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THE SHORELINE PROBLEM FOR THE

ONE-DIMENSIONAL SHALLOW WATER AND

GREEN-NAGHDI EQUATIONS

D. LANNES AND G. MÉTIVIER

Abstract. The Green-Naghdi equations are a nonlinear dispersive per-
turbation of the nonlinear shallow water equations, more precise by one
order of approximation. These equations are commonly used for the simu-
lation of coastal flows, and in particular in regions where the water depth
vanishes (the shoreline). The local well-posedness of the Green-Naghdi
equations (and their justification as an asymptotic model for the water
waves equations) has been extensively studied, but always under the as-
sumption that the water depth is bounded from below by a positive con-
stant. The aim of this article is to remove this assumption. The problem
then becomes a free-boundary problem since the position of the shoreline is
unknown and driven by the solution itself. For the (hyperbolic) nonlinear
shallow water equation, this problem is very related to the vacuum prob-
lem for a compressible gas. The Green-Naghdi equation include additional
nonlinear, dispersive and topography terms with a complex degenerate
structure at the boundary. In particular, the degeneracy of the topogra-
phy terms makes the problem loose its quasilinear structure and become
fully nonlinear. Dispersive smoothing also degenerates and its behavior at
the boundary can be described by an ODE with regular singularity. These
issues require the development of new tools, some of which of independent
interest such as the study of the mixed initial boundary value problem
for dispersive perturbations of characteristic hyperbolic systems, elliptic
regularization with respect to conormal derivatives, or general Hardy-type
inequalities.

1. Introduction

1.1. Presentation of the problem. A commonly used model to describe
the evolution of waves in shallow water is the nonlinear shallow water model,
which is a system of equations coupling the water height H to the vertically
averaged horizontal velocity U. When the horizontal dimension is equal to 1
and denoting by X the horizontal variable and by −H0+B(X) a parametrization
of the bottom, these equations read{

∂tH + ∂X(HU) = 0,

∂tU + U∂XU + g∂XH = −g∂XB,

where g is the acceleration of gravity. These equations are known to be valid
(see [ASL08a, Igu09] for a rigorous justification) in the shallow water regime
corresponding to the condition 0 < µ � 1, where the shallowness parameter
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µ is defined as

µ =
( typical depth

horizontal scale

)2
=
H2

0

L2
,

where L corresponds to the order of the wavelength of the waves under con-
sideration. Introducing the dimensionless quantities

H :=
H

H0
, U =

U√
gH0

, B =
B

H0
, t =

t

L/
√
gH0

, X =
X

L

these equations can be written

(1.1)

{
∂tH + ∂X(HU) = 0,

∂tU + U∂XU + ∂XH = −∂XB.

The precision of the nonlinear shallow water model (1.1) is O(µ), meaning that
O(µ) terms have been neglected in these equations (see for instance [Lan13]).
A more precise model is furnished by the Green-Naghdi (or Serre, or fully
nonlinear Boussinesq) equations. They include the O(µ) terms and neglect
only terms of size O(µ2); in their one-dimensional dimensionless form, they
can be written1 (see for instance [Lan13])

(1.2)

{
∂tH + ∂X(HU) = 0,

D(∂tU + U∂XU) + ∂XH + µQ1 = −∂XB,

where H = 1 + ζ − B ≥ 0 is the (dimensionless) water depth and U the
(dimensionless) horizontal mean velocity. The dispersive operator D is given
by

DU = U − µ

3H
∂X(H3∂XU) +

1

2H

[
∂X(H2∂XBU)−H2∂XB∂XU

]
+ (∂XB)2U,

and the nonlinear term Q1 takes the form

Q1 =
2

3H
∂X
(
H3(∂XU)2

)
+H(∂XU)2∂XB+

1

2H
∂X(H2U2∂2

XB)+U2∂2
XB∂XB;

of course, dropping O(µ) terms in (1.2), one recovers the nonlinear shallow
water equations (1.1).

Under the assumption that the water-depth never vanishes, the local well-
posedness of (1.2) has been assessed in several references [Li06, ASL08b, Isr11,
FI14]. However, for practical applications (for the numerical modeling of sub-
mersion issues for instance), the Green-Naghdi equations are used up to the
shoreline, that is, in configurations where the water depth vanishes, see for
instance [BCL+11, FKR16]. Our goal here is to study mathematically such

1The dimensionless Green-Naghdi equations traditionally involve two other dimensionless
parameters ε and β defined as

ε =
amplitude of surface variations

typical depth
, β =

amplitude of bottom variations

typical depth
.

Making additional smallness assumptions on these parameters, one can derive simpler sys-
tems of equations (such as the Boussinesq systems), but since we are interested here in
configurations where the surface and bottom variations can be of the same order as the
depth, we set ε = β = 1 for the sake of simplicity.
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Figure 1. The shoreline

a configuration, i.e. to show that the Green-Naghdi equations (1.2) are well-
posed in the presence of a moving shoreline.

This problem is a free-boundary problem, in which one must find the hor-
izontal coordinate X(t) of the shoreline (see Figure 1) and show that the
Green-Naghdi equations (1.2) are well-posed on the half-line (X(t),+∞) with
the boundary condition

(1.3) H
(
t,X(t)

)
= 0.

Time-differentiating this identity and using the first equation of (1.2), one
obtains that X(·) must solve the kinematic boundary condition

(1.4) X ′(t) = U
(
t,X(t)

)
.

When µ = 0, the Green-Naghdi equations reduce to the shallow water equa-
tions (1.1) which, when the bottom is flat (B = 0), coincide with the com-
pressible isentropic Euler equations (H representing in that case the density,
and the pressure law being given by P = gH2). The shoreline problem for the
nonlinear shallow water equations with a flat bottom coincide therefore with
the vacuum problem for a compressible gas with physical vacuum singularity
in the sense of [Liu96]. This problem has been solved in [JM09, CS11] (d = 1)
and [CS12, JM15] (d = 2). Mathematically speaking, this problem is a non-
linear hyperbolic system with a characteristic free-boundary condition. Less
related from the mathematical viewpoint, but closely related with respect to
the physical framework are [dP16] and [MW17], where a priori estimates are
derived for the shoreline problem for the water waves equations (respectively
without and with surface tension).
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Though the problem under consideration here is related to the vacuum
problem for a compressible gas, it is different in nature because the equations
are no longer hyperbolic due the presence of the nonlinear dispersive terms D
and Q1. Because of this, several important steps of the proof, such as the res-
olution of linear mixed initial boundary value problems, do not fall in existing
theories and require the development of new tools. The major new difficulty
is that everything degenerates at the boundary H = 0: strict hyperbolicity
(when µ = 0) is lost, the dispersion vanishes, the energy degenerates ; the
topography increases the complexity since it makes the problem fully nonlin-
ear as we will explain later on. An important feature of the problem is the
structure of the degeneracy at the boundary. As in the vacuum problem for
Euler, it allows to use Hardy’s inequalities to ultimately get the L∞ estimates
which are necessary to deal with nonlinearities. The precise structure of the
dispersion is crucial and used at many places in the computations. Even if
they are not made explicit, except at time t = 0, the properties of D−1 are
important. The dispersion D appears as a degenerate elliptic operator (see
e.g. [BC73] for a general theory). A similar problem was met in [BM06] in the
study of the lake equation with vanishing topography at the shore: the pres-
sure was given by a degenerate elliptic equation. To sum up in one sentence,
all this paper turns around the influence of the degeneracy at the boundary.

Our main result is to prove the local in time (uniformly in µ) well-posedness
of the shoreline problem for the one-dimensional Green-Naghdi equations. The
precise statement if given in Theorem 4.2 below. Stability conditions are
required. They are introduced in (4.5) and (4.6) and discussed there. The
spirit of the main theorem is given in the following qualitative statement. Note
that the case µ = 0 corresponds to the shoreline problem for the nonlinear
shallow water equations (1.1).

Theorem. For smooth enough initial conditions, and under certain condi-
tions on the behavior of the initial data at the shoreline, there exists a non
trivial time interval independent of µ ∈ [0, 1] on which there exists a unique
triplet (X,H,U) such that (H,U) solves (1.2) with H > 0 on (X(t),+∞),
and H(X(t)) = 0.

1.2. Outline of the paper. In Section 2, we transform the equations (1.2)
with free boundary condition (1.3) into a formulation which is more appro-
priate for the mathematical analysis, and where the free-boundary has been
fixed. This is done using a Lagrangian mapping, together with an additional
change of variables.

The equations derived in Section 2 turn out to be fully nonlinear because
of the topography terms. Therefore, we propose in Section 3 to quasilinearize
them by writing the extended system formed by the original equations and by
the equations satisfied by the time and conormal derivatives of the solution.
The linearized equations thus obtained are studied in §3.3 where it is shown
that the energy estimate involve degenerate weighted L2 spaces. The extended
quasilinear system formed by the solution and its derivatives is written in §3.4;



THE SHORELINE PROBLEM 5

this is the system for which a solution will be constructed in the following
sections.

Section 4 is devoted to the statement (in §4.2) and sketch of the proof of
the main result. The strategy consists in constructing a solution to the quasi-
linear system derived in §3.4 using an iterative scheme. For this, we need a
higher order version of the linear estimates of §3.3. These estimates, given
in §4.3, involve Sobolev spaces with degenerate weights for which standard
Sobolev embeddings fail. To recover a control on non-weighted L2 norms and
L∞ norms, we therefore need to use the structure of the equations and vari-
ous Hardy-type inequalities (of independent interest and therefore derived in
a specific section). Unfortunately, when applied to the iterative scheme, these
energy estimates yield a loss of one derivative; to overcome this difficulty, we
introduce an additional elliptic equation (which of course disappears at the
limit) regaining one time and one conormal derivative; this is done in §4.4.
The energy estimates for the full augmented system involve the initial value of
high order time derivatives; for the nonlinear shallow water equations (µ = 0),
the time derivatives can easily be expressed in terms of space derivatives but
the presence of the dispersive terms make things much more complicated when
µ > 0; the required results are stated in §4.5 but their proof is postponed to
Section 9.
We then explain in §4.6 how to solve the mixed initial boundary value prob-
lems involved at each step of the iterative scheme. There are essentially two
steps for which there is no existing theory: the analysis of elliptic (with re-
spect to time and conormal derivative) equations on the half line, and the
theory of mixed initial boundary value problem for dispersive perturbations
of hyperbolic systems. These two problems being of independent interest,
their analysis is postponed to specific sections. We finally sketch (in §4.7 and
§4.8) the proof that the iterative scheme provides a bounded sequence that
converges to the solution of the equations.

Section 5 is devoted to the proof of the Hardy-type inequalities that have
been used to derive the higher-order energy estimates of §4.3. We actually
prove more general results for a general family of operators that contain the
two operators h0∂x and h0∂x + 2h′0 that we shall need here. These estimates,
of independent interest, provide Hardy-type inequalities for Lp-spaces with
various degenerate weights.

In Section 6, several technical results used in the proof of Theorem 4.2 are
provided. More precisely, the higher order estimates of Proposition 4.6 are
proved with full details in §6.1 and the bounds on the sequence constructed
through the iterative scheme of §4.4 are rigorously established in §6.2.

The elliptic equation that has been introduced in §4.4 to regain one time
and one conormal derivative in the estimates for the iterative scheme is studied
in Section 7. Since there is no general theory for such equations, the proof is
provided with full details. We first study a general family of elliptic equations
(with respect to time and standard space derivatives) on the full line, for which
classical elliptic estimates are derived. In §7.2, the equations and the estimates
are then transported to the half-line using a diffeomorphism that transforms
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standard space derivatives on the full line into conormal derivatives on the
half line. Note that the degenerate weighted estimates needed on the half line
require elliptic estimates with exponential weight in the full line.

In Section 8 we develop a theory to handle mixed initial boundary value
problems for dispersive perturbations of characteristic linear hyperbolic sys-
tems. To our knowledge, no result of this kind can be found in the literature.
The first step is to assess the lowest regularity at which the linear energy esti-
mates of §3.3 can be performed. This requires duality formulas in degenerate
weighted spaces that are derived in §8.2. As shown in §8.3, the energy space
is not regular enough to derive the energy estimates; therefore, the weak solu-
tions in the energy space constructed in §8.4 are not necessarily unique. We
show however in §8.5 that weak solutions are actually strong solutions, that
is, limit in the energy space of solutions that have the required regularity for
energy estimates. It follows that weak solutions satisfy the energy estimate
and are therefore unique. This weak=strong result is obtained by a convolu-
tion in time of the equations. Provided that the coefficients of the linearized
equations are regular, we then show in §8.6 that if these strong solutions are
smooth if the source term is regular enough. The last step, performed in §8.7,
is to remove the smoothness assumption on the coefficients.

Finally, Section 9 is devoted to the invertibility of the the dispersive operator
at t = 0 in various weighted space. These considerations are crucial to control
the norm of the time derivative of the solution at t = 0 in terms of space
derivative, as raised in §4.5. We reduce the problem to the analysis of an
ODE with regular singularity that is analyzed in full details.

N.B. A glossary gathers the main notations at the end of this article.

Acknowledgement. The authors want to express their warmest thanks to
Didier Bresch (U. Savoie Mont Blanc and ASM Clermont Auvergne) for many
discussions about this work.

2. Reformulation of the problem

This section is devoted to a reformulation of the shoreline problem for the
Green-Naghdi equations (1.2). The first step is to fix the free-boundary. This
is done in §2.1 and §2.2 using a Lagrangian mapping. We then propose in §2.3
a change of variables that transform the equations into a formulation where
the coefficients of the space derivatives in the leading order terms are time
independent.

2.1. The Lagrangian mapping. As usual with free boundary problems, we
first use a diffeomorphism mapping the moving domain (X(t),+∞) into a fixed
domain (X0,+∞) for some time independent X0. A convenient way to do so is
to work in Lagrangian coordinates. More precisely, and with X0 = X(t = 0),
we define for all times a diffeomorphism ϕ(t, ·) : (X0,+∞) → (X(t),+∞) by
the relations

(2.1) ∂tϕ(t, x) = U(t, ϕ(t, x)), ϕ(0, x) = x;
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the fact that ϕ(t, x0) = x(t) for all times stems from (1.4). Without loss of
generality, we can assume that X0 = 0.
We also introduce the notation

(2.2) η = ∂xϕ

and shall use upper and lowercases letters for Eulerian and Lagrangian quan-
tities respectively, namely,

h(t, x) = H(t, ϕ(t, x)), u(t, x) = U(t, ϕ(t, x)), etc.

2.2. The Green-Naghdi equations in Lagrangian coordinates. Com-
posing the first equation of (1.2) with the Lagrangian mapping (2.1), and
with η defined in (2.2), we obtain

∂th+
h

η
∂xu = 0;

when combined with the relation

∂tη − ∂xu = 0

that stems from (2.2), this easily yields

∂t(ηh) = 0.

We thus recover the classical fact that in Lagrangian variables, the water depth
is given in terms of η and of the water depth h0 at t = 0,

(2.3) h =
h0

η
.

In Lagrangian variables, the Green-Naghdi equations therefore reduce to the
above equation on η complemented by the equation on u obtained by compos-
ing the second equation of (1.2) with ϕ,

(2.4)


∂tη − ∂xu = 0

d∂tu+
1

η
∂xh+ µq1 = −B′(ϕ),

with h = h0/η and d defined as

du = u− µ

3hη
∂x(

h3

η
∂xu) +

µ

2hη

[
∂x(h2B′(ϕ)u)− h2B′(ϕ)∂xu

]
+ µB′(ϕ)2u

while the nonlinear term q1 is given by

q1 =
2

3hη
∂x
(h3

η2
(∂xu)2

)
+
h

η2
(∂xu)2B′(ϕ)+

1

2hη
∂x(h2u2B′′(ϕ))+u2B′′(ϕ)B′(ϕ).
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2.3. The equations in (q, u) variables. In the second equation of (2.4), the
term 1/η∂xh in the second equation is nonlinear in η; it is possible and quite
convenient to replace it by a linear term by introducing

(2.5) q =
1

2
η−2 and therefore η = η(q) := (2q)−

1
2 .

The resulting model is

(2.6)

{
c∂tq + ∂xu = 0

d∂tu+ lq + µq1 = −B′(ϕ)

where

(2.7) c = c(q) = (2q)−3/2 > 0, as long as q > 0

(recall that η|t=0
= 1 and therefore q|t=0

= 1/2). The operators l and d = d[V ]
are given by

(2.8) l =
1

h0
∂x(h2

0·) = h0∂x + 2h′0

and, denoting V = (q, u) and ϕ = x+
∫ t

0 u,

d[V ]u =u− µ 4

3h0
∂x(h3

0q
2∂xu) +

µ

h0

[
∂x(h2

0qB
′(ϕ)u)− h2

0qB
′(ϕ)∂xu

]
+ µB′(ϕ)2u

=u+ µl
[
− 4

3
q2h0∂xu+ quB′(ϕ)

]
− µqB′(ϕ)h0∂xu+ µB′(ϕ)2u,(2.9)

and the nonlinear term q1 = q1(V ), with V = (q, u), is

(2.10) q1(V ) = l
[4
3
h0
q

c
(∂xu)2+qu2B′′(ϕ)

]
+
h0

c
(∂xu)2B′(ϕ)+u2B′′(ϕ)B′(ϕ).

Remark 2.1. Since by (2.1) we have ϕ(t, x) = x +
∫ t

0 u(s, x)ds, we treat
the dependence on ϕ in the topography term as a dependence on u, hence the
notation q1(V ) and not q1(V, ϕ) for instance.

3. Quasilinearization of the equations

When the water depth does not vanish, the problem (2.6) is quasilinear in
nature [Isr11, FI14], but at the shoreline, the energy degenerates and as we
shall see, some topography terms make (2.6) a fully nonlinear problem. In
order to quasilinearize it, we want to consider the system of equations formed
by (3.2) together with the evolution equations formally satisfied by V1 := X1V
and V2 := X2V , where X1 = ∂t and X2 = h0∂x are chosen because they are
tangent to the boundary. After giving some notation in §3.1, we derive in §3.2
the linear system satisfied by V1 and V2 and provide in §3.3 L2-based energy
estimates for this linear system. We then state in §3.4 the quasilinear system
satisfied by (V, V1, V2) (the fact that it is indeed of quasilinear nature will be
proved in Section 4).
Throughout this section and the rest of this article, we shall make the following
assumption.
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Assumption 3.1. i. The functions h0 and B are smooth on R+. Moreover,
h0 satisfies the following properties,

h0(0) = 0, h′0(0) > 0, h0(x) > 0 for all x > 0 and lim inf
x→∞

h0(x) > 0.

ii. We are interested in the shallow water regime corresponding to small values
of µ and therefore assume that µ does not take large values, say, µ ∈ [0, 1].

Remark 3.2. In the context of a compressible gas, this assumption corre-
sponds to a physical vacuum singularity [Liu96]; the equivalent of flows that
are smooth up to vacuum in the sense of [Ser15] is not relevant here.

N.B. For the sake of simplicity, the dependance on h0 and B shall always be
omitted in all the estimates derived.

3.1. A compact formulation. For all V = (q, u)T , let us introduce the linear
operator L[V , ∂] defined by

(3.1) L[V , ∂]V =

{
c(q)∂tq + ∂xu

d[V ]∂tu+ lq
for all V = (q, u)T ,

so that an equivalent formulation of the equation (2.6) is given by the following
lemma.

Lemme 3.3. If V is a smooth solution to (2.6), then it also solves

(3.2) L[V, ∂]V = S(V,X1V,X2V )

with, writing ϕ(t, x) = x+
∫ t

0 u(s, x)ds,

(3.3) S(V, V1, V2) =

 0
−B′(ϕ)− µl

[
− 4

3qX2uq1 + qu2B′′(ϕ)
]

− µX2uq1B
′(ϕ) + µu2B′(ϕ)B′′(ϕ)

 .

Proof. One obtains directly that V solves (3.2) with S given by

S(V,X1V,X2V ) =
(
0,−B′(ϕ)− µq1(V )

)T
and q1(V ) as defined in (2.10). In order to put it under the form given in the
statement of the lemma, one just needs to use the first equation of (2.6) to
rewrite q1 = q1(q, u) under the form

(3.4) q1 = l
[
− 4

3
qX2uX1q + quX1B

′]−X2uX1qB
′ + uB′X1B

′.

�

3.2. Linearization. As explained above, we want to quasilinearize (3.2), by
writing the evolution equations satisfied by V and XmV (m = 1, 2). We
therefore apply the vector fields X1 and X2 to the two equations of (3.2). For
the first equation, we have the following lemma, whose proof is straightforward
and omitted.
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Lemme 3.4. If V = (q, u)T is a smooth enough solution to (2.6), then one
has, for m = 1, 2,

c∂tXmq + ∂xXmu = F (m)(q,X1q,X2q).

with

F (m)(q, q1, q2) = −c′(q)q1qm − c(q)
Xmh0

h0
q1.

For the second equation, the following lemma holds. The important thing
here is that the term µl(a(u)Xmq) cannot be absorbed in the right-hand-
side. As explained in Remark 4.7 below, this terms makes the problem fully
nonlinear.

Lemme 3.5. If V = (q, u)T is a smooth enough solution to (2.6), then one
has, for m = 1, 2,

d[q]∂tXmu+ l
[(

1 + µa(u)
)
Xmq

]
= g(m),

with g(m) = g
(m)
0 +

√
µlg

(m)
1 and

a(u) = X1(uB′) and g
(m)
j = G(m)

j (V,X1V,X2V ) (j = 1, 2),

and where, writing ϕ1 = u and ϕ2(t, x) := h0 +
∫ t

0 u2, one has

1

µ
G(m)

0 (V, V1, V2) =(qmB
′ + qB′′ϕm)X2u1 + q1B

′X2um +X2uX1qmB
′

− 2B′B′′ϕmu1 − 2uumB
′B′′ − u2(B′B(3) − (B′′)2)ϕm

+X2uq1B
′′ϕm − 2Xmh

′
0

(
qu1B

′ − 4

3
q2X2u1

)
− 1

µ
B′′ϕm,

1
√
µ
G(m)

1 (V, V1, V2) =
8

3
qqmX2u1 +

4

3
qq1X2um +

4

3
qX2uX1qm +

4

3
qmX2uq1

− u1qB
′′ϕm − qumuB′′ − qu2B(3)ϕm.

Proof. From the definition (2.9) of d, we have

d∂tu = ∂tu+ µl
[
− 4

3
q2h0∂x∂tu+ q∂tuB

′]− µqB′h0∂x∂tu+ µ(B′)2∂tu,

so that, applying the vector field X (throughout this proof, we omit the sub-
script m = 1, 2), we get

Xd∂tu = d∂tXu+ µl
[
− 8

3
qXqX2X1u+X1uB

′Xq +X1uqXB
′]

− µXqB′X2X1u− µqXB′X2X1u+ µX
(
(B′)2

)
X1u

+ 2µXh′0
(
− 4

3
q2X2X1u+ qX1uB

′),
where we used the fact that [X, l] = 2Xh′0.
Before computing Xq1, we first replace q1 by its equivalent expression (3.4).
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Applying X we find therefore

Xq1 =l
[
− 4

3
XqX2uX1q −

4

3
qX2XuX1q −

4

3
qX2uX1Xq

+XquX1B
′ + qX(uX1B

′)
]
−X2XuX1qB

′ −X2uX1XqB
′

−X2uX1qXB
′ +X(uB′X1B

′).

Since moreover Xlq = lXq + 2Xh′0q, one gets

− 1

µ
g

(m)
0 =−Xm(qB′)X2X1u−X1qB

′X2Xmu−X2uX1XmqB
′

+Xm((B′)2)X1u+Xm(uB′X1B
′)−X2uX1qXmB

′

+ 2Xmh
′
0

(
− 4

3
q2X2X1u+ qX1uB

′)+
1

µ
XmB

′,

− 1
√
µ
g

(m)
1 =− 8

3
qXmqX2X1u−

4

3
qX1qX2Xmu−

4

3
qX2uX1Xmq

− 4

3
XmqX2uX1q +X1uqXmB

′ + qXm(uX1B
′),

and the result follows easily. �

The previous two lemmas suggest the introduction of the linear operator
La[V , ∂] defined as

(3.5) La[V , ∂]V =

{
c(q)∂tq + ∂xu

d[V ]∂tu+ l
[(

1 + µa(u)
)
q
] for all V = (q, u)T .

Denoting Vm = XmV , we deduce from Lemmas 3.4 and 3.5 that

(3.6) La[V, ∂]Vm = Sm(V, V1, V2)

where, with the notations of Lemmas 3.4 and 3.5 for F (m) and G(m)
j , one has

(3.7)

Sm(V, V1, V2) =

(
F (m)(q, q1, q2)

G(m)(V, V1, V2)

)
with G(m) := G(m)

0 +
√
µlG(m)

1 .

The next section is devoted to the proof of L2-based energy estimates for (3.5).

3.3. Linear estimates. As seen above, an essential step in our problem is to
derive a priori estimates for the linear problem

(3.8)

{
c(q)∂tq + ∂xu = f

d[V ]∂tu+ l
(
(1 + µa(u))q

)
= g with g := g0 +

√
µlg1,

where we recall that

c(q) = (2q)−3/2 and a(u) = X1(uB′(ϕ)).

As we shall see, (3.8) is symmetrized by multiplying the first equation by h2
0

and the second one by h0; since c(q) > 0 is bounded away from zero and
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since (du, u) controls ‖h0u‖2L2 + µ‖h0∂xu‖2L2 (see the proof of Proposition 3.6

below), it is natural to introduce the weighted L2 spaces

(3.9) L2
s = h

−s/2
0 L2(R+) with the norm ‖u‖2L2

s
=

∫
R+

hs0|u(x)|2dx,

where h0 is the water height at the initial time. We shall also need to work
with the following weighted versions of the H1(R+) space

(3.10) H1
s = {u ∈ L2

s :
√
µh0∂xu ∈ L2

s} ⊂ L2
s

endowed with the norm

(3.11) ‖u‖2H1
s

= ‖u‖2L2
s

+ µ‖h0∂xu‖2L2
s

(the µ in the definition of the norm is important to get energy estimates
uniform with respect to µ ∈ [0, 1]).
The dual space of H1

1 is then given by

(3.12) H−1
1 = {g := g0 +

√
µlg1 : (g0, g1) ∈ L2

1 × L2
1} ⊂ H−1

loc (R+)

(this duality property is proved in Lemma 8.2 below), with

(3.13) ‖g‖2H−1
1

= ‖g0‖2L2
1

+ ‖g1‖2L2
1
.

This leads us to define the natural energy space V for V = (q, u) and its dual
space V′ by

(3.14) V = L2
2 ×H1

1 and V′ = L2
2 ×H−1

1 .

We can now state the L2 based energy estimates for (3.8). Note that these
estimates are uniform with respect to µ ∈ [0, 1].

Proposition 3.6. Under Assumption 3.1, let T > 0 and assume that

(3.15) q, ∂tq,
1

q
, u, ∂tu, ∂

2
t u,

1

1 + µa(u)
∈ L∞([0, T ]× R+).

If (f,g) ∈ L1([0, T ];V′), then if V = (q, u) is a smooth enough solution of
(3.8), one has

∀t ∈ [0, T ],
∥∥V (t)

∥∥
V ≤ c1 ×

[∥∥V (0)
∥∥
V +

∫ t

0

∥∥(f(t′),g(t′)
)∥∥

V′dt
′
]
,

where c1 is a constant of the form

(3.16) c1 = c1

(
T,
∥∥(q, ∂tq,

1

q
,

1

1 + µa(u)
, u, ∂tu)

∥∥
L∞([0,T ]×R+)

)
.

Proof. Remarking that∫
h0(d[V ]u)u =

∫
h0u

2 + µh0

( 2√
3
h0q∂xu−

√
3

2
B′(ϕ)u

)2
+ µh0

(1

2
B′(ϕ)u

)2
where ϕ(t, x) = x+

∫ t
0 u(s, x)ds, the density of energy is

e =
1

2

[
h2

0c(1 + µa)q2 + h0u
2 + µh0(

2√
3
h0q∂xu−

√
3

2
B′u)2 + µh0(

1

2
B′u)2

]
,
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with c = c(q), a = a(u) and B′ = B′(ϕ). We also set

E(t) :=

∫
e(t, x)dx.

We shall repeatedly use the following uniform (with respect to µ) equivalence
relations
(3.17)

E
1
2 ≤ C

(
‖(1

q
, q, u, ∂tu)‖L∞

)
‖V ‖V, ‖V ‖V ≤ C

(
‖(1

q
, q,

1

1 + µa
)‖L∞

)
E1/2.

One multiplies the first equation of (3.8) by h2
0(1 + µa)q and the second by

h0u. Usual integrations by parts show that

d

dt
E =

1

2

∫ [
∂t(c(1 + µa))h2

0q
2 + h0u(∂td[V ])u

]
+

∫
(h2

0(1 + µa)f q + h0g0 u−
√
µh2

0g1∂xu
)
.

Remarking further that∫
h0u(∂td[V ])u = µ

∫ (8

3
h3

0q∂tq(∂xu)2 − 2h2
0B
′∂tqu∂xu

)
= µ

∫ (8

3
h3

0q∂tq(∂xu)2 + l(B′∂tq)h0u
2
)
,

we easily deduce that

d

dt
E ≤ c1‖V ‖2V + ‖(f,g)‖V′‖V ‖V,

with c1 as in the statement of the proposition. Integrating in time, using
(3.17), and using a Gronwall type argument therefore gives the result. �

Remark 3.7. The assumption (3.15) contains two types of conditions: L∞

bounds and positivity conditions q > 0 and 1 + µa(u) > 0 which are essential
to have a definite positive energy, thus for stability.

3.4. The quasilinear system. As explained in Remark 4.7 below, the pres-
ence of the topography term µl(a(u)Xmq) in the equation for Xmu derived in
Lemma 3.5 makes the problem fully nonlinear. We therefore seek to quasilin-
earize it by writing an extended system for V and XmV . We deduce from the
above that V = (q, u)T and Vm = XmV (m = 1, 2) solve the following system

(3.18)

{
La(V, ∂)Vm = Sm(V, V1, V2) (m = 1, 2),

L(V, ∂)V = S(V, V1, V2),

with S and Sm as defined in (3.3) and (3.7) respectively.
As we shall show in the next sections, (3.18) has a quasilinear structure in the
weighted spaces associated to the energy estimates given in Proposition 3.6,
or more precisely, to their higher order generalization.
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4. Main result

In this section, we state and outline the proof of a local well posedness
result for the shoreline problem for the Green-Naghdi equations (2.6). Some
necessary notations are introduced in §4.1 and the main result is then stated
in §4.2. An essential step in the proof is a higher order energy estimate stated
in §4.3; a sketch of the proof of this estimate is provided, but the details are
postponed to Section 6.
In order to construct a solution, we want to construct an iterative scheme for
the quasilinearized formulation (3.18). Unfortunately, with a classical scheme,
the topography terms induce a loss of one derivative; in order to regain this
derivative, we therefore introduce an additional variable and an additional
elliptic equation (which of course become tautological at the limit). This
elliptic equation is introduced in §4.4 and its regularization properties (with
respect to time and conormal derivatives) are stated; their proof, of specific
interest, is postponed to Section 7. Solving each step of the iterative scheme
also requires an existence theory for the linearized mixed initial value problem;
the main result is given in §4.6 (here again the detailed proof is of independent
interest and is postponed, see Section 8). The end of the proof of the main
result consists in proving that the sequence constructed using the iterative
scheme is uniformly bounded (see §4.7) and converges to a solution of the
shoreline problem (2.6) (see §4.8).

4.1. Notations. In view of the linear estimate of Proposition 3.6, it is quite
natural to introduce for higher regularity based on the spaces L2

s introduced
in (3.9) , using the derivatives Xα = Xα1

1 Xα2
2 = ∂α1

t (h0∂x)α2 , α = (α1, α2).
We use the following notations.

Definition 4.1. Given a Banach space B of functions on R+, C0
TB

n [resp;
L∞T B

n] [resp. L2
TB

n] denotes the space of functions u on [0, T ] × R+ such
that for all |α| ≤ n, Xαu belongs to C0([0, T ], B) [resp; L∞([0, T ], B)] [resp.
L2([0, T ], B)], equipped with the obvious norm, which is the L∞ norm or L2

norm of

‖u(t)‖Bn =
∑
|α|≤n

‖Xα(t, ·)‖B.

We use this definition for B = L2
s, H±1

s or B = V,V′, with the associated
notations

‖u(t)‖
L2,n
s
, ‖u(t)‖H±1,n

s
, ‖U(t)‖Vn , ‖F (t)‖V′n .

When B = L∞, we simply write L∞,pT for L∞T L
∞,p which is equipped with the

norm

(4.1) ‖f‖L∞,pT
= sup

t∈[0,T ]
‖f(t)‖L∞,p

where

(4.2) ‖f(t)‖L∞,p =
∑
|α|≤p

‖Xαf(t, ·)‖L∞(R+).
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4.2. Statement of the result. Our main result states that the Cauchy prob-
lem for (2.6) can be solved locally in time. More importantly, for initial data
satisfying bounds independent of µ, the solutions will exist on an interval of
time [0, T ] independent of µ. We look for solutions in spaces C0

TVn, for n
large enough. However, functions in this space are not necessarily bounded,
because of the weights. To deal with nonlinearities, we have to add additional
L∞ bounds on low order derivatives. More precisely we look for solutions in

(4.3)


q ∈ C0

TL
2,n
2 ∩ C0

TL
2,n−1
1 ∩ C0

TL
2,n−2 ∩ L∞,pT

u ∈ C0
TL

2,n
1 ∩ C0

TL
2,n−1 ∩ L∞,pT√

µh0∂xu ∈ C0
TL

2,n,

satisfying uniform bounds in these spaces, where n and p are integers such
that n ≥ 14 and 2p ≥ n ≥ p+ 7.

Next we describe admissible initial conditions. Following Remark 3.7, the
stability conditions q > 0 and 1 + µa(u) must be satisfied at t = 0. The first
one is satisfied since (2.5) implies that the initial for q is q0 = 1/2. Next, recall
that a(u) = ∂t(uB

′(ϕ)). Because, by definition, ∂tϕ = u and ϕ(t = 0, x) = x,
one has

a(u)(0, x) = ∂tu(0, x)B′(x) + u(0, x)B′′(x)u(0, x).

Thus the condition 1 + µa(u) ≥ δ > at t = 0 involves the time derivative ∂tu
at t = 0. Using that ϕ(0, x) = x and the equation (2.6) under the form

(4.4) ∂tu = −d−1
(
lq + µq1(V ) +B′(ϕ)

)
|t=0

,

(we refer to Section 9 for the the invertibility of d) we see that the right-
hand-side only involves u0. Hence The condition 1 + µa(u) ≥ δ > 0 at t = 0
can therefore be expressed as a condition on the initial data u0; using the
convenient notation of Schochet [Sch86], we shall write this condition

(4.5) ∃δ > 0, ”1 + µa(u0) ≥ δ”.

Our result also requires a smallness condition on the contact angle at the
origin, which can be formulated as follows

(4.6)
√
µh′0(0) < ε,

for some ε > 0. We can now state our main result.

Theorem 4.2. Let n ≥ 14 and assume that Assumption 3.1 holds. There
exists ε > 0 such that for all u0 ∈ Hn+2(R+) and µ ∈ [0, 1] verifying (4.5) and
(4.6) there exists T = T (‖u0‖Hn+2 , δ−1) > 0 and a unique classical solution
(q, u) to (2.6) with initial data (1/2, u0) and satisfying (4.3).

Remark 4.3. With the dimensional variables used in the introduction, one
observes that

√
µh′(0) = H′(0). Since moreover, the angle α0 at the contact

line is given by the formula

α0 = arctan
( H′(0)

1− (H′(0) + B′(0))B′(0)

)
,
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one has α0 ≈ H′(0) when H′(0) is small, and this is the reason why we say
that the condition (4.6) is a smallness condition on the angle at the contact
line. Note that a smallness condition on the contact angle is also required to
derive a priori estimates for the shoreline problem with the free surface Euler
equations [dP16, MW17].

Remark 4.4. As already said, the condition (4.5) is necessary for the L2

linear stability, since it is required for the energy to be positive. The status of
the other condition (4.6) is more subtle. It is a necessary condition for the
inverse d−1 at time t = 0 to act in Sobolev spaces. So is has something to
do with the consistency of the model for smooth solutions and, at least, seems
necessary to construct smooth solutions from smooth initial data.

4.3. Higher order linear estimates. We derived in §3.3 some L2-based
energy estimates for the linear system

(4.7)

{
c(q)∂tq + ∂xu = f

d[V ]∂tu+ l
(
(1 + µa(u))q

)
= g with g = g0 +

√
µlg1.

This section is devoted to the proof of higher order estimates. Before stating
the main result, let us introduce the following notations, with V = (q, u) and
S = (f,g),

(4.8)



m1(V ;T ) :=
∥∥V ∥∥

L∞,pT
+
∥∥(

1

q
,

1

1 + µa(u)
)
∥∥
L∞T
,

m2(V ;T ) :=
∥∥q∥∥

L∞T (L2,p+3∩L2,n−2
1 )

+
∥∥u∥∥

L∞T L
2,n−2 ,

m(V ;T ) :=
∥∥u∥∥

L∞,p+1
T

+
∥∥V ∥∥

L∞T Vn−1

m̃(V ;T ) :=
∥∥V ∥∥

L2
TVn

+
∥∥q∥∥

L2
TL

2,n−1
1

,

s(S;T ) :=
∥∥f∥∥

C0
T (L2,n−1

2 ∩L2,p+3)

+
∥∥(g0, g1)

∥∥
C0
T (L2,n−1

1 ∩L2,n−2∩L∞,p)
.

Roughly speaking, m1 is used to control the constants that appear in the L2

linear estimate of Proposition 3.6; m2 controls quantities that do not have the
correct weight to be controlled by the n−1-th order energy norm, but that do
not have a maximal number of derivatives; m is basically the (n− 1)-th order
energy norm; m̃ is used to control the n-th order energy norm (the reason why
it involves an L2 rather than L∞ norm in time is that the control of the n-th
order energy norm comes from the elliptic regularization of §4.4); finally s is
used to control the source terms.

Remark 4.5. Note that the parameter µ enters in the definition of m̃ since,
by (3.11), ∥∥V ∥∥2

L2
TVn

=
∥∥q∥∥2

L2
TL

2,n
2

+
∥∥u∥∥2

L2
TL

2,n
1

+ µ
∥∥h0∂xu

∥∥2

L2
TL

2,n
1
.

The higher order estimates can then be stated as follows (note that they
are uniform with respect to µ ∈ [0, 1]).
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Proposition 4.6. Let n ≥ 14. Under Assumption 3.1, let T > 0, V = (q, u),

S = (f,g), and let also M1, M2, M , M̃ and S be five constants such that

(4.9)
m1(V ;T ) ≤M1, m2(V ;T ) ≤M2, s(S;T ) ≤ S,
m(V ;T ) ≤M, m̃(V ;T ) ≤ M̃.

There exists a smooth function T (·), with a nondecreasing dependence on its

arguments, such that if T > 0 satisfies TT
(
M1,M2,M, M̃

)
< 1, any smooth

enough solution V = (q, u) of (4.7) on [0, T ] satisfies the a priori estimate

‖V ‖L∞T Vn−1 ≤ C(T,M1)
[
C0 +

√
TC(T,M1,M2,M, M̃)S

]
,

where C0 is a constant depending only on the initial data of the form

C0 = C0

(
‖V (0)‖Vn−1 , ‖u(0)‖L∞,p+2 , ‖q(0)‖L2,p−1∩L∞,p−1

)
.

Remark 4.7. We emphasize here that the estimate above induces a loss of
one derivative in the sense that we need n X-derivatives on V to get estimates
of the (n − 1)-th X-derivatives of the solution. This is due to the topography
term a(u) in (4.7). It is therefore the topography that makes the problem fully
nonlinear.

Proof. We only provide here a sketch of the proof; the details are postponed
to Section 6. Introduce the quantities

(4.10)
Qm,j(t) = ‖q(t)‖

L2,m
2−j
, Qm,j(t) = ‖q(t)‖

L2,m
2−j

(j = 0, 1, 2),

Um,j(t) = ‖u(t)‖
L2,m
1−j
, Um,j(t) = ‖u(t)‖

L2,m
1−j

(j = 0, 1),

and, for j = 0, we simply write Qm = Qm,0, etc. When j = 0 these quantities
correspond to the components of the m-th order energy norm; when j 6= 0, the
number of derivatives involved is the same, but the weight is not degenerate
enough to allow a direct control by the energy norm.
Throughout this proof, we denote by p an integer such that p + 7 ≤ n ≤ 2p
(such an integer exists since we assumed that n ≥ 14).

Step 1. Applying Xα, to the first equation of (4.7), we obtain

(4.11) c(q)∂tX
αq + ∂xX

αu = f (α),

where the source term f (α) satisfies on [0, T ] and for |α| ≤ n− 1 ≤ 2p,

(4.12)
∥∥f (α)(t)

∥∥
L2
2
≤ S + C(M1)

(
M‖q(t)‖L∞,p +Qn−1(t)

)
.

This estimate is proved in Proposition 6.1 below.

Step 2. Applying Xα, with |α| ≤ n − 1 ≤ 2p, to the second equation of
(4.7), we obtain

(4.13) d[V ]∂tX
αu+ l

(
(1 + µa(u))Xαq

)
= g(α)

where g(α) = g
(α)
0 +

√
µlg

(α)
1 satisfies on [0, T ] and with H−1

1 as in (3.12),

(4.14)

∥∥g(α)(t)
∥∥
H−1

1
≤ C(T,M1)

(
‖V (t)‖L∞,p

(
M + ‖u(t)‖

L2,n
1

+ ‖q(t)‖
L2,n−1
1

)
+Qn−2,1(t) + Un−1(t)

)
+ S.
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This assertion will be proved in Proposition 6.2. We now need to control the
terms Qn−2,1 and ‖V ‖L∞,p that appear in (4.11) and (4.13) in terms of the
energy norm ‖V ‖Vn−1 ; roughly speaking, we must trade some derivatives to
gain a better weight. This is what we do in the following two steps.

Step 3. To control Qn−2,1, we use the Hardy inequality

‖f(t)‖L2
1
. ‖lf(t)‖L2

1
+ ‖f(t)‖L2

2

which is proved in Corollary 5.4. Using the definition (2.9) of d[V ], the equa-
tion (4.13) implies that

(4.15) lq(α) = g
(α)
0 + µqB′X2X1X

αu− µ(B′)2X1X
αu.

with B′ = B′(ϕ) and

q(α) = (1 + µa(u))Xαq −√µg(α)
1 + µ

4

3
q2X2X1X

αu+ µqB′X1X
αu.

Using the above Hardy inequality on this equation satisfied by q(α) for |α| ≤
n− 2, we show in Proposition 6.4 that

Qn−2,1(t) ≤ C(T,M1,M2,M)
[
C0 + ‖V (t)‖L∞,p + ‖V ‖L∞T Vn−1 + S

]
.

Step 4. Control of ‖V ‖L∞,p . We need a control on Xαu and Xαq in L∞

for |α| ≤ p. For Xαu, we use the Sobolev embedding

‖Xαu‖L∞ . ‖Xαu‖L2 + ‖∂xXαu‖L2

and use the equation (4.11) to control the last term. For Xαq, we need another
Hardy inequality proved in Corollary 5.5

‖f(t)‖L∞ . ‖lu(t)‖L∞∩L2 + ‖f(t)‖L2 ,

which we apply to (4.15). This is the strategy used in Proposition 6.6 to prove
that for T small enough (how small depending only on M), one has

‖V (t)‖L∞,p ≤ C(T,M1,M2,M)
[
C0 + ‖V ‖L∞T Vp+6 + S

]
.

Step 5. Since p+ 6 ≤ n− 1, we deduce from Steps 1-4 that∥∥f (α)(t)
∥∥
L2
2
≤ C

(
T,M1,M2,M

)[
C0 + ‖V ‖L∞T Vn−1 + S

]
,∥∥g(α)(t)

∥∥
H−1

1
≤ C

(
T,M1,M2,M

)[
C0 + ‖V ‖L∞T Vn−1 + S

]
(1 + Un(t) +Qn−1,1(t)).

Using the linear energy estimates of Proposition 3.6 and summing over all
|α| ≤ n− 1, this implies that

‖V ‖L∞T Vn−1 ≤ C(T,M1)
[
C0+C

(
T,M1,M2,M

)(
C0 + ‖V ‖L∞T Vn−1 + S

)
×
∫ T

0
(1 + Un(t) +Qn−1,1(t))dt

]
.

Remarking that∫ T

0
(1 + Un(t) +Qn−1,1(t))dt ≤ T +

√
T |Un,Qn−1,1|L2(0,T )

≤ T +
√
TM̃,
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we finally get

‖V ‖L∞T Vn−1 ≤ C(T,M1)
[
C0 +

√
TC(T,M1,M2,M, M̃)

(
C0 +‖V ‖L∞T Vn−1 +S

)]
.

For T small enough (how small depending only on M1, M2, M and M̃ , this
implies that

‖V ‖L∞T Vn−1 ≤ C(T,M1)
[
C0 +

√
TC(T,M1,M2,M, M̃)S

]
,

which completes the proof of the proposition. �

4.4. The iterative scheme. We derived in the previous section higher order
energy estimates for the linearized equations from which a priori estimates for
the nonlinear problem can be deduced. The question is how to pass from these
estimates to an existence theory. One possibility (in the spirit of [CS11, CS12]),
could be to use a parabolic regularization of the equations. To avoid boundary
layers, such a regularization should be degenerate at the boundary; in the
presence of dispersive and topography terms no general existence theorem
seems available and we therefore choose to work with an alternative approach
based on elliptic regularization.

The goal of this section is to propose an iterative scheme to solve the quasi-
linearized equation (3.18). A naive tentative would be to consider the following
iterative scheme{

La(V k, ∂)V k+1
m = Sm(V k, V k

1 , V
k

2 ) (m = 1, 2),

L(V k, ∂)V k+1 = S(V k, V k
1 , V

k
2 ),

with L and La as in (3.1) and (3.5) respectively. With such an iterative
scheme however, the nonlinear estimates of Proposition 4.6 say that if V k and
V k
m (m = 1, 2) have respectively Vn and Vn−1 regularity then V k+1 and V k+1

m

have only Vn−1 regularity: there is a loss of one derivative, as already noticed
in Remark 4.7. If we know that V k+1

m = XmV
k+1 then the Vn regularity

for V k+1 is recovered, but this information is not propagated by the iterative
scheme (even though it is true at the limit).

A usual way to circumvent the loss of derivatives is to use a Nash-Moser
scheme, but here the definition of the the smoothing operators would be del-
icate because we need weighted and non weighted norms. So we proceed in
a different way and introduce an additional variable V0 whose purpose is to
make the regularity of the family (V k)k one order higher than the regularity
of (V k

1 , V
k

2 )k. Instead of (3.18), we rather consider

(4.16)


La(V, ∂)Vm = Sm(V, V1, V2) (m = 1, 2),

L(V, ∂)V = S(V, V1, V2),

E(∂)V = F (V0, V1, V2)

and the iterative scheme we shall consider should therefore be of the form
La(V k, ∂)V k+1

m = Sm(V k, V k
1 , V

k
2 ) (m = 1, 2),

L(V k, ∂)V k+1
0 = S(V k, V k

1 , V
k

2 ),

E(∂)V k+1 = F (V k+1
0 , V k+1

1 , V k+1
2 )
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with E(∂) an elliptic operator (in time and space) so that V k+1 is more regular

than F (V k+1
0 , V k+1

1 , V k+1
2 ), and the sequence is defined for all k.

We choose the elliptic equation

(4.17) E(∂)V = V1 + F2V2 + F0V0

in such a way that it is tautological when V0 = V , V1 = X1V and V2 = X2V .
We choose

(4.18) E = ∂t + P, F2 = −X2P
−1, F0 = κ2P−1

where P = (κ2−X2
2 )

1
2 = (κ2−(h∂x)2)

1
2 and κ > 2. Note that this corresponds

to a scalar equation for each component q and u. We consider the Cauchy
problem for (4.17). The independent proof of the next proposition is given
in Section 7. Note that the gain of one derivative only occurs if we consider
an L2-norm in time (this is the reason why we had to introduce the constant
m̃(V ; t) in (4.8).

Proposition 4.8. Let n − 1 ∈ N. For (V0, V1, V2) in L∞([0, T ];Vn−1) and
initial data in Vn, the Cauchy problem for (4.17) has a unique solution in
L2([0, T ];Vn) ∩ C([0, T ];Vn−1) and

‖V ‖L2([0,T ];Vn) . ‖V (0)‖Vn +
√
T
(
‖V0‖L∞T Vn−1 + ‖V1‖L∞T Vn−1 + ‖V2‖L∞T Vn−1

)
‖V ‖L∞T Vn−1 . ‖V (0)‖Vn−1 + T

(
‖V0‖L∞T Vn−1 + ‖V1‖L∞T Vn−1 + ‖V2‖L∞T Vn−1

)
.

Moreover, the following L∞ bounds also hold,

‖V ‖L∞,pT
. ‖V (0)‖L∞,p +

√
T
(
‖V0‖L∞,p + ‖V1‖L∞,p + ‖V2‖L∞,p

)
.

As a conclusion, the iterative scheme we shall consider is the following

(4.19)


La(V k, ∂)V k+1

m = Sm(V k, V k
1 , V

k
2 ) (m = 1, 2),

L(V k, ∂)V k+1
0 = S(V k, V k

1 , V
k

2 ),

E(∂)V k+1 = V k
1 + F2V

k
2 + F0V

k
0

(the choice of the first iterate k = 1 will be discussed in §4.6 below). We take
the natural initial data : first we choose

(4.20) V k
|t=0 = V k

0 |t=0 = (
1

2
, u0), V k

2 |t=0 = (0, X2u
0).

For the initial value of V k
1 , we take the data given by the equation (2.6)

evaluated at t = 0

(4.21) V k
1 |t=0 =

(
− 1

c(q0)
∂xu

0,d−1
0 (B′(x)− lq0 − µq1|t=0)

)
where d0 is the operator d at time 0, which is known since it involves only the
initial values of q and ϕ, that is q0 = 1

2 and ϕ0 = x (the invertibility properties
of d0 are discussed in Section 9).



THE SHORELINE PROBLEM 21

4.5. The initial values of the time derivatives. Because the right-hand-

side of the energy estimates involve norms of ∂jt V
k
|t=0 (through C0 in Proposi-

tion 4.6 for instance), we have to show that theses quantities remain bounded
through the iterative scheme.

The initial values of ∂jt V are computed by induction on j, writing the equa-
tion (3.2) under the form

∂tV = A(V )

where A is a non linear operator acting on V . However, A involves d−1, and

it is easier to commute first the equation (3.2) with ∂jt , before applying d−1.
This yields an induction formula

(4.22) ∂j+1
t V|t=0 = Aj(V|t=0, . . . , ∂

j
t V|t=0)

where the Aj are non linear operators which involve only ∂x derivatives and

d0−1
, where d0 = d|t=0 is independent of the initial value u0.

In particular, starting from V 0
in = (1

2 , u
0) with u0 sufficiently smooth, this

formula defines by induction functions V j
in, as long as d0 can be inverted. In

particular, if this allows to define a smooth enough Vapp such that

(4.23) ∂jt Vapp|t=0 = V j
in, j ≤ n.

then Vapp is an approximate solution of (3.2) in the sense of Taylor expansions
up to order n − 1. This is made precise in Section 9 where we prove the
following proposition that will play a central role in the construction of the
first iterate of the iterative scheme in the next section.

Proposition 4.9. There is εn > 0, which depends only on n, such that, for√
µh′(0) ≤ εn and u0 ∈ Hn+2(R+), the V j

in are well defined in Hn+1−j(R+)

so that there is a Vapp ∈ Hn+1([0, 1]× R+) satisfying (4.22).

From now on, we assume that the condition
√
µh′(0) ≤ εn is satisfied.

An important remark is that the V j
in remain the initial data of the time

derivatives of the solutions, all along the iterative scheme (4.19).

Proposition 4.10. Suppose that (V , V 0, V 1, V 2) is smooth and satisfies for
j ≤ n− 1,

(4.24)

{
∂jt V |t=0 = ∂jt V 0|t=0 = V j

in,

∂jt V 1|t=0 = V j+1
in , ∂jt V 2|t=0 = X2V

j
in,

then any smooth solution (V, V0, V1, V2) of

(4.25)


La(V , ∂)Vm = Sm(V , V 1, V 2) (m = 1, 2),

L(V , ∂)V0 = S(V , V 1, V 2)

E(∂)V = F (V0, V1, V2)

with initial conditions

(4.26)

{
V|t=0 = V0|t=0 = (1

2 , u
0), V2|t=0 = (0, X2u

0).

V1|t=0 = V 1
in =

(
− 1

c(q0)
∂xu

0,d−1
0 (B′(x)− lq0 − µq1|t=0)

)
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also satisfies the conditions (4.24).

Proof. The proof is by induction on j. This is true for j = 0 by the choice of the

initial conditions. Expliciting the time derivative, it is clear that the ∂jt V∗|t=0

can be computed by induction on j, in a unique way. Therefore it is sufficient
to show that the solution to (4.25), (4.26) satisfies the required condition (4.24)
This is true because (∂tV,X2V, V, V ) is an approximate solution of (4.16) in
the sense of Taylor expansions up to order n− 2. �

4.6. Construction of solutions for the linearized mixed initial bound-
ary value problem. We have already proved in Proposition 4.8 that the ini-
tial value problem for the elliptic equation is well posed. In order to construct
a sequence of approximate solutions (V k)k using the iterative scheme (4.19),
it remains to solve linear problems of the form

(4.27) La(V , ∂)V = F.

They do not enter in a known framework, because of the dispersive term of
the second equation and also because of the weights. However, one can solve
such systems using a scheme which we now sketch. The key ingredient are the
high-order a priori estimates proved in Proposition 4.6. We proceed as follows.

1. Assume first that the coefficients a and V are very smooth. The linear
system can be cast in a variational form, and the a priori estimates for the
backward problem imply the existence of weak solutions in weighted L2 spaces.

2. Using tangential mollifications (convolutions in time) and variations
on Friedrichs’ Lemma, one proves that the weak solutions are strong, that is
limit of smooth solutions. Therefore they satisfy the a priori estimates in L2

and in weighted Sobolev spaces.
3. Approximating the coefficients, this implies the existence of solutions

when a and V have the limited smoothness.
4. The gain of weights and L∞ estimates are proved using Hardy type

inequalities.
Details are given in Section 8 below. The next proposition summarizes the

useful conclusion for the Cauchy problem with vanishing initial condition.

Consider V and F such that the quantities

(4.28) m1(V ;T ), m̃2(V ;T ), m(V ;T ), m̃(V ;T ), s̃(F ;T ),

defined at (4.8) are finite. Suppose in addition that

(4.29) ∂jtF|t=0 = 0, j ≤ n− 2.

Proposition 4.11. Suppose that F ∈ L2
TV′n−1 satisfies (4.29). Then, the

Cauchy problem for (4.27) with initial data V|t=0 = 0 has a unique solution in

C0
TVn−1 and ∂jt V|t=0 = 0 for j ≤ n− 2.

Together with Propositions 4.8 for the elliptic equation and 4.10 to treat
the initial condition, one can now solve the linearized equations (4.25) with
the initial conditions (4.26) and define the iterates [V k] := (V k

1 , V
k

2 , V
k

0 , V
k

2 ).
We proceed as follows.
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Consider a smooth initial data u0 ∈ Hn+2(R+). Using Proposition 4.9
introduce Vapp ∈ Hn+1([0, T ]×R+) satisfying the conditions (4.23). We start
the iteration scheme with

(4.30) [V 1] =
(
V 1

1 , V
1

2 , V
1

0 , V
1
)

=
(
Vapp, Vapp, ∂tVapp, X2Vapp

)
,

and next define the sequence ([V k])k by induction by solving (4.19) (4.20)
(4.21). Indeed, assume that the quantities

(4.31)

{
‖V k

m‖L∞,p , m(V k;T ), m̃(V k;T )

m1(V k;T ), m2(V k;T ), m2(V k
m;T )

are finite and that

(4.32)

{
∂jt V

k
|t=0 = ∂jt V

k
0 |t=0 = V j

in,

∂jt V
k

1 |t=0 = V j+1
in , ∂jt V

k
2 |t=0 = X2V

j
in

, j ≤ n− 1.

The following lemma is proved in the next section.

Lemme 4.12. The quantities s(Sk;T ) and s(Skm;T ) associated to the source
terms Sk = S(V k, V k

1 , V
k

2 ) and Skm(V k, V k
1 , V

k
2 ) with S and Sm as given in

(3.3) and (3.7), are finite.

We look for [V k+1] as [V 1] + [δV k], where [δV k] = (δV k
1 , δV

k
2 , δV

k
0 , δV

k)
solves a system of the form

(4.33)


La(V k, ∂)δV k

m = δSkm (m = 1, 2),

L(V k, ∂)δV k
0 = δSk,

E(∂)δV k = δF k,

with vanishing initial condition [δV k]|t=0 = 0. By Proposition 4.10, [V k] is an
approximate solution of (4.16) in the sense of Taylor expansion at t = 0, and
thus the source term [δSk] = (δSk1 , δSk2 , δSk, δF k) satisfies:

(4.34) ∂jt [δSk]|t=0 = 0, j ≤ n− 2.

Hence, Propositions 4.11 and 4.8 imply the following result:

Proposition 4.13. Under the assumptions above, the equation (4.33) (4.20)

(4.21) has a solution [V k+1] = (V k+1
1 , V k+1

2 , V k+1
0 , V k+1) with each term in

C0
TVn−1. Moreover, it satisfies (4.32).

The last step needed is the following proposition, proved in the next section
together with precise bounds on the different quantities.

Proposition 4.14. The quantities ‖V k+1
m ‖L∞,pT

, m(V k+1;T ) , m̃(V k+1;T ),

m1(V k+1;T ), m2(V k+1;T ), m2(V k+1
m ;T ) are finite.
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4.7. Bounds on the sequence (V k
1 , V

k
2 , V

k
0 , V

k)k. We have just constructed
a sequence (V k

1 , V
k

2 , V
k

0 , V
k)k. We want to prove that it converges as k →

∞ to a solution (V1, V2, V0, V ) of the quasilinearized equations (4.16). The
first step consists in establishing the following uniform bounds on this se-
quence, where we used the notations given in (4.8), and for some constants

M1,M2,M, M̃,N1, N2, S to be chosen carefully,

(4.35)


m(V k;T ) ≤M,

m̃(V k;T ) ≤ M̃,

m1(V k;T ) ≤M1, and ‖V k
m‖L∞,p ≤ N1 (m = 0, 1, 2),

m2(V k;T ) ≤M2 and m2(V k
m;T ) ≤ N2 (m = 0, 1, 2),

and a constant S such that

(4.36) s(Sk;T ) ≤ S, and s(Skm;T ) ≤ S,

for m = 0, 1, 2 and k ∈ N.

Proposition 4.15. There exists T > 0 and some nonnegative constants M1,

M2, M , M̃ , N1, N2 and S such that the bounds (4.35) hold for all k ∈ N.

Proof. Here again, we only sketch the proof and postpone the details to §6.2.
The proof is by induction on k. In order to show that (4.35)k+1 holds if
(4.35)k is satisfied, we first derive the necessary bounds on V k+1

m (m = 0, 1, 2)
which are a consequence of the higher order estimates of Proposition 4.6 for
the Vn−1 estimates, and of Proposition 6.6 for the estimates based on L∞.
The required estimates on V k+1 are then deduced from the estimates on V k+1

m

using the elliptic regularization properties stated in Proposition 4.8. These
results are rigorously stated and proved in Lemma 6.10.
These upper bounds are then used to prove Lemma 6.11, which provides the
required estimates on Sk+1 and Sk+1

m . �

Remark 4.16. We note that the proof of the proposition which gives precise
bounds, includes a proof of the Lemma 4.12 and Proposition 4.14 above.

4.8. Convergence and end of the proof of Theorem 4.2. We show here
that the sequence constructed in the previous sections converges to a solution
of (4.16), and that the solution (V1, V2, V0, V ) satisfies V0 = V , V1 = V and
V2 = X2V if these identities are satisfied at t = 0. It follows that V is the
solution claimed in the statement of Theorem 4.2.

Let us write W k+1 := V k+1 − V k, W k+1
m := V k+1

m − V k
m (m = 0, 1, 2). From

(4.33), these quantities solve

(4.37)


La(V k, ∂)W k+1

m = S̃km, (m = 1, 2)

L(V k, ∂)W k+1
0 = S̃k,

E(∂)W k+1 = W k
1 + F2W

k
2 + F0W

k
0 ,
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with, using again the notation Skm = Sm(V k, V k
1 , V

k
2 ), etc.,

S̃km :=
(
Skm − Sk−1

m

)
−
(
La(V k, ∂)− La(V k−1, ∂)

)
V k
m,

S̃k :=
(
Sk − Sk−1

)
−
(
L(V k, ∂)− L(V k−1, ∂)

)
V k

0 .

Using the bounds proved on the sequences (V k)k and (V k
m)k in Proposition 4.15

one easily gets that the right-hand-side in (4.37) has a Lipschitz dependence
on (W k,W k

0 ,W
k
1 ,W

k
2 ). Taking a smaller T if necessary, one can therefore

classically show that the series V k+1 − V 0 =
∑k+1

j=1 W
j and V k+1

m = V 0
m +∑k+1

j=1 W
j
m converge in V to some functions V and Vm in C([0, T ];V). Using

again the bounds provided by Proposition 4.15 and interpolation inequalities,
one obtains that (V, V0, V1, V2) is a classical solution of

La(V, ∂)Vm = Sm(V, V1, V2) (m = 1, 2),

L(V, ∂)V0 = S(V, V1, V2),

E(∂)V = V1 + F2V2 + F0V0

and that V ∈ L2([0, T ];Vn) and V0, Vm ∈ L∞([0, T ];Vn−1) for m = 1, 2.
We now need to prove that Vm = XmV and V = V0 if these quantities coincide
at t = 0. Differentiating the equation on V0 with respect to Xm, one gets

La(V, ∂)XmV0 = S̃(V0, V, V1, V2),

where the exact expression for S̃(V0, V, V1, V2) can be obtained as for Lemma
3.5. Writing Zm := Vm −XmV0, one obtains therefore that

La(V, ∂)Zm = Sm(V, V1, V2)− S̃(V0, V, V1, V2) (m = 1, 2),

and (using the equation to substitute X1qm as in (6.19) below), one easily
gets that the right-hand-side has a Lipschitz dependence on Vm − XmV =
Zm +Xm(V − V0) and V − V0 in L2([0, T ];V). Remarking further that

E(∂)V0 = X1V0 + F2X2V0 + F0V0.

and taking the difference with the above equation on V , we get through Propo-
sition 4.8 that V −V0 is controlled in L2([0, T ];V1) by Zm in L2([0, T ];V). We
get therefore from Gronwall’s inequality that V0 = V , V1 = V and V2 = X2V
if these identities are satisfied at t = 0, which concludes the proof of Theorem
4.2.

5. Hardy type inequalities

As explained in the previous section, we shall need Hardy type inequalities
to obtain non-weighted estimates on Xαu and Xαq using the equations. We
prove here several general Hardy type inequalities of independent interest; the
inequalities we shall actually use are the particular cases stated in Corollaries
5.2, 5.4 and 5.5. Throughout this section, we shall denote by h any function
h ∈ C1([0,∞)) ∩ L∞(R+) satisfying

(5.1) h(0) = 0, h′(0) > 0, h(x) > 0 for all x > 0, and lim inf
x→∞

h(x) > 0.
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We also need to introduce the operator Dα defined as

(5.2) Dαu := h∂xu+ αh′(x)u = h1−α∂x(hαu)

Proposition 5.1. Let p ∈ [1,∞] and α, σ ∈ R be such that σ > α− 1/p. If h
is as in (5.1) and hσDαu ∈ Lp(R+) and hσ+1u ∈ Lp(R+), then hσu ∈ Lp(R+)
and

‖hσu‖Lp . ‖hσDαu‖Lp + ‖hσ+1u‖Lp .

Proof. Let χ be a smooth positive function such that χ(0) = 1 and for some
X2 > 0, χ(x) = 0 for all x ≥ X2. We decompose u into

u = u1 + u2, u1 := χu, u2 := (1− χ)u.

Let f := Dαu1; one has

h(x)σu1(x) = −
∫ ∞
x

h(y)α−1

h(x)α−σ
f(y)dy

Since u1 and f are supported in [0, X2], one has

h(x)σ|u1(x)| .
∫ ∞
x

yα−σ−1

xα−σ
yσ|f(y)|dy

=

∫ ∞
1

tα−σ−1|(tx)σf(tx)|dt,

and therefore

‖hσu1‖Lp ≤
( ∫ ∞

1
tα−σ−1−1/pdt

)
‖xσf‖Lp

Remarking that ‖xσf‖Lp . ‖hσDαu‖Lp + ‖hσ+1u‖Lp (recall that h(x) ∼ x on
[0, X2]), we deduce that

‖hσu1‖Lp . ‖hσDαu‖Lp + ‖hσ+1u‖Lp
provided that the integral in t converges, which is the case if σ > α− 1/p.
Since for u2, one trivially has ‖hσu1‖Lp . ‖hσ+1u‖Lp , the result follows. �

We shall use in this paper the following direct corollary of Proposition 5.1
(just take p = 2, σ = 0 and α = 0).

Corollary 5.2. Assume that h is as in (5.1) and that h∂xu ∈ L2(R+) and
hσ1u ∈ L2(R+) for some 0 ≤ σ1 ≤ 1. Then u ∈ L2(R+) and

‖u‖2 . ‖h∂xu‖2 + ‖hσ1u‖2.

Proposition 5.3. Let p ∈ [1,∞] and 1/p+ 1/q = 1, and assume that p ≥ q.
Let u be compactly supported and assume that for σ < α − 1/p, one has
hσDαu ∈ Lp(R+) and hσ1u ∈ Lq(R+) where σ ≤ σ1 ≤ α − 1/q; then hσu ∈
Lp(R+) and

‖hσu‖Lp . ‖hσDαu‖Lp .

Proof. Let X2 > 0 be such that u is supported in [0, X2]. With f = Dαu
introduce

u1(x) =

∫ x

0

h(y)α−1

h(x)α
f(y)dy.
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Since σ < α − 1 + 1/q, one has h(y)α−σ−1 ∼ yα−σ−1 ∈ Lq([0, X2]); therefore,
the integral converges and

|h(x)σu1(x)| .
∫ x

0

yα−1−σ

xα−σ
g(y)dy =

∫ 1

0
tα−σ−1g(tx)dt

with g(y) = |yσf(y)|. Moreover, since α− σ − 1/p > 0,

‖hσu1‖Lp ≤
1

α− σ − 1/p
‖g‖Lp . ‖hσDαu‖Lp .

Thus hσu1 and hence hσ1u1 belong to Lp. Since p ≥ q, their restriction to
[0, X2] also belongs to Lq([0, X2]). From the assumption made on u, we deduce
that hσ1(u − u1) ∈ Lq([0, X2]). Remarking further that Dα(u − u1) = 0, we
have u− u1 = ch−α and therefore hσ1(u− u1) ∼ cxσ1−α; this quantity has to
be in Lq([0, X2]) and the condition on σ1 implies that this is possible only if
c = 0. Hence u = u1 and the proposition is proved. �

Taking p = q = 2 in Proposition (5.3), one gets the following corollary.

Corollary 5.4. Assume that σ < α − 1/2 and that hσDαu ∈ L2(R+) and
hσ1u ∈ L2(R+) with σ + 1 ≥ σ1 ≥ σ and σ1 ≤ α − 1/2. Then one has
hσu ∈ L2(R+) and

‖hσu‖L2 . ‖hσDαu‖L2 + ‖hσ1u‖L2 .

Proof. Let χ be a smooth positive function such that χ(0) = 1 and for some
X2 > 0, χ(x) = 0 for all x ≥ X2. We decompose u into

u = u1 + u2, u1 := χu, u2 := (1− χ)u.

Remarking that

Dαu1 = χDαu+ hχ′u,

one has hσDαu1 ∈ L2(R+) since σ + 1 ≥ σ1, and one can apply Proposition
5.3 to u1 with p = q = 2. This yields

‖hσu1‖L2 . ‖hσDαu‖2 + ‖hσ1u‖2.
Since u2 is supported away from the origin, we also get from (5.1) that

‖hσu2‖L2 . ‖hσ1u‖L2

and the result follows. �

We shall also need the following corollary corresponding to the case p =∞,
q = 1.

Corollary 5.5. If σ ≤ α − 1, hσDαu ∈ L2 ∩ L∞(R+) and hσ+1u ∈ L2(R+)
then hσu ∈ L2(R+) and

‖hσu‖L∞ . ‖hσDαu‖L∞ + ‖hσDαu‖L2 + ‖hσu‖L2 .

Proof. With the same decomposition as in the proof of the corollary above,
we have by the proposition that

‖hσu1‖L∞ . ‖hσDαu1‖L∞ . ‖hσDαu‖L∞ + ‖hσ+1u‖L∞ .
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Since u2 is supported away from zero, we also deduce from (5.1) that

‖hσu1‖L∞ . ‖hσ+1u‖L∞ ;

the result follows therefore from the observation that

‖hσ+1u‖L∞ . ‖hσ+1u‖L2 + ‖∂x(hσ+1u)‖L2

. ‖hσu‖L2 + ‖hσDαu‖L2 .

�

6. Technical details for the proof of Theorem 4.2

We prove here some technical results stated in Section 4 and used to prove
Theorem 4.2. The first one is the proof of the higher order estimates of Proposi-
tion 4.6, presented in §6.1 below. The second one is the proof of the bounds on
the sequence of approximate solutions constructed using the iterative scheme
(4.19); this is done in §6.2. Other elements of the proof of Theorem 4.2 are
of independent interest and are therefore presented in specific sections: see
Section 5 for the Hardy estimates, Section 7 for the analysis of the elliptic
equation, and Section 8 for the resolution of the mixed initial boundary value
problem for the linearized equations.

We recall that, for the sake of clarity, we do not track the dependance on
h0 and B in the various constants that appear in the proof.
Before proceeding further, let us state the following product and commutator
estimates, whose proof is straightforward and therefore omitted. Recalling
that the spaces L2,s

j and L∞,p have been introduced in (3.9) and (4.2) re-

spectively, we have for all m ≥ 1 and β ∈ N2 such that |β| ≤ m, and for
j = 0, 1, 2,

‖Xβ(fg)‖L∞ . ‖f‖∞,m‖g‖L∞,m(6.1)

‖[Xβ, f ]g‖L2 . ‖f‖
L∞,[

m
2 ]‖g‖L2,m−1

j
+ ‖g‖

L∞,[
m
2 ]‖f‖L2,m

j
.(6.2)

We also use the simplified notations

Qm,j(t) = ‖q(t)‖
L2,m
2−j
, Um,j(t) = ‖u(t)‖

L2,m
1−j
, etc

as in (4.10), as well as

Qm,j [t] = sup
t′∈[0,t]

Qm,j(t′), Um,j [t] = sup
t′∈[0,t]

Um,j(t′), etc.

6.1. Technical details for the proof of Proposition 4.6. Proposition 4.6
has been proved in §4.3 assuming several technical results that we establish
here.

The following proposition gives the equation on Xαq obtained by applying
Xα to the first equation of (4.7) and a control of the residual that has been
used in Step 1 of the proof of Proposition 4.6.
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Proposition 6.1. Let T > 0 and V ,S satisfy the bounds (4.9). Any smooth
solution V = (q, u) satisfies on [0, T ], and for |α| ≤ m ≤ 2p,

c(q)∂tX
αq + ∂xX

αu = f (α),

where, for j ∈ {0, 1, 2} and t ∈ [0, T ],∥∥h1−j/2
0 f (α)(t)

∥∥
L2 ≤ ‖h

1−j/2
0 f(t)‖L2,m + C(M1)

(
‖q‖L∞,pT

Qm,j(t) +Qm,j(t)
)
.

Proof. Consider the first equation written as

h0c(q)∂tq −X2u = 0.

In this form, the second term commutes with Xα. Applying h−1
0 Xα to this

equation we obtain that f (α) is a linear combination

(6.3) f (α) = Xαf +
∑

c∗(q)
1

h0
Xα0h0X

α1q . . .Xαk−1qXαkq,

where the c∗ are derivatives of the function c(·) and the indices satisfy
∑
|αi| =

|α|+ 1 and 1 ≤ |αi| ≤ |α| if i ≥ 1. Moreover, there is at most one i ≥ 1 such
that |αi| > p (if none, we can choose i as we want). If i = k (i.e. if the higher
order derivative is on q), and remarking that Xα2

2 h0 = O(h0), we have∥∥h1−j/2
0

1

h0
Xα0

2 h0X
α1q . . .Xαkq(t)

∥∥
L2 .M

k−1
1

∥∥h1−j/2
0 Xαkq(t)

∥∥
L2

.Mk−1
1 Qm,j(t).

If i < k (i.e. if the higher order derivative is on q), the same quantity is
bounded from above by

Mk−2
1 ‖q(t)‖L∞,p

∥∥h1−j/2
0 Xαiq(t)

∥∥
L2 .M

k−2
1 ‖q(t)‖L∞,pQm,j(t),

and the proposition follows easily. �

Similarly, an equation on Xαu is obtained by applying Xα to the second
equation of (4.7); the control of the residual provided below has been used in
Step 2 of the proof of Proposition 4.6. We recall that a(u) = X1(uB′(ϕ)) and

that Um[t] = supt′∈[0,t] Um(t′).

Proposition 6.2. Let T > 0 and V ,S satisfy the bounds (4.9). Any smooth
solution V = (q, u) satisfies on [0, T ], and for |α| ≤ m and m+ 1 ≤ 2p,

d[V ]∂tX
αu+ l

(
(1 + µa(u))Xαq

)
= g

(α)
0 +

√
µlg

(α)
1 .

where the source terms g
(α)
0 and g

(α)
1 satisfy on [0, T ],∥∥(g

(α)
0 , g

(α)
1 )(t)

∥∥
L2
1
≤ C1

[
‖V (t)‖L∞,p

(
Qm,1(t) + Um[t] + Um+1(t)

)
+Qm−1,1(t) + Um(t)

]
+
∥∥(g0, g1)(t)

∥∥
L2,m
1
,

with C1 = C(T,Mp(T )), as well as∥∥(g
(α)
0 , g

(α)
1 )(t)

∥∥
L2 ≤ C1

[
‖V (t)‖L∞,p

(
Qm,2(t) + Um,1[t] + Um+1,1(t)

)
+Qm−1,2(t) + Um,1(t)

]
+
∥∥(g0, g1)(t)

∥∥
L2,m
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and∥∥(g
(α)
0 , g

(α)
1 )(t)

∥∥
L∞
≤ C1

[
‖V (t)‖L∞,p

(
‖q(t)‖L∞,m + ‖u(t)‖L∞,m+1

)
+ ‖q(t)‖L∞,m−1 + ‖u(t)‖L∞,m+1

]
+ ‖(g0, g1)(t)‖L∞,m .

Proof. We only prove the fist and third estimates; the second one is estab-
lished like the first one, with a straightforward adaptation. We first state the
following lemma that we shall use to control the topography terms.

Lemme 6.3. Let T > 0. For j = 0, 1, |α| ≤ m ≤ 2p and t ∈ [0, T ] ,∥∥h(1−j)/2
0 XαB′(ϕ)(t)

∥∥
L2 . C1Um,j [t].

The same control holds for XαX1B
′(ϕ).

Proof of the lemma. By the chain rule,

(6.4) XαB′(ϕ) =
∑

B∗(ϕ)Xα1ϕ . . .Xαnϕ,
∑

αj = α, αj 6= 0,

where the B∗ are derivatives of the function B′. Because ∂tϕ = u, we easily
conclude that for j = 0, 1∥∥Xαkϕ(t)

∥∥
L∞
. 1 + tM1,

∥∥B∗(ϕ)h
(1−j)/2
0 Xαlϕ(t)

∥∥
L2 . 1 + tUm,j [t]

if |αk| ≤ p and |αl| ≤ m respectively. Since at most one index |αl| > p, the
first estimate of the lemma follows. The fact that the same estimate also holds
for XαX1B

′(ϕ) stems from the fact that this term is of the form (6.4) with
Xαjϕ replaced by Xαju for some j. �

Applying Xα, with |α| ≤ m, to the second equation of (4.7), we obtain

d[V ]∂tX
αu+ l

(
(1 + µa(u))Xαq

)
= −[Xα,d[V ]]∂tu− µl

(
[Xα, a(u)]q

)
− [Xα, 2h′0]

(
(1 + µa(u))q

)
+Xαg0 +

√
µXαlg1,

where we used the fact that [Xα, l] = [Xα, 2h′0]. We now consider and give
controls on the different components of the right-hand-side of the above equa-
tion.
- Control of −[Xα,d[V ]]∂tu − µl

(
[Xα, a(u)]q

)
. From the definition (2.9) of

d[V ], we can write

−[Xα,d[V ]]∂tu− µl
(
[Xα, a(u)]q

)
= gi0 +

√
µlgi1,

with

gi0 =µ[Xα, qB′]X2X1u− µ[Xα, (B′)2]X1u

+ µ[Xα, 2h′0]
(4

3
q2X2X1u+ qX1uB

′)
gi1 =
√
µ

4

3
[Xα, q2]X2X1u−

√
µ[Xα, B′q]X1u−

√
µ[Xα, a(u)]q,

where we recall that a(u) = X1(uB′(ϕ)).
From the product and commutator estimates (6.1)-(6.2), we deduce that for
j = 0, 1, one has

‖gij(t)‖L2
1
≤ C1

[
‖V (t)‖L∞,p

(
Qm,1(t) + Um[t] + Um+1(t)

)
+Qm−1,1(t) + Um(t)

]
.
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- Control of [Xα, 2h′0]
(
(1 + µa(u))q

)
=: gii0 . Since [X1, h

′
0] = 0 and [X2, h

′
0] =

h0h
′′
0 = O(h0), and recalling that a(u) = X1(uB′(ϕ)), one readily deduces

from the product and commutator estimates (6.1) and (6.2) that

‖gii0 (t)‖L2
1
≤ C1

[
‖V (t)‖L∞,pUm[t] +Qm−1(t)

]
.

- Control of Xαg0 +
√
µXαlg1. We can write

Xαg0 +
√
µXαlg1 = giii0 +

√
µlgiii1

with

giii0 = Xαg0 + µ[Xα, 2h′0]g1 and giii1 = Xαg1,

so that we easily get

‖giii0 (t)‖L2
1

+ ‖giii1 (t)‖L2
1
. ‖(g0, g1)(t)‖

L2,m
1
.

The second estimate of the proposition then follows directly by setting g
(α)
j =

gij + gii0 + giiij for j = 0, 1.

Finally, for the L∞ estimates we use (6.1) together with the following straight-
forward commutator estimate,

∀|β| ≤ m, ‖[Xβ, f ]g‖L∞ . ‖f‖L∞,[m2 ]‖g‖L∞,m−1 + ‖g‖
L∞,[

m
2 ]‖f‖L∞,m ,

and follow the same steps as above. �

The controls provided by Propositions 6.1 and 6.2 involve the quantities
Qn−2,1 and ‖V ‖L∞,p that need to be controlled in terms of the energy norm
‖V ‖Vn−1 . For the first quantity, this means that we need to gain a factor h0

in the weighted L2-norms on q, possibly loosing one derivative. This is done
in the following proposition which is based on the Hardy type inequalities
derived in Section 5, and which has been used to prove Step 3 of the proof of
Proposition 4.6.

Proposition 6.4. Let T > 0 and V ,S satisfy the bounds (4.9). There is a
constant C1 = C(T,M1) such that for all smooth solution V = (q, u) of (4.7)
on [0, T ], the following three properties hold, for all t ∈ [0, T ],
i. For m ≤ 2p, one has

Um,1(t) . ‖f(t)‖
L2,m
2

+ Um(t) + C1

(
‖V (t)‖L∞,pQm(t) +Qm+1(t)

)
,

ii. For p < m+ 1 ≤ 2p, one has

Qm,1(t) ≤ C1

[
‖q(0)‖L2,p−1 + ‖V (t)‖L∞,p

(
1 +Qm,1(t) + Um+1[t]

)
+Qm[t] + Um+1(t) +

∥∥(g0, g1)(t)
∥∥
L2,m
1

]
,

iii. For p < m+ 1 ≤ 2p, one has

Qm,2(t) ≤ C1

[
‖q(0)‖L2,p−1 + ‖V (t)‖L∞,p

(
1 +Qm,2(t) +Qm+1(t) + Um+1,1[t]

)
+Qm+2[t] + Um+1(t) +

∥∥f(t)
∥∥
L2,m+1
2

+
∥∥(g0, g1)(t)

∥∥
L2,m

]
.
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Remark 6.5. A quick look at the proof shows that when m = p or m = p+ 1,
the estimate given in the first point of the proposition can be simplified into

(6.5) Up,1(t) . ‖f(t)‖
L2,p
2

+ Up(t) + C1Qp+1(t)

and

(6.6) Up+1,1(t) . ‖f(t)‖
L2,p+1
2

+Up+1(t)+C1

(
Qp+1(t)+Qp+1(t)‖X1q(t)‖L∞

)
.

Proof. Throughout this proof, the dependence on t is omitted when no confu-
sion is possible.
i. Control of Um,1. We first rewrite the equation (4.11) under the form

h0∂xX
αu = h0f

(α) − c(q)h0∂tX
αq,

for |α| ≤ m. Using the Hardy inequality provided by Corollary 5.2 (with
σ1 = 1/2), we deduce∥∥Xαu

∥∥
L2 .

∥∥h 1
2
0X

αu
∥∥
L2 +

∥∥c(q)h0X
α∂tq

∥∥
L2 +

∥∥h0f
(α)
∥∥
L2 ,

which, together with the control on
∥∥h0f

(α)
∥∥
L2 provided by Proposition 6.1

yields the result.
ii. Control of Qm,1. Using the definition (2.9) of d[V ], we can rewrite the
equation (4.13) on Xαq under the form

(6.7) lq(α) = −X1X
αu+ g

(α)
0 + µqB′X2X1X

αu− µ(B′)2X1X
αu

with

(6.8) q(α) = (1 + µa(u))Xαq −√µg(α)
1 + µ

4

3
q2X2X1X

αu+ µqB′X1X
αu,

so that

Xαq =
1

1 + µa(u)

[
q(α) +

√
µg

(α)
1 + µ

4

3
q2X2X1X

αu− µqB′X1X
αu
]
.

In particular, for |α| ≤ m, we have

‖Xαq‖L2
1
≤ C1 ×

(∥∥q(α)
∥∥
L2
1

+ ‖µg(α)
1 ‖L2

1
+ Um+1

)
.

We now use on (6.7) the Hardy inequality provided by Corollary 5.4 (with
α = 2, σ = 1/2 and σ1 = 1) to obtain∥∥q(α)

∥∥
L2
1
. C1Um+1 +

∥∥g(α)
0

∥∥
L2
1

+
∥∥q(α)

∥∥
L2
2

. C1(Qm + Um+1) +
∥∥(g

(α)
0 , g

(α)
1 )
∥∥
L2
1
.(6.9)

It follows that

‖Xαq‖L2
1
. C1(Qm + Um+1) +

∥∥(g
(α)
0 , g

(α)
1 )
∥∥
L2
1
.

Using Proposition 6.2 and summing over all |α| ≤ m, this yields

Qm,1 ≤ C1

[
‖V ‖L∞,p

(
Qm,1 + Um[t] + Um+1

)
+Qm−1,1 +Qm + Um+1 +

∥∥(g0, g1)
∥∥
L2,m
1

]
,
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and by induction, we deduce that

Qm,1 ≤ C1

[
‖V ‖L∞,p

(
Qm,1 + Um[t] + Um+1

)
+Qp−1,1 +Qm + Um+1 +

∥∥(g0, g1)
∥∥
L2,m
1

]
,(6.10)

so that we are therefore left to control Qp−1,1. We actually prove below a
stronger result, namely, a control of Qp−1,2. For |α| ≤ p − 1, integrating
∂tX

αq and using Assumption 3.1 on h0 for the second inequality, we see that
on [0, T ],∥∥Xαq(t)

∥∥
L2 ≤

∥∥Xαq(0)
∥∥
L2 + t

(
sup
[0,t]
‖∂tXαq‖L2(0,1) + sup

[0,t]
‖∂tXαq‖L2(1,∞)

)
≤
∥∥Xαq(0)

∥∥
L2 + t

(
sup
[0,t]
‖∂tXαq‖L∞(0,1) + sup

[0,t]
‖h0∂tX

αq‖L2(1,∞)

)
Summing over all |α| ≤ p− 1 and using Assumption 3.1, this yields

(6.11) Qp−1,2(t) ≤ C1

(
‖q(0)‖L2,p−1 + t

(
‖q‖L∞t L∞,p +Qp[t]

))
.

Plugging this estimate into (6.10), we get the second estimate of the proposi-
tion.
iii. Control of Qm,2. We proceed as for ii. but replace (6.9) by the inequality
obtained by using Corollary 5.4 (with α = 2, σ = 0 and σ1 = 1), namely, for
|α| ≤ m, ∥∥q(α)

∥∥
L2 . C1Um+1,1 +

∥∥g(α)
0

∥∥
L2 +

∥∥q(α)
∥∥
L2
2

. C1(Qm + Um+1,1) +
∥∥(g

(α)
0 , g

(α)
1 )
∥∥
L2 .(6.12)

Using Proposition 6.2 and proceeding as for ii., this implies that

Qm,2 ≤ C1

[
‖V ‖L∞,p

(
Qm,2 + Um+1,1[t]

)
+Qm−1,2 +Qm + Um+1,1 +

∥∥(g0, g1)
∥∥
L2,m

]
.

Using the result established in i., we deduce that

Qm,2 ≤ C1

[
‖V ‖L∞,p

(
Qm,2 +Qm+1 + Um+1,1[t]

)
+Qm−1,2 +Qm+2 + Um+1 +

∥∥f∥∥
L2,m+1
2

+
∥∥(g0, g1)

∥∥
L2,m

]
.

By induction, and with (6.11), we finally obtain the result. �

As said above, we need a control of ‖V ‖L∞,p in terms of the energy norm
‖V ‖Vn−1 . The proposition below, also based on Hardy-type inequalities, es-
tablishes the result used to prove Step 4 of the proof of Proposition 4.6.

Proposition 6.6. Let T > 0 and V ,S satisfy the bounds (4.9) and let p ≥ 2
and p + 5 ≤ n − 1. There exists a nondecreasing function of its arguments
T (·) such that if TT (M1,M2,M) < 1, any smooth solution V = (q, u) of (4.7)
satisfies the following estimate,

‖V ‖L∞,pT
≤ C(T,M1,M2,M)

[
C0 + ‖V ‖L∞T Vp+6 + S

]
,

with C0 = ‖u(0)‖L∞,p+2 + ‖q(0)‖L2,p−1∩L∞,p−1.
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Proof. The proof is decomposed into three lemmas. The first one gives a
control of the sup norms of u since they can be obtained directly; the second
lemma provides some necessary controls on the source terms that allow the use
of the Hardy type inequalities used in the third lemma to get upper bounds on
the sup norms of q. Throughout this proof, the time dependence in the norms
is omitted when no confusion is possible.

Lemme 6.7. Let T > 0 and V ,S satisfying the bounds (4.9). There is a
constant C1 = C(T,M1) such that for all smooth solution V = (q, u) of (4.7)
on [0, T ], and for m ≥ p such that m+ 2 ≤ 2p, one has for all t ∈ [0, T ],

‖u(t)‖L∞,m ≤ C1

[
‖q(0)‖L2,p−1 + ‖V (t)‖L∞,p

(
Qm,2(t) +Qm+2(t) + Um+2,1[t]

)
+ ‖V (t)‖Vm+3 + ‖f(t)‖

L2,m+2
2

+
∥∥(g0, g1)(t)

∥∥
L2,m+1

]
+ ‖f(t)‖L2,m .

Proof of the lemma. From a classical Sobolev embedding and the equation
(4.11) on Xαu, we have for all |α| ≤ m,∥∥Xαu(t)

∥∥
L∞
.
∥∥Xαu(t)

∥∥
H1

.
∥∥Xαu(t)

∥∥
L2 +

∥∥c(q)Xα∂tq(t)
∥∥
L2 +

∥∥f (α)(t)
∥∥
L2 .

The estimate of f (α) given by Proposition 6.1 implies that

(6.13) ‖u(t)‖L∞,m ≤ Um,1 +C1

(
‖V (t)‖L∞,pQm,2(t)+Qm+1,2(t)

)
+‖f(t)‖L2,m ;

using the first and third point of Proposition 6.4 to control Um,1 and Qm+1,2

respectively, we get the result. �

The following lemma gives some bounds that will be used in the Hardy
inequalities used to bound q from above in L∞ norm. Note that the difference
between the estimate on Qp,2 in the second point of the lemma with respect
with the third estimate of Proposition 6.4 is that the former only requires
‖u‖L∞,p in the right-hand-side (instead of ‖V ‖L∞,p).

Lemme 6.8. Let T > 0 and V ,S satisfy the bounds (4.9). There is a constant
C1 = C(T,M1) such that for all smooth solution V = (q, u) of (4.7) on [0, T ],
the following properties hold for all |α| ≤ p.
i. The source terms are uniformly bounded on [0, T ] in L2 and L∞ norms,

‖(g(α)
0 , g

(α)
1 )(t)‖L2 ≤ ‖(g0, g1)(t)‖L2,p

+C1

(
Up(t) +Qp+1(t) +

(
‖q(0)‖L2,p−1 + t‖q‖L∞,pt

)
‖u‖

L∞,p+1
t

)
,

‖(g(α)
0 , g

(α)
1 )‖L∞ ≤ ‖(g0, g1)(t)‖L∞,p

+C1

(
‖u(t)‖L∞,p+1 +

(
‖q(0)‖L∞,p−1 + t‖q‖L∞,pt

)
‖u‖

L∞,p+1
t

)
.

ii. If p ≥ 2, one has the following estimate

Qp,2(t) ≤C1

[
‖(g0, g1)(t)‖L2,p + ‖f(t)‖

L2,p+1
2

+ ‖V (t)‖Vp+1

+
(
‖q(0)‖L2,p−1 + ‖∂tq(0)‖L∞ + t‖q‖L∞,pt

)(
‖u(t)‖L∞,p+1 +Qp+1(t)

)]
.
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Proof of the lemma. i. For |α| ≤ p, we can use the expression for g
(α)
0 and g

(α)
1

given in the proof of Proposition 6.2 to obtain using direct estimates in L2,

‖(g(α)
0 , g

(α)
0 )(t)‖L2 ≤ C1

(
Up,1(t) + ‖u‖

L∞,p+1
t

Qp−1,2(t)
)
.

Together with (6.5) and (6.11), this implies the result.
For the L∞-estimate, we proceed similarly, but taking the sup norm instead
of the L2-norm,

‖(g(α)
0 , g

(α)
1 )‖L∞ ≤ C1

(
‖u‖L∞,p+1 + ‖u‖

L∞,p+1
t

‖q‖L∞,p−1

)
+ ‖(g0, g1)‖L∞,p .

Since ‖q‖L∞t L∞,p−1 ≤ ‖q(0)‖L∞,p−1 + t‖q‖L∞t L∞,p , this implies the result.

ii. For the second point, we get from (6.12) that

Qp,2 ≤ C1

(
Qp + Up+1,1

)
+
∑
|α|≤p

‖(g(α)
0 , g

(α)
1 )‖L2

and we can use the first point of the lemma to get

Qp,2 ≤ C1

(
Qp+1 +Up+1,1 +(‖q(0)‖L2,p−1 +t‖q‖L∞,pt

)‖u‖L∞,p+1

)
+‖(g0, g1)‖L2,p .

Together with (6.6), and observing that ‖X1q‖L∞t ≤ ‖X1q(0)‖L∞ + t‖q‖L∞,pt

if p ≥ 2, this implies the result. �

A control of the L∞ norms of q and of its derivatives is then provided by
the following lemma.

Lemme 6.9. Let T > 0 and V ,S satisfy the bounds (4.9). Any smooth
solution V = (q, u) of (4.7) satisfies the following estimate provided that p ≥ 2
and p+ 5 ≤ n− 1,∥∥q∥∥

L∞,pt
≤ C(T,M1,M2,M)

(
C0 + ‖V ‖L∞t Vp+6 + S

)
,

with C0 = ‖u(0)‖L∞,p+2 + ‖q(0)‖L2,p−1∩L∞,p−1.

Proof. Again we use the equation (6.7) on q(α), with q(α) as defined in (6.8),

for |α| ≤ p. Using Corollary 5.5 (with α = 2 and σ = 0) we see that q(α)

satisfies∥∥q(α)
∥∥
L∞
.
∥∥q(α)

∥∥
L2+

∥∥g(α)
0 −X1X

αu+µqB′X2X
αX1u−µ(B′)2XαX1u

∥∥
L2∩L∞

from which one readily gets using the definition (6.8) of q(α) that

‖q‖L∞,p ≤ C1

(
Qp,2 + Up+1,1 + ‖u‖L∞,p+2 +

∑
|α|≤p

‖g(α)
0 ‖L2∩L∞

)
.

We now use Lemma 6.8.ii to control Qp,2, (6.6) for Up+1,1 and Lemma 6.8.i

for ‖g(α)
0 ‖L2∩L∞ ; this yields∥∥q∥∥
L∞,p

≤ C1

[
‖f‖

L2,p+1
2

+ ‖(g0, g1)‖L2,p∩L∞,p + ‖V ‖Vp+1 + ‖u‖L∞,p+2

+
(
‖q(0)‖L2,p−1∩L∞,p−1 + t‖q‖L∞,pt

)(
‖u‖L∞,p+1 +Qp+1

)]
.

Since ‖u‖L∞,p+2 ≤ ‖u(0)‖L∞,p+2 + t‖u‖
L∞,p+3
t

, we can use Lemma 6.7, (4.9)

and the fact that p+ 5 ≤ n− 1 to obtain the result. �
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By time integration, one directly gets with Lemma 6.7 and the bounds (4.9)
that

‖u‖L∞,pt
≤ ‖u(0)‖L∞,pt

+ t‖u‖L∞t L∞,p+1

≤ ‖u(0)‖L∞,pt
+ tC1

[
‖q(0)‖L2,p−1 + ‖V ‖L∞t Vp+4 + ‖V ‖L∞,pt

M2 + S
]
.

Adding up with the estimate coming from Lemma 6.9, this implies

‖V ‖L∞,pt
≤ C(T,M1,M2,M)

[
C0 + ‖V ‖L∞t Vp+6 + t‖V ‖L∞,pt

+ S
]
;

for T small enough, the term involving ‖V ‖L∞,p in the right-hand-side can be
absorbed in the left-hand-side and the result follows. �

The fifth and last step of the proof of Proposition 4.6 does not require any
additional technical result, so that the proof is complete.

6.2. Proof of Proposition 4.15. The goal of this section is to prove the
uniform bounds (4.35) on the sequence (V k, V k

0 , V
k

1 , V
k

2 )k constructed through
the iterative scheme (4.19), namely,

(6.14)


La(V k, ∂)V k+1

m = Sm(V k, V k
1 , V

k
2 ) (m = 1, 2),

L(V k, ∂)V k+1
0 = S(V k, V k

1 , V
k

2 ),

E(∂)V k+1 = V k
1 + F2V

k
2 + F0V

k
0 .

More precisely, we want to show that there exists constants M1, M2, M , M̃ ,
N1, and N2 such that

(6.15)


m(V k;T ) ≤M,

m̃(V k;T ) ≤ M̃,

m1(V k;T ) ≤M1, and ‖V k
m‖L∞,p ≤ N1 (m = 0, 1, 2),

m2(V k;T ) ≤M2 and m2(V k
m;T ) ≤ N2 (m = 0, 1, 2),

and a constant S such that

(6.16) s(Sk;T ) ≤ S, and s(Skm;T ) ≤ S,

for m = 1, 2 and k ≥ 1.
We shall prove by induction that (6.15) holds for all k. The case k = 1 has

been defined in (4.30) and Proposition 4.9; we focus therefore our attention
on the proof of (6.15)k+1 assuming that (6.15)k is known. The desired bounds
on V k+1 and V k+1

m (m = 0, 1, 2) are established in the following lemma using
the higher order estimates of Proposition 4.6 with source terms Skj and Sk
(we recall that δ > 0 that appears in the statement comes from the positivity
condition (4.5)).

Lemme 6.10. Assume that [V k] = (V k
1 , V

k
2 , V

k
0 , V

k) and Sk, Sk1 and Sk2 sat-
isfy the induction assumptions (6.15) and (6.16) and that V k+1 and V k+1

m

solve (6.14). There exists a constant C0 that depends only on the initial data
and of the form

C0 = C0

(
‖V (0)‖Vn , ‖q(0)‖

L2,n−1
1 ∩L2,p+4∩L∞,p , ‖u(0)‖L2,n−1∩L∞,p+3

)
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and some nondecreasing functions of their arguments C1, C2, C, C̃ C′1, C′2 and
T (·) such that if

M1 ≥ C1(C0,
1

δ
), M2 ≥ C2(C0), M ≥ C

(
T,C0,M1

)
, M̃ ≥ C̃(C0),

N1 ≥ C′1
(
T,C0,M1,M2,M, S

)
, N2 ≥ C′2

(
T,C0,M1,M2,M,N1, S

)
and T > 0 is small enough to have

TT
(
M1,M2,M, M̃,N1, N2, S

)
< 1

then V k+1 and V k+1
m also satisfy (6.15).

Proof of the lemma. From the first equation of (6.14) and Proposition 4.6 we
get that for m = 1, 2,

‖V k+1
m ‖L∞T Vn−1 ≤ C(T,M1)

[
C0 +

√
TC(T,M1,M2,M, M̃)S

]
,

where C(·) always denotes a smooth, non decreasing function of its arguments
and C0 is a in the statement of the lemma. If M > C(T,M1)C0, there exists
T > 0 small enough such that

(6.17) ‖V k+1
m ‖L∞T Vn−1 ≤M.

We can therefore deduce from Proposition 6.6 that

‖V k+1
m ‖L∞,pT

≤ C
(
T,M1,M2,M

)[
1 + C0 + S

]
;

choosing N1 larger than the right-hand-side yields the needed upper bound on
‖V k+1

m ‖L∞,pT
for m = 1, 2. The case m = 0 is treated similarly2.

We now turn to give an upper bound on m1(V k+1;T ). For this, we need:

• An upper bound on ‖V k+1‖L∞T Vn−1 . Using Proposition 4.8 we get

‖V k+1‖L∞T Vn−1 ≤ ‖V k+1(0)‖Vn−1 + 3
√
TN1;

ifM1 > ‖V k+1(0)‖Vn−1 and T is chosen small enough, then ‖V k+1‖L∞T Vn−1 ≤
M1.
• An upper bound on ‖ 1

1+µa(uk+1)
‖L∞T . By assumption, 1+µa(uk+1) ≤ δ

at t = 0 so that

1 + µa(uk+1)(t) ≥ δ − µT‖∂t(a(uk+1))‖L∞T .

Using the bound on ‖V k+1‖L∞T Vn−1 derived in the previous point, we

obtain that ‖∂t(a(uk+1))‖L∞T ≤ C(M1). Therefore, if M1 > 1/δ and T

chosen small enough, we obtain that ‖ 1
1+µa(uk+1)

‖L∞T ≤M1.

• An upper bound on ‖ 1
qk+1 ‖L∞T . Proceeding as for the previous point,

and taking into account that q(0) = 1/2 we obtain that ‖ 1
qk+1 ‖L∞T ≤

M1 is M1 > 2 and T small enough.

From this three points, we deduce that m1(V k+1;T ) ≤M1.
Let us now turn to control the two components of m(V k+1):

2The linear operator involved in the equation for V k+1
0 is L(V k, ∂) instead of La(V k, ∂).

The results proved on the latter obviously hold for the former by substituting a ≡ 0.
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• Control of ‖V k+1‖L∞T Vn−1. By (6.17) and Proposition 4.8 one di-

rectly gets that ‖V k+1‖L∞T Vn−1 ≤ M for T small enough and M >

‖V k+1(0)‖Vn .
• Control of ‖uk+1‖L∞,p+1 . Using the induction relation and the bounds

on ‖V k+1
m ‖L∞T and ‖V k+1‖L∞T Vn−1 proved above, we get through Lemma

6.7 that for m = 0, 1, 2,

‖uk+1
m (t)‖L∞,p+1 ≤ C

(
T,M1,M2,M

)[
1 + C0 + S

]
.

With Proposition 4.8, this implies that

‖uk+1(t)‖L∞,p+1 ≤ ‖uk+1(0)‖L∞,p+1 +
√
TC
(
T,M,M1,M2, N

)
and therefore ‖uk+1‖

L∞,p+1
T

≤M if M > ‖uk+1(0)‖L∞,p+1 and T small

enough.

Gathering these two points we get that m(V k+1;T ) ≤M .
The next step is therefore to derive the two estimates on m2(V k+1

m ;T ) and
m2(V k+1;T ). For the first one, we observe, owing to the induction assumption
(4.35), Proposition 6.4 and the control on ‖V k+1

m ‖L∞,pT
already proved, and

(6.17) imply that

m2(V k+1
m ;T ) ≤ C(M1)

[
C0 +N1(1 +M2 +M) +M + S

]
,

so that we just have to choose N2 larger than the right-hand-side. The esti-
mate on m2(V k+1;T ) then follows following the now usual procedure based on
Proposition 4.8.
Finally, the upper bound on m̃(V k+1;T ) stems from the upper bounds proved
above on m(V k+1;T ), m2(V k+1;T ) and (6.17) and to the elliptic regularization
property given by Proposition 4.8. �

The only thing left to prove is that the last inequality of (6.15) holds at
step k + 1. This is done in the following lemma.

Lemme 6.11. Assume that [V k] = (V k
1 , V

k
2 , V

k
0 , V

k) and Sk, Sk1 and Sk2 sat-
isfy the induction assumptions (6.15) and (6.16) and that V k+1 and V k+1

m solve
(6.14). Let also C0 be as in Lemma 6.10. There exist two smooth functions
C(·) and T (·), with a nondecreasing dependence on their arguments, such that
if

S ≥ C2

(
T,C0,M1,M2, N1, N2

)
and T > 0 is small enough to have

TT
(
M1,M2, N1, N2, S

)
< 1,

then S, S1 and S2 also satisfy (6.16).

Proof of the lemma. We prove here the required upper bounds on the different
components of s(Sk+1

m ) for m = 1, 2. The bounds for s(Sk+1) can be obtained
similarly so that we omit the proof.
To alleviate the notations, we do not write the superscript k + 1 throughout
this proof, so that we write Fm(q, q1, q2) instead of Fm(qk+1, qk+1

1 , qk+1
2 ), etc.
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We recall that s(·) is defined through (4.8) and that Sm is given by (3.7); we
therefore have to derive upper bounds for

‖F (m)(q, q1)‖
L∞T L

2,n−1
2

, ‖Fm(q, q1)‖L∞T L2,p+3 ,

and

‖(g0, g1)‖
L∞T L

2,n−1
1

, ‖g‖L∞T L2,n−2∩L∞,p ,

with g0 = G(m)
0 (V, V1, V2) and g1 = G(m)

1 (V, V1, V2), and G(m)
0 and G(m)

1 as in
Lemma 3.5.
Using the bounds proved in Lemma 6.10 and the control on ‖qm‖L2,n−1

2
pro-

vided by (6.17), one readily gets

‖F (m)(q, q1)‖
L∞T L

2,n−1
2

+ ‖F (m)(q, q1)‖L∞T L2,p+3 ≤ C
(
T,M1,M2, N1, N2

)
.

For the bounds on g0 and g1, we first treat the topography term. Recalling

that ϕm = Xmx +
∫ t

0 um and using the control on ‖um‖L2,n−1
1

provided by

(6.17), we easily deduce from Lemma 6.10 that

‖B′′(ϕ)ϕm‖L∞T (L2,n−1
1 ∩L2,n−2∩L∞,p)

≤ C
(
T,M1,M2, N1, N2

)
.

We are therefore left to give an upper bound on

‖G(m)
j (V, V1, V2)‖

L∞T L
2,n−1
1

, and ‖G(m)
j (V, V1, V2)‖L∞T (L2,n−2∩L∞,p),

for j = 0, 1. We just treat the case j = 1 here, the situation being similar for
j = 0. We recall that

1
√
µ
G(m)

1 (V, V1, V2) =− 8

3
qqmX2u1 −

4

3
qq1X2um −

4

3
qX2uX1qm −

4

3
qmX2uq1

+ u1qB
′′ϕm + qumuB

′′ + qu2B(3)ϕm.

- Control of ‖G(m)
j (V, V1, V2)‖

L∞T L
2,n−1
1

. This stems from an upper bound on

‖XαG(m)
j ‖L2

1
for all |α| ≤ n − 1. We just show how to handle two compo-

nents of G(m)
1 , namely, qmqX2u1 and X2uX1qmq (the adaptation to the other

components is straightforward).

* Control of Xα
(
qmqX2u1

)
with |α| ≤ n− 1. We can develop this term

into

(h0X
αqm)q∂xu1 +

∑
α1+α2+α3=α,|α1|<n−1

Xα1qmX
α2qX2X

α3u1

from which we get, with Cp(T ) = C
(
T, ‖V ‖L∞,pT

, ‖V1‖L∞,pT
, ‖V2‖L∞,pT

)
,

‖qmqX2u1‖L2,n−1
1

.‖∂xu1‖L∞‖qm‖L2,n−1
2

+ Cp(T )
(
‖qm‖L2,n−2

1
+Qn−1,1 + ‖u1‖H1,n−1

1

)
.

Now, using the equation on qj (j = 1, 2), we have

(6.18) ∂xuj = −c(q)X1qj + Fj(q, q1, q2)
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with Fj(q, q1, q2) given by Lemma 3.4; with Lemma 6.10, this implies
that ‖∂xuj‖L∞ ≤ C(M1) and therefore, using (6.17),

‖qmqX2u1‖L∞T L2,n−1
1

. C
(
T,M1,M2, N1, N2

)
.

* Control of Xα
(
X2uX1qmq

)
with |α| ≤ n − 1. We first develop this

expression into

(h0X
αX1qm)Dxuq +

∑
α1+α2+α3=α,|α1|=n−2

(h0X
α1X1qm)∂xX

α2uXα3q

+
∑

α1+α2+α3=α,|α1|≤n−3

Xα1X1qmX2X
α2uXα3q.

To handle the first term of this expression, we use the equation on qm
to replace X1qm by

(6.19) X1qm =
1

c(q)

(
− ∂xum + Fm(q, q1, q2)

)
,

and then proceed as above. For the first summation, a control is
easily obtained in terms of ‖∂xXα2u‖L∞ . This quantity can in turn be
controlled in terms of ‖V ‖L∞,p and ‖Vj‖L∞,p (j = 1, 2) through (6.18).
The second summation does not raise any particular difficulty. Finally,
one gets

‖X2uX1qmq‖L∞T L2,n−1
1

≤ C
(
T,M1,M2, N1, N2

)
.

Gathering all these elements, we deduce that

‖G(m)
j (V, V1, V2)‖

L∞T L
2,n−1
1

≤ C
(
T,M1,M2, N1, N2

)
.

- Control of ‖G(m)
j (V, V1, V2)‖L∞T L2,n−2 . Most of the terms can be treated with

a slight adaptation of the above, The only significant change 3 needed is for
the control of the L2-norm of terms of the form XαX2uj (with |α| ≤ n − 2).
One needs to use the equation on qj to write

XαX2uj = Xα(−ch0X1qj − c′h0q1qj − cXjh0q1)

so that

∀|α| ≤ n− 2, ‖XαX2uj‖L2 ≤ Cp(T )
(
Qn−2 + ‖(q1, q2)‖

L2,n−1
2

)
and one easily deduces that

‖G(m)
j (V, V1, V2)‖L∞T L2,n−2 ≤ C

(
T,M1,M2, N1, N2

)
.

3We previously used the estimate

‖X2X
αuj‖L2

1
≤ ‖uj‖H1,n−1

1
for |α| ≤ n− 1.

One should be careful that without the h0 weight, one cannot use the extra control given by
the H1

1 based estimate, and one only has

‖X2X
αuj‖L2 ≤ ‖uj‖L2,n−1 for |α| ≤ n− 2

(and not ‖uj‖L2,n−2), so that there is an extra term to control.
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- Control of ‖G(m)
j (V, V1, V2)‖L∞,pT

. One readily checks that all the components

of XαG(m)
j can be directly bounded from above in L∞ by

Cp(T )(1 + ‖(u, u1, u2)‖L∞T L∞,p+1)

if |α| ≤ p, except X2uX
αX1qmq for which one needs to use the substitution

(6.19) to get the same upper bound. We have therefore

‖G(m)
j (V, V1, V2)‖L∞T L∞,p ≤ Cp(T )(1 + ‖(u, u1, u2)‖L∞T L∞,p+1),

and we therefore need un upper bound on ‖(u, u1, u2)‖L∞T L∞,p+1 . Remarking

that u = u0 +
∫ t

0 ∂tu (and similar expressions for u1 and u2), we get that

‖(u, u1, u2)‖L∞T L∞,p+1 ≤ C0 + T‖(u, u1, u2)‖L∞T L∞,p+2

so that using Lemma 6.7 and Lemma 6.10, we obtain that

‖(u, u1, u2)‖L∞T L∞,p+1 ≤ C0 + TC
(
M1,M2, N1, N2, S

)
.

Plugging this into the above estimate for ‖G(m)
j (V, V1, V2)‖L∞T L∞,p , and using

Lemma 6.10 once again, we get
(6.20)

‖G(m)
j (V, V1, V2)‖L∞T L∞,p ≤ C(T,M1, N1)

[
1 + C0 + TC

(
M1,M2, N1, N2, , S

)]
.

- Conclusion. Taking S large enough (in terms of M1, M2, N1, N2 and S), all

the components of s(Sm) are bounded from above by S except ‖Gjm(V, V1, V2)‖L∞T L∞,p .
For this term, we need further to choose S large enough to have S > C2(M1, N1)(1+
C0); we can then use (6.20) to get the needed control, provided that T > 0 is
taken small enough. This completes the proof. �

Using Lemmas 6.10 and 6.11, the result stated in Proposition 4.15 follows
by a simple induction.

7. The elliptic equation

As seen in §4.4, it is necessary to introduce an additional elliptic equation
in order to regain space and time regularity with respect to the regularity of
the quasilinearized variables. To our knowledge, there is no existing theory
of elliptic equations on the half line in degenerate weighted spaces; since this
theory can be of independent interest, we present it here in a specific section.
We first consider the analysis on the whole line in §7.1 and then transport
them on the half-line in §7.2 using a change of variables that transform ∂y
into the conormal derivative h0∂x. The proof of Proposition 4.8 is a direct
application of these results and is provided in §7.3.

7.1. The equation on the full line. We consider, for t ≥ 0, a general elliptic
problem (in space and time) of the form

(7.1) ∂tu+ P (Dy)u = Q(Dy)f, u|t=0 = u0,
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where the operators P = p(Dy) and Q(Dy) are Fourier multipliers of symbol
p(η) and q(η) satisfying

(7.2)
1

C
〈η〉 ≤ Re p(η) ≤ |p(η)| ≤ C〈η〉

and for all k

(7.3) |∂kηp(η)| . 〈η〉1−k, |∂kη q(η)| . 〈η〉−k,

where 〈η〉 = (1 + |η|2)
1
2 .

We consider (7.1) as an elliptic boundary value problem on [0, T ]×R, with
one boundary condition on {t = 0} and no boundary condition on {t = T}.
The solution is given by

(7.4) û(t, η) = e−tp(η)û0(η) +

∫ t

0
e(t′−t)p(η)q(η)f̂(t′, η)dt′

where the symbol ̂ denotes the Fourier transform in y. In particular,

|û(t, η)| ≤ e−t〈η〉/C |û0(η)|+ C

∫ t

0
e−(t−t′)〈η〉/C |f̂(t′, η)|dt′.

This implies the estimates

‖u(t)‖L2 . ‖u(0)‖L2 +

∫ t

0
‖f(t′)‖L2dt′,

and also

‖u‖H1([0,T ]×R) . ‖u(0)‖
H

1
2 (R)

+ ‖f‖L2([0,T ]×R).

Commuting with derivatives, one obtains the following elliptic estimates.

Lemme 7.1. Let T > 0 and k ∈ N. If u0 ∈ Hk+ 1
2 (R) and f ∈ Hk([0, T ]×R),

then (7.1) has a unique solution u ∈ Hk+1([0, T ]× R) and

(7.5) ‖u‖Hk+1([0,T ]×R) . ‖u0‖Hk+1 + ‖f‖Hk([0,T ]×R).

Moreover, for |α| ≤ k:

(7.6) ‖∂αt,yu(t)‖L2 . ‖∂αt,yu(0)‖L2 +

∫ t

0
‖∂αt,yf(t′)‖L2dt′.

There is no elliptic regularization in L∞-based spaces. Instead, we will use
that the contribution of the source term is small for small times4.

Lemme 7.2. Let T > 0 and k ∈ N. For f ∈ L∞([0, T ]×R) and u0 ∈ L∞(R),
the solution u of (7.1) belongs to L∞([0, T ]× R) and

‖u‖L∞([0,T ]×R) . ‖u0‖L∞(R) +
√
T ‖f‖L∞([0,T ]×R).

4The estimate of the lemma is not optimal, since one could replace the exponent 1/2 of
T by any θ < 1, but it is sufficient for our purpose.
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Proof. The formula (7.4) can be written using the semi group e−tP :

(7.7) u(t) = e−tPu0 +

∫ t

0
e(t′−t)PQ(Dy)f(t′)dt′.

e−tP is a convolution operator on the real line with kernel

Φ(t, y) =
1

2π

∫
R
e−tp(η)eiyηdη.

By Plancherel’s theorem and (7.3), one has

‖Φ(t, · )‖L2 . t−
1
2 , ‖yΦ(t, · )‖L2 . t

1
2 ,

implying that

(7.8) ‖Φ(t, ·)‖L1 . 1,

and thus
‖e−tPu0‖L∞ . ‖u0‖L∞ .

The analysis of the second term is more delicate when Q is not a constant,
since Q(Dy) does not necessarily act in L∞. However, the convolution kernel
of e−tPQ is

(7.9) Ψ(t, y) =
1

2π

∫
R
e−tp(η)eiyηq(η)dη.

By Plancherel’s theorem and (7.3), one has

‖Ψ(t, · )‖L2 . t−
1
2 , ‖yΨ(t, · )‖L2 . (

√
t+ 1)

implying that for t ≤ 1, one has

‖Ψ(t, ·)‖L1 . t−
1
2 .

Therefore, the L∞ norm of the second term in the right hand side of (7.7) is
dominated by ∫ t

0
(t− t′)

1
2 ‖f(t′)‖L∞dt′

and the lemma follows. �

Remark 7.3. Since the equation commutes with ∂t and ∂y, there are similar
estimates for derivatives.

We apply the results above to the operator

(7.10) P = (κ2 − ∂2
y)

1
2 , Q = α+ (β1∂y + β0)P−1

with κ > 0, and also to the conjugated operators

Pδ = eyδPe−yδ, Qδ = eyδQe−yδ

for |δ| < κ. Their symbols are pδ(η) =
(
(η + iδ)2 + κ2

) 1
2 and qδ(η) = α +

(iβ1η+β0 + iδβ1)
(
(η+ iδ)2 +κ2

)− 1
2 and satisfy the conditions (7.2) and (7.3).

Introduce the spaces Hk
s([0, T ]×R) of functions u such that e

s
2
yu ∈ Hk([0, T ]×

R) and Hk
s,s′([0, T ]×R) = Hk

s([0, T ]×R) + Hk
s′([0, T ]×R). There are similar

definitions of spaces Hk
s(R) and Hk

s,s′(R) for the initial data.
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Proposition 7.4. Assume that |s| < κ and |s′| < κ. Let T > 0 and k − 1 ∈ N.

Then, for all f ∈ Hk
s,s′([0, T ]×R) and u0 ∈ Hk+1

s,s′ (R), the problem (7.1) has a

unique solution in Hk+1
s,s′ ([0, T ]× R) which satisfies

‖u‖Hk+1
s,s′ ([0,T ]×R) . ‖u

0‖Hk+1
s,s′ (R) + ‖f‖Hk

s,s′ ([0,T ]×R).

Moreover,

‖u(t)‖Hk
s,s′
. ‖u(0)‖Hk

s,s′
+

∫ t

0
‖f(t′)‖Hk

s,s′
dt′.

If f ∈W p,∞([0, T ]× R), then u ∈W p,∞([0, T ]× R) and

‖u‖W p,∞([0,T ]×R) . ‖u0‖W p,∞(R) +
√
T ‖f‖W p,∞([0,T ]×R).

Proof. The first lemma above applied to P s
2

implies the existence together

with estimates in spaces Hk
s for |s| < κ, and therefore in spaces Hk

s,s′ . The
uniqueness in the space of temperate distributions in y is clear by Fourier
transform. The third estimate is a direct application of the second lemma
above and the remark which follows it. �

7.2. The equation on the half line. On R+ = (0,+∞[, we consider the
operator X = h0∂x with h0 > 0 as smooth as needed and such that h0 ≈ x
near the origin and h0 ≈ 1 at infinity. We transport the results of the previous
section to the half line using the change of variables y = χ(x)

(7.11) x 7→ y = χ(x) =

∫ x

1
dx′/h0(x′)

which transforms X = h∂x into ∂y. We note that

(7.12) y ∼ lnx for x ≤ 1, y ∼ x for x ≥ 1.

As in (3.9), we consider the spaces L2
s(R+) of functions u such that h

s/2
0 u ∈

L2(R+). The mapping

(7.13) u 7→ v = u ◦ χ−1

is an isometry from L2
−1(R+) onto L2(R). Moreover, for s ≥ 0, it is an

isomorphism from L2
s(R+) onto L2

s+1,0(R), since u ∈ L2
s(R+) if and only if

ey(s+1)/2v ∈ L2 on {y ≤ 0} and v ∈ L2 on {y ≥ 0}.
Similarly, it is an isomorphism from Hks (R+) onto Hk

s+1,0(R) where we recall

that Hks (R+) is the space of functions u such that h
s/2
0 Xju ∈ L2 for j ≤ k.

The operators corresponding to (κ2−∂2
y)1/2 and α+(β1∂y +β0)(κ2−∂2

y)−
1
2

are

(7.14) P = (κ2 − (h0∂x)2)
1
2 , Q = α+ (β1X + β0)P−1.

Therefore, the results of Proposition 7.4 are immediately transported to the
equation

(7.15) ∂tu+ Pu = Qf, u|t=0 = u0.

The next proposition summarizes the results using the notations introduced
in Section 4.1.
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Proposition 7.5. Suppose that κ ≥ 3 and 0 ≤ s ≤ 2.
i) If f ∈ L2

THks and u0 ∈ Hks , then (7.15) has a unique solution u ∈ C0Hks
and

‖u(t)‖Hks . ‖u(0)‖Hks +

∫ t

0
‖f(t′)‖Hksdt

′.

ii) If u0 ∈ Hk+1
s , then u ∈ L2

THk+1
s and

‖u‖L2
TH

k+1
s
. ‖u(0)‖Hk+1

s
+ ‖f‖L2

THks

iii.) If f ∈ L∞,pT and u0 ∈ L∞,p the solution u of (7.15) belongs to L∞,pT
and

‖u‖L∞,pT
. ‖u(0)‖L∞,p +

√
T‖f‖L∞,pT

.

7.3. Proof of Proposition 4.8. It is a direct application of the Proposition
above. In (4.17) we have three terms in the right-hand-side : V1, −X2P

−1V2

and κ2P−1V0. All of them are of the form QVj above. The unknown V has
two components, (q, u), as well as the Vj appearing in the right-hand-side, and
the equations for the q’s and the u’s decouple. We apply the Proposition above
with s = 1 for the u’s and s = 2 for the q’s, to get the first two estimates of
Proposition 4.8. The L∞ estimates follow from the last part of Proposition 7.4.

8. Existence for the linearized equations

This section is devoted to the proof of Proposition 4.11. It turns out that
the linearized equations do not enter any known framework, since there is no
existing theory for initial boundary value problems for degenerate dispersive
systems, with the complication that the weight h has different powers for
the components u and q. Thus, the results gathered here are of independent
interest.

The structure of the linearized equations is given at (3.8). The goal of this
section is to construct solutions to these linear equations.

NB. The discussion on the dependence on µ is irrelevant for the construction
of a solution to (3.8). For the sake of clarity, we therefore set µ = 1 throughout
this section.

It is convenient to work with time independent differential operators in
space; to this end, we introduce p = (1 + a)q as a new unknown so that the
equations (3.8) read

(8.1)

{
c1∂t(c2p) + ∂xu = f,

d∂tu+ l p = g with g = g0 + lg1,

where

(8.2) du = 1 + l
[
− b0h0∂xu+ b1u

]
− b1h0∂xu+ b2u,

with c1, c2 and b0, b1, b2 given. More precisely, we have

(8.3) b0 =
4

3
q2, b1 = qB′(ϕ), b2 = B′(ϕ),2 , c1 = c, c2 =

1

1 + a
,

and we shall also make the following assumption.
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Assumption 8.1. The functions c̃ := c1c2 and q are positive and bounded
from 0 by a positive constant on [0, T ]× R+.

We shall also denote by L the linear operator associated to (8.1),

(8.4) L
(
p
u

)
=

(
c1∂t(c2p) + ∂xu

d∂tu+ lp

)
.

We derive an energy estimate for this system in §8.1, under the assumption
that all the functions involved are smooth. If we want to generalize this energy
estimate at low regularity, it is necessary to give sense to the integration by
parts, which requires several duality formulas in weighted spaces that are
studied in §8.2. In §8.3, we identify the space WT of minimal regularity to
justify the derivation of the energy estimate. We then use this result in §8.4
to construct weak solutions in the energy space VT . The energy space VT
however is strictly larger than WT and therefore uniqueness is not granted by
the energy estimate. This is why we prove in §8.5 that weak solutions are
actually strong solutions, i.e. limits in VT of solutions in WT . They satisfy
therefore the energy estimate and hence, are unique. Still assuming that the
coefficient are smooth, we then discuss in §8.6 the smoothness of these strong
solutions. Finally, we relax the smoothness assumptions on the coefficients in
§8.7, which allows us to prove Proposition 4.11 on the well posedness of the
linear initial boundary value problem for (4.27).

8.1. Energy estimates for smooth functions. Energy estimates for smooth
functions are easily obtained by a slight adaptation of the proof of Proposition
3.6. Multiplying the first equation by h2

0p, the second by h0u and integration.
The two basic identities are that

(8.5)

∫
R+

h2
0p ∂xu dx = −

∫
R+

u ∂x(h2
0p) dx = −

∫
R+

h0u lp dx

since the boundary term (h2
0gu)|x=0 vanishes, and

(8.6)

∫
R+

h0ududx =

∫
R+

h0

(
u2 +

(
b0(h0∂xu)2 − 2b1uh0∂xu+ b2u

2
))
dx.

They imply the following identity

(8.7)
d

dt
E(t) =

∫
R+

c′h2
0p

2dx+ 2

∫
R+

(h2
0fp+ h0(g0u+ g1h0∂xu)dx

where c′ = c2∂tc1 − c1∂tc2 and

(8.8) E(t) =

∫
R+

h2
0c1c2p

2 + h0

(
u2 +

(
b0(h0∂xu)2 + 2b1uh0∂xu+ b1u

2
))
.

Remarking now that

b0X
2 − 2b1XY + b2Y

2 =
1

3
q2X2 +

(
B′(ϕ)Y + qX

)2 ≥ 1

3
q2X2,

one has

(8.9) E(t) ≈
∫
R+

h2
0p

2dx+

∫
R+

h0

(
u2 + (h0∂xu)2

)
dx
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and a Gronwall argument implies that

(8.10) ‖U(t)‖V . ‖U(t)‖V +

∫ t

0
‖LU(t′)‖V′ dt′,

where V and V′ are as defined in (3.14)

8.2. Duality formulas. In order to perform energy estimates at low regular-
ity, we need to extend the necessary integration by parts formulas by duality.
The duality formula giving sense to the identities (8.5) and (8.15) are gathered
in this section.

To simplify the exposition, it is convenient to recall and introduce some

notations. We have already used the weighted spaces L2
s = h

−s/2
0 L2(R+)

equipped with the norm

‖u‖2L2
s

=

∫
R+

hs0|u(x)|2dx.

The identities (8.5) and (8.15) lead to introduce/recall the following spaces

H1
1 = {u ∈ L2

1 : h0∂xu ∈ L2
1} ⊂ L2

1,

W = {u ∈ L2
1 : h0∂xu ∈ L2} ⊂ H1

1,

H−1
1 = {g0 + lg1 : (g0, g1) ∈ L2

1 × L2
1} ⊂ H−1

loc (R+),

equipped with the obvious norms.
We first prove that, as the notations suggests, H−1

1 is the dual space to H1
1.

Lemme 8.2. C∞0 (R+) is dense in H1
1 and in W . If one identifies L2

1 as its

own dual, the dual space of H1
1 ⊂ L2

1 can be identified to H−1
1 through the

pairing

(8.11) 〈u, g0 + lg1〉H1
1×H

−1
1

= (u, g0)L2
1
− (h0∂xu, g1)L2

1
.

Proof. a) Introduce the cut off χε = χ(x/ε) where χ = 0 for x ≤ 1 and
χ(x) = 1 for x ≥ 2. Because h0 ≈ x near the origin, the h0∂xχε are uniformly
bounded in L∞, and by Lebesgue’s Theorem, χεu→ u ∈ H1

1 when u ∈ H1
1.

We show that χεu→ u ∈ W when u ∈ W . For this, it is sufficient to show
that the commutator h0(∂xχε)u→ 0 in L2. One has

‖h0(∂xχε)u‖2L2 .
∫
ε≤x≤2ε

|u|2.

To prove that this tends to 0 is is sufficient to show that for u ∈W one has:

(8.12) x|u(x)|2 ∈ L∞(0, 1) and lim
x→0

x|u(x)|2 = 0.

Note that u is locally H1 and therefore continuous on (0, 1]. Moreover, with
f = x∂xu ∈ L2(0, 1), one has

|u(x)| ≤ |u(x0)|+
∫ x0

x

1

y
|f(y)|dy ≤ |u(x0)|+ 1√

x
‖f‖L2([0,x0]).
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Taking x0 = 1, this shows that x
1
2u is bounded on (0, 1]. In addition,

lim sup
x→0

√
x|u(x)|2− ≤ ‖f‖L2([0,x0]).

Because x0 is arbitrary, this implies (8.12) and thus χεu → u ∈ W when
u ∈W .

Similarly, one can truncate near ∞ and functions with compact support
in (0,+∞[ are dense in H1

1 and W One can approximate them by smooth
functions and thus C∞0 (R+) is dense both in H1

1 and W .

b) The mapping u 7→ (u, h0∂xu) sends H1
1 in L2

1 × L2
1 and its range is

closed. Therefore linear forms on H1
1 are exactly functionals of the form

u 7→ ρ(u) = (u, g0)L2
1

+ (h0∂xu, g1)L2
1
,

with (g0, g1) ∈ L2
1 × L2

1. Interpreted in the sense of distributions, one has for
u ∈ C∞0 :

ρ(u) = 〈u, h0(g0 − l g1)〉C∞0 ×H−1 ,

where H−1 is the usual Sobolev space of order −1 and the duality is taken in
the sense of distributions. By density of C∞0 in H1

1, the linear form ρ vanishes
onH1

1 if and only if l g1 = g0 in the sense of distributions. This shows that, as a

space of distributions, the dual space of H1
1 is h0H−1

1 ⊂ H−1(R+) and the link

with the pairing defined at (8.11) is that for u ∈ C∞0 and g = g0 + lg1 ∈ H−1
1

(8.13) 〈u,g〉H1
1×H

−1
1

= 〈u, h0g〉C∞0 ×H−1 .

�

We can now use Lemma 8.2 to extend (8.5) at low regularity. By density
to u ∈ H1

1 and p ∈ H1
1 and

(8.14)
(
h0∂xu, p

)
L2
1

=
(
u, l p

)
L2
1
.

With the identification above, h0∂x and l map H1
1 to L2

1 and L2
1 to H−1

1 , and
(8.14) extends to u ∈ H1

1 and p ∈ L2
1 as

(8.15)
〈u, lp〉H1

1×H
−1
1

= −(h0∂xu, p)L2
1
,

(lu, p)L2
1

= −〈u, h0∂xp〉H1
1×H

−1
1
.

For the second key identity (8.6) of the energy estimates, one has similarly
that d maps H1

1 to H−1
1 and for u and v in H1

1 one has that

(8.16) 〈du, v〉H−1
1 ×H1

1
= 〈u,dv〉H1

1×H
−1
1

and that this is equal to the right-hand-side of (8.6) when v = u.
We also need another extension of (8.5).

Lemme 8.3. For u ∈W and p ∈ L2
2 with l p ∈ H−1

1 , one has

(8.17)

∫
R+

h2
0p ∂xu = −〈u, l p〉H1

1×H
−1
1
.
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Proof. If p ∈ L2
2 with l p ∈ H−1

1 , both terms are defined and continuous for
u ∈ W . Thus it is sufficient to prove the equality for u ∈ C∞0 in which case,
by (8.13),

〈u, l p〉H1
1×H

−1
1

= 〈u, h0l p〉C∞0 ×H−1 =

∫
p l∗(h0u)dx = −

∫
ph2

0∂xudx

because l∗(h0u) = −∂x(h2
0u) + 2h′0h0u = −h2

0∂xu. Thus the equality (8.17) is
true when u ∈ C∞0 , and thus by density for all u ∈W . �

8.3. Energy estimates at low regularity. A key step in the construction
of solutions to (8.1) is to use the energy estimate (8.10) when U = (p, u) has
a very limited regularity. We therefore discuss here the question to know for
which (p, u) the computations of §8.1 are valid, using the duality formulas
established in the previous section.

To state the energy estimate in short notations, we recall that V = L2
2×H1

1;
this is the natural energy space for (p, u). We identify its dual with V′ =
L2

2 ×H
−1
1 through the duality

(8.18) 〈U,Φ〉V′×V = (p, φ)L2
2

+ 〈u, ψ, 〉H−1
1 ×H1

1
,

for U = (p, u) ∈ V′ and Φ = (φ, ψ) ∈ V. We also introduce the spaces

(8.19) VT = L2([0, T ];V), V′T = L2([0, T ];V′),

with the obvious duality. To justify the integrations by parts, we use a smaller
space,

(8.20) WT =

{
U = (p, u) ∈ VT , ∂tU ∈ VT ,

h0∂xu ∈ L2([0, T ], L2), l p ∈ L2([0, T ],H−1
1 )

}
.

One reason to introduce this space is that the operator L defined in (8.4)
maps WT to V′T . The other reason is that for U ∈ WT the integrations by
parts used to derive the identity (8.7) are justified, thanks to Lemma 8.3
and (8.16). Indeed, the energy E(t) defined in (8.8) is well defined, satisfies
E(t) ≈ ‖U(t)‖2V and

d

dt
E(t) =

∫
R+

c′h2
0p

2dx+ 2
〈
LU,U

〉
V′×V.

This implies the following result.

Proposition 8.4. Suppose that the coefficients are Lipschitz and Assump-
tion 8.1 is satisfied. Then, the space WT is contained in C0([0, T ];V), the
operator L maps WT to V′T and for U ∈WT

(8.21) ‖U(t)‖V . ‖U(t)‖V +

∫ t

0
‖LU(t′)‖V′ dt′.
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8.4. The dual problem and weak solutions. Since d is symmetric (actu-
ally, self adjoint), the dual problem of (8.1) is

(8.22)

{
c2∂t(c1φ) + ∂xψ = f̃ ,

∂tdψ + lφ = g̃.

This system is similar to (8.1), but of course the dual problem of the forward
Cauchy problem for (8.1) is the backward Cauchy problem for (8.22). Parallel
to (3.1) introduce

(8.23) L′
(
φ
ψ

)
=

(
c2∂t(c1φ) + ∂xψ

∂tdψ + l

)
.

Then, for smooth functions, and writing Φ = (φ, ψ)T ,

(8.24)
(
LU,Φ

)
HT

+
(
U,L′Φ

)
HT

=
(
U(T ),ΓΦ(T )

)
H −

(
U(0),ΓΦ(0)

)
H

where HT = L2([0, T ];H) with H = L2
2 × L2

1 and

(8.25) Γ

(
c1c2φ
ψ

)
=

(
φ

dψ

)
.

With the notations introduced in the previous section, L′ also acts from WT

to V′T , and using again Lemma 8.3, the identity (8.24) extends to functions U
and Φ in WT as

(8.26)

〈
LU,Φ

〉
V′T×VT

+
〈
U,L′Φ

〉
VT×V′T

=
〈
U(T ),ΓΦ(T )

〉
V×V′ −

〈
U(0),ΓΦ(0)

〉
V×V′ .

This motivates the following definition.

Definition 8.5. Given F = (f,g) ∈ V′T and U0 = (p0, u0) ∈ V, U = (p, u) ∈
VT is a weak solution of (8.1) if for all smooth Φ = (φ, ψ) which vanishes at
t = T , one has

(8.27)
〈
F,Φ

〉
V′T×VT

+
〈
U,L′Φ

〉
VT×V′T

+
〈
U0,ΓΦ(0)

〉
V×V′ = 0.

The Proposition 8.4 can be applied to L′ as well, and to the backward
Cauchy problem since the structure of the equation is preserved when one
changes t to −t. Assuming that the coefficients are Lipschitz and Assump-
tion 8.1 is satisfied, this implies that for smooth Φ = (φ, ψ) one has for
t ∈ [0, T ]:

(8.28) ‖Φ(t)‖V . ‖Φ(T )‖V +

∫ T

t
‖L′Φ(t′)‖V′dt′.

In particular, for smooth test functions Φ such that Φ(T ) = 0, one has

‖Φ(0)‖V + ‖Φ‖VT . ‖L
′Φ‖V′T .

Moreover
‖ΓΦ(0)‖V′ . ‖Φ(0)‖V . ‖L′Φ‖V′T .

Consider the map Φ 7→ L′Φ defined on the space of smooth functions such
that Φ(0) = 0. The estimates above imply that it is invertible on its range
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R ⊂ V′T . Denote by L′−1 its inverse defined on R. Then, for F ∈ V′T and
U0 ∈ V the linear form

Ψ 7→
〈
F,L′−1Ψ

〉
V′T×VT

+
〈
U0,ΓL′−1Ψ(0)

〉
V×V′

is continuous for the norm ‖Ψ‖V′T . Therefore it can be written −
〈
U,Ψ

〉
VT×V′T

,

and U satisfies (8.27). Therefore, we have proved the following result.

Proposition 8.6. If the coefficients are Lipschitz and Assumption 8.1 is sat-
isfied, then for all F ∈ V′T and U0 ∈ V, the Cauchy problem (8.1) has a weak
solution in VT .

8.5. Strong solutions. Consider first the case where the initial data U0 iden-
tically vanishes. Let F ∈ V′T and let U be a weak solution. Extend the coef-
ficients for negative times and extend U by 0 to obtain a weak solution, still
denoted by U , on ] − ∞, T ] × R+, which vanishes for t < 0. Of course, U
satisfies the equations in the sense of distributions. We show that U is indeed
a strong solution, that is, a limit of solutions in WT , and thus satisfies the
energy estimate and hence is unique.

Proposition 8.7. For F ∈ V′T , the Cauchy problem for (8.1) with initial
data U0 = 0, has a unique weak solution U . Moreover, U ∈ C0([0, T ],V)
and satisfies the energy estimates (8.21) and is a limit in C0([0, T ],V) of a
sequence Uε ∈WT such that Uε(0) = 0 and LUε → F in V′T .

To prove this result, we first introduce mollifiers and commute the equations
with them. To prepare for the next section, it is convenient to use the following
smoothing operators,

(8.29) Jεu(t) = ε−1

∫ t

−∞
e(s−t)/εu(s)ds = ε−1

∫ ∞
0

e−s/εu(t− s)ds

The following lemma is elementary and the proof is omitted.

Lemme 8.8. i. The operators Jε and ε∂tJε are uniformly bounded in L2(]−
∞, T ]) and for all u ∈ L2(]−∞, T ]), ‖Jεu− u‖L2([0,T ]) → 0.

Moreover for all u ∈ L2(]−∞, T ]), Jεu ∈ H1(]−∞, T ]) and ε∂tJεu = u−Jεu.
ii. One has the commutation property

(8.30) [Jε, c] = εJε(∂tc)Jε.

iii. If u ∈ H1([0, T ]), then

(8.31) ∂tJεu = Jε∂tu.

We can now give the structure of the mollification of the first term of the
linear problem (8.1).

Lemme 8.9. The following holds

Jε
(
c1∂t(c2p)

)
= c1∂t(c2Jεp) +RεJεp

where Rε is bounded as a mapping L2((−∞, T ])→ H1((−∞, T ]).
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Proof. By direct computations

Rε = c1ε∂tJε
(
(∂tc2)v

)
+ εJε∂t

(
c1∂t(c2v)

)
+ ε2Jε∂t

(
c1∂tJε

(
(∂tc2)v

))
.

Since the ε∂tJε = εJε∂t are uniformly bounded in L2((−∞, T ]), the lemma
follows. �

Finally, the structure of the mollified equations is given in the following
lemma.

Lemme 8.10. Let F ∈ V′T . If U is a weak solution of (8.1) on (−∞, T ],
vanishing for t ≤ 0, then Uε = JεU ∈ H1([0, T ];V) satisfies

(8.32) LUε = JεF +RεUε Uε(0) = 0

where Rε is bounded from L2([0, T ],V) to L2([0, T ],V′) and from H1([0, T ],V)
to H1([0, T ],V′). Moreover, RεUε tends to 0 in L2([0, T ],V′) as ε tends to 0.

Proof. We know that Jε commutes with ∂x and l. Thus it is sufficient to
commute Jε in the term ∂tp and d∂tu. By Lemma 8.9 and because Jε com-
mutes with the weight h0, c1∂t(c2Jεp) − Jε(h0c1∂t(c2)) = FεJεp with Fε uni-
formly bounded from L2([0, T ], L2

2) to L2([0, T ], L2
2) and from H1([0, T ], L2

2) to
H1([0, T ], L2

2). Because the convergence is obviously true for smooth functions,
the uniform bound also implies that

‖FεJεp‖L2([0,T ];L2
2) → 0.

It remains to commute Jε to d ∂t. According to (8.3), the terms to look at are
[Jε, bh0∂x∂t]u and [Jε, b∂t]u. By Lemma 8.9 and because h0 commutes to J ,
one has

[Jε, bh0∂x∂t]u = Gεh0∂xJεu, [Jε, b∂t]u = GεJεu,

where the Gε are uniformly bounded from L2([0, T ], L2
1) to L2([0, T ], L2

1) and
from H1([0, T ], L2

1) to H1([0, T ], L2
1). Hence

[Jε,d∂tu] = lG1,εJεu+G0,εJεu =: GεJεu,

where the Gk,ε are uniformly bounded from L2([0, T ], H1
1 ) to L2([0, T ], L2

1) and
from H1([0, T ],H1

1) to H1([0, T ], L2
1), meaning that Gε is uniformly bounded

from L2([0, T ],H1
1) to L2([0, T ],H−1

1 ) and fromH1([0, T ],H1
1) toH1([0, T ],H−1

1 ).
Again, by density of smooth functions, this implies that GεJεu tends to 0

in L2([0, T ],H−1
1 ). This finishes the proof of the lemma. �

Corollary 8.11. Let F ∈ V′T . If U is a weak solution of (8.1) on ] −∞, T ]
vanishing for t ≤ 0 then Uε = JεU ∈WT satisfies

(8.33)


‖Uε − U‖VT → 0,

‖LUε − F‖V′T → 0,

Uε(0) = 0.

Proof. It only remains to prove that for all ε > 0, Uε ∈ WT . Since Uε ∈
H1([0, T ];V), it is sufficient to prove that

(8.34) ∂xuε ∈ L2([0, T ], L2
2), l pε ∈ L2([0, T ],V′),
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which follows directly from the equations since we know that pε ∈ H1([0, T ];L2
2)

and duε ∈ H1([0, T ];V′). �

We have now all the elements to start the proof of Proposition 8.7.

Proof of Proposition 8.7. Because the Uε belong to WT , we can apply the
energy estimates (8.21) to Uε−Uε′ and conclude that Uε is a Cauchy sequence
in C0([0, T ];V). Therefore its limit U belongs to C0([0, T ],V), vanish for t = 0
and satisfies the energy estimates. In particular, U is unique. The proof of
the proposition is complete. �

We now construct strong solutions when U0 6= 0. If U0 ∈ C∞0 (R+). We

find a solution U(t, x) = U0(x) + Ũ(t, x) of the Cauchy problem for (8.1) by
solving

(8.35) LŨ = F − LU0, Ũ(0) = 0.

Moreover, by Proposition 8.7, U is the limit in C0([0, T ],V) of a sequence
Uε ∈WT , which satisfies Uε|t=0 = U0 and LUε → F in V′T . By Proposition 8.4
the Uε satisfy the energy estimates, and thus the limit U also satisfies these
energy estimates.

Thus we have solved the Cauchy problem for a dense set of initial data in
V, with solutions which satisfy (8.21). The next theorem follows, by approxi-
mating U0 by functions in C∞0 (R+),

Theorem 8.12. For all U0 ∈ V, F ∈ V′T , the Cauchy problem for (8.1)
with initial data U0 has a unique solution in C0([0, T ],V), which is the limit
a sequence Uε ∈WT such that

i) Uε → U in C0([0, T ],V),
ii) LUε → LU in L2([0, T ],V′),
iii) Uε|t=0

→ U0 in V.

8.6. Smooth solutions. Remind that we still assume that the coefficients
of L are smooth. We show here that this induces smoothness on the strong
solution constructed in the previous sections.

Proposition 8.13. Suppose that F ∈ L2(]−∞, T ];V′) vanishes for t ≤ 0 and
satisfies ∂kt (h0∂x)jF ∈ L2(] − ∞, T ];V′) for all k and j. Then the equation
LU = F has a unique strong solution in C0(] −∞, T ];V) which vanishes for
t ≤ 0, and ∂kt (h0∂x)jV ∈ L2(]−∞, T ];V) for all k and j.

The proof of the proposition is decomposed into several lemmas.

Lemme 8.14. Suppose that F ∈ L2(] − ∞, T ];V′) vanishes for t ≤ 0 and
satisfies ∂tF ∈ L2(] − ∞, T ];V′). Then the equation LV = F has a unique
solution strong in C0(] −∞, T ];V) which vanishes for t ≤ 0; moreover, U ∈
C1((]−∞, T ];V), and ∂tU satisfies

(8.36) L∂tU = ∂tF +R∂tU,

where R is a bounded operator from VT to V′T .
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Proof. We use the mollifiers (8.29), set Uε = JεU ∈ H1(] − ∞, T ];V) and
use the equation (8.32). In particular, the right-hand-side Fε = JεF + RεUε
belongs to H1(]−∞, T ];V′) and satisfies

(8.37) ‖∂tFε‖V′T . ‖∂tF‖V′T + ‖∂tUε‖VT .

Because we know that Uε ∈ H1(]−∞, T ];V), we can differentiate in time the
equation (8.32) and see that

(8.38) L∂tUε = ∂tFε +R∂tUε,

where R = [∂t,L] is a bounded operator from VT to V′T . Therefore, one can
apply Proposition 8.7 to ∂tUε, hence ∂tUε is bounded, and indeed a Cauchy
sequence, in C0([0, T ];V). This implies that ∂tU ∈ C0((]−∞, T ];V) satisfies
(8.36). �

Lemme 8.15. If in addition to the assumptions of Lemma 8.14 one has ∂kt F ∈
L2(]−∞, T ];V′) for k ≤ n, then ∂kt U ∈ C0((]−∞, T ];V) for k ≤ n.

Proof. By induction on n, using the equation (8.36) and checking that for
smooth coefficients the operator [∂kt , R] maps L2(] − ∞, T ];V) into L2((] −
∞, T ];V′). �

The next lemma finishes the proof of Proposition 8.13

Lemme 8.16. If in addition to the assumptions of Lemma 8.15 one has
∂kt (h0∂x)jF ∈ L2(] − ∞, T ];V′) for all k and j then ∂kt (h0∂x)jU ∈ C0((] −
∞, T ];V) for all k and j.

In the proof, we use an estimate which we now state.

Lemme 8.17. Suppose that α > 0 and

(1 + αh0∂
2
t )p = f, p|t=0 = ∂tp|t=0 = 0.

Then there is C which depends only on the L∞ norm of ∂tα/α such that

‖p(t)‖L2(R+) ≤ C
(
‖f(t)‖L2(R+) + ‖∂tf‖L2([0,T ]×R+)

)
.

Proof. Let e = p2 + h0α(∂tp)
2. Then

∂te = 2f∂tp+ h0∂tα(∂tp)
2,

and thus

e = 2fp+

∫ t

0
(−2p∂tf + h0∂tα(∂tp)

2)dt′.

By Gronwall and Cauchy Schwarz inequalities we conclude that

|p(t, x)|2 . |f(t, x)|2 +

∫ t

0
|∂tf(t′, x)|2dt′ + max{1, ∂tα

α
}
∫ t

0
e(t′, x)dt′,

and the lemma follows. �
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Proof of Lemma 8.16. Before differentiating the equations in h0∂x we prove
the necessary smoothness of the solution. Using Lemma 8.15 and the first
equation of (8.1) we gain that
(8.39){

h0∂xu = −c̃h0∂tp− c1∂tc2h0p+ h0f,

h0∂x∂tu = −c̃h0∂
2
t p− (∂tc̃+ c1∂tc2)h0∂tp− ∂t(c1∂tc2)h0p+ h0∂tf

are in C0([0, T ];L2), where c̃ = c1c2. Moreover, we can take one more deriva-
tive in time and h0∂x∂

2
t u also belongs to C0([0, T ];L2).

Next, together with the second equation of (8.1), we draw that

ϕ := h0l(p− b0h0∂x∂tu+ b1∂tu)

belongs to C0([0, T ];L2) as well as ∂tϕ. Using (8.39), and after several com-
mutations, we end up with the following property that

ψ := (1 + b0c̃h0∂
2
t )(h0lp)

and ∂tψ belong to C0([0, T ];L2). By Lemma 8.17 (with α = b0c̃), we deduce
that h0lp is in C0([0, T ];L2) and therefore that h0∂xp ∈ C0([0, T ];L2

2).
Now we have enough smoothness to differentiate the equation in h0∂x, and

obtain that h0∂xU is a weak solution of a system

(8.40) L(h0∂xU) = h0∂xF + C1∂tU + C0U,

where the commutators are computed as in Section 6. In particular, the right-
hand-side belongs to ∈ L2([0, T ];V′) and hence h0∂xU ∈ C0([0, T ];V′).

The Lemma 8.16 now easily follows by induction on j differentiating the
equation (8.40) in powers of h0∂x, estimating the commutators as in Section 6,
indeed in a much easier way since we assume here that the coefficients are
infinitely smooth. We do not repeat the details here. �

8.7. Proof of Proposition 4.11. It remains to relax the condition on the
smoothness of the coefficients. The equations (4.27) to solve read

(8.41) La[V , ∂]V = F ∈ L2
TV′n−1, V|t=0 = 0,

with either a = 0 or a = ∂t(uB
′(ϕ)). The assumption (4.29) implies that F

can be extended by 0 for negative time, so that ∂jtX
k
2F ∈ L2(]−∞, T ];V′) for

k + j ≤ n− 1.
Our assumption is that the quantities

(8.42) m1(V ;T ), m̃2(V ;T ), m(V ;T ), m̃(V ;T ), s̃(S;T ),

are finite. We can extend V for negative time and approximate it by a sequence
V l of smooth functions such that the same quantities evaluated at V l are
bounded. Similarly, we approximate F by a sequence of smooth functions F k

and the Proposition 8.13 provides us with a sequence V l such that V l = 0 for
t < 0 and ∂kt (h0∂x)jV l ∈ C0(]−∞, T ];V) for k + j ≤ n− 1.

By Proposition 4.6, we see that the sequence V l is bounded in C0
T (Vn−1).

Hence, passing to weak limits, we conclude that there exists a solution V of
(8.41) such that V = 0 for t < 0 and ∂kt (h0∂x)jV ∈ L∞(]−∞, T ];V).
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Moreover, the proof of Proposition 8.13 shows that for j + k ≤ n− 1

La[V l, ∂]∂jtX
k
2V

l = F lj,k,

is bounded in L2(] −∞, T ];V′) and ∂jtX
k
2V

l
|t=0 = 0. Thus passing to weak

limits, we see that ∂jtX
k
2V is a weak solution of an equation of the form

La[V , ∂]∂jtX
k
2V = Fj,k ∈ L2(]−∞, T ];V′), ∂jtX

k
2V

l
|t=0 = 0.

Hence it is a strong solution and ∂kt (h0∂x)jV ∈ C0(]−∞, T ];V). This finishes
the proof of Proposition 4.11.

9. The initial conditions

9.1. Invertibility of d. In this section we assume that µ > 0, otherwise
everything is trivial. The invertibility of d(V ) is implicit in the proof of the
energy estimates: we have already noticed that

(9.1)

∫
R+

h0ududx ≥ c
(
‖u‖2L2

1
+ µ‖h0∂xu‖2L2

1

)
provided that q and B′(ϕ) are bounded.

We now focus on the inverse of d[V ] at time t = 0, where q = 1/2 and

ϕ = x. We call it d0 :

(9.2) d0 u = u+ µ
(
l
[
− 1

3
h0∂xu+ bu

]
− bh0∂xu+ 4b2u

)
,

where l = h0∂x + 2h′0 and b = 1
2B
′(x). The equation

(9.3) d0u = f

is seen as an elliptic ”boundary” value problem on R+, associated to the
variational form

(9.4)

∫
R+

h0

(
(1 + 4µb2)uv +

µ

3
(h0∂xu)(h0∂xv)− µbh0(v∂xu+ u∂xv)

)
dx.

which by (9.1) is coercive on H1
1. Using the density Lemma 8.2, this implies

that d0 is an isomorphism from H1
1(R+) to H−1

1 (R+). If f ∈ L2
1 the equation

also gives that µ(h0∂x)2u ∈ L2
1. Commuting with derivatives (h0∂x)k, this

implies the following

Lemme 9.1. For all k ≥ 0, d0 is an isomorphism from Hk+2
1 (R+) to Hk1(R+)

and there is a constant C, independent of µ such that

(9.5) ‖u‖Hk1 + µ‖u‖Hk+2
1
≤ C‖d0u‖Hk1 .

Next we consider the action of d0 in other weighted spaces L2
s and also in

the usual Sobolev spaces. This operator enters in the category of degenerate
elliptic boundary value problems and we refer to [BC73] for a general analysis
of such problems. However, for the convenience of the reader, we include short
proofs of the needed results. Our goal is to prove the following estimates.
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Proposition 9.2. Given an integer k, there is εk > 0 such that if
√
µh′(0) <

εk, and f ∈ Hk(R+), the solution u ∈ H2
1(R+) of (9.3), belongs to Hk(R+)

as well as h0∂xu and (h0∂x)2u. Moreover, there is a constant C that depends
only on εk such that

(9.6) ‖u‖Hk +
√
µ‖h0∂xu‖Hk + µ‖(h0∂x)2u‖Hk ≤ C‖f‖Hk .

The difficulty is only near the origin, where the equation d0 has a regular
singularity. More precisely, d0 is a perturbation of

(9.7) d00 u = u+ µα(x∂x + 2)(−α
3
x∂x + β)u− µαβx∂xu+ 4µβ2u.

where α = h′0(0) and β = b(0), in the sense that, near x = 0,

(9.8) d0 = d00 + µ
(
c1x

3∂2
x + c2x

2∂x + c3x
)
.

for some coefficients cj .
Associated to d00 is the indicial equation eµ(r) = 0, the roots of which

are the exponents r such that xr is a solution of the homogeneous equation
d00xr = 0. Here,

eµ(r) = 1− µα
2

3
r2 − µ2α2

3
r + µ

(
2αβ + 4β2

)
.

Note that

eµ(−1) = 1 + µ
(α2

3
+ 2αβ + 4β2

)
≥ 1,

and

eµ(−1

2
) = 1− µα

2

12
+ µ

(α2

3
+ 2αβ + 4β2

)
≥ 1

so the indicial equation has two real roots r1 < r2 which satisfy

(9.9) r1 < −1 < −1

2
< r2.

The indicial equation determines in which weighted spaces the operator d00 is
invertible.

Lemme 9.3. Let s ∈ R be such that eµ(s− 1
2) > 0. Then there is a constant

C such that

(9.10)
‖x−su‖L2 +

√
µ‖x1−s∂xu‖L2 + µ‖x−s(x∂x)2u‖L2

≤ Ceµ(s− 1

2
)−1‖x−sd00u‖L2 ,

and d00 is an isomorphism between the spaces associated to these norms.

Proof. The equation

(9.11) d00u = −µα
2

3
(x∂x − r1)(x∂x − r2)u = f

can be solved explicitly, and its inverse in L2
1 is given by

(9.12) (d00)−1f(x) = Kf(x) :=

∫ ∞
0

K(x/y)f(y)
dy

y
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where

(9.13) K(x) =
3

µα2(r2 − r1)

{
xr2 , x ≤ 1,

xr1 , x ≥ 1.

On R+ with the measure dx/x, on has the convolution estimates

‖xsKf‖L2(dx/x) ≤ ‖xsK‖L1(dx/x)‖xsf‖L2(dx/x).

Applied to −s+ 1
2 this gives

‖x−sKf‖L2 ≤ ‖x−s−
1
2K‖L1‖x−sf‖L2 .

We note that x−s−
1
2K ∈ L1(R+) if and only if s − 1

2 ∈]r1, r2[, that is if and

only if eµ(s− 1
2) > 0 and then

‖xs−
1
2K‖L1 =

3

µα2(r2 − r1)

( 1

r2 − s+ 1
2

− 1

r1 − s+ 1
2

)
=

1

e(s− 1
2)
.

This implies that

(9.14) ‖x−sKf‖L2 ≤ eµ(s− 1

2
)−1‖x−sf‖L2 .

There is an expression for x∂xKf similar to (9.12), with a kernel K ′, which

is r2K for x ≤ 1 and r1K for x ≥ 1. Because the roots rj are O(µ−1/2),
one obtains the desired estimate for

√
µx∂xKf . The estimate for µ(x∂x)2Kf

follows then from the equation. �

These estimates are then transported to d0.

Lemme 9.4. For all δ > 0, there is a constant C such that for s ≥ 0 and
µ ≤ 1 satisfying eµ(s − 1

2) ≥ δ and f such that h−s0 f ∈ L2(R+), the solution

u ∈ H2
1 of (9.3) belongs to hs0L

2 as well as h0∂xu and (h0∂x)2h0, and satisfies

(9.15)
‖h−s0 u‖L2 +

√
µ‖h1−s

0 ∂xu‖L2 + µ‖h−s0 (h0∂x)2u‖L2

≤ C‖h−s0 f‖L2 .

Proof. The estimates for x ≥ 1 are immediate since there h0 ≈ 1. Therefore
it is sufficient to prove the estimate when u is supported in [0, 2]. There we
use (9.8) and Lemma 9.3 to improve by induction the integrability property
from u ∈ H2

1 to u ∈ H2
1−2j for 2j− 1 ≤ s and finally to H2

−s, noticing that the

condition eµ(s− 1
2) > 0 means that s− 1

2 < r2 (recall that r1 is negative) and
thus is satisfied in the intermediate steps 2j − 3/2 < r2. �

Proposition 9.5. Given an integer k and µ ≤ 1 satisfying

(9.16) eµ(k − 1

2
) > 0

and f ∈ Hk(R+), the solution u ∈ H2
1(R+) of (9.3), belongs to Hk(R+) as

well as h0∂xu and (h0∂x)2u. Moreover, For all δ > 0, there is a constant C
such that if eµ(s− 1

2) ≥ δ, then

(9.17) ‖u‖Hk +
√
µ‖h0∂xu‖Hk + µ‖(h0∂x)2u‖Hk ≤ C‖f‖Hk .
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Remark 9.6. By a standard Sobolev embedding, the proposition provides a
control of (d0)−1u in L∞ provided that eµ(1

2) > 0. Actually, it could be shown

that (d0)−1 acts in L∞ under the weaker condition eµ(0) > 0.

Proof. Because f ∈ Hk1 , we already know that u ∈ Hk+2
1 , so that h

j+1/2
0 ∂jxu ∈

L2 for j ≤ k + 2. To gain the weights, we commute d0 to hk0∂
k
x . Note that

[hk0∂
k
x , h0∂x] = hk0[∂kx , h0]∂x − h0[∂x, h

k
0]∂kx =

k∑
l=2

hk0
(l
k

)
(∂lxh0)∂k−l+1

x

because the first term in the first commutator is khk0h
′
0∂

k
x and cancels out with

the second term. Similarly

[hk0∂
k
x , h

2
0∂

2
x] = hk0[∂kx , h

2
0]∂2

x − h2
0[∂2

x, h
k
0]∂kx .

Developing [∂kx , h
2
0] and [∂2

x, h
k
0] the terms in ∂k+1

x occurring in in hk0[∂kx , h
2
0]∂2

x

and h2
0[∂2

x, h
k
0]∂kx are both equal to 2kh′0h

k+1
0 ∂k+1

x and therefore cancel out.
The terms in ∂kx are

1

2
k(k − 1)hk0∂x(h2

0) = k(k − 1)hk0(h0h
′′
0 + h′20 )

and
h2

0∂
2
x(hk0) = kh′′0h

k+1
0 + k(k − 1)h′20 h

k
0

respectively. Therefore it remains

[hk0∂
k
x , h

2
0∂

2
x] =

k∑
l=2

hk0
(l
k

)
(∂lxh

2
0)∂k−l+2

x − k(k − 2)hk+1
0 h′′0∂

k
x .

Commuting next hk0∂
k
x to the coefficients, we conclude that

(9.18) d0(hk0∂
k
xu) = hk0∂

k
xd

0u+ µ
k−1∑
j=0

hk0ck,j∂
j
xu+ µck,kh

k+1
0 ∂kx .

for some coefficients ck,j . Then, one easily proves the estimates by induction

on k, using Lemma 9.4 as long as k < r2 : if one knows that ∂jxu ∈ L2 for
j < k and µh0∂x∂

k−1
x u ∈ L2, then the right-hand-side of (9.18) belongs to

hk0L
2, and by the cited lemma, hk0∂

k
xu ∈ hk0L2, that is ∂kxu ∈ L2, with similar

estimates for
√
µh0∂x∂

k
xu and µ(h0∂x)2∂kxu. �

Since we need to solve equations of the form du = g with g = g0 +
√
µlg1 ∈

H−1
1 , we also need similar estimates for the equation

(9.19) d0u =
√
µh0∂xf

which has a unique solution in H1
1 when f ∈ L2

1 since d0 is an isomorphism

from H1
1 to H−1

1 .

Proposition 9.7. Under the condition (9.16) and with f ∈ Hk(R+), the
solution u ∈ H1

1(R+) of (9.19), belongs to Hk(R+) as well as h0∂xu. Moreover,
For all δ > 0, there is a constant C such that if eµ(s− 1

2) ≥ δ, then

(9.20) ‖u‖Hk +
√
µ‖h0∂xu‖Hk ≤ C‖f‖Hk .
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Proof. Let v =
√
µh0∂x(d0)−1f . The solution of (9.19) is u = v +w where w

solves

d0w =
√
µ [d0, h0∂x]v = µ3/2

(
c∗(h0∂x)2v + c∗h0∂xv + c∗v

)
where the c∗ denote various smooth coefficients. Then the result follows easily
from the previous proposition. �

Since

eµ(r) = 1 + µ
(

2β +
1

2
α
)2 − µα2

(r2

3
+

2r

3
+

1

4

)
,

the condition (9.16) is satisfied if µα2 is small enough, and therefore Proposi-
tion 9.2 follows.

9.2. Proof of Proposition 4.9. To compute the initial values V j = (qj , uj)

of the time derivatives ∂jt V it is convenient to commute first the equations

with ∂jt and next evaluate at t = 0. The commutations have already been
written in (4.11) and (4.13) with detailed computations made in Section 6.1.
The first equation in (2.6) yields an induction formula

(9.21) c(q0)qj+1 = −∂xuj +
∑

c∗(q
0)qj1 . . . qjl

where the c∗ are some smooth functions and the indices in the sum satisfy
j1 + . . .+ jl = j + 1 and jk ≤ j. The second equation yields to

(9.22) d0uj+1 = −lqj +
∑

b∗u
j1 . . . ujl + µ

(
h0∂xN0 +N1

)
where we have used that l commutes with ∂t, ϕt=0 = x is known and ∂tϕ = u;
in the sum, the b∗ are some smooth derivatives of B and the indices satisfy
j1 + . . .+ jl = j; and N0 and N0 are non linear terms which are sum of terms
of the form

a∗(q
0, u0, ∂xu

0)qj1 . . . qjl(h0∂x)k1uj
′
1 . . . (h0∂x)kl′uj

′
l′

with smooth coefficients j1 + . . .+ jl + j′1 + . . .+ j′l′ = j and k1 + . . .+ kl′ ≤ 2,
max{k1, k2} ≤ 1 which means that there are at most two terms involving at
most one h0∂x derivative.

Recall that the initial condition for q is q0 = 1
2 , so we only have to consider

the initial condition u0. Using Propositions 9.5 and 9.7 and elementary multi-
plicative properties of Sobolev spaces, the induction formulas above imply the
following lemma which concludes the proof of Proposition 4.9.

Lemme 9.8. If u0 ∈ Hk+1 and h0∂xu
0 ∈ Hk+1 and if the indicial condition

(9.16) is satisfied, then for j ≤ k + 1, the V j = (qj , uj) are well defined and
satisfy

(9.23) V j ∈ Hk+1−j ,
√
µh0∂xV

j ∈ Hk+1−j ,

with uniform bounds if the condition (9.16) is uniformly satisfied.

Proof. If the condition (9.23) is satisfied up to order j, it is clear the right-
hand-side of (9.21), and thus qj+1, satisfies the same condition at order j + 1.
Similarly, the first two terms in the right-hand-side of (9.22) satisfy the con-
dition at order j+ 1, and we can apply (d0)−1 to them, using Proposition 9.5.
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The last two terms are more delicate. Using that there is at most one deriva-
tive h0∂x acting on the uj

′
, one obtains that

√
µN0 belongs to Hk+1−j . Then

we can apply Proposition 9.7 to conclude. The term with N1 is easier, an can
be treated with Proposition 9.5. �
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