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A pressure impulse theory for hemispherical liquid impact problems

Julien Philippia,1,∗, Arnaud Antkowiaka, Pierre-Yves Lagréea

aSorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190 Institut Jean Le Rond d’Alembert, F-75005 Paris, France.

Abstract

Liquid impact problems for hemispherical fluid domain are considered. By using the concept of pressure impulse we show that the
solution of the flow induced by the impact is reduced to the derivation of Laplace’s equation in spherical coordinates with Dirichlet
and Neumann boundary conditions. The structure of the flow at the impact moment is deduced from the spherical harmonics
representation of the solution. In particular we show that the slip velocity has a logarithmic singularity at the contact line. The
theoretical predictions are in very good agreement both qualitatively and quantitatively with the first time step of a numerical
simulation with a Navier-Stokes solver named Gerris.
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Figure 1: Sketch of an impact problem involving a liquid domain of arbitrary
shape and a solid boundary. The red dots represent the position of the contact
line.

1. Introduction

Impacts are extremely brief and violent phenomena involv-
ing solids or fluids occurring in very diverse situations: impact
of a wave on a seawall [1], the landing of seaplanes [2] and
more generally the water entry of solid objects [3, 4] or the im-
pact of a liquid drop onto a solid surface [5, 6]. As suggested
by the variety of previous examples, impact problems involve
any geometry and could be defined as a general problem with
liquid and solid domains of arbitrary shape (see Fig. 1).

The impulsive aspect of impacts is a common characteristic
shared by all these problems. This feature could be defined as
a considerable acceleration of a boundary of the system over a
very short time. Consequently impact phenomena are unsteady,
non-linear and could produce large deformations as in the case
of problems involving free-surfaces e.g. the run across a river
of the Jesus-Christ lizard [7] or the game of stone-skipping [8].
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Figure 2: Left: Sketch of a drop of radius R sitting on a solid substrate. The
latter is initially impacted from beneath. The impulsion induces deformations
of the drop and eventually its partial or total ejection if the impact energy is
sufficiently large. Right: Sketch of the problem studied in this paper. A drop
is disposed on an nondeformable cylindrical substrate of larger radius. The
latter rises impulsively with a velocity U toward the drop at time t = 0. This
problem could also be seen as an impact problem by considering the free fall of
a cylinder with a drop disposed at its top. The substrate rises at a velocity U in
the reference frame of the drop as soon as the cylinder hits the soil.

This last problem was applied to naval artillery and studied the-
oretically by E. de Jonquières [9] in order to explain why the
bouncing of cannonball across water improves the range of the
shoot.

In this paper we will focus on impact problems involving
drops with the emphasis on its impulsive aspect. More specifi-
cally we will consider the particular case of hemispherical fluid
domains. One example of problem worth of interest in this kind
of configuration is the study of the dynamics of a drop sitting
on a solid substrate when this last is impacted from beneath (see
Fig. 2 left). There are several interesting questions associated
to this problem such as : (i) What is the minimal impact inten-
sity necessary to eject partially or totally the drop from the solid
surface ? (ii) What are the deformation modes induced by the
impact ? (iii) What is the influence of the substrate’s inclina-
tion ? The two first problematics have already been treated for
sessile drops sitting on an oscillating solid substrate [10, 11].
The solution of the whole problem as defined here is an am-
bitious program clearly beyond the scope of this paper. Then
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we propose to solve a slightly different problem with the same
impulsive characteristic. Henceforth we consider a drop of ra-
dius R sitting on a larger cylindrical substrate. The substrate
is initially risen impulsively toward the drop with a velocity U
(see Fig. 2 right). This new configuration, based on the impul-
sive motion of a solid boundary has already been considered in
different contexts [12, 13].

The impulsive problem we propose here could also be seen
as an impact problem. In fact it is possible to study it experi-
mentally by using a cylinder, assumed nondeformable, with a
drop disposed at its top and falling in free fall. When the cylin-
der hits the ground, the impact imposes a velocity U of the sub-
strate in the reference frame of the drop. Hence we can consider
that these points of view are both equivalent. In terms of impul-
sive impact of liquid bodies on plane wall, a similar problem
was studied for different geometries by Tyvand et al. [14] and
for cylindrical fluid bodies by Hjelmervik et al. [15]. The aim
of the present paper is to study impact problems for a drop dis-
posed onto a cylindrical substrate by using the analogy with the
impulsive problem depicted here and with a focus on the flow at
the impact moment. In §2 we introduce the theoretical frame-
work of the problem, based on the concept of pressure impulse
and associated to the impulsive nature of impacts. We deduce
that the problem is reduced to the solution of Laplace’s equa-
tion with Dirichlet and Neumann boundary conditions. In §3
we determine the pressure impulse along the wetted region and
the slip velocity by using a spherical harmonics representation
of the solution. Then, theoretical predictions are qualitatively
and quantitatively compared with numerical solutions. In §4
we depict the structure of the flow induced by the impact. We
deduce that the slip velocity is logarithmically divergent close
to the contact line. The momentum’s lost due to the impact is
also computed. Finally, in §5 we summarize our main results.
The solution of several two-dimensional impact problems for
planar and circular geometries is presented in appendix. Each
problem is solved with a different method.

2. Model

2.1. Pressure impulse theory

Since the pioneering works of Wagner [2] on the landing of
seaplanes, impact problems were enlightened by the concept of
pressure impulse introduced by Bagnold [16]. Otherwise this
quantity was used by Lamb [17] in order to develop a mathe-
matical model of suddenly changed flow. The idea is to notice
that a sudden change of the motion of one of the boundary of the
fluid domain induces pressure gradients which in turn produce
a sudden change in the liquid velocity [18]. This change occurs
over a timescale τ very small compared to the convective time
R/U. Therefore, by introducing a small parameter ε = τ

R/U ,
we deduce after a comparison of the order of magnitude of
each terms of the momentum equation that the non-linear terms
are negligible compared to the time derivative of the velocity.
In this study we only consider inertia-dominated impact then
we assume that gravity, capillary and viscous effects are small
with respect to inertial ones, i.e. Froude Fr = U2/gR, Weber

We = ρU2R/σ and Reynolds Re = ρUR/µ numbers are all
large with respect to unity. Here g denotes the gravity, σ the
liquid-gas surface tension, ρ the liquid density and µ its vis-
cosity. Consequently the time derivative of the velocity is just
balanced by the pressure gradient. Then, at leading-order, the
problem is described by the following equation [17, 18] :

∂u
∂t

= −
1
ρ
∇p, (1)

where p is the pressure of the liquid. We assume here that the
atmospheric pressure is the reference pressure. By integration
of the relation (1) on the impact duration, we obtain :

uimpact = u(τ) − u(0) = −
1
ρ
∇P, (2)

with P the pressure impulse defined by:

P =

∫ τ

0
p(x, t)dt.

The impact velocity considered in this paper is assumed
much lower than the speed of sound c. Hence we can suppose
that the flow induced by the impact is incompressible. There-
fore by taking the divergence of (2) we deduce that the pressure
impulse satisfies Laplace’s equation ∆P = 0.

The problem as described here is general and at this stage
the pressure impulse theory could be applied to many problems
whatever the geometry e.g. with a complete sphere for drop
deformation by laser-pulse impact [19] or with a plane for the
impact of a wave on a seawall [1]. However the mathematical
form of the solution strongly depends on the geometry and on
the boundary conditions.

2.2. Problem statement

We consider a perfectly hemispherical drop of density ρ,
surface tension σ and radius R, lower than the gravity-capillary
length lgc =

√
σ/ρg, disposed on a circular cylinder. The base

of the hemisphere coincides with the circular disc at the top
of the cylinder whose radius is at least R. The cylinder im-
pulsively starts from rest with a velocity U toward the drop or
equivalently the cylinder falls in free fall and imposes a veloc-
ity U to the drop when that one hits the soil. Hence the impact
induces a flow assumed axisymmetric and inviscid. As shown
in the previous paragraph the impulsive problem is reduced to
the derivation of Laplace’s equation, in spherical coordinates in
the present case:

1
r2

∂

∂r

(
r2 ∂P
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂P
∂θ

)
= 0. (3)

This equation is completed by (i) a dynamical condition which
represents normal stress continuity at the free surface S and
which takes account of the high Weber number hypothesis and
(ii) a condition expressing the sudden variation of velocity (u ·
ez)|z=0 = U at the bottom of the drop P at the impact moment,
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Figure 3: Left : Impulsive problem sketched for a liquid domain of arbitrary
shape at the impact moment. Right : Representation of the configuration con-
sidered in the present paper where the free surface S is hemispherical.

where ez is the upward unit vector. These two conditions are
respectively given by the following relations:

P(r = R) = 0, (4)
∂P
∂θ

∣∣∣∣∣
θ= π

2

= ρUr. (5)

The problem is non-dimensionalised using the scales R, ρ and
U and by introducing the following quantities:

r = Rr̄, u = Uū, P = ρURP̄, (6)

we rewrite the equations into their dimensionless counterparts:

1
r̄2

∂

∂r̄

(
r̄2 ∂P̄
∂r̄

)
+

1
r̄2 sin θ

∂

∂θ

(
sin θ

∂P̄
∂θ

)
= 0, (7)

P̄(r̄ = 1) = 0, (8)

∂P̄
∂θ

∣∣∣∣∣∣
θ= π

2

= r̄. (9)

The corresponding model is sketched Fig. 3. We notice that
P̄0 = −r̄ cos θ is a trivial solution of Laplace’s equation which
verifies the Neumann boundary condition (9). Then for conve-
nience we introduce a translation of the pressure impulse such
that P̄ = −r̄ cos θ + P̃. This translation allows us to represent
the solution in the reference frame of the drop. The problem
is hence rewritten as the Laplace’s equation ∆P̃ = 0 with the
following boundary conditions:

P̃(r̄ = 1) = cos θ (10)

∂P̃
∂θ

∣∣∣∣∣∣
θ= π

2

= 0. (11)

This mathematical formulation of the impact problem given by
Laplace’s equation and mixed boundary conditions is very gen-
eral and is reminiscent of many other problems involving dif-
ferent geometries e.g. the dam break problem [20, 21]. We will
present some other examples for two-dimensional problems in
the appendix (section 5).

3. Solution of the impulsive problem and determination of
the slip velocity

In spherical coordinates, axisymmetric Laplace’s equation
can be solved with variable separation, leading to a family of
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Figure 4: Comparison between the pressure impulse field induced by the impact
of a liquid hemisphere and a solid substrate extracted from the first step of
a Gerris simulation (left) and the one represented with equation (13) obtained
with the pressure impulse theory (right). The pressure field computed with
Gerris (Re = 3000 and We = 130) is multiplied by the value of the first time
step dt = 3.333× 10−5 in order to obtain the pressure impulse. As the isovalues
are the same for both cases (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5),
we note that theoretical and numerical approaches are in excellent qualitative
agreement.

elementary spherical harmonic solutions given by Fn(r̄, θ) =

r̄nPn(cos θ) where Pn are Legendre polynomials of degree n. By
decomposing the solution into odd and even parts the condition
(11) imply that the solution of the problem must be written as∑+∞

n=0 A2nF2n [22]. Hence the pressure impulse is given by the
following relation:

P̃(r̄, θ) =

+∞∑
n=0

A2nP2n(cos θ)r̄2n. (12)

The coefficients A2n are determined with the Dirichlet boundary
condition on the free-surface (10) and the orthogonality rela-
tions of the Legendre polynomials [23]. Therefore, the pressure
impulse in the reference frame of the laboratory or equivalently
the velocity potential is given by [14, 24] :

P̄(r̄, θ) = −z̄ +

∞∑
n=0

(−1)n+1(4n + 1)
(2n − 1)(2n + 2)

(2n)!
22n(n!)2 P2n(cos θ)r̄2n.

(13)

Finally the velocity field in the reference frame of the drop at
the impact moment is deduced from relation (2):

uimpact|Rdrop
(r̄, θ) = −∇

 ∞∑
n=0

A2nP2n(cos θ)r̄2n

 . (14)

A closed-form expression of these solutions is unfortunately not
accessible in the general case. However, we will show in sec-
tion 4.2 that it is possible to calculate the value of these series
at some particular places.

Fig. 4 represents a comparison between the structure of the
pressure impulse field obtained from equation (13) and the one
extracted from the first step of a numerical computation per-
formed with the Gerris flow solver (freely downloadable at http:
//gfs.sourceforge.net). Gerris is a solver of the incom-
pressible Navier-Stokes equations for multiphase flows taking
into account surface tension and using a finite-volume approach,
adaptive mesh refinement to reduce computational costs and a
Volume-of-Fluid (VoF) method for interface tracking [25, 26].
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Figure 5: Comparison between the radial velocity field induced by the impact
of a liquid hemisphere and a solid substrate extracted from the first step of
a Gerris simulation (left; Re = 3000 and We = 130) and the one obtained
with the theoretical prediction (14) deduced from the pressure impulse theory
(right). Theoretical and numerical results are in excellent qualitative agreement
(isovalues: 0.2, 0.4, 0.6, 0.8, 1, 1.3, 1.6, 2).

The computation was performed in axisymmetric coordinates
and the initial configuration corresponds to a liquid hemisphere
disposed on a solid surface. The air motion is also computed.
The liquid phase is initialised with a constant downward veloc-
ity with a slip boundary condition at the substrate level. The
Reynolds and Weber numbers corresponding to the impact are
respectively of 3000 and 130 in order to perform a simulation in
an inertia-dominated regime. As Gerris only computes the pres-
sure field it is necessary to multiply this quantity by the value of
the first time step dt = 3.333 × 10−5 in order to obtain the pres-
sure impulse field. We verified that the value of the first time
step of the simulation does not influence the results. The two
approaches are in excellent qualitative agreement and reveal a
structure with a maximum pressure at the center of the impact
reminiscent of some classic problems involving Laplace’s equa-
tion with such boundary conditions e.g the impact of a wave on
a seawall [1].

We represent Fig. 5 a comparison between the structure
of the radial velocity field extracted from numerical computa-
tions performed with Gerris and the one deduced from the pres-
sure impulse theory via equation (14). An excellent qualitative
agreement between the theoretical prediction and the numeri-
cal simulation is measurable. Interestingly, the structure of this
field shows a degenerate behavior near the contact line which is
a hint of the existence of a singularity in this region.

The previous theoretical predictions can be used to deter-
mine some quantities of interests such as the total net normal
force induced by the impact on the solid substrate or the slip
velocity. The first is obtained by integration over the wet sur-
face of the pressure impulse field and will be determined in
section 4. This calculation involves the pressure impulse across
the wetted region P̄(r̄) := P̄(r̄, θ = π

2 ), directly deduced from
equation (13):

P̄(r̄) = −

∞∑
n=0

(4n + 1)
(2n − 1)(2n + 2)

(
(2n)!

22n(n!)2

)2

r̄2n. (15)

A representation of this last solution in very good agreement
with numerical solutions obtained with Gerris and FreeFem++

[27] is represented Fig. 6. This last software (freely download-
able at http://www.freefem.org) is an open-source code

Figure 6: Representation of the analytic solution (red dashed line) of the pres-
sure impulse along the wet radius in excellent agreement with numerical solu-
tions extracted from Gerris (blue solid line) and FreeFem++ (black dashed line).
Just as Fig. 4 we obtained the pressure impulse by multiplying the pressure field
computed with Gerris (Re = 3000 and We = 130) by the value of the first time
step dt = 3.333 × 10−5.

solving partial differential equations using the finite element
method. The computation was performed with the same ini-
tial configuration than the Gerris one and the Laplace’s equation
with the appropriate boundary conditions was directly solved.
The relative error between the Gerris numerical solution and the
theoretical prediction is lower than 1 % except close to the con-
tact line where the error increases up to 6 %. On the other hand
the relative error is lower than 1 % all along the wetted region
in the case of the FreeFem++ numerical solution. As suggested
by Fig. 4, the maximum of the pressure impulse is located on
the axis of symmetry of the drop leading to a structure of the
pressure field reminiscent of the one generated by a wave im-
pacting a seawall [1]. This kind of structure is not universal for
impact problems and the pressure maximum could be located
close to the contact line just like e.g. in the case of the water
entry problem [2, 28, 3] or for drop impact [6].

The slip velocity or velocity at the edge ūe(r̄) := ūr(r̄, θ =
π
2 ) is an other quantity of interest. It is directly deduced from
equation (14) :

ūe(r̄) =

∞∑
n=1

n(4n + 1)
(2n − 1)(n + 1)

(
(2n)!

22n(n!)2

)2

r̄2n−1. (16)

Although this inviscid solution is not physical it is nonetheless
relevant for it corresponds to the edge velocity of the viscous
boundary layer. More precisely this quantity is involved in the
composite solution matching the inviscid and viscous solutions
[29]. This theoretical prediction is compared with numerical so-
lutions computed with Gerris and FreeFem++ in Fig. 7, reveal-
ing an excellent agreement between the different approaches.
The relative error between both Gerris and FreeFem++ numeri-
cal solutions and the theoretical prediction is around 1 %. The
nature of the solution (16) and the structure of the velocity field
will be discussed in section 4. Nonetheless the boundary layer
problem is beyond the scope of the present paper. We note that
solutions (15) and (16) can be expressed with hypergeometric
functions that we will not specify here.
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Figure 7: Comparison of the theoretical prediction of the slip velocity (red
dashed line) with numerical solutions extracted from Gerris (blue solid line -
Re = 3000 and We = 130) and FreeFem++ (black dashed line).

4. Discussion

4.1. Singularity at the contact line of the slip velocity
As already mentioned in the previous section, the radial ve-

locity field has a singular behavior close to the contact line. In
order to discover the nature of this singularity we will deter-
mine the asymptotic behavior of the slip velocity deduced from
spherical harmonics near the contact line (see equation (16)).

By using Stirling’s approximation we deduce that the gen-
eral term of this series is asymptotically equivalent to 2

πn . Hence
close to the contact line, the slip velocity (16) is given by the
relation:

ūe(r̄) ∼
r̄→1

2
π

∞∑
n=1

r̄2n−1

n
.

Recognizing the Taylor expansion of the logarithm we finally
deduce that the asymptotic behavior of the slip velocity close to
the contact line corresponds to a logarithmic divergence leading
to the following approximation:

ūe(r̄) ∼
r̄→1
−

2
π

log(1 − r̄2)
r̄

. (17)

This last asymptotic equivalent matches satisfactorily with the
theoretical prediction even near the origin (see Fig. 8). We note
that each of the numerical solutions deviate from the singular
theoretical prediction near the contact line and reach a finite
value. The logarithmic singularity of the slip velocity is in fact
not really surprising. Mathematically, a singularity at the con-
tact line of the gradient of a harmonic function is a consequence
of the transition from Dirichlet to Neumann boundary condition
at this location. This kind of behavior is universal in potential
theory and is reminiscent of numerous problems as heat trans-
fer, fracture mechanics with the thorn singularity [30] or fluid
mechanics [21, 31, 32]. Depending on the shape of the domain,
the nature of the singularity could also evolve into a power-law
singularity as for the problem of droplet’s evaporation [33].

The regularisation of the singularity will be done in a future
work. However, it is clear that it is not possible to neglect the
non-linear effects close to the contact line because of the high

Figure 8: Comparison between the analytical solution of the slip velocity de-
duced with spherical harmonics (equation (16) - blue continuous line) and its
logarithmic equivalent close to the contact line (equation (17) - red dashed line).

velocity gradient leading to formation of a liquid sheet in this
region. In such a case, equation (1) would be not valid anymore
and the pressure impulse theory would be not accurate in this
region. Consequently, a more careful investigation is necessary
to resolve this singularity. Indeed, the solution presented in this
paper is an outer solution. The correct structure of the flow field
near the contact line should be revealed by using the method of
matched asymptotic expansions. More precisely it will be rele-
vant to follow the methodology from e.g Korobkin and Yilmaz
[20], King and Needham [34] or Needham et al. [35]. The idea
is to define at least one appropriate inner region and consider
the correction of the leading-order problem. The new problem
will be nonlinear and its solution will be spatially non-singular.

4.2. Closed-form expressions for the pressure impulse and ve-
locity fields along the axis of the drop

We represented in the previous section the solutions of the
impact problem with spherical harmonics. A closed-form ex-
pression is unfortunately not accessible in the general case. How-
ever, there exists explicit solutions for the pressure and velocity
fields along the axis of symmetry of the drop. These two quan-
tities, depending on the coordinates z̄ = r̄ along this axis, are
deduced from equations (13) and (14) for θ = 0 and are respec-
tively given by:

P̄(z̄) := P̄(z̄, θ = 0) = −z̄ +
√

1 + z̄2 +
1 −
√

1 + z̄2

z̄2 , (18)

ūz(z̄) := ūz(z̄, θ = 0) =
−2 − z̄2 − z̄4 + 2

√
1 + z̄2

z̄3
√

1 + z̄2
(19)

These last results are confronted with numerical solutions ex-
tracted from Gerris and FreeFem++ in figure 9. There is again
an excellent agreement between the computations and the the-
oretical prediction.

4.3. Structure of stagnation point flow

The calculation of the first mode of the velocity field (14)
respectively along the substrate (θ = π/2) and along the axis of
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Figure 9: Representation of the analytic solution (red dashed line) of respec-
tively the pressure impulse (left) and the velocity (right) along the axis of the
drop in excellent agreement with numerical solutions extracted from Gerris
(blue solid line) and FreeFem++ (black dashed line). The pressure impulse
was obtained by multiplying the pressure field computed with Gerris (Re =

3000 and We = 130) by the value of the first time step dt = 3.333 × 10−5.
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Figure 10: Streamlines of the flow induced by the impact extracted from equa-
tion (14). The pressure field developing inside the drop is represented in the
background.

symmetry of the drop (θ = 0) leads to the following representa-
tion of the flow near the origin:{

ūr(r̄, z̄) ' 5
8 r̄,

ūz(r̄, z̄) ' − 5
4 z̄,

(20)

which corresponds to a structure of stagnation point flow. Equiv-
alently, the ūz component of the field could be obtained with the
first order power series of the analytic solution (19). The com-
plete structure of the flow within the drop at the impact moment
is extracted from equation (14) and represented Fig. 10 via its
streamlines. This last reveals the stagnation point structure of
the flow.

By applying the same series expansion to the asymptotic
equivalent of the slip velocity (17) near the origin, we obtain
the following relation:

−
2
π

log(1 − r̄2)
r̄

=
2
π

r̄ + o(r̄2), r̄ → 0.

Consequently the good agreement between equation (17) and
the slip velocity near the origin of the impact is due to the well
known rough approximation 5

8 '
2
π
.

4.4. Momentum’s lost during impact
By applying Newton’s second law to the drop, we obtain by

integration over the impact duration τ the momentum’s varia-
tion at the impact moment :

p̄1 − p̄0 =

∫ τ

0
F̄(t) dt, (21)

where p̄0 and p̄1 are respectively the momentum of the drop
before and after the impact. The net force F̄ applied to the
system corresponds here to the net normal total force exerted by
the boundary on the fluid. The latter is given by the integration
of the pressure field over the wet surface. We deduce after a
permutation of spatial and temporal integration that the vertical
momentum’s variation directly depends on the integration of
pressure impulse over the wet length P. Hence the projection
of the equation (21) onto ez is given by the following scalar
equation:

p̄0 − p̄1 =

∫
P

P̄(r̄) dS ,

with dS = r̄ dr̄ dϕ. Therefore equation (15) imply that the dif-
ference of vertical momentum is given by :

p̄0 − p̄1 = −2π
+∞∑
n=0

(4n + 1)
(2n − 1)(2n + 2)2

(
(2n)!

22n(n!)2

)2

=
2
3

(3π − 8).

On the other hand, the initial momentum is simply p̄0 = 2
3π.

Finally the resulting momentum after impact in its dimensional
counterpart is given by :

p1 =

∫
V

ρu.ez dV =
2
3

(8 − 2π) ρUR3. (22)

5. Conclusion

We considered in this paper impact problems involving hemi-
spherical liquid domains, with an emphasis on its impulsive as-
pect. The initial configuration we consider in this study is the
free fall of a rigid cylinder with a drop disposed at its top. A
vertical velocity is imposed to the drop when this last hits the
soil.

By using the pressure impulse theory this problem could be
reduced to the derivation of Laplace’s equation with Neumann
and Dirichlet boundary conditions. The pressure impulse along
the wetted region and the slip velocity have been deduced from
the spherical harmonics representation of the solution. The the-
oretical predictions proposed in this paper are in very good
agreement both qualitatively and quantitatively with the first
time step of Gerris numerical simulation and with FreeFem++

calculation.
The structure of the velocity field induced by the impact has

been depicted in the discussion. In particular we exhibit a log-
arithmic singularity at the contact line for the slip velocity, due
to the mixed boundary conditions at this location. We also de-
termined closed-form expressions for the pressure impulse and
velocity fields along the axis of the drop and we discussed the
structure of stagnation point of the flow. To complete the de-
scription of the flow induced by the impact it will be necessary
to match the inviscid solution with the viscous one and to ex-
plain the regularisation of the velocity field close to the contact
line.
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Figure A.11: Sketch of the problem studied by Roberts [13] where the horizon-
tal impulsive motion of a vertical plate generates free-surface flow.

The impact problem as defined in section 2.2 is general
and could be used to study many configurations with differ-
ent geometries as detailed in the appendix (section 5) for two-
dimensional problems involving planar and circular liquid do-
mains. The structure of the pressure impulse and velocity fields
are analogous to those determined in the axisymmetric case.

Appendix : The two-dimensional case

As mentioned in section 2, the class of impact problems
studied in this paper is very general. In particular the pressure
impulse theory could be applied in many problems involving
different geometries of the fluid domain. In this appendix we
will solve few two-dimensional impulsive problems involving
plane and circular boundaries. Since the problem is reduced to
the derivation of Laplace’s equation, several methods could be
used, leading to equivalent mathematical representations of the
solution of the problem (see section 3). Complex analysis is
especially an interesting alternative for two-dimensional prob-
lems.

Appendix A. Short-time behavior of free-surface flows gen-
erated by moving a vertical plate

We consider here the following problem studied by Roberts
[13]. An infinitely deep fluid with a free surface y = η(x, t)
is bounded on the left by a vertical wall at rest. As shown
Fig. A.11, the plate of height R initially moves horizontally with
a constant velocity, corresponding to an impulsive acceleration
as described in the original paper. The flow induced by this mo-
tion being irrotational we can define a velocity potential φ such
as the velocity field is given by u = ∇φ. By assuming that the
flow is incompressible we deduce that the velocity potential is
solution of Laplace’s equation ∆φ = 0. An approach to deter-
mine the evolution of the flow near the contact line is to use a

time decomposition in series of time for φ and η [36] :

φ = φ0 + t φ1 + · · · , η = η0 + t η1 + · · · .

Then the short-time behavior is given by the dominant problem
and the velocity potential don’t have any time dependence at
leading order. We deduce from the analysis of Peregrine [36]
that the fluid’s motion is governed by Laplace’s equation for the
velocity potential at leading order ∆φ0 = 0 in the fluid domain.
The uniform velocity of the moving plate leads to the following
Neumann boundary condition:

∂φ0

∂x

∣∣∣∣∣
x=0

=

{
α, −R < y < 0,
0, y < −R. (A.1)

where α is a real number purely positive with the dimension of
a velocity. At the free surface, Bernoulli’s equation implies that
the pressure is constant at leading order. Hence we have:

φ0 = 0, when y = 0. (A.2)

The Peregrine’s decomposition is also applied to the kinematic
condition at the free-surface DS

Dt = 0 with S = y−η(x, t). Then at
leading-order the free-surface elevation is given by the deriva-
tive of the velocity potential:

η1 =
∂φ0

∂y
, when y = 0. (A.3)

Finally we have to solve Laplace’s equation with Neumann and
Dirichlet boundary conditions (A.1) and (A.2). This problem
is formally identical to the one we solved in the present paper
where the velocity potential and the free-surface elevation are
respectively the counterpart of the pressure impulse and the ra-
dial velocity along the wet surface. We also note that the pres-
sure impulse P, associated to the impact problem previously
defined, may be related to the harmonic velocity potential via
the relation P = −ρφ [18]. Then the relation (2), which relates
the impact velocity with the pressure impulse, corresponds to
the relation (A.1). Therefore we expect that the solutions of the
problem described by Roberts will share the same characteristic
than the impact one e.g. the singular behavior of the derivative
of the harmonic function, corresponding to the free-surface el-
evation in the present case, near the contact line.

The logarithmic behavior of the displacement of the free-
surface is determined by Roberts with complex analysis. The
idea is to calculate the complex velocity by distributing sources
along the wall and images above the line y = 0:

q̄0 =

∫ 0

−R

(
D

2π(z − ia)
−

D
2π(z + ia)

)
da,

where z = x + iy and the source strength on the wall is D =

−2 ∂φ0
∂x

∣∣∣∣
x=0

. Moreover the complex velocity could be written
q̄0 = u0 − iv0 by definition. Hence the leading-order short-time
free-surface elevation is deduced by identification:

η1(x, 0) =
α

π
log

(
1 +

R2

x2

)
. (A.4)
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As expected this quantity has a logarithmic behavior near the
contact line. This singularity has been removed by Needham et
al. [35] by using matched asymptotic expansions.

In the case, not considered by Roberts, where we have to
solve this problem with an additional boundary in y = −R with
a Neumann condition ∂φ

∂y = 0, we need to symmetrize by this
new line the solution obtained with complex analysis. The idea
is to use an infinity of images along the x-axis. We calculate
the complex velocity with the image by the line y = −R of the
distribution of source along the wall and its image. And by
induction, we calculate the complex velocity with the image by
the line y = −nR and y = nR where n is an odd number and we
sum all of these contributions:

q̄0 =
α

π

∫ R

0

(
1

z + ia
−

1
z − ia

+
1

z + 2iR − ia
−

1
z + 2iR + ia

+ ...

)
da

Then we determine the position of the free-surface by identifi-
cation:

η1(x, 0) =
α

π

+∞∑
k=−∞

(−1)k Im
(
i log

(
1 +

R2

(x + 2ikR)2

))
. (A.5)

Finally this example illustrates the interest of complex analy-
sis for two-dimensional problems. However, this framework
is not applicable in three dimension. From now we will solve
problems with methods involving only real analysis, as in the
present paper.

Appendix B. Impact of a wave on a seawall : an other ex-
ample of planar geometry

The pressure impulse theory was also applied to the classic
problem of the impact of a wave on a vertical seawall by Cooker
and Peregrine [1]. Just as in the present study, the problem
is reduced to the derivation of Laplace’s equation with mixed
boundary conditions. An extra Neumann condition for the pres-
sure impulse is imposed at the bottom of the domain for sym-
metry. In the case of an idealized semi-infinite wave impacting
a wall on a fraction µ of its total height (see Fig. B.12 left) the
authors determined with Fourier analysis an analytical solution
for the velocity along the wall after impact vimpact. This last
quantity, determined with the gradient of the pressure impulse
(see equation (2)), is given in absolute value by:

|vimpact(x, y)| = 2U
∞∑

n=1

cos(µλn) − 1
λn

cos
(
λny
R

)
e
−λn x

R ,

with λn =
(
n − 1

2

)
π. Note that there is a typo in the paper of

Cooker and Peregrine [1], a factor -2 is lacking in the equa-
tion (4.1). By using the substitutions x = Rx̄, y = Rȳ and
vimpact = Uv̄impact, we obtain the dimensionless form of the pre-
vious result:

|v̄impact(x̄, ȳ)| = 2
∞∑

n=1

cos(µλn) − 1
λn

cos (λnȳ) e−λn x̄. (B.1)

Figure B.12: a) : Impact of a semi-infinite wave on a fraction µ of the height
of a seawall studied by Cooker and Peregrine [1]. A condition of symmetry
given by a Neumann boundary condition ∂P/∂y = 0 is imposed at the bottom
of the fluid domain. b) : Model of the impact of a semi-infinite wave on a solid
substrate analogous to the problem solved in the present paper. In this case we
have the Dirichlet boundary condition P = 0 on the right side.

By replacing the Neumann boundary condition ∂P/∂y = 0 at
the bottom of the fluid domain by a Dirichlet condition P = 0
and choosing µ = 1 we model an impact of a semi-infinite wave
on a solid substrate which could be seen as a two-dimensional
counterpart for planar geometry of the problem we considered
in this paper. By switching axis, as shown Fig. B.12 right, we
deduced from the previous solution and with an argument of
symmetry that for all (x̄, ȳ) ∈ Ω1 \ (0, 0) (respectively (x̄, ȳ) ∈
Ω2 \ (2, 0)) the horizontal impact velocity is given by:

v̄impact(x̄, ȳ) =


−2

∞∑
n=1

e−λn ȳ

λn
cos (λn x̄) , (B.2a)

2
∞∑

n=1

e−λn ȳ

λn
cos (λn(2 − x̄)) . (B.2b)

with Ω1 = [0, 1] × R+ and Ω2 = [1, 2] × R+. The pressure field
inside the fluid domain could be also expressed in a similar way
for all (x̄, ȳ) ∈ Ω1 (respectively (x̄, ȳ) ∈ Ω2) :

P̄(x̄, ȳ) =


2
∞∑

n=1

e−λn ȳ

λ2
n

sin (λn x̄) , (B.3a)

2
∞∑

n=1

e−λn ȳ

λ2
n

sin (λn(2 − x̄)) . (B.3b)

We represent Fig. B.13 the pressure and the radial velocity
fields obtained with previous analytical solutions. The height
of the domain is large enough to avoid confinement effects in
order to be consistent with the hypothesis of semi-infinity. As
expected, the structure of these fields are similar than the ones
obtained in the case of a hemispherical liquid domain. The
maximum value of the pressure impulse occurs at the center
of the wet surface while the horizontal velocity is singular in
the corner due to mixed boundary conditions at this point as
explained in the section 4.1.

Cooker and Peregrine [1] show in their appendix by us-
ing complex analysis that the singularity near the wall is log-
arithmic (v̄impact(0, ȳ) ∼ − 2

π
log(ȳ)). Up to this point, we have
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Figure B.13: Left : Isovalues of the horizontal velocity field (left) and of the
pressure impulse field (right) induced by the impact of a semi-infinite wave on
a seawall, obtained respectively with the theoretical solutions (B.2a-B.2b) and
(B.3a-B.3b).

completely followed the analysis of Cooker and Peregrine [1].
However, contrary to these authors we want to determine the
nature of the singularity at the corner with a method involving
real analysis. We consider from now the solution corresponding
to 1 ≤ x̄ ≤ 2. In particular we study the solution along the free
surface x̄ = 2. Hence the horizontal component of the velocity
field is given by:

v̄impact(2, ȳ) = 2
∞∑

n=1

e−λn ȳ

λn
. (B.4)

In order to show that this sum have a logarithmic singularity,
we first consider the following equation, valid for y > 0 :

+∞∑
n=1

2e−λny = cosech
(
πy
2

)
.

By integrating this relation from y = ȳ to y = +∞, we obtain :

v̄impact(2, ȳ) = −
2
π

log
[
tanh

(
πȳ
4

)]
. (B.5)

Finally, the velocity along the free-surface has a logarithmic
singularity as ȳ tends to zero.

Appendix C. Derivation of the two-dimensional hemispher-
ical liquid impact problem

In this last appendix we propose to solve the impact prob-
lem studied in this paper in a two-dimensional space by using
boundary integral method. This problem is also analogous to
the one studied by Cooker and Peregrine [1] for a circular liq-
uid domain. The boundary of the domain is designated in this
case by C = C1 ∪C2 with C1 = {(x, y)| − R ≤ x ≤ R, y = 0} and
C2 = {(x, y)|x2 + y2 = R2, y > 0}. As the axisymmetric case the
model is sketched figure 3 right.

Appendix C.1. The boundary integral method
The boundary integral method is used to solve linear partial

differential equations and allows to obtain analytical solutions

when the geometry is simple [37, 38, 39]. When the shape of
the boundaries becomes too complex, numerical solutions can
also be computed. The main idea of this method lies in the
determination of the value of a field satisfying a certain linear
partial differential equation in all points of a domain Ω only
from its values on the boundary. This approach is particularly
interesting to solve Laplace’s equation. Formally, considering
G a Green’s function i.e such as ∆G = δ where δ is the Dirac
delta function and using Green’s theorem, the value of a field f
for all x = (x, y, z) ∈ Ω3 is given by [37, 38, 39]:

f (x) = −

∫
∂Ω

G(x, ξ)
∂ f
∂n

(ξ) dξ dζ +

∫
∂Ω

f (ξ)
∂G
∂n

(x, ξ) dξ dζ,

(C.1)

where ξ = (ξ, ζ, τ) ∈ ∂Ω3. The unit normal n is, by convention,
pointing outward Ω. The first integral of the right hand side of
this equation is designated by SLP (single layer potential) and
the second integral by DLP (double layer potential). When x ∈
∂Ω we can also compute f . However, in this case DLP becomes
improper but this term is still convergent [37, 38]. Then for all
x ∈ ∂Ω:

f (x) = −2
∫
∂Ω

G(x, ξ)
∂ f
∂n

(ξ) dξ dζ + 2
∫
∂Ω

f (ξ)
∂G
∂n

(x, ξ) dξ dζ.

(C.2)

Appendix C.2. Application to circular liquid impact problem

In order to compute the pressure impulse we have to choose
an appropriate Green’s function G for this problem. By appro-
priate we mean that G have to respect some conditions of sym-
metry. We define two kinds of Green’s functions for a given
x ∈ Ω̄ :

1. the Green’s function of first kind, defined by :

∀ξ ∈ C, G(x, ξ) = 0,

2. the Green’s function of second kind, defined by :

∀ξ ∈ C,
∂G
∂n

(x, ξ) = 0,

where C = S∪P is the boundary of the domain (see Fig. 3). We
have to choose for all part of the domain a Green’s function of
first kind or second kind. Because P̄ = 0 on the free surface S,
DLP is equal to zero on this boundary. If we can find a Green’s
function of first kind on S then the contribution given by this
boundary in the computation of P̄ will be null. Similarly we
know the normal derivative of P̄ on the wetted region P then
if we choose a Green’s function of the second kind, DLP will
be zero on this boundary. Therefore we need in this case a
Green’s function which verifies these boundary conditions on
the boundary and which is symmetric on (x, y, z) and (ξ, ζ, τ).
An appropriate Green’s function, defined for x ∈ Ω̄, is given
by:

∀ξ ∈ Ω̄, G(x, ξ) = −
1

2π
log r +

1
2π

log
(
|ξ|

R
r̂
)
, (C.3)
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Figure C.14: Comparison between the slip velocity determined in the axisym-
metric case (red dashed line) and in the two-dimensional case (blue continuous
line).

with r = |x − ξ| =

√
(x − ξ)2 + (y − ζ)2 and r̂ = |x − ξ∗| the

distance between x and ξ∗ = R2

|ξ|2
ξ. ξ∗ is the inverse of ξ with

respect of the circle of center (0, 0) and radius R. Therefore by
using the Green’s function (C.3) the pressure impulse along the
wet surface is given by:

P(x) = −2
∫

C1

G(x, ξ)
∂P
∂ζ

(ξ) dξ (C.4)

Consequently by using the substitutions (x, y) = R(x̄, ȳ), (ξ, ζ) =

R(ξ̄, ζ̄) and ue = Uūe, we obtain for all x̄ ∈ C1:

ūe(x̄) = −
1
π

∂

∂x̄

∫ 1

−1

− log


√

(x̄ − ξ̄)2 +
(
ȳ − ζ̄

)2


+ log
(√

1 − 2(x̄ξ̄ + ȳζ̄) + (x̄2 + ȳ2)(ξ̄2 + ζ̄2)
))

dξ̄.

We finally obtain the two-dimensional slip velocity:

ūe(x̄) = −
1
π

(
2
x̄
−

(
1 +

1
x̄2

)
log

(
1 + x̄
1 − x̄

))
. (C.5)

This last solution, contrary to the one determined in axisym-
metric geometry, could be expressed explicitly. Although the
formulation of these two solutions are different, their structure
are very similar (see Fig. C.14). As for all the previous prob-
lems studied in this paper the slip/impact velocity has a loga-
rithmic singularity close to the contact line. In this last calcu-
lation, this singular structure directly emerge from the Green’s
function appropriated to this problem.
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l’eau, Comptes Rendus des Séances de l’Académie des Sciences. Paris.
97 (1883) 1278–1281.

[10] C.-T. Chang, J. B. Bostwick, S. Daniel, P. H. Steen, Dynamics of sessile
drops. part 2. experiment, Journal of Fluid Mechanics 768 (2015) 442–
467. doi:10.1017/jfm.2015.99.

[11] E. D. Wilkes, O. A. Basaran, Drop ejection from an oscillating rod,
Journal of Colloid and Interface Science 242 (1) (2001) 180 – 201.
doi:http://dx.doi.org/10.1006/jcis.2001.7729.

[12] K. Stewartson, On the impulsive motion of a flat plate in a viscous fluid.,
The Quarterly Journal of Mechanics and Applied Mathematics 4 (2)
(1951) 182–198. doi:10.1093/qjmam/4.2.182.

[13] A. Roberts, Transient free-surface flows generated by a moving verti-
cal plate, The Quarterly Journal of Mechanics and Applied Mathematics
40 (1) (1987) 129–158.

[14] P. A. Tyvand, K. M. Solbakken, K. B. Hjelmervik, Incompressible im-
pulsive wall impact of liquid bodies, European Journal of Mechanics -
B/Fluids 47 (2014) 202 – 210.

[15] K. B. Hjelmervik, P. A. Tyvand, Incompressible impulsive wall impact of
liquid cylinders, Journal of Engineering Mathematics (2016) 1–13.

[16] R. A. Bagnold, Interim report on wave-pressure research, Journ. of ICE
12 (1939) 202–226.

[17] H. Lamb, Hydrodynamics, Cambridge university press, 1932.
[18] G. K. Batchelor, An introduction to fluid dynamics, Cambridge University

Press, 1967.
[19] H. Gelderblom, H. Lhuissier, A. L. Klein, W. Bouwhuis, D. Lohse,

E. Villermaux, J. H. Snoeijer, Drop deformation by laser-pulse impact,
Journal of Fluid Mechanics 794 (2016) 676–699. doi:10.1017/jfm.

2016.182.
[20] A. Korobkin, O. Yilmaz, The initial stage of dam-break flow, Journal

of Engineering Mathematics 63 (2) (2009) 293–308. doi:10.1007/

s10665-008-9237-z.
[21] P. K. Stansby, A. Chegini, T. C. D. Barnes, The initial stages of dam-break

flow, Journal of Fluid Mechanics 374 (1998) 407–424.
[22] A. Antkowiak, N. Bremond, S. Le Dizès, E. Villermaux, Short-term dy-

namics of a density interface following an impact, Journal of Fluid Me-
chanics 577 (1) (2007) 241–250.

[23] W. E. Byerly, An Elementary Treatise on Fourier’s Series, GINN & COM-
PANY, 1893.

[24] J. Philippi, A. Antkowiak, P.-Y. Lagrée, Un modèle simplifié pour le
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