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Given a variety of finite monoids V, a subset of a monoid is a V-subset if its syntactic monoid belongs to V. A function between two monoids is V-preserving if it preserves V-subsets under preimages and it is hereditary V-preserving if it is W-preserving for every subvariety W of V. The aim of this paper is to study hereditary V-preserving functions when V is one of the following varieties of finite monoids: groups, p-groups, aperiodic monoids, commutative monoids and all monoids.

Introduction

This article is a follow-up of [START_REF] Pin | On profinite uniform structures defined by varieties of finite monoids[END_REF], where the authors started the study of Vpreserving functions. Let us first remind the definition. Let M be a monoid and let V be a variety of finite monoids. A recognizable subset S of M is said to be a V-subset if its syntactic monoid belongs to V. A function f : M → N is called V-preserving if, for each V-subset of N , f -1 (L) is a V-subset of M . A function is hereditary V-preserving if it is W-preserving for every subvariety W of V.

Let us first consider the case where f is a function from A * to B * , where A and B are finite alphabets. If V is the variety M of all finite monoids, a V-preserving function is also called regularity-preserving, according to the terminology used in [START_REF] Kosaraju | Regularity preserving functions[END_REF][START_REF] Seiferas | Regularity-preserving relations[END_REF][START_REF] Stearns | Regularity preserving modifications of regular expressions[END_REF]. The characterization of regularity-preserving functions is a long-term objective, but in spite of intensive research (see [START_REF] Pin | Newton's forward difference equation for functions from words to words[END_REF] for a detailed bibliography), it it is still out of reach. For the variety G p of finite p-groups, the situation is more advanced. Indeed, the authors gave in [START_REF] Pin | A noncommutative extension of Mahler's theorem on interpolation series[END_REF] a characterization of G p -preserving functions when B is a one-letter alphabet

Preliminaries

In this section, we review the basic notions used in this paper.

Varieties

A variety of finite monoids is a class of finite monoids closed under taking submonoids, quotients and finite direct products. In the sequel, we shall use freely the term variety instead of variety of finite monoids.

We denote by M (respectively Com, G, Ab, A) the variety of all finite monoids (respectively finite commutative monoids, finite groups, finite abelian groups, finite aperiodic monoids). Given a prime number p, we denote by G p the variety of all finite p-groups and by Ab p the variety of all finite abelian p-groups. Each finite monoid M generates a variety, denoted by (M ). The join of a family of varieties (V i ) i∈I is the least variety containing all the varieties V i , for i ∈ I.

For n > 0, C n denotes the cyclic group of order n. Throughout the paper, we shall use the well-known structure theorem for finite abelian groups [START_REF] Rotman | The theory of groups. An introduction[END_REF], which shows that Ab is the variety generated by the finite cyclic groups.

Proposition 2.1 Every finite abelian group is isomorphic to a direct product of finite cyclic groups.

Ultrametrics and pseudo-ultrametrics

A pseudo-ultrametric on a set X is a function d : X × X → R satisfying the following properties, for all x, y, z ∈ X:

(P 1 ) d(x, y) 0, (P 2 ) d(x, x) = 0, (P 3 ) d(x, y) = d(y, x), (P 4 ) d(x, z) max{d(x, y), d(y, z)}.

An ultrametric satisfies a stronger version of (P 2 ): (P 5 ) d(x, y) = 0 if and only if x = y.

Uniformly continuous functions

Given two pseudometric spaces (X 1 , d 1 ) and (X 2 , d 2 ), a function f : X 1 → X 2 is uniformly continuous if, for every positive real number ε there exists a positive real number δ > 0 such that for all (x, y) ∈ X 2 ,

d 1 (x, y) < δ implies d 2 (f (x), f (y)) < ε. (2.1)
It follows in particular that if d 1 (x, y) = 0, then d 2 (f (x), f (y)) = 0. Moreover this condition is sufficient if 0 is an isolated point in the range of d 

d 1 (x, y) = 0 implies d 2 (f (x), f (y)) = 0. (2.2)
Proof. Since d 2 has finite range, there exists a positive real number ε such that

d 2 (u, v) < ε implies d 2 (u, v) = 0. If f is uniformly continuous, there exists δ such that d 1 (x, y) < δ implies d 2 (f (x), f (y)) < ε.
By the choice of ε, this actually implies d 2 (f (x), f (y)) = 0 and thus (2.2) holds.

Since d 1 has finite range, there exists a positive real number δ such that d 1 (u, v) < δ implies d 1 (u, v) = 0. Suppose that (2.2) holds and let ε be a positive integer. If d 1 (u, v) < δ then d 1 (u, v) = 0 and by (2.2), d 2 (f (x), f (y)) = 0. It follows in particular that d 2 (f (x), f (y)) < ε and thus f is uniformly continuous.

Nonexpansive functions form an interesting subclass of the class of uniformly continuous functions. A function

f : (X 1 , d 1 ) → (X 2 , d 2 ) is nonexpansive if, for all (x, y) ∈ X 1 × X 1 , d 2 (f (x), f (y)) d 1 (x, y)
We shall use nonexpansive functions in Section 3.

Pro-V metrics

For the remainder of this section, let V denote a variety of finite monoids. Let M be a monoid and let u, v ∈ M . We say that a monoid N separates u and v if there exists a monoid morphism ϕ : M → N such that ϕ(u) = ϕ(v). A monoid M is residually V if any two distinct elements of M can be separated by a monoid in V.

We shall use the conventions min ∅ = ∞ and 2 -∞ = 0. For all u, v ∈ M , let v) . Then d V is a pseudo-ultrametric, called the pro-V metric on M (see [START_REF] Pin | On profinite uniform structures defined by varieties of finite monoids[END_REF]). If the monoid is residually V, then d V is an ultrametric.

r V (u, v) = min |N | N is in V and separates u and v and d V (u, v) = 2 -r V (u,
In this paper, we consider free monoids, free commutative monoids and free abelian groups of finite rank: they are all finitely generated and residually V for the main varieties considered in this paper: monoids, (abelian) groups, abelian p-groups, (commutative) aperiodic monoids.

V-uniform continuity and V-hereditary continuity

Let M and N be monoids. A function f : M → N is said to be V-uniformly continuous if it is uniformly continuous for the pro-V pseudometric on M and N . The following result was proved in [START_REF] Pin | On profinite uniform structures defined by varieties of finite monoids[END_REF]Theorem 4.1].

Proposition 2.3 A function f : M → N is V-preserving if and only if it is V-uniformly continuous.
We say that f is V-hereditarily continuous if it is W-uniformly continuous for each subvariety W of V. Closure properties of this notion under various operators are analysed in [START_REF] Pin | On profinite uniform structures defined by varieties of finite monoids[END_REF]Subsection 4.3].

A monoid N is called V-projective if the following property holds: if α : N → R is a morphism and if β : T → R is a surjective morphism, where T (and hence R) is a monoid of V, then there exists a morphism γ :

N → T such that α = β • γ. N R T α γ β
For example, any free monoid (in particular N) is V-projective for every variety of finite monoids. Similarly, any free group (in particular Z) is V-projective for every variety of finite groups. Note that a V-projective monoid is W-projective for every subvariety W of V.

The following results were proved in [START_REF] Pin | On profinite uniform structures defined by varieties of finite monoids[END_REF]: In constrast, note that a V-uniformly continuous function from a monoid to a commutative monoid is not necessarily (V ∩ Com)-hereditarily continuous. For instance, the function f from {a, b} * to N defined by f (ab) = 1 and f (u) = 0 if u = ab is M-uniformly continuous but is not Com-uniformly continuous.

Proposition 2.

p-adic valuations

Let p be a prime number. If n is a non-zero integer, the p-adic valuation of n is the integer

v p (n) = max k ∈ N | p k divides n
By convention, v p (0) = +∞. Note that the equality v p (nm) = v p (n) + v p (m) holds for all integers n, m.

The p-adic norm of n is the real number

|n| p = p -vp(n) .
The p-adic norm satisfies the following properties, for all n, m ∈ Z: The p-adic valuation and the p-adic norm can be extended to Z k as follows.

(N 1 ) |n| p 0, ( N 
Given n = (n 1 , . . . , n k ) ∈ Z k , we set

v p (n) = min 1 j k {v p (n j )} and |n| p = p -vp(n) = max 1 j k {|n j | p } .
The p-adic norm on Z k still satisfies (N 1 ), (N 2 ) and (N 4 ), as well as the following weaker version of (N 3 ):

(N 5 ) for all n, m ∈ Z k , |mn| p |m| p |n| p .
The p-adic norm on Z k induces the p-adic ultrametric d p on Z k , defined by d p (u, v) = |u -v| p . Note that the pro-Ab p metric d Abp and d p are strongly equivalent metrics.

Binomial coefficients

Let A be a finite alphabet. We denote by A * the free monoid on A. Note that if |A| = 1, then A * is isomorphic to the additive monoid N.

Let u and v be two words of

A * . Let u = a 1 • • • a n , with a 1 , . . . , a n ∈ A. Then u is a subword of v if there exist v 0 , . . . , v n ∈ A * such that v = v 0 a 1 v 1 • • • a n v n . Set v u = |{(v 0 , . . . , v n ) | v = v 0 a 1 v 1 • • • a n v n }| . Note that if A = {a}, u = a n and v = a m , then v u = m
n and hence these numbers constitute a generalization of the classical binomial coefficients. See [START_REF] Lothaire | Combinatorics on words[END_REF]Chapter 6] for more details. Sometimes, it will be useful to use the convention m n = 0 for m 0 and n ∈ Z \ {0, . . . , m}, which is compatible with the usual properties of binomial coefficients.

Mahler expansions

For a fixed v ∈ A * , we can view the generalized binomial coefficient v as a function from A * to N. The functions v | v ∈ A * constitute a locally finite family of functions in the sense that, for each u ∈ A * , the image of u is 0 for all but finitely many elements of the family.

It is clear that the sum of a locally finite family of functions is well defined. In particular, if (g v ) v∈A * is a family of elements of an abelian group G, then there is a well-defined function f from A * into G defined by the formula (in additive notation)

f (u) = v∈A * g v u v
The generalized binomial coefficients provide a unique decomposition of the functions from A * into G, which will be referred as Mahler expansion:

Proposition 2.6 (Lothaire [START_REF] Lothaire | Combinatorics on words[END_REF]) Let G be an abelian group and let f : A * → G be an arbitrary function. Then there exists a unique family

f, v v∈A * of elements of G such that, for all u ∈ A * , f (u) = v∈A * f, v u v .
This family is given by the inversion formula

f, v = w∈A * (-1) |v|+|w| v w f (w) (2.3)
A similar result holds for functions from N k to an abelian group G. If r is an element of N k (or more generally of Z k ), we denote by r i its i-th component, so that r = (r 1 , . . . , r k ). First observe that the family

r1 • • • r k | r ∈ N k
is a locally finite family of functions from N k into N. Thus, given a family (g r ) r∈N k , the formula

f (n) = r∈N k g r n1 r1 • • • n k r k defines a function f : N k → G.
Conversely, each function from N k to G admits a unique Mahler expansion, a result proved in a more general setting in [START_REF] Amice | Interpolation p-adique[END_REF][START_REF] Ahlswede | Approximation of continuous functions in p-adic analysis[END_REF].

Proposition 2.7 Let G be an abelian group and let f : N k → G be an arbitrary function. Then there exists a unique family f, r

r∈N k of elements of G such that, for all n ∈ N k , f (n) = r∈N k f, r n1 r1 • • • n k r k .
The coefficients f, r are given by

f, r = r1 i1=0 . . . r k i k =0 (-1) r1+...+r k +i1+...+i k r1 i1 • • • r k i k f (i).

G p -hereditary continuity

Let p be a prime number. We proved in [START_REF] Pin | A Mahler's theorem for functions from words to integers[END_REF][START_REF] Pin | A noncommutative extension of Mahler's theorem on interpolation series[END_REF] that G p -uniformly continuous functions from A * to Z can be characterized by properties of their Mahler expansions. The case where A is a one-letter alphabet corresponds to the classical Mahler's Theorem from p-adic number theory [START_REF] Mahler | An interpolation series for continuous functions of a p-adic variable[END_REF][START_REF] Mahler | A correction to the paper "An interpolation series for continuous functions of a p-adic variable[END_REF].

Theorem 3.1 Let f : A * → Z be a function and let f (u) = v∈A * f, v u v be its Mahler expansion. Then the following conditions are equivalent:

(1) f is G p -uniformly continuous; (2) lim |v|→∞ | f, v | p = 0.
A similar result (Amice, [START_REF] Amice | Interpolation p-adique[END_REF]) holds when A * is replaced by Z k (see also [START_REF] Pin | A noncommutative extension of Mahler's theorem on interpolation series[END_REF]Corollary 6.3] for an alternative proof). In this section, we obtain analogous results for G p -hereditary continuity. A first step is to reduce G p -hereditary continuity to a simpler property.

Lemma 3.2 A function from a monoid to a G p -projective commutative monoid is G p -hereditarily continuous if and only if it is (C p n )-uniformly continuous for all n > 0. Proof. By Proposition 2.5, f is G p -hereditarily continuous if and only if it is (G p ∩ Com)-hereditarily continuous. Since G p ∩ Com = G p ∩ Ab = Ab p = n>0 (C p n ) by Proposition 2.1, Proposition 2.4 implies that f is G p -hereditarily continuous if and only if f is (C p n )-
hereditarily continuous for every n ∈ N. Since the only subvarieties of (C p n ) are those of the form (C p i ) with i n, the lemma follows.

Let V be a variety of groups. Since any morphism from N k to a finite group extends uniquely to a morphism from Z k to that same group, the pro-V pseudometric on N k is the restriction of the pro-V pseudo-metric on Z k . Therefore the forthcoming results hold for N k even though they are stated and proved for Z k .

We denote by e 1 , . . . , e k the canonical generators of both N k and Z k . Thus e j = (0, . . . , 0, 1, 0, . . . , 0) where the 1 occurs in position j. Proof. Suppose that r j ≡ s j (mod p i ) for some i n and j ∈ {1, . . . , k}. Let f : Z k → C p i be defined by f (n) = n j . Clearly, C p i ∈ (C p n ) and f separates r and s, hence d(r, s) 2 -p i and so d(r, s) 2 -p m . Note that this last inequality holds trivially if m = ∞.

If d(r, s) = 0, equality follows. Otherwise, we may assume that f :

Z k → G ∈ (C p n
) is a morphism that separates r and s with |G| minimum. By Proposition 2.1, G is a direct product of cyclic groups. Since their order must divide |G| which is a power of p, each one of these factor groups is of the form C p i . Since any group in (C p n ) must satisfy the identity x p n = 1, we conclude that i n in each case. If G were a nontrivial direct product, we could decompose f into its components and contradict the minimality of G, thus G = C p i with i n.

Suppose that r j ≡ s j (mod p i ) for every j ∈ {1, . . . , k}. Then r j = s j in C p i for every j and so

f (r) = k j=1 r j f (e j ) = k j=1 s j f (e j ) = f (s),
a contradiction. Thus r j ≡ s j (mod p i ) for some j ∈ {1, . . . , k} and so i m. It follows that d(r, s) = 2 -p i 2 -p m and so d(r, s) = 2 -p m as required.

The next corollary shows how the pro-(C p n ) pseudo-metric relates to the p-adic norm:

Corollary 3.4 Let n ∈ N and let d denote the pro-(C p n ) pseudo-metric on Z k . For all r, s ∈ Z k , we have d(r, s) = 2 -p |r-s|p if |r -s| p > p -n 0 otherwise.
Proof. Let m = min i n | exists j ∈ {1, . . . , k} such that r j ≡ s j mod p i .

It is easy to check that

m = v p (r -s) + 1 if v p (r -s) < n ∞ otherwise.
Clearly, v p (rs) < n if and only if |r -s| p > p -n . In this case,

p m = p vp(r-s)+1 = p |r -s| p
and the claim follows from Lemma 3.3.

We arrive to our characterization of G p -hereditarily continuous functions. It follows easily from Theorem 3.5 that all polynomial functions from Z k to Z are G p -hereditarily continuous. We shall use the Mahler expansion of functions given by Proposition 2.7 to characterize all the G p -hereditarily continuous functions from N k to Z. Polynomial functions will appear then as the finitely generated case. We shall need a few lemmas: Lemma 3.6 The sum of a locally finite family of G p -hereditarily continuous functions from N k to Z is G p -hereditarily continuous.

Theorem 3.5 A function from Z k to Z is G p -hereditarily
d n (r, s) = 0 implies d n (f (r), f (s)) = 0. ( 3 
Proof. Let {f i : N k → Z | i ∈ I} be a locally finite family of G p -hereditarily continuous functions and let f = i∈I f i . By Theorem 3.5, each f i is nonexpansive for the p-adic norm, and since the p-adic norm satisfies (N 4 ), f is also nonexpansive.

The following result is due to Kummer [START_REF] Kummer | Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen[END_REF]. See also [START_REF] Singmaster | Notes on binomial coefficients. I. A generalization of Lucas' congruence[END_REF][START_REF] Frisch | Binomial coefficients generalized with respect to a discrete valuation[END_REF].

Proposition 3.7 Let n, r ∈ N with 0 r n. Then v p n r
is equal to the number of carries it takes to add r and nr in base p.

Taking n = p s yields the following corollary

Lemma 3.8 Let r, s ∈ N with 0 < r p s . Then v p p s r = s -v p (r).
We also need a result stated in [3, Lemma 2.8], for which we give a shorter proof.

Lemma 3.9 Let n, r, s ∈ N. Then p s divides ( lcm or equivalently,

1 j r j) n+p s
v p n + p s r - n r min 1 j r (s -v p (j)) = s -max 1 j r v p (j)
which gives (3.7).

We shall need two elementary results on nonexpansive functions.

Lemma 3.10 Let f : N → Z be a nonexpansive function for the p-adic norm and let s ∈ N. Then for 0 i p s , p s divides

p s i (f (i) -f (0)), or equivalently, s v p p s i + v p (f (i) -f (0)). Proof. Since f is nonexpansive, one has |f (i) -f (0)| p |i -0| p and thus v p (f (i) -f (0)) v p (i). Since v p p s i = s -v p (i) by Lemma 3.8, the relation s v p p s i + v p (f (i) -f (0)) follows immediately.
Corollary 3.11 Let f : N → Z be a nonexpansive function for the p-adic norm and let s ∈ N. Then p s divides p s i=0 (-1) i p s i f (i). Proof. Newton's binomial formula yields

0 = (1 -1) p s = p s i=0 (-1) i p s i , hence p s i=0 (-1) i p s i f (i) = p s i=0 (-1) i p s i (f (i) -f (0)).
The result now follows from Lemma 3.10.

Theorem 3.12 Let f (n) = r∈N k f, r n1 r1 • • • n k r k be the Mahler expansion of a function f : N k → Z.
Then the following conditions are equivalent:

(1) f is G p -hereditarily continuous, (2) v p (j) v p ( f, r ) holds for all j, r such that 1 j max{r 1 , . . . , r k }.

Proof.

(1) ⇒ (2). For all r, t ∈ N k , let us set

m r (t) = r1 i1=0 . . . r k i k =0 (-1) r1+...+r k +i1+...+i k r1 i1 • • • r k i k f (i + t).
By Proposition 2.7, we have m r (0, . . . , 0) = f, r . We next show that min 

r k i k =0 (-1) 1+r1+...+r k +i1+...+i k 1+r1 i1 r2 i2 • • • r k i k f (i + t) = r1 i1=0 r2 i2=0 . . . r k i k =0 (-1) 1+r1+...+r k +i1+...+i k r1 i1 r2 i2 • • • r k i k f (i + t) + r1+1 i1=1 r2 i2=0 . . . r k i k =0 (-1) 1+r1+...+r k +i1+...+i k r1 i1-1 r2 i2 • • • r k i k f (i + t) = - r1 i1=0 r2 i2=0 . . . r k i k =0 (-1) r1+...+r k +i1+...+i k r1 i1 r2 i2 • • • r k i k f (i + t) + r1 i1=0 r2 i2=0 . . . r k i k =0 (-1) r1+...+r k +i1+...+i k r1 i1 r2 i2 • • • r k i k f (i + t + s) = -m r (t) + m r (t + s).
Since p ℓ | m r (t) and p ℓ | m r (t + s), it follows that p ℓ | m r+s (t) and so (3.8) holds.

Now we show that

s v p m p s ej (t) (3.9)
for all s ∈ N, t ∈ N k and j = 1, . . . , k.

By symmetry, we may assume that j = 1, so that (3.9) becomes

p s | p s i=0 (-1) p s +i p s i f (i + t 1 , t 2 , . . . , t k ). (3.10)
Fix t ∈ N k and let g : N → Z be the function defined by

g(n) = f (n + t 1 , t 2 , . . . , t k ).
By Theorem 3.5, g is G p -hereditarily continuous and thus (3.10) follows from Corollary 3.11. Therefore (3.10) holds and so does (3.9). We now show that

1 j max{r 1 , . . . , r k } ⇒ v p (j) v p (m r (t)) (3.11)
holds for all j ∈ N and r, t ∈ N k . We use induction on q = r 1 + . . . + r k . The claim holds trivially for q = hence we assume that q > 0 and (3.11) holds for smaller values of q. By symmetry, we may assume that r 1 > 0.

Assume first that 1 j max{r 1 -1, . . . , r k }. By the induction hypothesis on q, we have v p (j) v p (m r1-1,r2,...,r k (t)) for all t ∈ N k . Thus v p (j) v p (m r (t)) by (3.8).

The remaining case corresponds to j = r 1 > max{r 1 -1, . . . , r k }. If j is not a power of p, then we may write j = j 1 j 2 with j 1 < j and v p (j 1 ) = v p (j), falling into the previous case. Thus we may assume that j = p i for some i ∈ N. By (3.9), we have i v p m p i ,0,...,0 (t) for all t ∈ N k . Since r 1 = j = p i , it follows from (3.8) that v p (j) = i v p (m r (t)) and (3.11) holds.

Considering now the particular case t = 0, we obtain Condition (2).

(2) ⇒ (1). By Lemma 3.6, it is enough to show that the function

g(n) = f, r n1 r1 • • • n k r k is G p -hereditarily continuous for a fixed r ∈ N k . Write m = f, r . Let x, y ∈ N k
and assume that p s | xy. By Theorem 3.5, it suffices to show that

p s | m x1 r1 • • • x k r k -y1 r1 • • • y k r k . (3.12)
We have p s | xy if and only y = x + p s z for some z ∈ Z k . Clearly, we can obtain y from x by successively adding or subtracting p s e i (i = 1, . . . , k). Since p s | ℓ and p s | ℓ ′ together imply p s | ℓℓ ′ , we may assume without loss of generality that x = y + p s e i . By symmetry, we may also assume that i = 1. Therefore (3.12) will follow from

p s | m y1+p s r1 -y1 r1 . (3.13)
By condition (2), we have v p (j) v p (m) if 1 j r 1 , hence Lemma 3.9 yields s max

1 j r1 v p (j) + ν p y1+p s r1 -y1 r1 v p (m) + ν p y1+p s r1
-y1 r1 and (3.13) holds as required.

It followed from Theorem 3.5 that all polynomial functions f : N k → Z with integer coefficients are G p -hereditarily continuous. There are of course only countably many such functions. Theorem 3.12 implies the existence of uncountably many G p -hereditarily continuous functions: Corollary 3.13 There are uncountably many G p -hereditarily continuous functions f : N k → Z.

Proof. For every r ∈ N k , let ℓ r = max{v p (j) | 1 j max{r 1 , . . . , r k }}.

By Theorem 3.12 and Proposition 2.7, the map

(n r ) r∈N k → r∈N k p ℓr n r r1 • • • r k is a bijection between Z (N k )
and the set of all G p -hereditarily continuous functions from N k to Z.

We now consider functions from a free monoid A * to Z. Let h : A * → N A be the canonical morphism defined by h(u) = (|u| a ) a∈A , where |u| a denotes as usual the number of occurrences of the letter a in u. Let ∼ be the commutative equivalence, formally defined by u ∼ v if and only if h(u) = h(v). Proof. Let us choose s such that p s > |f (u)-f (v)| and let d (respectively d ′ ) be the pro-(C p s ) pseudo-metric on A * (respectively Z). Since f is hereditarily G puniformly continuous, it is in particular (C p s )-uniformly continuous. Now, if u and v are commutatively equivalent, then d(x, y) = 0 and hence d ′ (f (x), f (y)) = 0, which means that f (x) ≡ f (y) mod p s . Since (1) for any two commutatively equivalent words u and v, f, u = f, v ,

p s > |f (u) -f (v)|, this finally implies that f (u) = f (v).
for any two commutatively equivalent words u and v, f (u) = f (v).

Proof.

(1) implies [START_REF] Amice | Interpolation p-adique[END_REF]. Suppose that (2) holds. For each r ∈ N k , let k, r be the common value of f, v for all v ∈ h -1 (r). With the help of Lemma 3.15, we now obtain

f (u) = v∈A * f, v u v = r∈N k v∈h -1 (r) k, r u v = r∈N k k, r v∈h -1 (r) u v = r∈N k k, r a∈A |u| a r a
It follows immediately that if u and v are commutatively equivalent, then f (u) = f (v).

(2) implies (1). Let g : A * → G be the function defined by g(u) = (-1) |u| f, u . It follows from the inversion formula (2.3) that g, x = (-1) |x| f (x). Thus if (2) holds, then for any two commutatively equivalent words u and v, g, u = g, v . By the first part of the proof applied to g, it follows that g(u) = g(v) and thus f, u = f, v . Lemma 3.17 Let g : N k → Z be a function and let V be a variety of finite groups. Then g is V-hereditarily continuous if and only if g • h is V-hereditarily continuous.

Proof. By Proposition 2.5, g or g • h are V-hereditarily continuous if and only if they are (V ∩ Ab)-hereditarily continuous. Let W be a subvariety of V ∩ Ab and let d denote the pro-W pseudo-metric. Since h is surjective, every element of N k can be written in the form h(u) for some u ∈ A * . Therefore g is Wuniformly continuous if and only if for all ε > 0, there exists δ > 0 such that, for all u, v ∈ A * ,

d (h(u), h(v)) < δ implies d (g • h(u), g • h(v)) < ε (3.17)
Since any morphism from A * to an abelian group factors through N k , one has d(u, v) = d(h(u), h(v)) for all u, v ∈ A * . Therefore (3.18) can be rewritten as

d(u, v) < δ implies d (g • h(u), g • h(v)) < ε (3.18)
and thus g is W-uniformly continuous if and only if g • h is W-uniformly continuous.

Lemma 3.18 Let g : N k → Z be a function and let

g(n) = r∈N k g, r n1 r1 • • • n k r k and g • h(u) = v∈A * g • h, v u v be the Mahler expansions of g and g • h. Then g, r = g • h, a r1 1 • • • a r k k for every r ∈ N k .
Proof. We have

g(n) = g • h(a n1 1 • • • a n k k ) = v∈A * g • h, v a n 1 1 •••a n k k v = v∈a * 1 •••a * k g • h, v a n 1 1 •••a n k k v = n1 r1=0 . . . n k r k =0 g • h, a r1 1 • • • a r k k n1 r1 • • • n k r k .
By the uniqueness of the Mahler expansion in Proposition 2.7, we conclude that

g, r = g • h, a r1 1 • • • a r k k for every r ∈ N k .
Theorem 3.19 Let f : A * → Z be a function and let f (u) = v∈A * f, v u v be its Mahler expansion. Then f is G p -hereditarily continuous if and only if it satisfies the following conditions:

(1) for any two commutatively equivalent words u and v, f, u = f, v ,

v p (j) v p ( f, v ) holds for all v ∈ A * and 1 j max a∈A |v| a .

Proof. Assume that f is G p -hereditarily continuous. By Lemmas 3.14 and 3.16, condition (1) holds. Moreover, by Lemma 3.14, we may write f = g • h, where h : A * → N k is the canonical morphism and g : N k → Z is defined by

g(n) = f (a n1 1 • • • a n k k ).
By Lemma 3.18, the Mahler expansion

g(n) = r∈N k g, r n1 r1 • • • n k r k of g is defined by g, r = f, a r1 1 • • • a r k k .
Assume that v ∈ A * and j ∈ N are such that 1 j |v| ai for every i ∈ {1, . . . , k}. Let r = (|v| a1 , . . . , |v| a k ). By Lemma 3.17, g is G p -hereditarily continuous and so we get v p (j)

v p ( g, r ) = v p ( f, a r1 1 • • • a r k k ) by Theorem 3.12. Since v ∼ a r1 1 • • • a r k k , we get f, v = f, a r1 1 • • • a r k k
by Lemma 3.16 and so v p (j) v p ( f, v ). Thus condition (2) holds.

Proof. Assume that f is G-hereditarily continuous. Since G-hereditarily continuous implies G p -hereditarily continuous, Lemma 3.14 remains valid for G. Together with Lemma 3.16, this yields condition [START_REF] Ahlswede | Approximation of continuous functions in p-adic analysis[END_REF]. Moreover, by Lemma 3.14, we may write f = gh, where h : A * → N k is the canonical morphism and g : N k → Z is defined by

g(n) = f (a n1 1 • • • a n k k ) By Lemma 3.18, the Mahler expansion g(n) = r∈N k g, r n1 r1 • • • n k r k of g is defined by g, r = f, a r1 1 • • • a r k k .
Assume that 1 j |v| ai for some v ∈ A * and i ∈ {1, . . . , k}. Let r = (|v| a1 , . . . , |v| a k ). By Lemma 3.17, g is G-hereditarily continuous and so we get

j | g, r = f, a r1 1 • • • a r k k by Theorem 4.2. Since v ∼ a r1 1 • • • a r k k , we get f, v = f, a r1 1 • • • a r k k
by Lemma 3.16 and so j | f, v . Thus condition (2) holds.

Conversely, assume that conditions (1) and ( 2) hold. By Lemma 3.16, f (u) = f (v) whenever u ∼ v and so there exists a function g : N k → Z such that f = gh. By Lemma 3.17, it suffices to show that g is G-hereditarily continuous. Let

g(n) = r∈N k g, r n1 r1 • • • n k r k
be the Mahler expansion of g and suppose that 1 j max{r 1 , . . . , r k }. By Theorem 4.2, we only need to show that j | g, r .

(4.20) By Lemma 3.18, we have g, r = f, a r1

1 • • • a r k k . Since 1 j max{r 1 , . . . , r k } = max{|a r1 1 • • • a r k k | a1 , . . . , |a r1 1 • • • a r k k | a k }, it follows from condition (2) that j | f, a r1 1 • • • a r k k
and so (4.20) holds as required.

A-uniform continuity

Given a variety V, let CV = Com ∩ V. In particular CA is the variety of commutative and aperiodic monoids. For each t ∈ N, let A t = x t+1 = x t and CA t = Com∩A t be the variety of commutative aperiodic monoids of exponent t.

Let also N t denote the monogenic monoid presented by x | x t = x t+1 . We usually view N t as a quotient of N in order to represent its elements by natural numbers. The following results are folklore. Proposition 5.1 Every variety of commutative monoids is generated by its monogenic monoids. In particular CA t = (N t ) for every t ∈ N. Moreover, if V ⊆ CA, then V = CA t for some t ∈ N.

Given m, n ∈ N, let us set

(m ∧ n) = min{m, n} if m = n ∞ if m = n
More generally, for u, v ∈ N k , we set write

(u ∧ v) = min{u 1 ∧ v 1 , . . . , u k ∧ v k }. Lemma 5.2 Let u, v ∈ N k and t ∈ N. Then: (1) r A (u, v) = r CA (u, v) = (u ∧ v) + 2; (2) r At (u, v) = r CAt (u, v) = (u ∧ v) + 2 if (u ∧ v) < t ∞ otherwise Proof. We may assume that u = v. Let V ⊆ A. Since CV ⊆ V and every quotient of N k in V is necessarily in CV, we have r V (u, v) = r CV (u, v). We show next that r CV (u, v) = min{|N t | | N t ∈
CV and separates u and v}.

(5.21) Indeed, if M ∈ CV separates u and v through ψ : N k → M , it follows from the proof of Proposition 5.1 that there exists an onto homomorphism ϕ :

N t1 × • • • × N tn → M
, where each N ti may be assumed to be a submonoid of M . Since N k is a free commutative monoid, we may factor ψ through θ:

N k Nt 1 × • • • × Nt n M θ ψ ϕ
Since ψ(u) = ψ(v), one of the component morphisms θ i : N k → N ti must separate u and v. Therefore the smallest M ∈ CV separating u and v must be of the form N t and so (5.21) holds.

(1) By (5.21), we have

r CA (u, v) = min{|N t | | N t separates u and v}. (5.22) If u ∧ v = u i ∧ v i , it is immediate that the projection on the i-th component induces a morphism from N k to N (u∧v)+1 separating u and v. Suppose now that η : N k → N t separates u and v with t (u ∧ v). Since k i=1 η(u i e i ) = η(u) = η(v) = k i=1 η(v i e i ),
we have η(u i e i ) = η(v i e i ) for some i ∈ {1, . . . , k}. Hence η(e i ) 1. Since u i , v i t, it follows that η(u i e i ) = t = η(v i e i ), a contradiction.

Thus N (u∧v)+1 is the smallest N t separating u and v. In view of (5.21), it follows that In view of (5.22), it follows that

r CA (u, v) = |N (u∧v)+1 | = (u ∧ v) + 2.
r CAt (u, v) = r CA (u, v) if r CA (u, v) t + 1 = |N t | ∞ otherwise
By (1), r CA (u, v) t+1 is equivalent to (u∧v) < t and the claim follows.

Theorem 5.3 Let f : N → N be a mapping. Then the following conditions are equivalent:

(1) f is A-uniformly continuous, (2) for all n ∈ N, there exists s ∈ N such that, for all u, v ∈

N, u ∧ v s implies f (u) ∧ f (v) n, (3) for every n ∈ N, f -1 (n) is either finite or cofinite.
Proof. (1) ⇔ (2). It follows from the definition that f is A-uniformly continuous if and only if for all n ∈ N, there exists s ∈ N such that, for all u, v ∈ N,

r A (u, v) s implies r A (f (u), f (v)) n,
that is equivalent to (2) by Lemma 5.2.

(2) ⇒ (3). Suppose that f -1 (m) is neither finite nor cofinite. Let s ∈ N be arbitrary. Take u s ∈ f -1 (m) and v s ∈ N \ f -1 (m) such that u s , v s s. Thus the relation u s ∧ v s s and f (u s ) ∧ f (v s ) m holds for all s ∈ N, and so (2) fails.

(

) ⇒ (2). Let n ∈ N. Suppose first that f -1 (m) is cofinite for some m ∈ N. Let s = max(N \ f -1 (m)). If u ∧ v s + 1, then u = v implies u, v s + 1 and so f (u) = m = f (v), hence we have f (u) = f (v) in any case and f (u) ∧ f (v) > n trivially. Assume now that f -1 (i) is finite for every i ∈ N. Let s = max ∪ n-1 i=0 f -1 (i). If u ∧ v s + 1 and u = v, then u, v s + 1 and so u, v / ∈ ∪ n i=0 f -1 (i). Hence f (u), f 3 
v) n and so f (u) ∧ f (v) n. Therefore (2) holds.

Similarly, we get Theorem 5.4 Let f : N k → N be a mapping. Then the following conditions are equivalent:

(1) f is A-uniformly continuous;

(2) for all n ∈ N, there exists s ∈ N such that for all u, v ∈ N k , u ∧ v s implies f (u) ∧ f (v) n.

However, there is no analogue of condition (3) of Theorem 5.3 in this case: if we define f : N 2 → N by f (m, n) = m, it is immediate that f is A-uniformly continuous and f -1 (m) is infinite for every m ∈ N. Lemma 6.3 Let f : N k → N be a mapping satisfing condition (C) and assume that f (a 1 , . . . , a k ) < min{a 1 , . . . , a k }. Then:

(1) f (x 1 , . . . , x k ) = f (a 1 , . . . , a k ) for all x 1 a 1 , . . . , x k a k ;

(2) there exists some c min{a 1 , . . . , a k } such that f (a 1 , . . . , a k ) = f (c, . . . , c) = c -1.

Proof. x k and so f (a 1 , . . . , a k-1 , x) = b -1 = f (a 1 , . . . , a k ).

Define now g : N k-1 → N by g(y 1 , . . . , y k-1 ) = f (y 1 , . . . , y k-1 , x k ). Since f satisfies (C), so does g. Moreover, g(a 1 , . . . , a k-1 ) = f (a 1 , . . . , a k-1 , x) = b-1 = f (a 1 , . . . , a k ) < min{a 1 , . . . , a k-1 }.

By the induction hypothesis, we get g(x 1 , . . . , x k-1 ) = g(a 1 , . . . , a k-1 ) since x 1 a 1 , . . . , x k-1 a k-1 . Thus f (x 1 , . . . , x k ) = g(x 1 , . . . , x k-1 ) = g(a 1 , . . . , a k-1 ) = f (a 1 , . . . , a k-1 , x k ) = f (a 1 , . . . , a k ) as required.

( (1) f is A-hereditarily continuous;

(2) every slice function of f is either extensive or truncated.

Proof. (1) ⇒ (2). Let g be the slice function of f defined by g(x) = f (a 1 , . . . , a j-1 , x, a j+1 , . . . , a k ) and let a j = min{x ∈ N | g(x) < x}. If x > a j , then one gets by Theorem 6.2 a j = (a 1 , . . . , a k ) ∧ (a 1 , . . . , a j-1 , x, a j+1 , . . . , a k ) g(a j ) ∧ g(x),

Lemma 3 . 3

 33 Let n ∈ N and let d be the pro-(C p n ) pseudo-metric on Z k . For r, s ∈ Z k , one has d(r, s) = 2 -p m where m = min i n | there exists j ∈ {1, . . . , k} such that r j ≡ s j mod p i .

. 4 )

 4 By Corollary 3.4, d n (r, s) = 0 if and only if |r-s| p p -n , thus (3.4) is equivalent to stating that for all r, s ∈ Z k , |r -s| p p -n implies |f (r)f (s)| p p -n . (3.5) Clearly, (3.5) holds for every n if and only if |f (r)f (s)| p |r -s| p , which proves the result.

  t∈N k {v p (m r (t))} min t∈N k {v p (m r+s (t))} (3.8)for all r, s ∈ N k . By transitivity, we may assume that s 1 + . . . + s k = 1. By symmetry, we may assume that s = (1, 0, . . . , 0). Let ℓ = min t∈N k {v p (m r (t))}. For all t ∈ N k , we have m r+s (t) =

Lemma 3 . 14

 314 Let f : A * → Z be a G p -hereditarily continuous function and let u, v ∈ A * be commutatively equivalent. Then f (u) = f (v).

Lemma 3 . 15

 315 Let u ∈ A * and r = (r a ) a∈A ∈ N A . Then v∈h -1 (r) Let Z A be the ring of polynomials in noncommutative variables in A with integer coefficients. The monoid morphism µ from A * to the multiplicative monoid Z A defined, for each letter a ∈ A, by µ(a) = 1 + a, is called the Magnus transformation. By [7, Proposition 6.3.6], the following formula holds for all u ∈ A * : A] be the ring of polynomials in commutative variables in A with integer coefficients. The commutative version of the Magnus transformation is the monoid morphism µ from A * to the multiplicative monoid Z[A] defined, for each letter a ∈ A, by µ(a) = 1 + a. Thus by definition, one has, for each word v ∈ A * , 15) and (3.16) now gives the formula v∈h -1 (r) u v = a∈A |u| a ra . Lemma 3.16 Let f : A * → G be a function from A * to some abelian group with Mahler expansion f ( ) = w∈A * f, w w . Then the following conditions are equivalent:

( 2 )

 2 By (5.21) and Proposition 5.1, we have r CAt (u, v) = min{|N s | | s t and N s separates u and v}.

( 1 )

 1 We use induction on k. For k = 1, assume that f (a) < a and x a. Then there exists b = min{y ∈ N | f (y) < y} and so, by condition (C), x a b implies f (x) = f (a) = b -1. Assume now that k > 1 and (1) holds for smaller values of k. Let x 1 a 1 , . . . , x k a k . By condition (C), we have f (a 1 , . . . , a k-1 , x k ) = f (a 1 , . . . , a k ): indeed, if we take b = min{x ∈ N | f (a 1 , . . . , a k-1 , x) < x}, then b a k

)Theorem 6 . 4

 64 We use induction on k. For k = 1, assume that f (a) < a. Then there exists c = min{y ∈ N | f (y) < y} and so, by condition (C), a c implies f (a) = f (c) = c -1. Assume now that k > 1 and (ii) holds for smaller values of k. Let b = min{y ∈ N | f (a 1 , . . . , a k-1 , y) < y}. Then b a k . Define g as above. We have g(a 1 , . . . , a k-1 ) = f (a 1 , . . . , a k-1 , b) = b -1 = f (a 1 , . . . , a k ) by condition (C). By the induction hypothesis, there exists c a 1 , . . . , a k-1 such that g(a 1 , . . . , a k-1 ) = g(c, . . . , c) = c -1. Thus c -1 = g(a 1 , . . . , a k-1 ) = b -1 and so b = c. Since b a k , we get c a 1 , . . . , a k . Thus f (a 1 , . . . , a k ) = c -1 = g(c, . . . , c) = f (c, . . . , c) as required. Let f : N k → N be a mapping. Then the following conditions are equivalent:

  4 [12, Proposition 5.7] Let V be the join of a family (V i ) i∈I of varieties of finite commutative monoids. A function from a monoid to a Vprojective monoid is V-hereditarily continuous if and only if it is V i -hereditarily continuous for all i ∈ I.

	Proposition 2.5 [12, Proposition 5.4] A function from a monoid to a com-
	mutative monoid is V-hereditarily continuous if and only if it is (V ∩ Com)-
	hereditarily continuous.

  2 ) |n| p = 0 if and only if n = 0, (N 3 ) |mn| p = |m| p |n| p , (N 4 ) |m + n| p max{|m| p , |n| p }.

  continuous if and only if it is nonexpansive for the p-adic norm. Proof. Let d n denote the pro-(C p n ) pseudo-metric. By Lemma 3.2, f is hereditarily G p -uniformly continuous if and only if, for all n > 0, it is uniformly continuous for d n . By Proposition 2.2, this holds if and only if, for all r, s ∈ Z k ,
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Conversely, assume that conditions (1) and (2) hold. By Lemma 3.16, f (u) = f (v) whenever u ∼ v and so there exists a function g : N k → Z such that f = g • h. By Lemma 3.17, it suffices to show that g is G p -hereditarily continuous. Let

be the Mahler expansion of g and suppose that 1 j max{r 1 , . . . , r k }. By Theorem 3.12, we only need to show that v p (j) v p ( g, r ).

(3.19) By Lemma 3.18, we have g, r = f, a r1 1 • • • a r k k . Since

it follows from condition (2) that v p (j) v p ( f, a r1 1 • • • a r k k ) and so (3.19) holds as required.

G-hereditary continuity

Let P denote the set of all positive primes. Theorem 4.1 A function from Z k to Z is G-hereditarily continuous if and only if, for each prime p, it is nonexpansive for the p-adic norm.

Proof. Since G ∩ Com = p∈P (G p ∩ Com), it follows from Propositions 2.4 and 2.5 that a function from Z k to Z is G-hereditarily continuous if and only if it is G p -hereditarily continuous for every p ∈ P. It now remains to apply Theorem 3.5 to conclude. Theorem 3.12 yields:

Then the following conditions are equivalent:

(1) f is G-hereditarily continuous;

(2) j divides f, r for all j ∈ N and r ∈ N k such that 1 j max{r 1 , . . . , r k }.

We present now the analogue of Theorem 3.19 through an adaptation of its proof. We keep the notation introduced in Section 3.

be its Mahler expansion. Then f is G-hereditarily continuous if and only if it satisfies the following conditions:

(1) if u and v are commutatively equivalent, then f, u = f, v , (2) j divides f, v for all v ∈ A * and 1 j max a∈A |v| a .

Theorem 5.5 Let f : N k → N be a mapping and t ∈ N. Then the following conditions are equivalent:

(1)

Proof 

6 A-hereditary continuity Lemma 6.1 A function from a monoid M to N is A-hereditarily continuous if and only if it is CA t -uniformly continuous for every t ∈ N.

Proof. By Proposition 2.5, a function is A-hereditarily continuous if and only if it is CA-hereditarily continuous. The lemma now follows from [12, Proposition 5.9]. Theorem 6.2 Let f : N k → N be a mapping. Then the following conditions are equivalent:

(1)

Proof.

(1) is equivalent to [START_REF] Amice | Interpolation p-adique[END_REF]. By Lemma 6.1, f is A-hereditarily continuous if and only it is CA t -uniformly continuous for every t ∈ N. In view of Lemma 5.2, this amounts to stating that, for all t ∈ N and for all u, v

(2) is equivalent to [START_REF] Cégielski | Newton representation of functions over natural integers having integral difference ratios[END_REF]. By Lemma (5.2) (1), an equivalent formulation of (2) is that, for all u, v ∈ N k , r A (u, v) r A (f (u), f (v)), which is equivalent to [START_REF] Cégielski | Newton representation of functions over natural integers having integral difference ratios[END_REF].

We now look for a more explicit characterization of A-hereditary continuity. Given a function f : N k → N, we say that g : N → N is a slice function of f if there exists some j ∈ {1, . . . , k} and a 1 , . . . , a j-1 , a j+1 , . . . , a k ∈ N such that g(x) = f (a 1 , . . . , a j-1 , x, a j+1 , . . . , a k ) for every x ∈ N.

A function f : N → N is said to be extensive if x f (x) for every x ∈ N and truncated if there exists some m ∈ N such that x f (x) for x m and f (x) = m for x > m. Functions that are either extensive or truncated can be described by the following single property:

Indeed, the case b = ∞ corresponds to extensive functions and the case b finite corresponds to truncated functions. and since g(a j ) < a j , it follows that g(a j ) = g(x).

Let z = g(a j ). It remains to prove that z = a j -1. Since z < a j , we have z + 1 a j . Suppose that z + 1 < a j . By Theorem 6.2, one has z+1 = (a 1 , . . . , a k )∧(a 1 , . . . , a j-1 , z+1, a j+1 , . . . , a k ) g(a j )∧g(z+1) = z∧g(z+1), hence g(z + 1) = z < z + 1. Since z + 1 < a j , this contradicts the minimality of a j . Thus z + 1 = a j and (C) holds.

(2) ⇒ (1). We use induction on k. For k = 1, assume that f satisfies condition (C) and let u, v ∈ N be distinct. By Theorem 6.2, we must prove

∈ Y , the claim follows. Hence we may assume that Y = ∅ and b = min

Without loss of generality, we may assume that f (v) = b -1. Hence v < b and so v (f (u) ∧ f (v)). Thus u ∧ v f (u) ∧ f (v) and the result holds for k = 1.

Assume now that k > 1 and the theorem holds for smaller values of k. Assume that f : N k → N satisfies condition (C) and let u, v ∈ N k be distinct.

Assume first that u i = v i for some i ∈ {1, . . . , k}. Without loss of generality, we may assume that i = k. Define g : N k-1 → N by g(y 1 , . . . , y k-1 ) = f (y 1 , . . . , y k-1 , u k ). Since f satisfies (C), so does g. By the induction hypothesis and Theorem 6.2, we get

as required.

Hence we may assume that u i = v i for every i ∈ {1, . . . , k}. Without loss of generality, we may also assume that u ∧ v = u 1 . Suppose first that f (v) < u 1 . Since u 1 v 1 , . . . , v k , we may apply Lemma 6.3(2) and get some c v 1 , . . . , v k such that f (v) = f (c, . . . , c) = c -1. Thus c -1 < u 1 and so c < u 1 u 2 , . . . , u k . By Lemma 6.3 [START_REF] Ahlswede | Approximation of continuous functions in p-adic analysis[END_REF], it follows that

Next we assume that f (u) < u 1 . Since u 1 u 2 , . . . , u k , we may apply Lemma 6.3(2) and get some c u

M-hereditary continuity

Proposition 7.1 Let M be a monoid and f : M → N a mapping. Then the following conditions are equivalent:

(1) f is M-hereditarily continuous;

(2) f is both G-and A-hereditarily continuous;

(3) f is both Ab-and CA-hereditarily continuous.

Proof. The equivalence of (1) and (3) follows from [12, Proposition 5.8] and that of ( 2) and (3) from Proposition 2.5.

Theorem 7.2 Let f : N k → N be a mapping. Then f is M-hereditarily continuous if and only if:

every slice function of f is either extensive or constant.

Proof. By Proposition 7.1, f is M-hereditarily continuous if and only if it is both G-and A-hereditarily continuous. Now condition ( 1) is equivalent to Ghereditary continuity by Theorem 4.1. By Theorem 6.4, A-hereditary continuity is equivalent to every slice function of f being either extensive or truncated.

Clearly, every constant function f : N → N is necessarily truncated. It remains to prove that every truncated slice function must be indeed constant in these circumstances. Suppose that g : N → N defined by g(x) = f (a 1 , . . . , a j-1 , x, a j+1 , . . . , a k ) is truncated with f (x) = m for every x > m. Let M = max(Im f ) and take s < m arbitrary. We consider u = (a 1 , . . . , a j-1 , s, a j+1 , . . . , a k ), v = (a 1 , . . . , a j-1 , M + s + 1, a j+1 , . . . , a k ).

Since

M + 1 = gcd

Therefore g is constant as claimed.

Corollary 7.3 Let f : N → N be a mapping. Then f is M-hereditarily continuous if and only if f is extensive or constant, and uv divides f (u)f (v) for all u, v ∈ N.

We can now adapt the proof of Corollary 3.13 to strengthen it: x for every x ∈ N and so f is extensive and thus A-hereditarily continuous by Theorem 6.4. Therefore f is M-hereditarily continuous by Proposition 7.1. Since (N \ {0}) N is uncountable and θ is one-to-one, Im θ is an uncountable set of M-hereditarily continuous functions from N to N.

We can also settle the case of functions from Z k to Z.

Corollary 7.5 A function from Z k to Z is M-hereditarily continuous if and only if, for each prime p, it is nonexpansive for the p-adic norm.

Proof. Let f : Z k → Z be a function and let V denote a subvariety of M. Since every quotient of Z k is necessarily a group, the pseudo-metrics d V and d V∩G coincide in Z k (and in particular in Z). It follows that f is V-uniformly continuous if and only if it is V ∩ G-uniformly continuous. Since V ∩ G takes all possible values among the subvarieties of G, it follows that f is M-hereditarily continuous if and only if it is G-hereditarily continuous. One can now apply Theorem 4.1 to conclude.