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Group Discovery Time in Device-to-Device (D2D)
Proximity Services (ProSe) Networks

David Griffith, Aziza Ben Mosbah, and Richard Rouil
National Institute of Standards and Technology

Gaithersburg, Maryland 20899–8920
Email: david.griffith@nist.gov

Abstract—Device-to-device (D2D) communications for Long
Term Evolution (LTE) networks relies on a discovery process
to enable User Equipment (UE) to determine which D2D appli-
cations and services are supported by neighboring UEs. This is
especially important for groups of UEs that operate outside the
coverage area of any base station. The amount of time required
for discovery information to reach every UE in a group depends
on the number of UEs in the group and the dimensions of the
discovery resource pool associated with the Physical Sidelink
Discovery Channel (PSDCH); an additional factor is the half-
duplex property of current UEs. In this paper, we use a Markov
chain to characterize the performance of Mode 2 direct discovery.
The resulting analytical model gives the distribution of the time
for a UE to discover all other UEs in its group. We validate the
model using Monte Carlo and network simulations.

I. INTRODUCTION

Proximity Services (ProSe) for Long Term Evolution (LTE)
was developed by 3rd Generation Partnership Project (3GPP)
for Device-to-Device (D2D) communications. The standard
will allow User Equipments (UEs) to communicate directly
with other UEs that are within range by using a portion of
the channel known as the sidelink (SL). ProSe covers UEs
that are in the coverage area of an evolved Node-B (eNB), in
which case the eNB can coordinate SL resource allocation, but
it also supports communication between UEs that are out-of-
coverage with respect to any eNB. This affects public safety
applications, which may involve deployment of personnel
to remote areas, or deployment in disaster areas where the
infrastructure has been destroyed.

UEs use discovery messages to exchange information re-
garding their D2D applications and capabilities. Discovery
messages use the Physical Sidelink Discovery CHannel (PS-
DCH). In this paper, we consider Mode 2 discovery, where
PSDCH resources are not allocated to individual UEs but
are available for all UEs to use; this mode applies to the
out-of-coverage case. UEs pick PSDCH resources randomly,
which creates the risk of message loss due to collisions when
more than one UE selects a given resource. Allocating more
resources to the PSDCH reduces the collision rate, but it

Disclaimer: Certain commercial software packages are identified in this
paper in order to specify the experimental procedure adequately. Such iden-
tification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the software packages identified are necessarily the best available for the
purpose.

also reduces the bandwidth for data transmission. In order to
properly size the discovery resource pool and to determine the
maximum size of a group of D2D UEs that the network can
support, it is important to develop models that allow operators
to accurately measure the performance of the PSDCH.

This work extends our previous study of the PSDCH [1],
which used an analytical model to get the discovery message
transmission probability that maximizes the message success
probability between two UEs in a single period. Sarret et
al. used simulations to get the time for a UE to be discovered
by all other UEs in a group, considering both half-duplex
and full duplex UEs [2]. Lin et al. examined two D2D
discovery schemes and used a Markov chain to model a
backoff procedure for an individual UE [3]. Zhang and Liu
examined hopping patterns in the discovery resource pool
for half-duplex UEs and used simulations to compare their
performance with respect to the discovery rate and cumulative
number of discovered UEs [4].

In this paper, we develop a Markov chain-based analytical
model that gives the distribution of the time for a single
UE in a D2D group to discover all other UEs in the group.
First, we describe the Physical Sidelink Discovery Channel
(PSDCH) and the assumptions behind our model in Section II.
In Section III, we derive an analytical expression for the
elements of the Markov chain’s state transition probability
matrix, which we use to obtain the cumulative distribution
function (CDF) for the group discovery time. In Section IV,
we validate the theoretical model from Section III using both
Monte Carlo simulations in Matlab and network simulations
in NS3, and we demonstrate the model’s use by obtaining
the maximum UE group size that allows a UE to discover
all of its peers within a required number of periods with a
given probability. We discuss extensions for the model and
summarize our work in Section V. In Table I, we provide a
list of the symbols that we use in this paper.

II. MODELING THE DISCOVERY RESOURCE POOL

In this section, we describe D2D discovery message trans-
mission and discuss the assumptions that underlie the anal-
ysis in Section III. We assume that UEs transmit discovery
messages during every occurrence of the PSDCH discovery
resource pool, which repeats periodically with period P [5,
Clause 14.3.3], as described in [6, Clause 8.3]. A pool resource
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is a single transport block, which is composed of a pair
of adjacent Physical Resource Blocks (PRBs) that occupy
the same subframe [5, Clause 14.3.1]. Discovery messages
can be repeated in a given period up to four times (i.e.,
one initial transmission followed by zero, one, two, or three
retransmissions); the number of transmissions is given by the
parameter NTX

SLD [5, Clause 14.3.1].
Increasing NTX

SLD decreases the number of available resources
in the pool, since the resource pool’s effective dimensions
in the frequency and time domains are respectively Nf =
bMPSDCH RP

RB /2c and Nt = bLPSDCH/N
TX
SLDc, where MPSDCH RP

RB
is the number of PRBs in the pool and LPSDCH is the number
of subframes spanned by the pool in the time domain. The
total number of resources in the pool is thus Nr = NfNt.

We assume that all UEs are half-duplex. We also assume
that the UEs use Mode 2 discovery [5, Clause 14.3.1]. In each
period, every UE, independently of every other UE, generates a
uniformly random resource index nPSDCH ∈ {0, 1, . . . , Nr−1},
which maps to a unique set of PRB and subframe indices via
the following equations:

a
(i)
j =

(
(j − 1)bNf/NTX

SLDc+ bnPSDCH/Ntc
)

modNf (1a)

b
(i)
j = nPSDCH modNt, (1b)

where i is the period index and 1 ≤ j ≤ NTX
SLD, so that

j indexes the transmission attempts in the ith period. The
parameters a(i)j and b

(i)
j map to the subframe and PRB pair

indices lPSDCH
NTX

SLDb
(i)
j +j−1

and
(
mPSDCH

2a
(i)
j

, mPSDCH
2a

(i)
j +1

)
, respectively. A

UE can throttle its message transmissions by generating a
[0, 1]-uniform random variate and transmitting if the variate is
less than a defined threshold [7, Clause 5.15.1.1]. We assume
that the threshold is one; arbitrary thresholds are part of future
work.

Due to the mapping scheme, as we discussed in [1], when
NTX

SLD > 1, two UEs that pick resource indices that produce
identical values for b(i)j in a given period, i, will transmit in the
same subframes for all NTX

SLD transmissions during that period.
Thus we can model the discovery resource pool as shown in
Fig. 1, where each element of the grid is associated with a
unique value of nPSDCH.

Nt

Nf

SX

δX

Fig. 1. The discovery resource pool model, showing transmissions from UEs
in the D2D group, G, and indicating the location of the discovery message
δX from a UE of interest, UE X , and the set of subframes used by UE X ,
SX (Fig. 3 from [1]).

Let G denote a group of D2D-capable UEs; the number of
UEs in G is Nu, which we assume is constant. We assume
that the area occupied by G is small enough that every UE

in G is able to receive transmissions from every other UE,
and that if a UE picks a resource that no other UE picks, its
message will be received by all other UEs. In practice, channel
effects will introduce a message loss probability, which we are
incorporating into the next generation of this model. We also
assume that when two or more UEs pick the same resource, the
mutual interference will prevent any collided message’s being
received by other UEs. In practice, some collided messages
may be received by some UEs if the Signal to Interference
Ratio (SIR) at the receiver is high enough. There has been
some work on modeling the effect of SIR on the discovery
process, notably the work by Kang and Kang [8] and Bagheri
et al. [9]. However, Kang and Kang compute the average
number of devices discovered in a given number of periods,
while we obtain the CDF for the number of periods to discover
all devices in a group, and Bagheri et al. do not consider the
half-duplex effect in their analysis.

III. ANALYTICAL MODEL

We characterize the time for a randomly chosen UE, which
we denote as UE X , to discover all other UEs in its group. We
use a discrete-time Markov chain whose time index t indicates
the number of PSDCH periods that have elapsed since the
starting time, and whose single state variable, ND[t], is the
number of UEs that have been discovered by UE X at the end
of the tth period. Also, we denote the number of undiscovered
UEs at the end of the tth period as NU [t] = (Nu−1)−ND[t].
The range of possible values for ND[t] is 0 ≤ ND[t] ≤ Nu−1;
the starting state is ND[0] = 0 (because UE X has not yet
discovered any of the other (Nu − 1) UEs in the group) and
the Markov chain’s eventual ending state is limn→∞ND[t] =
Nu − 1, which is the Markov chain’s sole absorbing state.

A. The Markov Chain Model

We define the state probability vector for ND[t] to be
π[t] =

[
π0[t], . . . , πNu [t]

]
, where πi[t] = Pr{ND[t] = i} for

i = 0, 1, 2, . . . , Nu − 1. Since we start with ND[0] = 0 dis-
covered UEs, π[0] = [1, 0, 0, . . . , 0], and limn→∞ π[t] =
[0, 0, . . . , 0, 1].

1) The State Transition Matrix: We define the state tran-
sition matrix to be T = [Ti,j ], where the probability of
transitioning from State i to State j is Ti,j = Pr{ND[t] =
j |ND[t − 1] = i}, for i, j ∈ {0, 1, 2, . . . , Nu − 1}. Because
ND[t], the number of UEs discovered by UE X , never
decreases, Ti,j = 0 when i > j. For i ≤ j, a transition from
State i to State j occurs when UE X discovers (j − i) UEs
during the tth period. Thus

Ti,j = Pr{Da[t] = j − i |ND[t− 1] = i}
= Pr{Da[t] = j − i |NU [t− 1] = Nu − 1− i}, (2)

where Da[t] is the number of UEs discovered by UE X during
the tth period, and Da[0] = 0.

In Eq. (3), we show T when Nu = 4. The value of ND[t−1]
is to the left of the corresponding row and the value of ND[t] is
above the corresponding column. Since ND[t] = (Nu−1) UEs
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T =



0 1 2 3

0 Pr{Da[t]=0 |ND[t−1]=0} Pr{Da[t]=1 |ND[t−1]=0} Pr{Da[t]=2 |ND[t−1]=0} Pr{Da[t]=3 |ND[t−1]=0}

1 0 Pr{Da[t]=0 |ND[t−1]=1} Pr{Da[t]=1 |ND[t−1]=1} Pr{Da[t]=2 |ND[t−1]=1}

2 0 0 Pr{Da[t]=0 |ND[t−1]=2} Pr{Da[t]=1 |ND[t−1]=2}

3 0 0 0 Pr{Da[t]=0 |ND[t−1]=3}︸ ︷︷ ︸
=1

 (3)

TABLE I
LIST OF SYMBOLS

Symbol Definition

Pr{A} Probability of event A
E{Z} Expected value of random variable Z
LPSDCH Number of subframes spanned by the PSDCH

MPSDCH RP
RB Number of PRBs occupied by the PSDCH
lPSDCH
i ith subframe in the PSDCH
mPSDCH

j jth PRB slot in the PSDCH
Nr Number of resources in discovery pool
Nf Number of PRB pairs in discovery pool
Nt Number of subframe sets in discovery pool

nPSDCH Discovery resource index
P PSDCH period duration
G The set of UEs in a given D2D group
Nu Number of UEs in D2D group G

UE X Randomly chosen UE of interest from G
δX Discovery message sent by UE X
SX Set of subframes occupied by δX
N (A) Number of occurrences of event A
n Number of collided discovery messages
t Index indicating the tth PSDCH period

PC(n |Nr;Nu) Probability of n collisions given Nu UEs
using a pool with Nr resources

NU [t] Number of UEs in G undiscovered by UE X at
the end of the tth period

ND[t] Number of UEs in G discovered by UE X at the
end of the tth period

MD , MU Values of ND[t− 1] and NU [t− 1] respectively
md, mu Number of UEs out of MD and MU with discovery

messages not in SX

Da[t] Number of UEs in G
discovered by UE X during tth period

ν Value taken by Da[t]

NG→X Number of periods for UE X to discover all UEs
in G

T Markov state transition matrix
Ti,j (i, j)th element of T
Q Sub-matrix of T
N Fundamental matrix of T
ni,j (i, j)th element of N

F̂NG→X
[n] Estimated CDF of NG→X

σ̂NG→X
Standard deviation of error in F̂NG→X

[n]

is an absorbing state, i.e., Pr{Da[t] = 0 |ND[t − 1] = Nu −
1} = 1 as shown in Eq. (3).

2) Mean Time to Absorption: For t > 0, πj [t] =∑Nu
i=0 πi[t − 1]Ti,j , and π[t] = π[t − 1]T, so that π[t] =

π[0]Tn. We can get the CDF of NG→X since the (0, Nu −
1)th element of Tn is

(Tn)0,Nu−1 = Pr{ND[t] = Nu − 1 |ND[0] = 0}
= Pr{NG→X ≤ n}. (4)

ND[t] = Nu−1 is the lone absorbing state for this Markov
chain (i.e., TNu−1,Nu−1 = 1), and all other states are transient
(i.e., Ti,i < 1 for i 6= Nu − 1). Because the absorbing
state is reachable from all other states, this is an absorbing
Markov chain. Given that we start in State ND[0] = 0, we
can determine the distribution of NG→X .

To get an expression for the mean number of periods to
reach the absorbing state, we use the chain’s fundamental
matrix, which we derive using the approach given by Grinstead
and Snell [10, Section 11.2]. We start by partitioning T as
follows:

T =

[
Q r

0Nu−1 1

]
, (5)

where Q is a (Nu − 1) × (Nu − 1) matrix whose (i, j)th
element is Ti,j , r is a length-(Nu − 1) column vector whose
ith element is ri = Pr{Da[t] = (Nu−1)− i |ND[t−1] = i},
and 0Nu−1 is a length-(Nu − 1) all-zero row vector. Thus

T2 =

[
Q2 (I + Q)r

0Nu−1 1

]
,

where I is the (Nu−1)×(Nu−1) identity matrix. In general,
by recursion and the matrix form of the geometric series,

Tk =

[
Qk (I−Qk)(I−Q)−1r

0Nu−1 1

]
, (6)

where Q0 = I. The fundamental matrix is

N = [ni,j ] =
∞∑
`=0

Q` = (I−Q)−1, (7)

where ni,j =
∑∞
`=0 Pr{ND[`] = j |ND[0] = i}, is the mean

number of times the chain visits transient State j given that it
started in transient State i. Thus the mean of the total number
of transient state visits after starting in state ND[0] = 0 is

E{NG→X} =

Nu−2∑
j=0

n0,j , (8)

which is also the mean number of PSDCH periods required
to reach the absorbing state.
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B. The Probability of Collided Discovery Messages

We define PC(n |Nr;Nu) to be the probability that Nu UEs
using a pool of Nr resources experience n collisions, where
we assume that a collision occurs if two or more discovery
messages occupy a given resource. (For all values of Nr and
Nu, PC(1 |Nr;Nu) = 0.) Each UE independently picks a
resource at random, which is equivalent to sampling with re-
placement Nu times from the set {1, 2, . . . , Nr}. The number
of ways for Nu UEs to choose a set of resources is NNu

r .
We consider two cases, based on the ratio of the number of
resources to the number of UEs.

1) Nr ≥ Nu: The probability that no collisions occur,
PC(0 |Nr;Nu), is the probability that the UEs will choose
resources so that only one UE uses each utilized resource
in the pool. The number of ways that this can happen is
(Nr)(Nr − 1)(Nr − 2) · · · (Nr −Nu + 1). Thus,

PC(0 |Nr;Nu) =
Nr!/(Nr −Nu)!

NNu
r

=
Nu!

NNu
r

(
Nr
Nu

)
. (9)

For 2 ≤ n ≤ Nu, we use the occupancy vector x for the set
of resources. The occupancy vector as defined by Feller [11]
is the ordered length-Nr vector x = [x1, x2, . . . , xNr ], which
indicates the allocation of UEs among the set of resources
without identifying which UEs have chosen a particular re-
source. When there are n collisions, x has the form

x = [ 0, 0, . . . , 0︸ ︷︷ ︸
Nr−(Nu−n)−s

, 1, 1, . . . , 1︸ ︷︷ ︸
Nu−n

, k1, k2, . . . , ks︸ ︷︷ ︸
s

],

where s is the number of resources that are occupied by
two or more UEs. The set of occupancy numbers associ-
ated with collided UEs thus form an occupancy sub-vector
k = [k1, k2, . . . , ks] that has the following two properties:

k1 + k2 + · · ·+ ks = n (10a)
2 ≤ k1 ≤ k2 ≤ · · · ≤ ks (10b)

Next, we define the vector d(k) = [d1, d2, . . . , dU(k)],
where U(k) ∈ {1, 2, . . . , s} is the number of distinct el-
ements of k, and di is number of occurrences of the ith
distinct element of k. For example, if the number of col-
lisions is n = 17, then one possible occupancy vector
is x = [0, 0, . . . , 0, 1, 1, . . . , 1, 2, 2, 2, 3, 5, 5]. In this case,
k = [2, 2, 2, 3, 5, 5], whose distinct elements are 2, 3, and 5;
thus U(k) = 3, and d(k) = [3, 1, 2].

The number of ways that Nr resources can be arranged into
U(k) + 2 groups, where each resource in a given group has
been chosen by the same number of UEs, is

Nr!

(Nr − (Nu − n)− s)! (Nu − n)! d1! d2! · · · dU(k)!
(11)

and the number of ways that the Nu UEs can be arranged
into (Nu − n) + s groups, where each group corresponds to
an occupied resource, is

Nu!

1! 1! · · · 1!︸ ︷︷ ︸
Nu−n

k1! k2! · · · ks!
=

Nu!

k1! k2! · · · ks!
. (12)

Taking the product of Eq. (11) and Eq. (12), multiplying both
numerator and denominator by n!, and simplifying, we get the
number of ways that the Nu UEs in G can choose resources so
that there are n collisions that produce the length-s occupancy
sub-vector k = [k1, k2, . . . , ks]:

Nr!
(
Nu
n

)(
n

k1,k2,...,ks

)
(Nr − (Nu − n)− s)! d1! d2! · · · dU(k)!

. (13)

To get the probability of n collisions, we must divide
the number of ways to arrange Nu resource choices such
that there are n collisions by NNu

r . We get the numerator
by summing over all possible occupancy sub-vectors k that
produce n collisions. The sub-vector length, s, varies from
s = 1 (in which case k = [n]) to s = bn/2c, since the
longest possible occupancy sub-vector is k = [2, 2, . . . , 2, 2]
if n is even or k = [2, 2, . . . , 2, 3] if n is odd. For a given
occupancy sub-vector length s, we sum over all sub-vectors
[k1, k2, . . . , ks] that satisfy Eqs. (10a) and (10b).

Summing Eq. (13) over all possible occupancy sub-vectors,
and dividing the result by NNu

r , we get the probability of
n collisions:

PC(n |Nr;Nu)

=

(
Nu
n

)
NNu
r

bn/2c∑
s=1

Nr!

(Nr − (Nu − n)− s)!

×
∑

∑s
i=1 ki=n

2≤k1≤k2≤···≤ks

1

d1! d2! · · · dU(k)!

(
n

k1, k2, . . . , ks

)
(14)

for 2 ≤ n ≤ Nu, when Nu ≤ Nr.
To get the number of occupancy sub-vectors k, we note that

creating k is analogous to distributing n objects into s bins
by first putting one object into each bin, and then distributing
the remaining (n−s) objects among the s bins so that at least
one object goes into each bin. The number of ways to do this
is the number of ways to partition a set of n − s identical
objects into s non-empty subsets, which is the set partition
number Π(n − s, s). There is no closed form expression for
this number; we must use the following recurrence relation
from Martin [12, p. 35]:

Π(i, j) = Π(i− 1, j − 1) + Π(i− j, j) (15)

where Π(i, j) is the number of ways to partition i indistin-
guishable objects into j non-empty, indistinguishable groups,
where Π(i, i) = Π(i, 1) = 1 for all i, and Π(i, j) = 0 for
j > i [12, p. 35].

2) Nr < Nu: For the case where there are more UEs than
resources, the number of collisions cannot be zero, since it
is impossible to distribute the UEs in such a way that there
is one UE per resource. The minimum number of collisions
occurs when the occupancy vector has the form

x = [1, 1, . . . , 1︸ ︷︷ ︸
Nr−1

, Nu − (Nr − 1)],
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so that k = [Nu − Nr + 1]. Thus PC(n |Nr;Nu) is non-
zero for Nu − Nr + 1 ≤ n ≤ Nu; and when Nu > Nr,
Nu−Nr +1 ≥ 2. Secondly, the maximum possible length for
k is constrained by the fact that the number of initial zeros in
the occupancy vector, Nr− (Nu−n)− s, cannot be negative,
i.e.,

s ≤ Nr −Nu + n. (16)

Applying Eq. (10b) to Eq. (10a) gives 2s ≤ n. Thus, when
Nr ≥ Nu, Eq. (16) always holds. However, when Nr < Nu,
Eq. (16) becomes an additional constraint on the length of k
(e.g., if n = Nu, then s ≤ Nr), so that the maximum value
of s is min(Nr −Nu +n, bn/2c). Summing Eq. (13) over all
possible occupancy sub-vectors and dividing by NNu

r , we get
the following general expression for PC(n |Nr;Nu):

PC(n |Nr;Nu)

=
((
Nu
n

)
/NNu

r

)min(Nr−Nu+n, bn/2c)∑
s=1

Nr!

(Nr − (Nu − n)− s)!

×
∑

∑s
i=1 ki=n

2≤k1≤k2≤···≤ks

1

d1! d2! · · · dU(k)!

(
n

k1, k2, . . . , ks

)
,

(17)

for max(2, Nu −Nr + 1) ≤ n ≤ Nu.
If we compare Eq. (14) and Eq. (17), we see that if Nr ≥

Nu, then min(Nr−Nu+n, bn/2c) = bn/2c, so that Eq. (17)
gives PC(n |Nr;Nu) for both cases.

C. The Markov State Transition Probabilities

With PC(n |Nr;Nu) in hand, we can get the elements of
T. We now derive Pr{Da[t] = ν |ND[t − 1] = MD}, the
probability that UE X discovers n UEs in the tth period given
UE X has discovered MD UEs already. First, we condition
on the set of events where md ≤ MD discovered UEs and
mu ≤MU undiscovered UEs do not choose resources in SX ,
the set of subframes in which UE X transmits1, so that their
discovery messages can be received by UE X . If mu < ν,
Pr{Da[t] = ν |md +mu not in SX} = 0. Also,

Pr{md +mu not in SX}
= Pr{md not in SX} Pr{mu not in SX}

=
(
MD

md

)(
1− 1

Nt

)md (
1
Nt

)MD−md

×
(
MU

mu

) (
1− 1

Nt

)mu (
1
Nt

)MU−mu
. (18)

Applying both of these conditions, we get

Pr{Da[t] = ν |ND[t− 1] = MD}

=

MD∑
md=0

MU∑
mu=ν

Pr{Da[t] = ν |md +mu not in SX}

×
(
MD

md

)(
MU

mu

)(
1− 1

Nt

)md+mu (
1
Nt

)MD+MU−md−mu
.

(19)

1Note that MU = (Nu − 1)−MD .

We evaluate Pr{Da[t] = ν |md + mu not in SX} in
Eq. (19) by conditioning on the value of ρ, the number
of resources occupied by the md discovered UEs that do
not choose resources in SX , where 0 ≤ ρ ≤ md (we
denote the event “md discovered UEs occupy ρ resources”
as {md ⇒ ρ}). First, we prove the following lemma.

Lemma 1: Given an event A that depends on mutually
independent events B1 and B2, if there exists a set of events
{Ci}Ni=1 that are mutually independent (Ci ∩Cj = ∅ if i 6= j)
such that for i = 1, 2, . . . , N , Ci ⊆ B1 and Ci∩B2 = ∅, then
Pr{A |B1 ∩B2} =

∑N
i=1 Pr{A |B2 ∩ Ci}Pr{Ci |B1}.

Proof:

Pr{A |B1 ∩B2}

=
Pr{A ∩B1 ∩B2}
Pr{B1 ∩B2}

=
N∑
i=1

Pr{A ∩B1 ∩B2 |Ci}Pr{Ci}
Pr{B1}Pr{B2}

=
N∑
i=1

Pr{A ∩B1 ∩B2 ∩ Ci}
Pr{B1 ∩B2 ∩ Ci}

Pr{B1 ∩ Ci}Pr{B2}
Pr{B1}Pr{B2}

=
N∑
i=1

Pr{A |B1 ∩B2 ∩ Ci}Pr{Ci |B1}.

Since B1 ∩ Ci = Ci for i = 1, 2, . . . , N , Pr{A |B1 ∩ B2} =∑N
i=1 Pr{A |B2 ∩ Ci}Pr{Ci |B1}.
There are Ñr = Nr−Nf resources available to the md+mu

UEs that did not choose resources in SX . Using Lemma 1, we
get

Pr{Da[t] = ν |md +mu not in SX}

=

md∑
ρ=0

Pr
{
Da[t] = ν | {md ⇒ ρ} ∩ {mu not in SX}

}
× Pr{md ⇒ ρ |md not in SX}, (20)

where Pr{md ⇒ ρ |md not in SX} is the probability that the
occupancy vector for Ñr resources has the form

[0, 0, . . . , 0︸ ︷︷ ︸
Ñr−ρ

, k1, k2, . . . , kρ︸ ︷︷ ︸
d1,d2,...,dU(k)

],

and where U(k) is the number of distinct elements of k =
[k1, k2, . . . , kρ], di is the number of times the ith distinct
element of k appears in k, and k is subject to the following
restrictions:

k1 + k2 + · · ·+ kρ = md (21a)
1 ≤ k1 ≤ k2 ≤ · · · ≤ kρ (21b)

The number of ways to divide Ñr resources into U(k) + 1
groups of sizes Ñr − ρ, d1, d2, . . . , dU(k) is(

Ñr

Ñr − ρ, d1, d2, . . . , dU(k)

)
=

Ñr!

(Ñr − ρ)! d1! d2! · · · dU(k)!
,

and the number of ways to divide md discovered UEs into
groups of size k1, k2, . . . , kρ is(

md

k1, k2, . . . , kρ

)
=

md!

k1! k2! · · · kρ!
.
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The total number of ways to get this particular value of k is
the product of the two multinomials. By tallying the number
of ways that all occupancy vectors with ρ non-zero elements
occur, and then dividing by Ñmd

r , the total number of possible
outcomes, we get the probability that md discovered UEs that
have chosen resources outside SX occupy ρ resources:

Pr{md ⇒ ρ |md not in SX}

=
ρ!

Ñmd
r

(
Ñr
ρ

) ∑
∑ρ
i=1ki =md

1≤k1≤k2≤···≤kρ

(
md

k1,k2,...,kρ

)
d1! d2! · · · dU(k)!

. (22)

There are three special cases that apply to Eq. (22):
• If md = 0, then Pr{md ⇒ ρ |md not in SX} = 1 for
ρ = 0 and Pr{md ⇒ ρ |md not in SX} = 0 for ρ > 0.

• If md = 1, then Pr{md ⇒ ρ |md not in SX} = 1 for
ρ = 1 and Pr{md ⇒ ρ |md not in SX} = 0 for ρ 6= 1.

• If md > 0, then Pr{md ⇒ ρ |md not in SX} = 0 for
ρ = 0.

The next step in the derivation of T is to develop an
expression for Pr

{
Da[t] = ν | {md ⇒ ρ}∩{mu not in SX}

}
in Eq. (20). UE X will detect one of the mu undiscovered
UEs that did not choose resources in SX if the undiscovered
UE does not choose the same resource as any other UEs,
either discovered or undiscovered. To compute Pr

{
Da[t] =

ν | {md ⇒ ρ} ∩ {mu not in SX}
}

, we first condition on
the number of undiscovered UEs out of mu that use the
ρ resources being used by the md discovered UEs that chose
resources that are not in SX . We define NOu,d to be the
number of undiscovered UEs not in SX that overlap with
discovered UEs. Since {NOu,d = `} ⊆ {mu not in SX}, by
Lemma 1,

Pr
{
Da[t] = ν | {md ⇒ ρ} ∩ {mu not in SX}

}
=

mu∑
`=0

Pr
{
Da[t] = ν | {md ⇒ ρ} ∩ {NOu,d = `}

}
× Pr

{
NOu,d = ` | {md ⇒ ρ}

}
. (23)

We first compute Pr
{
NOu,d = ` | {md ⇒ ρ}

}
. The event

{NOu,d = `} occurs when ` out of mu undiscovered UEs that
are not in SX choose resources that are among the ρ out of
Nr resources that are occupied by the md discovered UEs that
did not choose resources in SX . The probability that one of
the mu undiscovered UEs picks one of the ρ resources, given
that it is not in SX , is (ρ/Nr)/(Ñr/Nr) = ρ/Ñr. Thus, the
probability that ` of the mu UEs picked one of the ρ resources
is

Pr
{
NOu,d = ` | {md ⇒ ρ}

}
=

(
mu

`

)(
ρ

Ñr

)`(
1− ρ

Ñr

)mu−`
. (24)

The last component of the state transition probability that
remains to be derived is Pr

{
Da[t] = ν | {md ⇒ ρ}∩{NOu,d =

`}
}

in Eq. (23). Since ` undiscovered UEs out of mu chose
the same resources as some of the md discovered UEs, there

are mu − ` undiscovered UEs that UE X could discover. If
UE X discovers ν UEs out of the mu − ` undiscovered UEs,
where 0 ≤ n ≤ mu− `, then there were mu− `−ν collisions
among the mu − ` undiscovered UEs as they chose from the
set of Ñr − ρ resources. The probability of this number of
collisions is PC(mu − `− n | Ñr − ρ;mu − `). Thus we have

Pr
{
Da[t] = ν | {md ⇒ ρ} ∩ {NOu,d = `}

}
= PC(mu − `− ν | Ñr − ρ;mu − `). (25)

Note that for the collision probability to be non-zero, 0 ≤ ` ≤
mu − ν.

Using Eq. (24) and Eq. (25), and applying the limits on the
values of `, we can write Eq. (23) as

Pr
{
Da[t] = ν | {md ⇒ ρ} ∩ {mu not in SX}

}
=

mu−ν∑
`=0

(
mu
`

) (
ρ

Ñr

)` (
1− ρ

Ñr

)mu−`
× PC(mu − `− ν | Ñr − ρ;mu − `). (26)

Inserting Eq. (22) and Eq. (26) into Eq. (20) gives

Pr{Da[t] = ν |md +mu not in SX}

=

md∑
ρ=0

mu−ν∑
`=0

(
mu
`

) (
ρ

Ñr

)` (
1− ρ

Ñr

)mu−`
× PC(mu − `− ν | Ñr − ρ;mu − `)

× ρ!

Ñmd
r

(
Ñr
ρ

) ∑
∑ρ
i=1ki =md

1≤k1≤k2≤···≤kρ

(
md

k1,k2,...,kρ

)
d1! d2! · · · dU(k)!

.

(28)

Finally, applying Eq. (28) to Eq. (19), and rearranging the
order of summation, we get Eq. (28). Using Eq. (28) in Eq. (2),
we can generate the Markov chain’s state transition matrix T
by letting ν = j−i and MD = Nu−1−i for the set of ordered
pairs {(i, j) | j = i, i + 1, . . . , Nu − 1; i = 0, 1, . . . , Nu −
1}, using the indexing scheme shown in Eq. (3). We can get
E{NG→X} by applying Eq. (5), Eq. (7), and Eq. (8), and we
can get the CDF of NG→X by using Eq. (6) and taking the
(0, Nu − 1)th element of Tk.2

IV. NUMERICAL RESULTS

In this section, we validate the theoretical results from
Section III, using both Monte Carlo simulations in Matlab
and simulation of a group of UEs in NS3. We also use the
theoretical model to determine the maximum group size the
allows a single UE to discover all other members of the group
within a given amount of time, with a given level of certainty.

For the Monte Carlo simulations, we used a resource pool
composed of Nt = 5 subframe sets and Nf = 10 PRB pairs.
The Monte Carlo simulation consisted of Nruns = 50 runs,

2We note that the computational cost associated with these results can be
significant. A desktop using an Intel Xeon CPU with a 3.3 GHz clock rate
and 16 GBytes of Random Access Memory (RAM) produced Fig. 2 in about
3000 s, with the Monte Carlo results taking up approximately 2 s.
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Pr{Da[t] = ν |ND[t− 1] = MD}

=

MD∑
md=0

MU∑
mu=ν

(
MD

md

)(
MU

mu

)(
1− 1

Nt

)md+mu ( 1

Nt

)MD+MU−md−mu md∑
ρ=0

ρ!

Ñmd
r

(
Ñr
ρ

) ∑
∑ρ
i=1ki =md

1≤k1≤k2≤···≤kρ

(
md

k1,k2,...,kρ

)
d1! d2! · · · dU(k)!


×
mu−ν∑
`=0

(
mu

`

)(
ρ

Ñr

)`(
1− ρ

Ñr

)mu−`
PC(mu − `− n | Ñr − ρ;mu − `). (28)

with Ntrials = 100 trials per run. The UE group contained
Nu = 51 UEs, including UE X . Each trial consisted of a
sequence of periods in which the number of undiscovered
UEs was initialized to Nu − 1 and the number of discovered
UEs was set to zero. In each period, a Nf × Nt matrix was
populated with randomly placed messages associated with the
discovered and undiscovered UEs that were represented using
complex numbers, each of whose real part was the number of
undiscovered UEs and whose complex part was the number of
discovered UEs. One column was chosen at random to contain
δX ; all messages in this column were lost by setting all column
elements to zero. The simulation determined the number of
successful discoveries of new UEs by counting the matrix
elements whose real part was equal to unity. The simulation
then adjusted the numbers of discovered and undiscovered
UEs and moved to the next period, using the reduction of the
number of undiscovered UEs to zero as the stopping criterion.

We plot the theoretical and simulation-based CDFs together
in Fig. 2. Because NG→X is a discrete random variable,
the CDF assumes the staircase form seen in the figure, with
point discontinuities indicated by pairs of closed circles and
open circles that are connected by dashed lines. Fig. 2 shows
uncertainty in the simulation results using two methods. We
compute the estimated CDF at a given index value n as

F̂NG→X
[n] =

1

Nruns

Nruns∑
i=1

F̂NG→X ,i[n]

=
1

Nruns

Nruns∑
i=1

N ({NG→Xi,j}
Ntrials
j=1 ≤ n)

Ntrials
, (29)

where F̂NG→X ,i[n] is the estimate of FNG→X
[n] based on the

trials that compose the ith run, {NG→Xi,j}
Ntrials
j=1 is the set of

simulation outputs generated during the ith run, and where
N{{NG→Xi,j}

Ntrials
j=1 ≤ n} is the number of simulation trial

outputs during the ith run that were less than or equal to n.
From the set of simulation results, we can create a set of
pointwise 95 % confidence intervals which appear as light
gray bars in the figure, and whose limits for a given value of
n are F̂NG→X

[n]± 1.96 σ̂NG→X
/
√
Nruns, where σ̂2

NG→X
is the

variance of the simulation results and is

σ̂2
NG→X

=
1

Nruns − 1

Nruns∑
i=1

(F̂NG→X ,i[n]− F̂NG→X
[n])2.

Fig. 2 also shows a confidence envelope based on Mas-
sart’s refinement of the Dvoretsky-Kiefer-Wolfowitz (DKW)
inequality, which states that, given a set of random variates
{Xi}Ni=1 that are drawn from a distribution with CDF FX and
that produce an empirical CDF F̂X , the probability that the
true and empirical CDFs are separated by more than ε ∈ R+

over their entire support has the following upper bound [13]:

Pr{supx∈R |F̂X(x)− FX(x)| > ε} ≤ 2e−2Nε
2

. (30)

Note that the upper bound on the excursion probability in
Eq. (30) decreases to zero for any ε > 0 as N increases,
and we can easily extend the inequality to discrete random
variables, since the resulting CDF is still defined over the
whole real line.

The 95 % confidence interval associated with the DKW in-
equality is actually a confidence envelope over the entire
domain of interest, whose upper and lower bounds are defined
by the empirical CDF plus or minus the error offset ε. Since we
are interested in interval bounds that result in the theoretical
curve lying entirely within the confidence envelope with 95 %
probability, we can set the upper bound in Eq. (30) equal to
0.05, the probability that the theoretical CDF deviates from the
empirical CDF by more than ε, and then solve for ε, giving

ε =
√

log(2/0.05)/(NrunsNtrials), (31)

since the empirical CDF is constructed from N =
NrunsNtrials variates. We plot the resulting confidence envelope
F̂NG→X

[n] ± ε in Fig. 2 using dark gray bars. Note that the
pointwise 95 % confidence intervals are contained within the
95 % confidence envelope, which is a looser interval because
it covers the entire domain. Note also that the pointwise
confidence intervals are widest near the median and become
narrower in the distribution’s tails.

The resulting plots in Fig. 2 show excellent agreement
between the theoretical and simulation results, with the the-
oretical curve lying entirely within the narrower pointwise
confidence intervals over the entire domain. We also used
Eq. (8) to get the associated theoretical expected value of
NG→X , which is E{NG→X} = 11.5566 PSDCH periods.
The 95 % confidence interval for the corresponding estimated
expected value of NG→X that we obtained from the Monte
Carlo simulations is E{NG→X} = 11.5988± 0.1007 PSDCH
periods, which also indicates close agreement.
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Fig. 2. CDF plots using Eq. (28) and corresponding Monte Carlo simulation
results, with pointwise and envelope 95 % confidence intervals shown, plotted
versus n, the number of PSDCH periods, for Nt = 5 subframe sets, Nf =
10 PRB pairs, and Nu = 51 UEs.

For the validation using NS3, we examined six scenarios.
We examined two resource pool configurations: Nf = 5 PRB
pairs and Nf = 10 PRB pairs, with Nt = 10 subframe
sets in both cases. For each resource pool configuration, we
considered three D2D group sizes: 10 UEs, 20 UEs, and
30 UEs. For each scenario, we performed 10 runs, with
500 trials per run. In each trial, we generated a set of uniformly
distributed UEs within an area sufficiently small to that each
UE could receive messages from every other UE (e.g., a
10 000 m2 (100 m × 100 m) square). Each UE transmitted
a discovery message in every period using a randomly chosen
pool resource, and we recorded the number of periods required
for the UE to discover all of the other UEs in the group. We
used these results to generate a sample CDF for each run,
and we averaged the ensemble over all runs to produce our
estimate of the CDF of NG→X .

We show the results for the six cases in Fig. 3, with 95 %
confidence envelopes for each case, and the corresponding
theoretical CDF plotted in each subfigure for comparison.
These NS3 results also agree closely with the theoretical
model. The results also illustrate the effect of increasing the
size of the discovery resource pool. Comparing Figs. 3a-
3c with Figs. 3d-3f shows that doubling Nr produces a
noticeable leftward shift in the CDF for each group size,
and that the CDFs for the various group sizes are closely
spaced when Nr = 100 resources, while the CDF associated
with Nu = 30 UEs indicates degraded performance due to
increased collisions by UEs using the smaller pool.

Using the CDF, we can calculate the maximum group size
that achieves a desired level of performance. Using the Monte
Carlo simulations that we used to produce Fig. 2, we plot in
Fig. 4 the 50 %, 90 %, and 99 % quantiles of NG→X versus
Nu for Nr = 1000 resources and Nt = 20 subframe sets, and
show 95 % confidence intervals in the figure. Since NG→X
is a discrete random variable, a given design constraint will
produce a range of values for Nu, as shown in the figure.
However, if we require that a randomly chosen UE discover
all other UEs in the group within a certain number of PSDCH
periods with a given probability, then we would use the largest

value of Nu that satisfies this condition. For example, requiring
all UEs to be discovered within 7 PSDCH periods with a
probability of 0.9 allows a maximum group size between
200 UEs and 300 UEs, using Fig. 4.

To determine the maximum group size with greater preci-
sion, we would generate a plot like Fig. 5, which shows the
90 % quantile produced by Monte Carlo simulation, with 95 %
confidence intervals shown. Because of the uncertainty in these
results, the estimated maximum group size is (322−340) UEs,
since 322 UEs is the largest value of Nu whose confidence
interval is restricted to 7 PSDCH periods, and 340 UEs is
the largest value of Nu whose confidence interval includes
7 PSDCH periods. A conservative design would use the lower
end of the range as the upper bound.

V. SUMMARY AND FUTURE WORK

In this paper, we developed a Markov chain model of the
discovery process at a single UE and obtained closed form
expressions for the state transition probabilities. Using these in
the fundamental matrix allows us to produce the distribution of
the number of PSDCH periods required for a UE to discover
all of the other UEs in its group, assuming all devices are
half-duplex. We validated our results using two approaches:
Monte Carlo simulations in Matlab and simulations of groups
of UEs in NS3. We showed how to use the model to obtain
the quantiles of the discovery time as a function of the group
size and pool parameters, which allows one to determine the
maximum number of UEs that can use a given resource pool
while ensuring that the probability that all UEs are discovered
within a given time is below a desired threshold. We also
showed that the half-duplex effect means that performance
improvements come from adding subframe sets to pools rather
than PRBs; future full-duplex UEs will allow performance
improvements by expanding pools in either domain.

As we noted previously, this model assumes that messages
are lost only during collisions, and that collisions always
produce losses. A future version of the model will incorporate
the effect of path loss, fading, and shadowing, and will allow
for partial recovery of collided messages in high-SIR cases.

REFERENCES

[1] D. Griffith and F. Lyons, “Optimizing the UE transmission probability
for D2D direct discovery,” in 2016 IEEE Global Telecommunications
Conference (GLOBECOM 2016), December 2016.

[2] M. G. Sarret, G. Berardinelli, N. H. Mahmood, B. Soret, and P. Mo-
gensen, “Can full duplex reduce the discovery time in D2D communi-
cation?” in 2016 International Symposium on Wireless Communication
Systems (ISWCS), Sept 2016, pp. 27–31.

[3] Z. Lin, L. Du, Z. Gao, L. Huang, X. Du, and M. Guizani, “Analysis of
discovery and access procedure for D2D communication in 5G cellular
network,” in 2016 IEEE Wireless Communications and Networking
Conference (WCNC), April 2016, pp. 1–6.

[4] Q. Zhang and D. Liu, “On the hopping pattern design for D2D
discovery,” in IEEE 80th Vehicular Technology Conference (VTC2014-
Fall), Sept 2014, pp. 1–6.

[5] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical layer procedures,” 3rd Generation Partnership Project
(3GPP), TS 36.213 V12.7.0, September 2015. [Online]. Available:
http://www.3gpp.org/ftp/Specs/archive/36 series/36.213/36213-c70.zip

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications



0 1 2 3 4 5 6 7 8 9 10

Number of Periods, n

0

0.2

0.4

0.6

0.8

1
P
r{
N

G
→
X
≤

n
}

Simulation

Theoretical

(a) Nt = 5, Nf = 10, Nu = 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Periods, n

0

0.2

0.4

0.6

0.8

1

P
r{
N

G
→
X
≤

n
}

Simulation

Theoretical

(b) Nt = 5, Nf = 10, Nu = 20

0 5 10 15 20

Number of Periods, n

0

0.2

0.4

0.6

0.8

1

P
r{
N

G
→
X
≤

n
}

Simulation

Theoretical

(c) Nt = 5, Nf = 10, Nu = 30

0 1 2 3 4 5 6 7 8 9 10

Number of Periods, n

0

0.2

0.4

0.6

0.8

1

P
r{
N

G
→
X
≤

n
}

Simulation

Theoretical

(d) Nt = 10, Nf = 10, Nu = 10

0 1 2 3 4 5 6 7 8 9 10

Number of Periods, n

0

0.2

0.4

0.6

0.8

1

P
r{
N

G
→
X
≤

n
}

Simulation

Theoretical

(e) Nt = 10, Nf = 10, Nu = 20

0 1 2 3 4 5 6 7 8 9 10

Number of Periods, n

0

0.2

0.4

0.6

0.8

1

P
r{
N

G
→
X
≤

n
}

Simulation

Theoretical

(f) Nt = 10, Nf = 10, Nu = 30

Fig. 3. CDF plots using Eq. (28) and corresponding NS3 simulation results, with envelope 95 % confidence intervals shown, plotted versus n, the number
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