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Abstract

The elastic tensor of any triangular (2D) lattice material is given with re-

spect to the geometry and the mechanical properties of the links between

the nodes. The links can bear central forces (tensional material, for example

with hinged joints), momentums (flexural materials) or a combination of the

two. The symmetry class of the stiffness tensor is detailed in any case by

using the invariants of Forte and Vianello. A distinction is made between

the trivial cases where the elasticity symmetry group corresponds to the mi-

crostructure’s symmetry group and the non-trivial cases in the opposite case.

Interesting examples of isotropic auxetic materials (with negative Poisson’s

ratio) and non-trivial materials with isotropic elasticity but anisotropic frac-

turation (weak direction) are shown. The proposed set of equations can be

used in a engineering process to create a 2D triangular lattice material of the

desired elasticity.
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1. Introduction1

Trusses have been known for their mechanical performances for centuries.2

Recent progresses in manufacturing (such as 3D printers) have made possible3

to generate lattice materials for which the truss microstructure is small with4

respect to the overall structure size. This allows the creation of a wide range5

of materials in terms of mass volume, strength and rigidity, as is evident in6

Ashby’s charts (Fleck et al., 2010). Furthermore it is also possible to design7

such materials with respect to optimized anisotropy (Jibawy et al., 2011).8

For the sake of simplicity we chose to study the simplest case of triangular9

lattice. However the methodology should easily be generalized to other lat-10

tice patterns, even if it is not obvious that the change of pattern would lead to11

analytical formulae as it is the case for triangles. The links (beams) between12

the nodes of the lattice material can transmit forces and/or momentums.13

From a theoretical point of view we shall refer respectively to tensional and14

flexural materials. From a technological point of view, pinned joints transmit15

only forces and solid joints transmit both forces and momentums. The beams16

can be modelled with various degrees of refinement (Euler Bernoulli, Timo-17

shenko. . . ) however, in the linear domain, each model leads to some tensional18

and flexural stiffnesses thus to a tensional and flexural spring model. The19

simplest Euler-Bernoulli’s case is shown (Eq. 4) as an example. For simple20

beam sections, the beam theory shows that the tensional behavior remains21

predominant. We recall a type of flexible joint where flexural behavior is22
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predominant.23

Whenever it is possible to analytically calculate the forces or momentums24

in every bar (classical Ritter or Cremona methods) it is generally highly25

helpful to consider homogenized behavior. Homogenization theory (Bornert26

et al., 2002) makes a link between microstructural characteristics and the27

chosen macroscopic kinematic. In this article the retained kinematics is the28

linear elasticity which is relevant in the case of large structures with respect29

to the cell size, small strains and small strain gradients. This excludes for30

example the case of cracking or structures with an average number of cells31

which require richer kinematics such as micropolar elasticity (Lakes, 1986;32

Dos Reis and Ganghoffer, 2012) or gradient elasticty (Auffray et al., 2009).33

With the above hypothesis, the Cauchy-Born rule (Born and Huang, 1954),34

which states that each truss node displacement is submitted to the macro-35

scopic kinematic field (Le Dret and Raoult, 2011; Dirrenberger et al., 2013),36

applies and leads to many simplifications. The precision of the retained ho-37

mogenization process upon the respect of above hypotheses and is discussed38

in relevant literature (Bornert et al., 2002; Duy-Khanh, 2011).39

One of the leading mechanical properties is the symmetry class of the40

stiffness tensor. These classes have been recently identified in 2D (Blinowski41

et al., 1996) and in 3D (Forte and Vianello, 1996). For 2D stiffness tensors42

a set of invariants separates the symmetry classes (Vianello, 1997; De Saxcé43

and Vallée, 2013; Forte and Vianello, 2014; Auffray and Ropars, 2016) i.e.44

the tensor belongs to a symmetry class if some (polynomial) relationships45

between these invariants are verified. They are also useful for the measure-46

ment of some distance from a stiffness tensor to any symmetry class (François47
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et al., 1998; De Saxcé and Vallée, 2013). According to Hermann’s theorem48

and Curie’s principle, (Wadhawan, 1987; Auffray, 2008) the symmetry group49

of the elasticity tensor (the consequence) includes the symmetry group of the50

lattice (the cause): the stiffness tensor cannot be less symmetric than the lat-51

tice. We refer to trivial cases when the symmetry groups of the lattice and52

the tensor are the same or at least when Hermann’s theorem can be easily ap-53

plied (for example a D3 lattice obviously leads to an isotropic stiffness tensor)54

and find some interesting non-trivial cases for their original properties. We55

also detail the well-known case of isotropic elasticity and negative Poisson’s56

ratio (auxetic material) (Milton, 1992, 2002) which has various industrial ap-57

plications today. Lattice materials can also present some low energy modes58

in the Kelvin (Thomson) (1856) sense (see also Kelvin (Thomson) (1893);59

Rychlewski (1984)): a deformation state associated to weak or null stress60

which makes them at the frontier between materials and mechanisms. Fi-61

nally, we show a case of an isotropic elastic material with anisotropic (guided)62

fracturation due to the presence of a weak direction in the material.63

Section 2 of this article shows the study of an unique cell. The stiffness64

tensor is deducted from the homogenization process in section 3 in both cases65

of the tensile and flexural materials. The symmetry groups and invariants66

of the stiffness tensors are recalled in section 4. Tensional, flexural and com-67

bined tensional and flexural materials are studied for each symmetry class68

through sketch examples respectively in sections 5, 6 and 7. The necessary69

conditions on the lattice stiffnesses and geometry for the elasticity tensor70

to belong to a symmetry class are given. In any relevant case, both trivial71

and non-trivial cases are studied. As shown by Cauchy (1913), the stiffness72

4



tensors of tensional materials have the full index symmetry (Vannucci and73

Desmorat, 2016). The flexural lattice material is shown to have a null di-74

latational mode (in the Kelvin sense), to belong only to the tetragonal or75

isotropic classes and to have Kelvin elasticity (without the full index sym-76

metry). Particular behavior of flexural and tensile lattice materials, such as77

auxetic materials (with negative Poisson’s ratio) and degenerated materials78

(with a weak Kelvin mode) are shown. Special attention is payed to a non-79

trivial isotropic case which presents a weak direction inducing an anisotropic80

(orientated) fracturation process.81

2. The triangular lattice deformation82

a

bc
↵

� �

A

B C

D

Figure 1: Triangular lattice and triangle parameters at undeformed state

The primitive cell of the lattice is the parallelogram ABCD in Fig. 1.83

However it is simpler to consider the triangular half cell ABC. The triangular84

lattice summits (A,B,C) and the angles (α, β, γ) respectively face the bars of85

lengths (a, b, c) (see Fig. 1). With no restriction we impose 0 < γ 6 β 6 α <86

π, thus the longest length is a (Perrin, 2013). Angles β and γ are retained87

as independent geometrical parameters. From classical triangle relations one88
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finds the bounds89

0 < β 6
π

3
=⇒ 0 < γ 6 β (1)

π

3
6 β <

π

2
=⇒ 0 < γ 6 π − 2β (2)

illustrated in Fig. 2 which also show the loci of particular triangles. From

e

ir
ir

i

⇡/3
⇡/4

�

�

0 ⇡

2

⇡

3

⇡

4

Figure 2: Definition domain of the angles (shaded area) and loci of equilateral (e), isosceles

(i), right (r) and right isosceles (ri) triangles.

an homogenization point of view the physical size of the cell is indifferent

thus one may set a = 1 however a is maintained to indicate the dimension

of a length. Under an homogenous deformation field the repetitive lattice

deforms in another repetitive one (Fig. 3). As a consequence each node

bears identical forces and momentums, rotates through an identical angle

θ and each vector (BC,CA,AB) rotates respectively through the angles

(θa, θb, θc). Supposing linear elastic links the elongation ∆a and the relative

rotation θ − θa is respectively proportional to the axial force Na and the

momentum Ma (see Fig. 4)

∆a =
Na

ka
, θ − θa =

Ma

ja
(3)

where, ka and ja are respectively the stiffnesses in tension and in flexion. The

shear force Ta is given by the statics: aTa+2Ma = 0 however the shear effects
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Figure 3: Initial (thick dashed lines) and deformed (thick plain lines) state of a triangular

cell and rotation angles

B
C Na�Na

Ta

�Ta Ma

Ma

�a
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a

Figure 4: Beam BC. Top: reference geometry and loading. Bottom: kinematics and

deformed state

are neglected. In the case of Euler-Bernoulli beams of constant section area

sa, second moment of area ia and Young’s modulus e (of the bulk material)

these stiffnesses (in the sense of a spring model) are

ka =
esa
a
, ja =

6eia
a
. (4)

Elongations and rotations are related to the node displacements (uB,uC) by

∆a = nBC · (uC − uB), θa =
mBC · (uC − uB)

a
(5)
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where (nBC,mBC) are the unit vector respectively proportional and directly

orthogonal to BC. Eqs. (3) to (5) are similar for beams b and c. The

reference frame (e1, e2) is defined by BC = a e1. Denoting the relative

displacement components as uBC1 = (uC−uB) ·e1 etc. . . , previous equations

and momentum equilibrium Ma+Mb+Mc = 0 lead to the 7×7 linear system

1 0 0 0 0 0 0

0 0 0 −1 0 0 1

0 −cγ 0 0 sβsγ/sα 0 −sβsγ/sα

0 sγ 0 0 cγsβ/sα 0 −cγsβ/sα

0 0 −cβ 0 0 −sβsγ/sα sβsγ/sα

0 0 −sβ 0 0 cβsγ/sα −cβsγ/sα

0 0 0 ja/a jb/a jc/a 0


·



Na/ka

Nb/kb

Nc/kc

aMa/ja

aMb/jb

aMc/jc

aθ


=



uBC1

uBC2

uCA1

uCA2

uAB1

uAB2

0


(6)

where sα stands for sinα and cα for cosα etc. . . The inverse of this system90

gives91

F = K · U (7)

F = [Na, Nb, Nc,Ma,Mb,Mc]
T (8)

U = [uBC1, uBC2, uCA1, uCA2, uAB1, uAB2]
T (9)

where the detailed expression of the 6 × 6 matrix K and the value of θ are92

given by Eqs. (A.1) and (A.2). The elastic energy stored in both the beams93
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BC, CA and AB is94

W =
1

2
FT · D · F (10)

D =



1/ka 0 0 0 0 0

0 1/kb 0 0 0 0

0 0 1/kc 0 0 0

0 0 0 2/ja 0 0

0 0 0 0 2/jb 0

0 0 0 0 0 2/jc


(11)

3. The stiffness tensor components95

The Cauchy-Born rule (Born and Huang, 1954; Le Dret and Raoult, 2011;96

Dirrenberger et al., 2013) states that node displacements are given by the97

homogeneous strain field ε. This strain tensor is projected in a Bechterew’s98

type second order symmetric tensor orthonormal basis (Bechterew, 1926;99

Walpole, 1984) whose expression with respect to the vector basis (e1, e2) is100

B1 = e1 ⊗ e1

B2 = e2 ⊗ e2

B3 =
e1 ⊗ e2 + e2 ⊗ e1√

2
(12)

where ⊗ denotes the dyadic (tensor) product. The components ε̄I for I ∈
{1, 2, 3} of ε in the basis BI are related to the components εij of ε in the

canonical basis as

ε̄1 = ε11, ε̄2 = ε22, ε̄3 =
√

2ε12. (13)
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Figure 5: Nodal displacements associated to the elementary strains

The arbitrary rigid body motion is defined by a null displacement of the101

point B and no rotation of BC (see Fig. 5), giving the nodal displacements102

by integration of the strain field103

uA = c (ε̄1cβ +
√

2ε̄3sβ) e1 + c ε̄2sβ e2,

uB = 0,

uC = a ε̄1 e1. (14)

Thus the relative nodal displacements are

uBC1

uBC2

uCA1

uCA2

uAB1

uAB2


= a



1 0 0

0 0 0

−sβcγ/sα 0
√

2sβsγ/sα

0 sβsγ/sα 0

−cβsγ/sα 0 −
√

2sβsγ/sα

0 −sβsγ/sα 0


·


ε̄1

ε̄2

ε̄3

 (15)

which is summarized as

U = G · E (16)

Gathering Eqs. (7), (10) and (16) gives the expression of the truss elastic

energy

W =
1

2
[K · G · E]T · D · [K · G · E]. (17)
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Considering that each bar belongs to two adjacent cells, the correspondance104

between the energy density per unit surface w and W is105

W = 2Sw (18)

S =
a2

2

sβsγ
sα

(19)

where S is the area of the cell. The energy density of the homogeneous

equivalent material is

w =
1

2
εijCijklεkl =

1

2
ε̄IC̄IJ ε̄J (20)

where C̄IJ are the components of the stiffness tensor C in the basis BI ⊗BJ106

Bechterew (1926); Walpole (1984) whose correspondance with the classical107

components Cijkl in the canonical basis is108

C̄11 = C1111

C̄22 = C2222

C̄12 = C1122

C̄13 =
√

2C1112

C̄23 =
√

2C2212

C̄33 = 2C1212 (21)

From above the stiffness tensor components are obtained by derivation of w109

with respect to the strain components110

C̄IJ =
∂2w

∂ε̄I∂ε̄J

=
1

2S

[
K · G · ∂E

∂εI

]T
· D ·

[
K · G · ∂E

∂εJ

]
C̄ =

1

2S
GT · KT · D · K · G (22)
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where C̄ stands for the 3 × 3 C̄IJ components matrix. The separate role of

the stiffnesses in tension (ka, kb, kc) and in flexion (ja, jb, jc) in matrix K and

D allow one to establish a partition

C = Ct + Cf . (23)

in the tensional part Ct and the flexural part Cf . From Eq. (22) and previous111

results one finds112 

C̄t
11

C̄t
22

C̄t
12

C̄t
13/
√

2

C̄t
23/
√

2


=

1

sαsβsγ



1 c4γ c4β

0 s4γ s4β

0 s2γc
2
γ s2βc2β

0 −sγc
3
γ sβc3β

0 −s3γcγ s3βcβ


·


kas

2
α

kbs
2
β

kcs
2
γ



C̄t
33 = 2C̄t

12 (24)

for the tensional part, where the last equation corresponds to the Cauchy113

(1913) invariance to any index permutation Ct
1122 = Ct

1212 which exists as114

soon as the nodes a related by central forces (no momentum) as is the case115

for the tensional truss. One remarks that the present case is a sub-case of116

Cauchy materials for which the nodes interact not only with their nearest117
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neighbors. Again from Eq. (22) one finds for the flexural part118 
C̄ f

11

C̄ f
13/
√

2

C̄ f
33/2

 =
1

JS


(sβcβ + sγcγ)

2 s2βc2β s2γc
2
γ

(sβcβ + sγcγ)(s
2
β − s2γ) s3βcβ −s3γcγ

(s2β − s2γ)
2 s4β s4γ

 ·

jbjc

jcja

jajb


(25)

C̄ f
22 = C̄ f

11

C̄ f
12 = −C̄ f

11

C̄ f
23 = −C̄ f

13 (26)

where J = ja + jb + jc. In general Cf does not have Cauchy symmetry. Lord

Kelvin [1856] proposed that any stiffness tensor has three eigentensors in

2D (and 6 in 3D) which correspond to the cases when the stress and strain

tensors are proportional. The proportionality factors are referred to as the

Kelvin moduli. Rychlewski [1985] showed that the eigenstrains and Kelvin

moduli are directly obtained from the diagonalisation of the matrix C̄ whose

expression in the Bechterew’s basis is in this case

Cf =


C̄ f

11 −C̄ f
11 C̄ f

13

−C̄ f
11 C̄ f

11 −C̄ f
13

C̄ f
13 −C̄ f

13 C̄ f
33


BI⊗BJ

(27)

One easily finds that any strain proportional to I (of components [1, 1, 0]T in

the Bechterew basis) corresponds to null stress

Cf : I = 0. (28)

In other words such material opposes no stiffness to a dilation (see Fig. 6),119

thus it is in between a material and a mechanism. From an engineering120
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Figure 6: Flexural materials: dilational mode with no rigidity (rectangular boxes represent

slide links)

point of view it is necessary to find the mechanical lattice material prop-121

erties (a, α, β, ka, kb, kc, ja, jb, jc) with respect to the six desired independent122

stiffness tensor components C̄IJ . The solution is obviously non unique thus123

one has to set some values a priori. The system (24) (tensile part) is well124

defined but its inverse is not obvious. The system (25) (flexural part) has six125

unknowns for three equations (a is hidden in S) however one can verify that126

the determinant of the matrix of this system is non null (equal to s3αs3βs3γ).127

The determination of the lattice material properties must be numeric and128

user-aided. However Appendix B lists some linear and quadratic properties129

which may help.130

The simplest realization of a lattice material is to design the links as sim-131

ple beams of constant section and (in plane) thickness h. Above results and132

beam theory show that the typical ratio between tensile and flexural com-133

ponents C̄t
ij/C̄

f
ij is close to a2/h2. The geometry imposes that h << a thus134

such realization leads to mainly a tensional material. Thus flexural behavior135

(in particular non Cauchy elasticity) can only be obtained by special designs136

which allow low tensile rigidity. A technological way to realize frictionless137

slide links is to use flexible links described in Fig. 7 in which the thin liga-138

ments act as pin joints and lead to a symmetrical frictionless joint with low139
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Figure 7: flexible joint with low tensile stiffness

stiffness in tension and a rather simple geometry (Chevalier and Konieczka,140

2000).141

4. Invariants and symmetry groups of a 2D stiffness tensor142

The 2D stiffness tensors only accept four symmetry classes (Verchery,143

1982; Vianello, 1997; De Saxcé and Vallée, 2013). They are recalled in Table 1

Table 1: Symmetry classes of the 2D elasticity tensors

Name(s) Digonal Orthotropic Tetragonal Isotropic

Triclinic

Class Z2 D2 D4 O(2)

Generators Q(e3,π) Q(e3,π)

Q(e1,π)

Q(e3,π/2)

Q(e1,π)

Q(e3,ϕ), ∀ϕ
Q(e1,π)

Sketch example Z 8 � ©

144

in which Q(n, ϕ) means the rotation of angle ϕ of axis n. The action of the145

rotation operator Q(e3,ϕ)on C in the Bechterew’s basis is given by De Saxcé146

and Vallée (2013). Various invariants of 2D stiffness tensors are given in147

previous references. Among them we retained the five invariants of Vianello148

15



(1997)149

I1 =
1

8
(C̄11 + C̄22 + 6C̄12 − 2C̄33) (29)

I2 =
1

8
(C̄11 + C̄22 − 2C̄12 + 2C̄33) (30)

I3 =
1

2
(C̄11 − C̄22)

2 + (C̄13 + C̄23)
2 (31)

I4 =
1

8
[(C̄11 + C̄22)− 2(C̄12 + C̄33)]

2 + (C̄13 − C̄23)
2 (32)

I5 =

√
2

8

{
[(C̄11 + C̄22)− 2(C̄12 + C̄33)]

[(C̄11 − C̄22)
2 − 2(C̄13 + C̄23)

2]

+8(C̄2
13 − C̄2

23)(C̄11 − C̄22)
}

(33)

where I1 = λ and I2 = µ, the Lamé moduli. A sixth invariant I6 exists but150

is linked to others by a syzygy and is unhelpful in the present case. One151

verifies easily that152

I3 = 0 =⇒ I5 = 0 (34)

I4 = 0 =⇒ I5 = 0 (35)

Vianello (1997) details the conditions to belong stricly to the symmetry153

classes. However, since these classes are such that O(2) ⊂ D4 ⊂ D2 ⊂ Z2, we154

prefer to use the simpler non-strict conditions which are summarized in Fig. 8155

and lead, together with Eqs. (34) and (35), to the independent conditions156

C ∈ Ela(D2) ⇐⇒ I25 − I23I4 = 0 (36)

C ∈ Ela(D4) ⇐⇒ I3 = 0 (37)

C ∈ Ela(O(2)) ⇐⇒

 I3 = 0

I4 = 0
(38)
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Z2

D2

D4

O(2)

I2
5 � I2

3I4 = 0

I3 = 0

I4 = 0

Figure 8: Conditions of appartenance to the 2D symmetry classes of elasticity tensors

where Ela(D2) represents the set of stiffness tensors of symmetry class D2157

etc. . . . Some authors also consider the sub-case of orthotropy when I4 = 0158

(thus I5 = 0 from Eq. (35)) but I3 6= 0 called R0-orthotropy which has159

interesting theoretical properties (Vannucci, 2002; Auffray, 2017).160

We detail hereafter the condition of appartenance to the symmetry classes161

with respect to the stiffness tensor components. We also recall the expression162

of the angle ϕ which defines the natural bases (e′1, e
′
2) for which e′1 is an axis of163

symmetry. In natural bases the matrix of components C̄ exhibits a maximum164

of zeros.165

For the orthotropic classD2 the condition of appartenance is, from Eq. (36)166

(C̄12 + C̄33 − C̄22)(C̄11 − C̄22)(C̄13 + C̄23)

= (C̄2
13 − C̄2

23)(C̄13 + C̄23) + C̄23(C̄11 − C̄22)
2 (39)

and the natural basis e′i forms an angle ϕD2 (Auffray and Ropars, 2016) such

as

tan(2ϕD2) =
√

2
C̄13 + C̄23

C̄11 − C̄22

(40)

17



with respect to the actual basis ei. In each of the two natural bases C̄13 =

−C̄23 and, from Eq. (39) C̄23 = 0 (or C̄11 = C̄22 but this case induces I4 = 0

thus tetragonal symmetry). In the basis B′I⊗B′J associated to e′i by Eq. (12)

one recovers the well-known expression for an orthotropic tensor in its natural

basis

C ∈ Ela(D2) =


C̄ ′11 C̄ ′12 0

C̄ ′12 C̄ ′22 0

0 0 C̄ ′33


B′
I⊗B

′
J

(41)

For the tetragonal class D4, the conditions of appartenance (37) gives C̄11 = C̄22

C̄13 + C̄23 = 0
(42)

and the natural basis e′′i forms an angle ϕD4 such as

tan(4ϕD4) = 2
√

2
C̄13

C̄11 − C̄33 − C̄12

(43)

with respect to the actual basis ei. In each of the four natural bases the

components of the tetragonal stiffness tensor are of the (also well-known)

type

C ∈ Ela(D4) =


C̄ ′′11 C̄ ′′12 0

C̄ ′′12 C̄ ′′11 0

0 0 C̄ ′′33


B′′
I⊗B

′′
J

(44)

The condition (38) of appartenance to the isotropic class O(2) and Eqs. (31)

and (32) show that the components of a O(2)-invariant stiffness tensor are,

in any basis (due to the isotropy):

C ∈ Ela(O(2)) =


C̄11 C̄12 0

C̄12 C̄11 0

0 0 C̄11 − C̄12


BI⊗BJ

(45)
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5. Tensional lattice materials167

In case of tensional lattice material the flexural rigidities are ja = jb =168

jc = 0 and the elasticity tensor is C = Ct. We show hereafter some represen-169

tative cases of such materials for each possible case of symmetry class. Each170

case is illustrated by a drawing of the lattice in which the lines widths of the171

bars are proportional to their corresponding stiffnesses (ka, kb, kc). Young’s172

modulus173

E(n) =
1

n · n · S · n · n (46)

where n ∈ [e1, e2] is a unit vector and S denotes the inverse of C (given by174

S̄ = C̄
−1

in the Bechterew basis (Rychlewski, 1984)), is represented in polar175

plots in order to show the mechanical symmetry. The axes of symmetry are176

represented by thin dashed lines.177

5.1. Digonal case178

When no particular relation exists between the stiffness tensor compo-179

nents the elastic tensor belongs to the (lowest) Z2 symmetry class which is180

called digonal (or triclinic, a crystallographic name more adapted to 3D).

a

b

c 
1

Figure 9: digonal tensional lattice material structure and Young’s modulus

181
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Table 2: digonal tensional lattice material characteristics

β γ ka kb kc

π/3 π/4 0.6 0.75 0.8

Table 2 and Fig. 9 show an example of such material. Young’s modulus polar182

plot only exhibits the central symmetry.183

5.2. Orthotropic case184

The material is orthotropic (of class D2) if the condition (39) is fulfilled.

Together with the Cauchy’s condition in Eq. (24) this gives:

C̄t
12 + C̄t

33 − C̄t
22 = (C̄t

11 − C̄t
22)/2− (C̄t

11 + C̄t
22 − 6C̄t

12)/2 (47)

where each term is related to microstructural properties by Eq. (B.2). An

a

b

c 
1

Figure 10: orthotropic tensional lattice material structure and Young’s modulus

185

example of such material is given by Table 3 and Fig. 10. The two orthogonal186

axes of symmetry of this class are visible on Young’s modulus polar plot.187

They are located by the angle ϕD2 (Eq. 40).188
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Table 3: orthotropic tensional lattice material characteristics

β γ ka kb kc

π/3 π/4 0.338 0.833 1

The special case of R0-orthotropy is fulfilled if I4 = 0. From Eqs. (32)

and (24) this corresponds to

 s2α s2βc4γ c4βs2γ

0 sβcγc2γ −cβc2βsγ

 ·

ka

kb

kc

 =

 0

0

 (48)

Given a set of angles this system defines the ratios between stiffnesses.

⇡/3
⇡/4

�

�

0 ⇡

2

⇡

3

⇡

4

⇡

8

⇡/8

Figure 11: Definition domain of the R0-orthotropy (shaded area)

Table 4: R0-orthotropic (I4 = 0) tensional lattice material characteristics

β γ ka kb kc

1 π/3.3 0.809 0.746 0.65

189

Fig. 11 shows the angles for which the R0-orthotropy can be realized with190

21



a

b

c 
1

Figure 12: R0-orthotropic (I4 = 0) tensional lattice material structure and Young’s mod-

ulus

positive stiffnesses (ka, kb, kc). An example of such material is given by Ta-191

ble 4 and Fig. 12. Again the two orthogonal axes of symmetry given by192

Eq. (40) are visible on Young’s modulus polar.193

When the symmetry class is already visible on the material structure,

this refers to a trivial case (it is not the case in previous examples). For

the orthotropic symmetry this requires both β = γ (isosceles triangle) and

kb = kc. One easily verifies that the obtained stiffness tensor is orthotropic

and that C̄13 = C̄23 = 0, thus the actual basis is also a natural one. If

furthermore one wants a R0-orthotropic material, condition (48) gives

ka
kc

= −
2s2βc4β

s2α
(49)

If furthermore one sets β = γ = π/4 (isosceles rectangle triangle) this leads194

to ka = kb = kc. This simple way to construct a R0-orthotropic material195

is illustrated by Table 5 and Fig. 13 on which the two orthogonal axes of196

symmetry are visible on both the structure and Young’s modulus polar plot.197
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a

b
c 

1

Figure 13: trivial R0-orthotropic (I4 = 0) isosceles tensional lattice material structure and

Young’s modulus

Table 5: trivial R0-orthotropic (I4 = 0) isosceles tensional lattice material characteristics

β γ ka kb kc

π/4 π/4 0.6 0.6 0.6

5.3. Tetragonal case198

The condition (38) to belong to the tetragonal class gives, together with

the stiffness tensor expression (24) and Eq. (31)

 s2α s2βc2γ c2βs2γ

0 sβcγ −cβsγ

 ·

ka

kb

kc

 =

 0

0

 (50)

Given the angles, this system defines the ratios between the stiffnesses. The199

angles for which a tetragonal case is possible with positive stiffnesses are200

shown in Fig. 14. A case of a generic tetragonal truss is given in Table 6201

and Fig. 15. The four axes of symmetry which are visible on Young’s modulus202

polar plot are located by ϕD4 (Eq. 43).203

The trivial case is when the structure is obviously tetragonal thus exhibits204

the four regularly spaced axes of symmetry. This requires β = γ = π/4,205
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Figure 14: Definition domain of the tetragonal symmetry (shaded area)

a

b

c 
1

Figure 15: tetragonal tensional lattice material structure and Young’s modulus

Table 6: tetragonal tensional lattice material characteristics

β γ ka kb kc

π/3 π/3.5 0.591 0.869 1.2

kb = kc and ka = 0. One remarks that the last condition is also imposed206

by Eq. (50). This corresponds to a degenerated case where the material207

has a null Young’s modulus in any direction except along the bars b and c208

making such material a four-bar mechanism. It corresponds in some way to209

a balanced [0-90] (standard designation) composite laminate whose matrix210

is infinitely weak, i.e. a tissue. An example of it is given in Fig. 16 and211

Table 7.212
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a

b
c 

1

Figure 16: trivial tetragonal tensional lattice material structure and Young’s modulus

Table 7: trivial tetragonal tensional lattice material characteristics

β γ ka kb kc

π/4 π/4 0 1 1

5.4. Isotropic case213

The condition (38) for isotropy corresponds to both conditions (48) and214

(50) respectively of R0-orthotropy and tetragonal class. The solution of this215

system corresponds to equilateral triangle and equal stiffnesses. Fig. 17 and

a

b

c 
1

Figure 17: isotropic tensional lattice material structure and Young’s modulus

216

Table 8 show an example of this case (the axis of symmetry are not drawn217

for clarity). The symmetry class of the structure is obviously D3 and this218

case illustrates Hermann’s theorem (Wadhawan, 1987; Auffray, 2008) which219
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Table 8: isotropic tensional lattice material characteristics

β γ ka kb kc

π/3 π/3 0.866 0.866 0.866

states that the symmetry class of the elastic tensor is the lowest possible220

which includes the one of the structure. The group D3 cannot be strictly221

supported by the stiffness tensor (see Table 1) so the elastic tensor symmetry222

can only be O(2) which is the first (and only one) to include D3. For this223

reason, one can also refer to trivial isotropy in this case .224

6. Flexural lattice materials225

In this section the stiffness tensor Cf of the sole flexural part of the stiff-

ness tensor is analyzed. This case corresponds to ka = kb = kc = 0. One

easily verifies from Eq. (27) that I3 = 0 (and I5 = 0) thus Cf is at least

tetragonal. The natural basis for a tetragonal tensor is given by Eq. (43). In

such basis Cf is of the form

Cf =


C̄ f

11
′′ −C̄ f

11
′′ 0

−C̄ f
11
′′ C̄ f

11
′′ 0

0 0 C̄ f
33
′′


B′′
I⊗B

′′
J

(51)

Obviously this matrix is not inversible thus Young’s modulus is undefined.226

This is in relation with the observation of the null Kelvin modulus associated227

with the dilational mode by Eq. (28). For this reason we chose to represent228

the anisotropic behavior thanks to:229

E ′(n) = n · n · C · n · n (52)
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which one may call a pseudo-Young modulus and represents the stiffness of230

the material under a pure extension of direction n. In every further illustra-231

tion of sketch examples, the magnitude of the bending stiffnesses (ja, jb, jc)232

are represented as proportional to the width of a part of a circle (which233

mimics a flexural spring). To represent the absence of stiffness in tension the234

beams are drawn with dashed lines.235

6.1. Tetragonal case236

a

b
c 

1

Figure 18: tetragonal flexural lattice material structure and pseudo-Young’s modulus

Table 9: tetragonal flexural lattice material characteristics

β γ ja jb jc

π/3 π/5 0.6 0.7 0.4

Table 9 and Fig. 18 show a generic case of such material. The tetragonal237

behavior is visible on the polar of E ′ from the four regularly spaced axes of238

symmetry whose angles ϕD4 are given by Eq. (43).239

The case of trivial tetragonal symmetry requires (similarly to the ten-240

sional material in Table 7) β = γ = π/4, jb = jc and ja = 0. Eq. (25) leads241
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to C11 = 2jc/a
2 and C33 = 0. The stiffness tensor has a second null Kelvin242

modulus which is relative to the pure shears proportional to B3. Such mate-243

rial is also a mechanism with two degrees of freedom. Fig. 19 and Table 10

a

b
c 

1

Figure 19: trivial tetragonal flexural lattice material structure and pseudo-Young’s mod-

ulus

Table 10: trivial tetragonal flexural lattice material characteristics

β γ ja jb jc

π/4 π/4 0 0.5 0.5

244

show an example of such material.245

6.2. Isotropic case246

Being at least tetragonal, Cf can also be isotropic. From conditions of

isotropy (38), Eq. (31), (32) and the stiffness tensor components (25) one

finds the conditions
jb

tan(β)
=

jc
tan(γ)

=
ja

tan(α)
(53)

for a flexural lattice material to be isotropic. At first we detail the case247

of trivial isotropy obtained when the microstructure obviously belongs to248
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the D3 symmetry class (equilateral triangle and equal stiffnesses) thus the249

behavior is isotropic from Hermann’s theorem (Wadhawan, 1987; Auffray,250

2008). Condition (53) leads to ja = jb = jc. An example is shown in Fig. 20

a

b

c 
1

Figure 20: trivial isotropic flexural lattice material structure and pseudo-Young’s modulus

Table 11: trivial isotropic flexural lattice material characteristics

β γ ja jb jc

π/3 π/3 1.15 1.15 1.15

251

and Table 11.252

However if the triangle is not equilateral one can create a non trivial253

isotropic material if the flexural properties (ja, jb, jc) obey the isotropy con-254

ditions (53). An example is shown in Fig. 21 and Table 12.

Table 12: non-trivial isotropic flexural lattice material characteristics

β γ ja jb jc

π/3 π/5 1.1 0.2 0.0839

255
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a

b
c 

1

Figure 21: non-trivial isotropic flexural lattice material structure and pseudo-Young’s

modulus

7. Combined flexural and tensile lattice materials256

We address hereafter the general case where the links between nodes have257

both rigidities in tension (ka, kb, kc) and in flexion (ja, jb, jc). The complete258

stiffness tensor is given by Eqs. (23), (24) and (25). The number of inde-259

pendent material parameters (a, β, γ, ka, kb, kc, ja, jb, jc) is larger than the six260

stiffness tensor independent components (even if the lattice size a has an261

independent role and must be set at first). Thus there are infinite ways to262

build a triangular lattice material, given the stiffness tensor. However we263

shall detail some examples with interesting properties in terms of symmetry264

or mechanical properties such as auxetic materials (with negative Poisson’s265

ratio) and materials with isotropic elasticity but with orientated fracturation.266

7.1. Anisotropic case267

Table 13: anisotropic lattice material characteristics

β γ ka kb kc ja jb jc

π/3 π/4 0.4 0.5 0.6 0.04 0.2 0.16
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a

b

c 
1

Figure 22: anisotropic lattice material structure and Young’s modulus

Table 13 and Fig. 22 show a generic case. Both tensile and flexural parts268

belong to the lowest symmetry class possible: Z2 for Ct and D4 for Cf (whose269

four axes of symmetry are represented by the set of four blue dashed lines270

on Young’s modulus polar plot). The resulting tensor C inherits from the271

lowest class, the sole central symmetry Z2.272

7.2. Tetragonal case273

The case when Ct is tetragonal is interesting because even if the four axis274

of symmetry of Ct do not coincide with the axes of symmetry of Cf , the275

final elasticity Ct +Cf is also tetragonal (with a third different set of axes of276

symmetry). This addresses the generic property: the sum of two tetragonal277

elastic tensors is a tetragonal elastic tensor (even if their axes of symmetry278

do not coincide). The proof lies in the linearity of the condition (42) related279

to I3 = 0. A sketch example is shown in Fig. 23 and Table 14. Young’s

Table 14: tetragonal lattice material characteristics

β γ ka kb kc ja jb jc

π/3 π/3.5 0.295 0.434 0.6 0.5 0.5 0.25
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a

b

c 
1

Figure 23: tetragonal lattice material structure and Young’s modulus

280

modulus polar plot exhibits the four axis of symmetry of the tetragonal281

resulting symmetry (black dashed lines) which do not coincide to the axis282

of the tensional part (red dashed lines) nor the flexural part (blue dashed283

lines).284

7.3. Trivial (isosceles) isotropic case and auxeticity285

We already referred to trivial isotropy which is the case when the mi-

crostructure is D3 invariant (in association with the Hermann’s theorem).

In the present case this leads to α = β = γ = π/3, ka = kb = kc = k and

ja = jb = jc = j. The form of the isotropic tensor (45) is related to four

linear relations between the components thus if both Ct and Cf are isotropic

tensors, Ct +Cf is isotropic too. An example of this case is shown in Fig. 24

Table 15: trivial isotropic lattice material characteristics

β γ ka kb kc ja jb jc

π/3 π/3 0.5 0.5 0.5 0.5 0.5 0.5
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b

c 
1

Figure 24: trivial isotropic lattice material structure and Young’s modulus

and Table 15. Poisson’s ratio generic expression is

ν(n,m) = −n⊗ n : S : m⊗m

n⊗ n : S : n⊗ n
(54)

where n is the tensile direction and m the orthogonal one (for all n is this286

isotropic case). More generally, one verifies easily from Eqs. (24) and (25)287

that288

E = 2
√

3 k
a2k + 2j

3a2k + 2j
(55)

ν =
a2k − 2j

3a2k + 2j
(56)

This leads to the value ν = −0.2 for the example and to the curve in Fig. 25289

which shows that Poisson’s ratio is negative if 2j > a2k, equal to 1/3 if290

j = 0 (the trivial isotropic tensional material shown in Fig. 17 and Table 8)291

and equal to −1 if k = 0 (the trivial isotropic flexural material shown in292

Fig. 20 and Table 11) which corresponds to the well-known auxetic material293

presented by Rothenburg et al. (1991). One easily verifies that for beam of294

constant rectangular section and of aspect ratio equal to ten, a2k/2j = 100295

thus the realization of auxetic triangular lattices require special joints such296

as the one shown in Fig. 7.297
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Figure 25: Evolution of Poisson’s ratio with respect to the beam properties is case of

trivial isotropic material

7.4. Non trivial isotropic case298

The isotropy of the tensional lattice material requires an isosceles triangle299

and equal stiffnesses (Fig. 17) however this is not the case for flexural lattice300

materials (Fig. 21). We show hereafter an isotropic lattice material composed301

by the assemblage of a tetragonal tensional part and a tetragonal flexural302

part whose anisotropy compensate each other. Given a arbitrary geometry303

(a, β, γ) the unknowns are the six stiffnesses. Two equations are given by the304

conditions (50) on Ct to be tetragonal. Another one is given by the angle305

ϕD4 which must be common for Ct and Cf . The last two equations are given306

by the two relations associated to the condition (I4 = 0) which remains on307

the whole tensor to be isotropic (from tetragonal). Finally only one stiffness308

remains to be user defined.309

This process has been used for the example in Fig. 26 and Table 16. The310

elastic behavior is isotropic but one may think that the fracture behavior311

will not be isotropic because of the relative weakness of the bars a and b312
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Figure 26: isotropic lattice material structure and Young’s modulus

Table 16: isotropic lattice material characteristics

β γ ka kb kc ja jb jc

π/2.7 π/4.5 0.315 0.454 1.25 0.0841 0.123 0.418

(from both flexural and tensional points of view) may lead the fracture to313

be driven preferentially across the bars of type a and b, i.e. parallel to the314

direction of the bars c. Such a type of behavior may be of interest in the field315

of structured materials for which the fracture process is begining to interest316

the community (Fleck et al., 2010; Réthoré et al., 2015). It is also possible317

to combine weak direction and auxeticity.318

8. Conclusion319

This article investigates the field of triangular lattice material elasticity320

and symmetry. Both the stiffness tensor and its symmetry class are given321

with respect to the lattice properties (angles, tensional and flexural stiffnesses322

of the links). It is shown that tensile triangular lattice materials can belong323

to every class of symmetry but owns a Cauchy elasticity, that flexural ones324
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are at least tetragonal and that combined ones can belong to any symmetry325

class. It is also shown that auxeticity (for isotropic materials) requires the326

flexural part to be predominant. An interesting case of non trivial isotropy327

(with a non-D3 microstructure) with a weak line which orientates the crack328

is detailed. One may think about industrial applications for example for329

packaging (with a preferred direction for fracture) or for crash engineering.330

The engineering problem consists in findind the lattice properties given331

the desired stiffness tensor of the homogenized material. Unfortunately the332

obtained formulas are not always or not easily invertible thus the design333

process still requires a computer-aided procedure. However this procedure334

is obviously much simpler than finding the five (or eight) material’s proper-335

ties with respect to the six components of the stiffness tensor thanks to an336

numerical FEM homogenization method.337

This work can be extended to other types of 2D lattices, to 3D and338

to richer kinematics such as Cosserat or gradient elasticities. However one339

would have to deal with an increasing number of invariants with the kine-340

matics complexity. For example the gradient elasticity has eight possible341

symmetry classes in 2D (Auffray et al., 2009) and some hundreds invariants342

are nowadays required to separate the symmetry classes of a 3D stiffness343

tensor (Olive et al., 2017).344
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Appendix A. Rigidity matrix345

In Eq. (7) the detailed expression of the matrix K is:

K =



ka 0 0 0 0 0

0 0 −kbcγ kbsγ 0 0

0 0 0 0 −kccβ −kcsβ
0 − ja(jb+jc)

aJ
− jajbsαsγ

aJsβ
− jajbsαcγ

aJsβ

jajcsαsβ
aJsγ

− jajcsαcβ
aJsγ

0 jajb
aJ

jb(ja+jc)sαsγ
aJsβ

jb(ja+jc)sαcγ
aJsβ

jbjcsαsβ
aJsγ

− jbjcsαcβ
aJsγ

0 jajc
aJ

− jbjcsαsγ
aJsβ

− jbjcsαcγ
aJsβ

− jc(ja+jb)sαsβ
aJsγ

jc(ja+jb)sαcβ
aJsγ


(A.1)

and the value of the angle of rotation of the nodes is:

θ =
ja
aJ
uBC2 −

jbsαsγ
aJsβ

uCA1 −
jbsαcγ
aJsβ

uCA2 +
jcsαsβ
aJsγ

uAB1 −
jcsαcβ
aJsγ

uAB2 (A.2)

where J = ja + jb + jc.346

Appendix B. Noticeable relations347

We list here some remarkable relations which links the tensile Ct and348

flexural Cf stiffness tensor components or invariants to the lattice material349

geometrical (S, α, β, γ) and mechanical (ka, kb, kc, ja, jb, jc) characteristics.350

For the tensile material the change of variables:

k′a = ka
sα

sβsγ
, k′b = kb

sβ
sαsγ

, k′c = kc
sγ

sαsβ
(B.1)
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allows one to find five linear relations:351 

8I1
√

2(C̄t
13 + C̄t

23)

C̄t
11 − C̄t

22

2
√

2(C̄t
13 − C̄t

23)

C̄t
11 + C̄t

22 − 6C̄t
12


=



1 1 1

0 −s2γ s2β

1 c2γ c2β

0 −s4γ s4β

1 c4γ c4β


.


k′a

k′b

k′c

 (B.2)

in which I1 is the first invariant (29) which is equal to I2 in this case. The352

third and fourth invariants are given by the following quadratic forms:353

2I3 =


k′a

k′b

k′c


T

.


1 c2γ c2β

c2γ 1 c2α

c2β c2α 1

 .

k′a

k′b

k′c

 (B.3)

8I4 =


k′a

k′b

k′c


T

.


1 c4γ c4β

c4γ 1 c4α

c4β c4α 1

 .

k′a

k′b

k′c

 (B.4)

For the flexural material one finds an interesting linear relation:354

2C̄ f
11 + C̄ f

33 =
1

JS


1− c2α

1− c2β

1− c2γ


T

.


jbjc

jcja

jajb

 (B.5)

and a quadratic one:355

C̄ f
11C̄

f
33 − C̄ f

13C̄
f
13 =

s2αs2βs2γ
J2S2


jbjc

jcja

jajb


T

.


0 1 1

1 0 1

1 1 0

 .

jbjc

jcja

jajb


(B.6)
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URL http://www.sciencedirect.com/science/article/pii/S1631072108000302364
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tions. Technologie 108, 35–42.388
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cal structural optimization of laminated plates using polar representation.419

International Journal of Solids and Structures 48 (18), 2576 – 2584.420

URL http://www.sciencedirect.com/science/article/pii/S0020768311001879421

41



Kelvin (Thomson), W., 1856. Elements of mathematical theory of elasticity.422

Phil. Trans. R. Soc. 146, 481–498.423

Kelvin (Thomson), W., 1893. On the elasticity of a crystal according to424

Boscovich. Proceedings of the Royal Society of London 54, 59–75.425

Lakes, R., 1986. Experimental microelasticity of two porous solids. Interna-426

tional Journal of Solids and Structures 22 (1), 55 – 63.427

URL http://www.sciencedirect.com/science/article/pii/0020768386901034428

Le Dret, H., Raoult, A., 2011. Homogenization of hexagonal lattices.429

Comptes Rendus Mathematique 349 (1), 111 – 114.430

URL http://www.sciencedirect.com/science/article/pii/S1631073X10003912431

Milton, G. W., 1992. Composite materials with poisson’s ratios close to 1.432

Journal of the Mechanics and Physics of Solids 40 (5), 1105 – 1137.433

URL http://www.sciencedirect.com/science/article/pii/0022509692900638434

Milton, G. W., 2002. The theory of composites. Cambridge University Press.435

Olive, M., Kolev, B., Auffray, N., 2017. A minimal integrity basis for the436

elasticity tensor. Archive for Rational Mechanics and Analysis.437

URL https://hal.archives-ouvertes.fr/hal-01467996438

Perrin, D., 2013. Le plus grand angle fait face au plus grand côté.439
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