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ABSTRACT

It is common accepted that complex systems or cyber-
physical systems need co-simulation for their study. Fur-
ther more, they are made of heterogeneous sub-systems
that have to exchange data. Usually each sub-system
is modeled using specific tools, environments and sim-
ulators. The simulators have to interoperate to realize
all the simulation of the system. It is known that in-
teroperativity is a broad and complex subject. Interop-
erability is a strong commitment as the communication
solution in heterogeneous systems. This paper describes
a co-simulation framework interoperability based FMI
(Functional Mock up Interface) standard for the struc-
tural part and data mediation for semantic part. We
present a case study for Neo-Campus project that shows
how the framework helps to build the semantic interop-
erability of a cyberphysical system.

INTRODUCTION

The Neo-Campus project (Gleizes et al. 2017), sup-
ported by the University of Toulouse III, aims to link the
skills of researchers from different fields of the University
to design the campus of the future. Three major areas
are identified : facilitating the life of the campus user,
reducing the ecological impact and controlling energy
consumption. The campus is considered as a smart city
where several thousand data streams come from hetero-
geneous sensors placed inside and outside the buildings
(CO2, wind, humidity, luminosity, human presence, en-
ergy and fluid consumption , ...). We distinguish :

• Raw data : These are the energy consumption data
(water, electricity, gas).

• Activity-specific data : These are post-processed
data resulting from the merging of raw data (ped-
agogical activities, room occupancy, ..).

• Incident-specific data : These are the failures iden-
tified on campus (heating of computer equipment,
network failures, ...)

• The ambient data : This concerns the context
in which the scenario takes place (temperature,
weather, CO2 level in the air).

We have built a knowledge base from sensors data that
provides real-time data and relationship between them
in order to be used for simulation for example.

Each expert working in Neo-Campus project interact
with data differently using a specific field within simula-
tion, hence the need to build a co-simulation framework
in order to ease the collaboration.

The paper is organized as follows, first we present the
related works on interoperability and our approach to
build the co-simulation framework interoperability. We
continue with the Neo-Campus use case and give a con-
clusion and future work.

RELATED WORKS

Interoperability can be defined as the ability of two or
more entities to communicate and cooperate despite dif-
ferences in the implementation language, the execution
environment, or the model abstraction (Kohar et al.
1996). Interoperability is a complex problem. There
are many ways to deal with it. We have identified two
main approaches : (1) based on levels of conceptual in-
teroperability models (LCIM), (2) based on structural
and semantic interoperabilities. In (Diallo et al. 2011),
LCIM is used as the theoretical backbone for devel-
oping and implementing an interoperability framework
that supports the exchange of XML-based languages.
They defined 7 levels of LCIM with the goal to separate
model, simulation, and simulator in order to better un-
derstand how to make models interoperate. The authors
of (Rezaei et al. 2013) presented an overview of the de-
velopment of interoperability assessment models. They
proposed an approach to measure the interoperability
and used four interoperability levels to define a metric.
(Li et al. 2013) used comparisons between reusability
and interoperability, composability and interoperability
to show the importance of interoperability. The authors
proposed to use models to build interoperability. Thus
they decomposed interoperability into: (1) technical (or
structural) interoperability (communication ports) (2)
and substantive (or semantic) interoperability (contents
meaning) It means that simulation sub-systems can talk
to each other and exchange data, but to understand



each other correctly and co-simulate effectively requires
substantive interoperability. We agree with this decom-
position but instead of using models, which imposes an
important customization of the exported model, we take
advantage of a known simulation standard, FMI (Func-
tional Mock up Interface) to build the structural part.
Our semantic interoperability will be based on data me-
diation.

CO-SIMULATION FRAMEWORK INTEROP-
ERABILITY APPROACH

Our approach for the design of a co-simulation frame-
work interoperability is based on :

1. a co-simulation

2. a software components approach which is de-
fined by (Szyperski 1996) as a unit of composition
with contractually specified interfaces and explicit
context dependencies only

3. a Structural interoperability using the stan-
dardized interface FMI (Functional Mock-up inter-
face)

4. a semantical interoperability using mediation
for adaptation of the data

Co-simulation

Co-simulation is defined as the coupling of several sim-
ulation tools (Hessel et al. 1999) where each tool han-
dles part of a modular problem where data exchange is
restricted to discrete communication points and where
subsystems are resolved independently between these
points. This allows each designer to interact with the
complex system in order to retain its business expertise
and continue to use its own digital tools.

From the literature, we have constructed a global
scheme of co-simulation in order to have an overall view
of it (cf. Figure 1). The models are described by their
interfaces without any access to their contents. Aiming
at securing model exchanging between designers and en-
suring privacy and robustness, we went for a black box
model interoperability. This last makes it then possi-
ble to exchange and use the information between those
components.

Component approach

We chose a component approach in order to overcome
the limits of the white box approach which consists on
redeveloping of all the heterogeneous subsystems in the
same language (Kossel et al. 2006). This imposes that

Figure 1: Overview of co-simulation of two subsystems

models developped by different designers are transpar-
ent and accessible (Allain et al. 2002). The component
approach makes it possible to co-operate prefabricated
pieces, perhaps developed at different times, by different
people, and possibly with different uses in mind. The
main reason is to improve the flexibility, reliability, and
reusability of our framework due to the (re)use of soft-
ware components already tested and validated avoiding
risks of robustness. A component is an autonomous de-
ployment entity which encapsulates the software code
showing only its interfaces. An interface can be de-
scribed as a service abstraction, that defines the op-
erations that the service supports, independently from
any particular implementation (Lea and Marlowe 1995).
Each component should provide the way how it can be
generated (plug-out) either from a white box model, or
another black box provided by a simulator. (cf. Fig-
ure 2) represents a communication between two soft-
ware components; componentA (as a piece of software)
and componentB (UML notation). This component

Figure 2: interaction between two Components

approach should allow data mapping between models,
applications and several building simulators (Simulink,
Dymola, Saber...) using it. A standard interface would
be used to warranty the compatibility between these
tools.

Structural interoperability based FMI

Structural interoperability requests to define commu-
nication ports and has to guarantee the possibility of
connection by respecting data types and the direction
of the ports.

Structural Interoperability Standard - FMI



We chose the standard FMI (Blochwitz et al. 2011) see
(cf. Figure 3) which uses a master-slave architecture as
a simulation interoperability standard.

FMI : Functional Mockup Interface is a Standard in-
terface for the solution of coupled time dependent sys-
tems, consisting of continuous or discrete time subsys-
tems. It provides interfaces between master and slaves
and addresses both data exchange and algorithmic prob-
lems. Simple and sophisticated master algorithms are
supported. However, the master algorithm itself is not
part of FMI for Co-Simulation and should be defined
(Consortium et al. 2010) (Enge-Rosenblatt et al. 2011).
FMI supports different working modes, in particularly:

1. FMI for model exchange (when modeling environ-
ment can generate C code of a dynamic system
model that can be utilized by other modeling and
simulation environments)

2. FMI for co-simulation (when an interface standard
is provided for coupling of simulation tools in a co-
simulation environment)

Figure 3: Interoperability using FMI

The use of FMI can be summarized in 4 steps:

• The design step :The package of the model of sim-
ulation in one component FMU which summarizes
in the modeling (creation of the model of simula-
tion), And transformation (publication of the FMU
which contains an xml file and the model code or its
file), dealing with the main challenge, which is the
gap between the semantics of the source formalism
of the various calculation models (state machines,
Discrete event, data flow or timed automata) and
the semantics of FMI (Tripakis 2015).

• The composition step : The model of the subsys-
tem is joined to the complex system by establishing
the connection graph of the simulation components

• The deployment step : The FMUs are made
available to the slave simulators. This can be made
offline (manually by the user) or online (automat-
ically by the master and where the user specifies
in which network the instances of the FMUs are
transferred)

• The simulation step : The master is responsi-
ble for the life cycle of FMUs instances during the
execution of the simulation

This choice is motivated by the fact that FMI is a stan-
dard and therefore minimizes the customization of the
exported model. It is a tool independent that facili-
tates the exchange of models between different tools and
which therefore minimizes the effort of integration by
proposing approaches that are specific to it.

Semantical interoperability based data media-
tion

The interoperability is the ability to share information
between systems and applications in meaningful ways.
While most system engineering or system applications
stop at the structural level, assuming that if you can
read it you’re going to understand it. Additional level
of interoperability and the next that really matters for
us is a semantic one which needs common information
model to be defined for exchanging the meaning of infor-
mation. Then the content of the information exchanged
is unambiguously defined.

This approach uses a model that describes the informa-
tion shared by taking their semantics into account in the
form of contexts of use. The mediation model leads to
define three types of integration rules:

1. constraint rules that reduce the objects to be con-
sidered according to predicates,

2. merge rules that aggregate instances of classes of
similar,

3. and join rules that combine information from mul-
tiple object classes based on one or more common
properties.

We distinguish two types of mediation:

1. Schema mediation which provides better extensibil-
ity and often better scalability (object interfaces,
rule-based language).

2. Context mediation seeks to discover data that is
semantically close, it is able to locate and adapt in-
formation to ensure complete transparency. We can
therefore take advantage of the robustness of the



mediation schema approach and combine it with
the semantic approximation techniques of context
mediation. This semantic mediation will be used
to correlate, aggregate and dispatch data with re-
spect to the control that we want to enforce on data
produced or consumed.

For example, one component may produce data with
meaning T0, while another may consume data with T1.
It may be that there is no direct T0T1 bridge, but there
are separated T0T’ and T’T1 bridges. A mediator is
required to assemble the bridges to complete the T0T1
translation. Our solution is based on formal interface
descriptions. When a simple component has an input
or output event as a kind of interaction, our interface
description will list those events including their (typed)
parameters. It could be done automatically if a genera-
tor tool, based on language mapping, processes an inter-
face description and produces a proxy (environment side
stub) and a driver (component-side stub) for the com-
ponent. Proxy and driver communicate through a me-
diation channel, using a protocol for message exchange,
see (cf. Figure 4). At the present version, mediators are
hand-coded.

Figure 4: components mediation

The co-simulation framework based component

Simulator

We chose the CosiMate environment which offers a com-
plete simulation environment dynamically linking het-
erogeneous simulators and which can be extended to dif-
ferent simulation environments on different platforms.
CosiMate provides synchronization methods that take
into account the different behaviors of the languages
and the simulators used. Thus, when a simulation is
performed on a network, CosiMate considers the intrin-
sic constraints of the communication medium. Cosi-
Mate adapts to the network configuration, offering a
co-simulation based on a multi-client multi-server to
avoid unnecessary communications between simulators
instantiating local routers for each computer in the co-
simulation. And when different parts of the system are
co-simulated at different levels of abstraction, it is nec-
essary to add adapters (wrappers) to the compatibil-
ity of data exchange between models at different levels.

CosiMate meets our needs by offering two co-simulation
working modes:

• Event mode : The router (that manages the data
exchange and synchronizes the simulator) does not
deal with any notion of time. This mode of com-
munication makes it possible to establish a connec-
tion between the event simulators (HDL simulators,
UML models) and sequential simulators (code C for
example). The data is transmitted once available
on the CosiMate bus. CosiMate is flexible enough
to support different communication protocols.The
data is transmitted once available on the CosiMate
bus, the valid transmission of the router between
the sender and receiver (does not check if the recip-
ient has read the data). CosiMate is flexible enough
to support different communication protocols.

• Synchronized mode : : The router synchronizes
the models taking the minimum time. This mode is
suitable for simulation engines using solvers (such
as Matlab / Simulink).

Cosimate-FMI

Cosimate allows the co-simulation between FMI and
also non-FMI models. There are simulators which are
not supported by Cosimate, thus the need to wrap them
as an FMU component in order to plug them to our cosi-
mate bus

System

The co-simulation of a complex system can thus be
based on the joint simulation of all its subsystems. It
also makes it possible to simulate the whole system by
coordinating and exchanging data calculated and inter-
preted by each subsystem, in order to obtain a result
which does not modify the functionality of the imple-
mentation of the future system. Among our different
simulated models, we distinguish:

1. Functional simulation allowing the validation of the
aspects of the system which are independent of
time, and here we can dissociate the sequential sim-
ulators and the event simulators.

2. Temporal simulation which aims to exchange data
in time windows. Knowing that if data is not con-
sumed in a given time window, it may be lost. A
synchronization model is therefore necessary to co-
ordinate the parallel execution of our different sim-
ulators.

We mention the master-slave model (cf. Figure 5), com-
prising a master simulation and one or more slave sim-
ulations. In this case, the slave simulators are executed
using procedure calls, which results in an inability to ex-
ecute them simultaneously. The distributed model over-
comes the limitations of the master-slave model, which



relies on a co-simulation bus used as a communication
protocol (cf. Figure 6). The complexity of this model fo-
cuses on the co-simulation platform: managing access to
the co-simulation bus and coordinating the data by the
bus controller. Another great difficulty comes from the
integration of time (Yoo and Choi 1997) which is differ-
ent between embedded software systems, hardware and
the surrounding environment.

Figure 5: Example of a master-slave co-simulation plat-
form

Figure 6: Example of a distributed co-simulation plat-
form

NEO-CAMPUS CASE STUDY

System description

As described in the introduction there are several sim-
ulators and sensors scattered around the campus (cf.
Figure 7)

Different simulators used

We therefore have: In one hand several simulators on
a different fields using different kind of data. One is
working with Matlab Simulink on the energetic con-
sumption using a black box neural network Heat pump
model to ensure a comfortable desired in the rooms by
heating and cooling when it is necessary. It is inter-
acting with the outdoors getting from sensors the Elec-

tric power (Kw) and the temperature coming from the
building and generating with a specific time step. The
second simulator is working with powersims toolbox
of Simulink (Khader et al. 2011) using Maximum Power
Point Tracking making it possible to follow the maxi-
mum power point of a non-linear electric generator. It
is interacting with the outdoors getting the values of
the Photovoltaic current and the voltage and generates
Converter control setpoint. The third simulator using
Contiki (Dunkels et al. 2004) which is an operating sys-
tem for networked, memory-constrained systems with a
focus on low-power wireless Internet of things devices
using Cooja which allows large and small networks of
Contiki motes to be simulated in order to evaluate the
performances (energy, delays) of IOT networks using the
protocol CCN (content centric Networking) applied on a
network of sensors. Developed in C++ under linux OS.
The way it interacts with the outdoors is using interest
(requests sent by users containing the name of the data
such as the temperature) and generating the value of
this data. In the other hand the collection of sensors
data is stored in a NoSQL database (mongodb).

Co-simulation engine

The design approach of Neo-campus is necessarily scal-
able and adaptive, which directs our work towards the
development of global and open simulation environment.
As we said before we adopted the component approach
and described the general FMI’s way of working. This
last follows a master slave architecture, and we men-
tioned that a master algorithm needs to be defined in
order to synchronize the simulation of all subsystems
and to proceed in communication steps, that the data
exchange between subsystems is connected via MPI,
TCP/IP, Sockets, and that the mapping between out-
puts to inputs has to be initialized. Cosimate, as de-
scribed, makes us save the efforts of dealing with syn-
chronization between our subsystems. To perform this
integration, CosiMate provides libraries to make the cus-

Figure 7: View of neo-campus sensors



tomization easier. The libraries contain (1) I/O ports
compiled and described for the simulator/language used.
(2) I/O ports description. This description depends on
the environment in which the ports are to be used: for
example, a header file for C/C++ language is provided.
In our case and according to the different simulators
mentioned previously, we constructed an FMU’s com-
ponent for each one either by using FMI toolbox like for
MATLAB/Simulink or PSIM, or a wrapper using FMI
Library from Modelon for the simulator using Contiki.
We made it easy to connect all the simulators knowing
that for example, Simulink and PSIM are supported by
Cosimate but Contiki is not. But the CosiMate FMI
connector can load and run all FMI models compati-
ble with FMI 1.0/2.0 for the Co-simulation mode. As
we said before each of our FMU files is a zip file that
contains a file named modelDescription.xml and one or
more platform-dependent shared libraries. The XML
files are used to describe how a model running in a
simulation environment is connected to the CosiMate
bus. We should mention that CosiMate allows execution
in the native simulation environment, users can easily
work in their familiar environment controlling, debug-
ging, and monitoring simulations as if they are running
in a stand alone mode integration. We can also use re-
mote procedure: if the model is to be run on a remote
machine. The CosiMate Spy tool is used to monitor and
control the co-simulation components and processes. It
acts as a reader of the CosiMate bus without modifying
data exchanges or simulations synchronization during
the co-simulation.

Mediator components

One of the problems encountered is the mediation part,
since we want to achieve a semantic interoperability we
offered the possibility for each simulator to decide of the
way it wants to receive information and depending of the
components it’s talking to (if it already knows them) to
convert its output. For that we encapsulate a mediator
with each component before connecting it to the cosi-
mate bus. We added some procedures which allow us
to copy and later restore the complete state of an FMU
component providing a mechanism for rollback (inspired
from the optional functions of the API of FMI 2.0). For
our sensor network and as we said that it uses a database
to store raw data. This has led us to develop a java simu-
lator (using Mongodb Java Driver) that bridges between
the mangodb database and our cosimate bus. We en-
capsulate the database and our simulator using JFMI (a
java wrapper for FMI). So this virtual encapsulation of-
fers capabilities of data mediation and distributes query
processing. So the other simulators have no need to
know about the database type and location and data
can be accessed easily see (cf. Figure 8).

Figure 8: components mediation

CONCLUSION

We have implemented our architecture and our modeling
works well, we took as example the 4 simulators includ-
ing Contiki which is not compatible with Cosimate and
for which we had to generate a slave FMU. Our database
was encapsulated using JFMI. We were able to solve not
only these structural problems but we added mediators
to our platform in order to achieve semantic interoper-
ability. It is necessary to mention that our framework
allows the integration of all types of simulators and that
for the non FMI and even if they are not supported by
cosimate the use of a wrapper is enough to envelop them
with a c code in order to connect them to the cosimate
bus.
This work allowed us to first make an inventory of
the practices of the various actors of the neOCampus
project. In order to allow the various experts to commu-
nicate and collaborate, we realized that it was preferable
for them to keep their own practices by allowing them
to build or improve their own ”expert” simulator. Thus,
the objective is a completely open system, easy to use,
accepting all types of simulators.
As future work, we would like to build a tool for the
generation of mediator. Moreover, we would like to ap-
proach semantic interoperability using ontology for the
comparison purposes.
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