 1 and 2 in %

Instance I-10(q) I-11(q) I-12(q) I-13(q) I-14(q) I-15(q) I-16(q)

F 436 389 413 386 440 331 353
C(r) 7(1)/14(2)/1(3)
LB 19.25 18.5 19 18 18.5 17.5 18

Pro. 1/2 28.2/9.12 37.1/12.18 36.28/12.22 34.48/12.41 38.06/12.18 33.31/10.9 24.64/0.48

in Table 8. As most of the papers propose greedy algorithms for planning
outbound baggage (see Abdelghany et al. (2006), Ascó et al. (2013)), we
use greedy heuristic of §5.1, denoted by “Heu”, as benchmark. If the greedy
heuristic does not find a feasible solution (results labeled with “+”), we
relax the carousels’ parking position capacities and assign and schedule a
not planned flight to the carousel having the smallest difference between
the minimum number of the flight’s required working stations and available
working stations. Once all flights are assigned, we run the pre-processing
step as described in §5.1. The average improvement of the utilization in %
when calling FSP is presented in column “∅ Impr”. Column “∅ Time (s)”
shows L-CCRMP’s average computing time until the next feasible solutions
is found. Column “∅ Time (s)” for FSP gives the average computing time
over all calls. The algorithm is aborted after a running time of 8 hours.
For all test instances labeled with “†”, optimality could not be proved. In
the last three columns we report the results of an event-based simulation.
Given the historical time-stamps of the baggage at the infeed station as
parameters, we simulate the transfer of each bag through the BHS to the
destinations as well as the loading process of workers at the working stations
in an event-based simulation. In the simulation we compare the solution
of the heuristic and the BB-GCG with the airport’s manually generated
solution by the dispatcher “Disp”. If dispatcher’s solutions is not feasible in
terms of resource capacities, the result is labeled with a “+”. Column “Heu”,
“BB-GCG” and “Disp” show the average maximal utilization of the three
procedures obtained in 100 simulation runs during the course of the day.
To guarantee a clear comparison between the procedures in the simulation,

29

we allow an utilization greater than one on the carousels’ conveyor belts.
BB-GCG solves 5 of 21 instances to optimality and always outperforms the

Table 8: Computational results for real-world instances

L-CCRMP FSP Simulation

Inst Heu Upd u∗ ∅Time(s) ∅Cols ∅Impr ∅Time (s) Heu BB-GCG Disp

I-10(5) 1.36 1 0.8 15.51 75 68.25 6.87 3.23 2.21

2.29
I-10(7) 2.72 7 0.96 54.75 291.71 15.77 3.26 3.45 1.14
I-10(8)† 3.08 12 1.24 747.77 693.66 8.81 4.60 2.93 0.90
I-10(9) 6.96 12 1.90 359.84 509.33 11.00 4 2.21 0.87

I-11(5)† 2.8 7 1.05 626.77 523.29 9.75 3.57 4.97 2.44

2.96
I-11(7)† 3.08 7 1.05 2,775.96 443.14 19.00 2.95 4.47 1.23
I-11(8)† 3.09 7 1.12 4,435.82 1731.2 22.57 3.12 3.87 0.89
I-11(9)† 8.24 10 2.18 1,498.51 834.6 9.65 4.31 3.98 0.99

I-12(5)† 2.22 4 1.1 336.30 980.5 26.51 2.06 4.13 2.42

3.85
I-12(7)† 3.12 7 1.32 1,382.55 1145 14.82 2.47 4.60 1.22
I-12(8)† 4.16 7 1.32 1,177.96 1360.71 14.78 2.98 4.78 0.53
I-12(9)† 7.52 12 2.25 1,847.16 1043.92 9.34 4.84 4.32 0.84

I-13(5)† 4.1+ 3 1.15 253.01 926.67 28 2.89 3.23 2.12

2.71+I-13(7)† 4.3 4 1.2 78.52 230.75 23.13 2.18 3.12 1.01
I-13(8)† 4.95+ 3 1.33 182.06 357.67 41.16 3.11 3.02 1.28
I-13(9)† 7.35 7 1.85 4,803.03 1309.57 14 4.18 2.89 1.07

I-14(5) 1.72 5 0.68 96.68 411.2 21.14 1.86 2.12 1.34

1.62
I-14(7) 3.08+ 4 0.88 308.33 871.75 24.13 2.14 2.28 1.13
I-14(8)† 2.72 5 0.96 923.53 1,334 22.92 3.67 2.55 0.64
I-14(9)† 8.08 8 0.96 312.79 426.38 19.04 5.81 2.10 0.87

I-15(5)† 3.16+ 3 1.15 2,937.81 1,409.66 32.57 2.12 2.12 1.87

1.91
I-15(7)† 3.44 4 1.2 5,435.51 1,232.75 25.36 2.33 1.98 1.15
I-15(8)† 3.96 6 1.3 4,882.72 1,696.71 14.82 2.91 1.80 0.78
I-15(9)† 8.32 6 2.45 406.98 393.5 13.56 4.53 1.76 0.99

I-16(5)† 3+ 4 1.25 632.31 1,081.67 20.42 1.92 3.02 1.67

2.01+I-16(7)† 3.44 6 1.92 754.45 1,065.5 14.69 2.32 3.14 1.10
I-16(8)† 3.96 7 1.92 4,338.34 2,220.71 15.31 3.56 2.98 0.83
I-16(9)† 8.10+ 4 3.48 6,903.30 2,450.8 17.16 3.55 2.78 1.14

greedy heuristic and the dispatcher. Comparing the best solution found for
BB-GCG with the dispatcher’s solution, we observe a reduction of 65.23% in
average. We can also see, that solving the FSP (see §4.2) lead to an average
improvement of 20,63% of the solution found during column generation. We
identified differences in the assignment and schedule pattern of flights to
carousels between the different quantiles of the same instance. Thus, due to
the fluctuations in the arrival process of baggage, in 5 of 7 days the 80%-
quantile leads to the most robust solution in the simulation with a maximal
utilization near one. In the instances I-10(q) and I-13(q) the 70% and 90%

30

quantile perform best.

7 Conclusion

We presented a TIF for assigning flights to handling facilities and scheduling
their baggage handling period. The problem is of high practical relevance.
We analyzed the problem complexity and showed dominance criterion to
strengthen the solution space. To receive a utilization below or close to a
target value during the course of the day, we presented a GCG framework.
In our computational study we showed that the presented column generation
framework leads to a significant reduction of computer times in comparison
to the TIF or a SCG framework. Different scenarios for the arrival process of
baggage was tested. In 70% of the test instances, the most robust solution
was obtained when the 80% quantile for the baggage arrival process was
used.

A Proof of Theorem 1

For the proof it is sufficient to consider flights assigned to the same carousel.
We have to show that, given a solution by the TIF, it is possible to place all
containers of assigned flights to the carousel such that all assigned working
stations for the flights are reached and there is no overlapping of container
rows or working stations with other flight handled simultaneously. For the
assignment rule, we order the flights by increasing baggage handling ending
times. A container row of a flight is assigned clockwise from 1toKpp

r (see
Figure 3) beginning with the parking position immediately following the
container row of the previously assigned flight such that all working stations
are reached. Assume, flights i1 to ik are handled simultaneously where
flight i1 to ik are ordered according to their baggage handling ending times.
Let us assume that flight i1’s to ik−1’s container rows are assigned with
the above assignment rule and assume, w.l.o.g., that flight ik requires the
last available working station. If flight ik’s container row has to be split on
both sides of the carousel such that it overlaps with flight i1’s container row
by p ≥ 1 parking positions, we right-shift the container row of flight i1 for p
parking positions in clockwise order until the overlapping conflict is solved.
If it is not possible to right-shift flight i1’s container row as it is blocked
by flight i2’s container row, see e.g. Figure 3, we sequentially right-shift
the container rows of the succeeding flights i2 to ik−2; a right-shift of flight
ik−1’s container rows is not required as it would directly lead to a reduction

31

of available parking positions for flight ik. If it is not possible to right-
shift the container rows of flight i1 to ik−2 such that p parking positions for
flight ik become available in the working station segment of flight i1, then
there are either not enough parking positions available for flight ik, or a
right-shift of flight i1’s container row would contradict the requirement that
flight i1’s container row reaches the assigned working stations. In the first
case, we violate the assumption that it is possible to handle the flights i1
to ik simultaneously due to a violation of the parking position capacity. In
the latter case, flight ik would require at least p ≥ Kppws

r additional parking
positions, and hence at least one additional working station, which violates
the working station capacity and, thus, also contradicts the assumption that
the flights can be handled simultaneously.

B Preprocessing for the TIF

Let ρ > 0 be the number of bags transferred from the storage system to any
carousel. If start time tuple τ = 〈sh

τ , s
d
τ 〉 ∈ Si is selected for flight i ∈ F ,

the number bags stored up to period t is given by the expected amount
of baggage arrived up to time t minus the amount of baggage which have
already been sent to the carousel, i.e.

Φi
t,τ =

∑
t<shτ

E(A)i,t − 1{sdτ≤t} ·
(
t− sd

τ + 1
)
· ρ

+

.

Let α > 0 be the number of bags which can be loaded at working station per
period t. Then, if w working stations are assigned to flight i, the number of
bags on carousel c in period t ∈ T \ {0} is derived by the recursive formula

Γi,wt,τ =
(

Γi,wτ,t−1 + 1{shτ≤t<Se
i} ·Ai,t + 1{sdτ≤t<Sei } ·min {ρ,Θτ,t} − α · w

)+

with Γi,wτ,0 = 0. Γi,wτ,t−1 yields the number of bags on the carousel’s conveyor
belt from the previous period. The indicator function indicates weather the
baggage handling has started and thus the amount of baggage Ai,t arriving
in period t is directed to the carousel. The last term yields the amount of
baggage arriving at the assigned carousel from the storage system minus the
bags loaded by the assigned working stations.

32

C Set-covering heuristic

To build the search tree for the primal heuristic, we use the greedy-based
set-covering heuristic consisting of the following three steps:

selection(Dpos): Dpos denotes the set of duties which can be selected.
The procedure first chooses those duties corresponding to an integer solution,
i.e. zd = 1. Then, these duties are selected containing at least one priority
flight, i.e. a flight which could not be assigned during the last run of the set-
covering heuristic. Last, we select duties containing the maximal number
of flights not assigned so far in the partial solution (see Johnson (1974)
and Korte and Vygen (2012)).

storageCapacityCheck(Dsel): After a duty d is added to partial solu-
tion Dsel, the heuristic checks violations of the central storage capacity. Let
FparT
t be the subset of flights handled during period t ∈ T . If the storage

capacity during some period t is violated, flight

i∗d = arg max
i∈FparT

t

{
Φi
t,τ̄i − Φi

t,τi

Pi ·
(
sh
τ̄i − sh

τi

) | {τi, wi, Pi} is feasible for duty d

}

is left-shifted to start time tuple τi � τ̄i; the number of working stations
assigned to flight i is equal to the maximal possible number. We continue
left-shifting flights as long as the storage conflict is not solved or there is no
flight which can be left-shifted. In the latter case, we delete the flight from
a duty with the greatest number of stored bags relative to the consumed
parking positions capacity, i.e. we remove flight

i∗ = arg max
i∈FparT

t

{
Φi
t,τ̄i

Pi ·
(
SEi − sh

τ̄i

)} .
add(Dsel,FnA): Flights FnA, not added at the end of the heuristic, are

assigned to 1 of the selected duties Dsel in decreasing order of the number
of required parking positions. Flights not added are collected in a priority
set.

References

Abdelghany, A., K. Abdelghany, R. Narasimhan. 2006. Scheduling baggage-
handling facilities in congested airports. Journal of Air Transport Manage-
ment 12(1) 76 – 81.

33

Akbar, M.M., M.S. Rahman, M. Kaykobad, E.G. Manning, G.C. Shoja. 2006. Solv-
ing the multidimensional multiple-choice knapsack problem by constructing
convex hulls. Computers & Operations Research 33(5) 1259 – 1273.

Ascó, A., J.A.D. Atkin, E.K. Burke. 2011. The airport baggage sort-
ing station allocation problem. J. Fowler, G. Kendall, B. Mc-
Collum, eds., In proceedings of the 5th Multidisciplinary Interna-
tional Conference on Scheduling : Theory and Applications (MISTA
2011), 9-11 August 2011, Phoenix, Arizona, USA. 419–444. URL
http://www.schedulingconference.org/previous/publications/

displaypub.php?key=2011-419-444-P&filename=mista.bib. Paper.

Ascó, A., J.A.D. Atkin, E.K. Burke. 2013. An analysis of constructive algorithms for
the airport baggage sorting station assignment problem. Journal of Scheduling
1–19URL http://dx.doi.org/10.1007/s10951-013-0361-x.

Barnhart, C., E.L. Johnson, G.L. Nemhauser, M.W. Savelsbergh, P.H. Vance. 1998.
Branch–and–price: Column generation for solving huge integer programs. Op-
erations Research 46(3) 316 – 329.

Ben Amor, H., J. Desrosiers, J.M. Valério de Carvalho. 2006. Dual-optimal in-
equalities for stabilized column generation. Operations Research 54(3) 454 –
463.

Bertsimas, D., R. Demir. 2002. An approximation dynamic programming approach
to multidimensional knapsack problems. Management Science 48(4) 550 –
565.

Desaulniers, G., J. Desrosiers, M.M. Solomon, eds. 2005. Column Generation. 1st
ed. Springer.

Elhedhli, S., L. Li, M. Gzara, J. Naoum-Sawaya. 2011. A branch-and-price al-
gorithm for the bin-packing problem with conflicts. Journal on Computing
23(3) 404–415.

Frey, M., C. Artigues, R. Kolisch, P. Lopez. 2010. Scheduling and planning the out-
bound baggage process at international airports. IEEE International Confer-
ence on Industrial Engineering and Engineering Management (IEEM 2010),
Macao, China.

Frey, M., R. Kolisch. 2010. Scheduling of outbound baggage at airports. 12th
international Conference on Project Management and Scheduling .

Garey, M., D. S. Johnson. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York.

Johnson, D.S. 1974. Approximation algorithms for combinatorial problems. Journal
of Computer and System Science 9(3) 156 – 278.

Joncour, C., S. Michel, R. Sadykov, D. Sverdlov, F. Vanderbeck. 2010. Column
generation based primal heuristics. Electronic Notes in Discrete Mathematics
36(0) 695–702.

Khan, S., K.F. Li, E.G. Manning, M.M. Akbar. 2002. Solving the knapsack problem
for adaptive multimedia system. Studia Informatica Universalis 2 161 – 182.

34

Korte, B., J. Vygen. 2012. Combinatorial Optimization, vol. 5. Springer.

Lee, C., S. Park. 2011. Chebyshev center based column generation. Discrete Applied
Mathematics 159(18) 2251 – 2265.

Lübbecke, M. E., J. Desrosiers. 2005. Selected topics in column generation. Oper-
ations Research 53(6) 1007 – 1023.

Nemhauser, G.L., L.A. Wolsey. 1999. Integer and Combinatorial Optimization.
Wiley-Interscience.

Rieck, J., J. Zimmermann, T. Gather. 2012. Mixed-integer linear programming
for resource leveleing problems. European Journal of Operational Research
221(1) 27–37.

Robertson, C.V., S. Shrader, D.R. Pendergraft, L.M. Johnson, K.S. Silbert. 2002.
The role of modelling demand in process re-engineering. E. Ycesan, C.-H.
Chen, J.L. Snowdon, J.M. Charnes, eds., Proceedings of the 2002 Winter
Simulation Conference.

Ryan, D.M., B.A. Foster. 1981. An integer programming approach scheduling.
A. Wren, ed., Computer and Scheduling of Public Transport Urban Pasenger
Vehicle and Crew Scheduling . North-Holland, Amsterdam, 269 – 280.

SITA. 2014. Baggage report 2014. http://www.sita.aero/surveys-reports/

industry-surveys-reports/baggage-report-2014.

Stolletz, R. 2011. Analysis of passenger queues at airport terminals. Research in
Transportation Business and Management 1(1) 144–149.

Tarău, A.N., B. De Schutter, J. Hellendoorn. 2011. Predictive route control for au-
tomated baggage handling systems using mixed-integer linear programming.
Transportation Research Part C 19(3) 424–439.

Vanderbeck, F., L.A. Wolsey. 1996. An exact algorithm for ip column generation.
Operations Research Letters 19(4) 151 – 159.

35

