
HAL Id: hal-01614098
https://hal.science/hal-01614098

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Estimation from Relative and Absolute
Measurements

Wilbert Samuel Rossi, Paolo Frasca, Fabio Fagnani

To cite this version:
Wilbert Samuel Rossi, Paolo Frasca, Fabio Fagnani. Distributed Estimation from Relative and
Absolute Measurements. IEEE Transactions on Automatic Control, 2017, 62 (12), pp.6385-6391.
�10.1109/TAC.2017.2661400�. �hal-01614098�

https://hal.science/hal-01614098
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. X, MMMMMM YYYY 1

Distributed Estimation from Relative and Absolute
Measurements

Wilbert Samuel Rossi, Paolo Frasca, and Fabio Fagnani

Abstract—This note defines the problem of least-squares dis-
tributed estimation from relative and absolute measurements, by
encoding the set of measurements in a weighted undirected graph.
The role of its topology is studied by an electrical interpretation,
which easily allows distinguishing between topologies that lead to
“small” or “large” estimation errors. The least-squares problem
is solved by a distributed gradient algorithm: the computed
solution is approximately optimal after a number of steps that
does not depend on the size of the problem or on the graph-
theoretic properties of its encoding. This fact indicates that only
a limited cooperation between the sensors is necessary.

Index Terms—Sensor Networks; Distributed Estimation; Op-
timization algorithms; Cooperative control.

I. INTRODUCTION

Multi-agent and network-based problems often involve mea-
surements and estimation of unknown quantities. In this work,
we are interested in problems where a state is distributed over
the agents–that is, the state is a vector and one component
is assigned to each agent–and each agent has access to noisy
measurements of its state and of pairwise differences between
its own state and the states of some other agents.

We briefly describe two motivating applications. The first
one is self-localization in mobile robotic networks [1], e.g.,
autonomous teams of road vehicles [2]. Here the agents
can be equipped with GPS location sensors as well as with
radars to sense the relative positions of their neighbors. These
two different kinds of measurements can be combined into
an improved estimate of the vehicle location. The second
one is statistical ranking in databases, like in the “Netflix
problem” [3]. Here items (e.g., movies) have to be ranked
according to their “quality”, which can be assessed by users in
either absolute or comparative way. Other applications include,
for instance, clock synchronization [4].

In this note, we define the problem of distributed estimation
from relative and absolute measurements and we encode the
set of measurements by using a weighted graph. We observe
that finding the optimal estimate in least-squares sense is
equivalent to solving a network of resistors [5]. This classical
electrical interpretation highlights the role of the topology
of the measurement graph: for instance, we show that on
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complete graphs the estimation error decreases to zero as
the number of nodes grows, whereas on cycle graphs the
estimation error is bounded away from zero.

In previous works on estimation from relative measure-
ments [1], [6], the nodes have access to relative measurements
only, possibly with the exception of one anchor node that
serves as reference (and can thus be seen as having perfect
absolute information). In this literature, the available relative
measurements are described by a weighted graph. It is known
that the dimension of the graph is a crucial parameter [7]
in distinguishing whether the optimal estimator scales well
with an increasing number of nodes [8], [9]. In fact, the
mean square error is determined by the effective resistance of
the graph [1], [10]–[12]: this interpretation suggests intuitive
criteria to optimize the acquisition of data [13]. Our work
extends this graph-based description to include absolute mea-
surements, so that every node can access the reference value,
albeit corrupted by noise. The reference also plays the role of a
priori regularization for the relative estimation problem, ruling
out certain pathological behaviors observed in [14]. From a
mathematical perspective, our problem can be rewritten into
the classical setup by adding a virtual reference node: we take
advantage of this transformation in our analysis.

We propose to solve our estimation problem by a distributed
gradient descent algorithm. This algorithm has a remarkable
feature: it approximates the optimal solution up to a given tol-
erance within a number of iterates that does not depend on the
number of nodes or on the measurement graph topology. This
feature contrasts with other network estimation algorithms,
such as averaging algorithms that compute a common param-
eter from distributed measurements: in the latter, obtaining a
given precision of the estimate can require a number of iterates
that grows with the number of nodes [15]. Even if the least-
squares problem can be solved by a simple gradient algorithm,
the literature contains a variety of methods tailored to the
distributed solution of the “pure” relative estimation problem,
including Jacobi methods [7], Kaczmarz iterates [16], random-
ized gossiping techniques [17], and asynchronous algorithms
exploiting memory [18]. The extension of these methods to
the case with absolute measurements can be a topic of future
work.

Preliminary versions of some of our results appeared in [19].
In comparison with this conference paper, in the present
note we make more general assumptions, which allow for
heterogeneous measurements, and we discuss the electrical
interpretation of the estimation problem, establishing tight
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bounds on the error of the optimal estimate.
Paper organization: The formal statement of the problem

and its least-squares solution are given in Section II. Section III
describes the electrical interpretation and Section IV its appli-
cation to highlight the role of the measurement graph topology.
Next, the gradient algorithm and its mean square error are
studied in Section V. Some conclusions are drawn in the final
section.

Notation: Vectors are denoted with boldface letters and
matrices with capital letters. By the symbols 1 and 0 we
denote vectors having all entries equal to 1 and 0, respectively.
Given a matrix A, we denote by tr(A) its trace, by A> its
transpose, and by A−1 its inverse. Given a vector v ∈ RN and
a positive diagonal matrix Q, ‖v‖2Q stands for the weighted
norm v>Qv and diag(v1, . . . , vN ) is a diagonal matrix in
RN×N with the the entries of the vector in the main diagonal.
Given a set S, we denote its cardinality by |S|. Given two
positive number a and b, we use ⊕ to denote their harmonic
sum a⊕ b =

(
a−1 + b−1

)−1
.

II. RELATIVE AND ABSOLUTE MEASUREMENTS

We consider a set of N agents and we endow each of
them with a scalar quantity x̄i ∈ R, for i ∈ {1, . . . , N}. The
ith agent does not know the value x̄i and wants to estimate
it. We shall denote by x̄ the N -dimensional vector whose
components are x̄i.

We assume that each agent i can perform a noisy absolute
measurement of x̄i, denoted by x0

i = x̄i + ai, where the ais
are independent real-valued random variables with E [ai] = 0
and E

[
a2
i

]
= ν2

i > 0. The absolute measurements and the
corresponding noises can be stacked together in the vectors
x0, a ∈ RN to get

x0 = x̄ + a

with E [a] = 0. The covariance matrix of a is the positive
definite diagonal matrix N ∈ RN×N with N = E

[
aa>

]
=

diag(ν2
1 , . . . , ν

2
N ).

We also assume that each agent i can take relative coop-
erative measurements of the quantity x̄j − x̄i with respect to
some neighbors j. An undirected graph G = ({1, . . . , N}, E)
is used to represent the available relative measurements. The
set of vertices is constituted by the N agents, and the edges
(unordered pairs of agents like {i, j}) in E correspond to the
available measurements. The set Ni of neighbors of the node i,
i.e., Ni = {j ∈ {1, . . . , N} : {i, j} ∈ E}, contains the nodes
with whom i took a relative measurement. We let di = |Ni|
and dmax = maxi di. In fact, we assume that both agents of
a pair {i, j} ∈ E know the measurement, even if we assign–
without loss of generality–an orientation to each edge in the
graph G: an edge {i, j} with i < j is oriented from i to j
and the corresponding measurement b{i,j} regards the quantity
x̄j− x̄i. The quantities b{i,j} and b{j,i} coincide by definition,
as {i, j} and {j, i} denote the same edge. Measurements
are corrupted by errors that we model with independent
random variables n{i,j} such that b{i,j} = x̄j − x̄i + n{i,j},
E
[
n{i,j}

]
= 0 and E

[
n2
{i,j}

]
= σ2

{i,j} > 0.

In order to encode the measurements in a vector, we define
the incidence matrix A ∈ R|E|×N as follows

Ae,i =

 1 if e = {i, j} and i > j
−1 if e = {i, j} and i < j

0 otherwise.

Let b ∈ R|E| be the vector of the measurements and n ∈ R|E|
that of noises. Then, in matrix notation we have

b = Ax̄ + n

with E [n] = 0 and E
[
nn>

]
= diag(σ2

1 , . . . , σ
2
|E|) = Σ,

where Σ ∈ R|E|×|E| is the positive definite diagonal covari-
ance matrix. All components of a and of n are assumed to be
independent of each other.

A natural way to define the best estimate, given the abso-
lute and relative measurements, is solving the least squares
problem

min
x

Φ(x) with Φ(x) = ‖Ax− b‖2
Σ

−1 + ‖x− x0‖2
N

−1.

The functional Φ(x) sums two terms that represent the estima-
tion errors with respect to the relative and absolute measure-
ments respectively, weighted according to their significance,
i.e., the inverse of their covariance matrices. The quadratic
convex functional Φ(x) has gradient

∇Φ(x) = 2Mx− 2
(
A>Σ

−1
b +N−1

x0
)
, (1)

where M := A>Σ
−1
A +N−1 and the optimal solution x∗ =

arg minx Φ(x) is the solution of the linear system

M x∗ =
(
A>Σ

−1
b +N−1

x0
)
. (2)

The matrix M is invertible and positive definite, hence

x∗ = M−1
(
A>Σ

−1
b +N−1

x0
)
, (3)

which by [20, p. 66], can be rewritten as

x∗ = x0 +NA>
(
ANA> + Σ

)−1 (
b−Ax0

)
.

This formula highlights that the optimal solution and the
absolute measurements have the same weighted average
1
N 1>N−1

x∗ = 1
N 1>N−1

x0, because A1 = 0.

III. ELECTRICAL NETWORKS

The estimation problem of Section II is intimately related to
linear circuit theory and its solution has an intuitive electrical
interpretation.

Given G = ({1, . . . , N}, E), we consider an augmented
graph H = ({0, . . . , N}, E ∪ F ) of which G is an induced
subgraph: the graph H contains an additional reference node
0 and has edge set E ∪ F where F =

⋃
i∈{1,...,N}{0, i}

contains the edges between the reference node and every other
node. Notice that H is connected by construction. We build an
electrical network on the graph H by substituting each edge
{i, j} ∈ E ∪ F with the series of an ideal voltage source
and a resistor. The source has the positive terminal oriented
toward the larger of i, j. On each edge {0, i} ∈ F , the voltage
of the source is x0

i and the resistance is ν2
i ; on each edge

{i, j} ∈ E the source’s voltage is b{i,j} and the resistance
is σ2

{i,j}. The matrix M = A>Σ
−1
A + N−1 is the reduced
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conductance matrix of the electrical network built over H,
obtained by grounding the reference node 0: indeed, M is
also known as grounded Laplacian of the weighted graph. We
refer the reader to [10] for a more complete introduction to
these concepts.

Each node in H is endowed with a scalar quantity xi to
be interpreted as electrical potential, with the reference node
set at conventional zero. Given an edge {i, j} with i < j, the
potential difference across that edge is measured as xj − xi
whereas ι{i,j} denotes the current flowing in {i, j} from j to
i. The vector x ∈ RN collects the potentials of all the nodes
except the reference for which x0 = 0. Notice that, for i 6= 0,
each xi is itself the potential difference across the edge {0, i}.

With all the voltage sources of the network switched off (and
substituted by short circuits), we define the effective resistance
Reffij between any two nodes i, j of the network as the potential
difference xj − xi obtained when an external source supplies
a unit current to j and extracts it from node i.

The following Lemma provides the electrical interpretations
of the quantities involved in the estimation problem and will
be useful in the following sections.

Lemma 1 (Electrical interpretation). Consider the electrical
network H and the estimation problem of Section II.
• The components of the vector x∗ defined in (3) are the

potentials of the nodes in the network.
• For any pair of nodes in the network (reference included)

the variance of the optimal estimate of their relative
location coincides with the effective resistance between
the two nodes. Therefore,

E
[
(x∗i − x̄i)2

]
= (M−1)i,i = Reff0i . (4)

Proof. In order to systematically analyze the resistive electric
circuit we shall express the current in each edge as function
of the unknown node potentials, then apply the Kirchhoff’s
current law (KCL) to each non-reference node, and obtain the
set of N independent node equations. The potential difference
and current flowing in each edge of H are related via the
Ohm laws. On edges like {0, i} ∈ F , where one node is the
reference, we have xi−x0 = xi = x0

i +ν2
i ι{0,i} since x0 = 0.

For the remaining edges {i, j} ∈ E we have xj−xi = b{i,j}+
σ2
{i,j} ι{i,j}.
By KCL, the sum of the currents flowing away from a node

needs to be zero. Consider a node i 6= 0, then,

ι{0,i} +
∑

j∈Ni,j<i

ι{i,j} −
∑

j∈Ni,j>i

ι{i,j} = 0

xi − x0
i

ν2
i

+
∑

j∈Ni,j<i

xi − xj − b{i,j}
σ2
{i,j}

−
∑

j∈Ni,j>i

xj − xi − b{i,j}
σ2
{i,j}

= 0

xi
ν2
i

+
∑
j∈Ni

xi − xj
σ2
{i,j}

=
x0
i

ν2
i

+
∑
j∈Ni

(1j<i − 1j>i) b{i,j}
σ2
{i,j}

In matrix form, the above equations coincide with (2).
With b = Ax̄ + n and x0 = x̄ + a in (3) the optimal

estimate becomes x∗ = x̄ + M−1
(
A>Σ

−1
n +N−1

a
)
. Then

E [x∗] = x̄ and E
[
(x∗ − x̄)(x∗ − x̄)>

]
= M−1. Let us

introduce the ith unit vector ei ∈ Rn, with 1 in the ith position

and 0 elsewhere. The variance of x∗i is E
[
(x∗i − x̄i)2

]
=

e>i E
[
(x∗ − x̄)(x∗ − x̄)>

]
ei = (M−1)i,iand, being H a con-

nected graph with 0 as reference node, (M−1)i,i = Reff0i as
proved in [10].

IV. THE ERROR OF THE OPTIMAL ESTIMATE

In order to evaluate the quality of the least-squares estimate,
we define the estimation error as

H∞ :=
1

N
E
[
‖x∗ − x̄‖22

]
,

where the expectation is taken over all measurement noise.
This quantity depends only on the topology of the measure-
ment network and on the noise variances. Indeed, by (4) we
have

H∞ =
1

N
tr
(
M−1

)
=

1

N

N∑
i=1

Reff0i . (5)

Thus, the error of the optimal estimator can be effectively
computed by the electrical analogy. The electrical analogy also
permits to derive the following estimates.

Proposition 2 (Error bounds). Consider the graph
G = ({1, . . . , N}, E) and the augmented graph
H = ({0, . . . , N}, E ∪ F ) with F =

⋃
i∈{1...,N}{0, i}

that represents the electrical network. It holds:

min
i∈{1,...,N}

ν2
i ⊕

⊕
j∈Ni

σ2
ij

 ≤ H∞ ≤ max
i∈{1,...,N}

ν2
i .

Proof. Recall (5) and observe that each Reff0i can be estimated
by using Rayleigh’s monotonicity law [21, Chapter 9]. For the
upper bound, we substitute with open circuits all the edges
{i, j} with j ∈ Ni (note that 0 /∈ Ni), obtaining that Reff0i ≤ ν2

i

for every i. For the lower bound, we substitute with short
circuits all the edges {0, j}, for j ∈ Ni, obtaining that

Reff0i ≥ ν2
i ⊕

⊕
j∈Ni

σ2
ij .

The result then follows from (5).

To highlight the role of the topology, let us assume that
ν2
i = ν2 for every i ∈ {1, . . . , N} and that σ2

{i,j} = σ2 for
every {i, j} ∈ E. The homogeneous measurements condition
is insightful for all those cases where the heterogeneity of the
measurements is not pathological, i.e. the ν2

i and σ2
{i,j} enjoy

uniform upper and lower bounds, which behave accordingly.
Under these assumptions, the general bounds above simplify
to

ν2 ⊕ σ2

dmax
≤ H∞ ≤ ν2.

Let us then consider the values of H∞ for a sequence of
graphs of increasing size with fixed ν2 and σ2. These bounds
imply that H∞ can not diverge and is bounded away from
zero if the degrees of the nodes are bounded.

In the rest of this section, we present some examples of
(sequences of) graphs where H∞ can be explicitly computed.
In order to improve the readability of some expressions, we



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. X, MMMMMM YYYY 4

define the ratio γ = σ2

ν2 and assume without loss of generality
that ν2 = 1.

The first example is the complete graph KN over N nodes
and the corresponding augmented graph as in Figure 1.

Example 1 (H∞ on complete graphs). For symmetry reasons,
H∞ is equal to the effective resistance between node 1 and
the reference 0, which we denote as Reff01 =: RNK . When we
compute Reff01 , all the remaining nodes i 6∈ {0, 1} have the
same potential and we can substitute the resistors on the edges
{i, j} with i, j 6∈ {0, 1} by short circuits. By doing so,

H∞ = RNK =1⊕
(
γ + 1

N − 1

)
=

(
1 +

N − 1

γ + 1

)−1

=
1 + γ

N + γ
.

For any finite γ, the error H∞ is decreasing in N and tends
to zero as the number of agents grows large.

This example shows that the lower bound of Proposition 2
is asymptotically tight on the complete graphs topology with
homogeneous measurement noise. The upper bound of Propo-
sition 2 is achieved when the graph G is made by isolated
nodes (i.e. the edge set E is empty).

γ

γ

γ

γ

γ

γ

1

1

11

G = K4
Reff01

Fig. 1. The graph G is the complete graph K4.

Graphs with bounded degree have positive H∞ as N →∞.
An explicit computation can be carried out on the cycle graph.
Preliminarily, we briefly consider the line graph as in Figure 2.

Lemma 3 (Resistances on line graphs). Let LN be the line
graph with N nodes and let i = 1 be one of the end-vertices
of LN . Define RNL := Reff01 , the resistance between 1 and 0
on the corresponding augmented graph, and R∞L = limN R

N
L .

Then,

R∞L =
−γ +

√
γ2 + 4γ

2
.

Proof. The sequence RNL can be computed recursively as{
R1

L = 1

RN+1
L = 1⊕

(
γ +RNL

)
=

RN
L +γ

RN
L +γ+1

.

The nonnegative sequence RNL is thus decreasing and its limit
satisfies

R∞L =
R∞L + γ

R∞L + γ + 1
.

Solving this equation gives the result.

We are now ready to consider the cycle graph CN with N
nodes, that is, with {i, j} ∈ E iff |i− j| ∈ {±1,±(N − 1)}.

γ γ γ

1 1 1 1

G = L4

Reff01

Fig. 2. The graph G is the line graph L4.

Proposition 4 (H∞ on cycle graphs). Consider the cycle
graph CN and define RNC := Reff01 , the resistance between
1 and 0 on the corresponding augmented graph. Then, H∞ =
RNC , RNC is a decreasing function of N , and

R∞C := lim
N→∞

RNC = 1⊕
(

1

2
(γ +R∞L )

)
=

√
γ√

γ + 4
.

Proof. Symmetry implies that H∞ is equal to the effective
resistance between any node and the reference. In order to
compute the asymptotics of RNC := Reff01 , we use Lemma 3.
If N is odd, by symmetry, the two consecutive nodes N+1

2
and N+3

2 are at the same potential. We can then substitute
the resistor on the edge {N+1

2 , N+3
2 } by a open circuit and

compute

RNC = 1⊕
(

1

2

(
γ +R

N−1
2

L

))
.

If N is even, we can use Rayleigh’s monotonicity law to
show that RN+1

C ≤ RNC ≤ RN−1
C . To prove the lower bound,

we substitute the resistor on the edge {0, N2 +1} with an open
circuit (this increases the effective resistance) and we observe
that by symmetry no current flows on the edges {N2 , N2 +1}
and {N2 +1, N2 +2}. We thus put open circuits and compute

RNC ≤ 1⊕
(

1

2

(
γ +R

N
2 −1

L

))
= RN−1

C .

To prove the upper bound, we add a second resistance of
value 1 in parallel to edge {0, N2 + 1} (this decreases the
effective resistance). By symmetry, the current received by
node N

2 +1 from either node N
2 and N

2 +2 is the same and is
equally routed in the two parallel resistances. Therefore, we
can split node N

2 into two distinct nodes and get

RN+1
C = 1⊕

(
1

2

(
γ +R

N
2

L

))
≤ RNC .

We conclude that the sequence RNC is decreasing and R∞C =

1⊕
(

1
2 (γ +R∞L )

)
=

√
γ√
γ+4

.

V. GRADIENT DESCENT ALGORITHM

As Φ is convex, it is natural to consider gradient descent
algorithms for its minimization. A gradient descent iterate can
be defined from (1) as:

x[t+1] = x[t]− τ

2
∇Φ (x[t])

=x[t]− τ
[
Mx[t]−

(
A>Σ

−1
b +N−1

x0
)]

= (I − τM)x[t] + τA>Σ
−1
b + τN−1

x0
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for a suitable τ > 0. Equivalently, we may write the algorithm
as {

x[t+ 1] = Qx[t] + w
x[0] = x0 (6)

where Q := I − τM and w := τA>Σ
−1
b + τN−1

x0.
Remarkably, this algorithm is distributed, in the following
sense. The matrix Q is adapted to the graph G, i.e., Qij = 0 if
{i, j} /∈ E: then, in order to update a component as xi[t+1] =∑
j Qijxj [t]+wi, the algorithm requires communication only

with the nodes which are neighbors of i in the graph G and
thus already share a measurement.

From here on in this section, we shall make the following
standing assumption, which is sufficient to our results and
permits a streamlined analysis of algorithm (6).

Assumption 1. The parameter τ > 0 is such that:

τ < min
i∈{1,...,N}

ν2
i ⊕

⊕
j∈Ni

σ2
ij . (7)

If νi = ν for every vertex i and σ{i,j} = σ for every edge
{i, j} in the graph, then (7) reduces to τ < ν2 ⊕ σ2

dmax
.

Before proceeding, let us observe that matrices M and
Q = I − τM are real symmetric and are diagonalizable with
the same complete set of orthonormal eigenvectors v(i). The
corresponding eigenvalues are µi and ξi respectively, with
ξi = 1− τµi.
Lemma 5 (Stability). The eigenvalues of Q are such that
|ξi| ≤ 1− τ ν̂−2, with ν̂−2 =

(
max ν2

i

)−1
.

Proof. From the definitions of Q and M , we obtain Q =
I − τA>Σ

−1
A− τN−1. Then

Qii = 1− τν−2
i − τ

∑
j∈Ni

σ−2
{i,j}

Qij =

{
τσ−2
{i,j} if {i, j} ∈ E

0 if {i, j} /∈ E i 6= j

and Assumption 1 implies that
[
ν−2
i +

∑
j∈Ni

σ−2
{i,j}

]
τ < 1,

for every i. Then, Gershgorin circle theorem implies that the
eigenvalues of Q belong to the union of intervals⋃

i

[
−1 + τν−2

i , 1− τν−2
i

]
and the result follows.

Thanks to this lemma, we can easily prove the convergence
of the proposed algorithm.

Proposition 6 (Convergence). The algorithm (6) converges at
exponential rate 1− τ ν̂−2 to the optimal estimate x∗ in (3).

Proof. By solving the recursion (6) we have

x[t] = Qtx0 +

t−1∑
n=0

Qnw (8)

By Lemma 5, the matrix Q is asymptotically stable and the
algorithm is exponentially convergent. Then, we can compute

x[t] = Qtx0 + (I −Q)−1(I −Q)

t−1∑
n=0

Qnw

= Qtx0 + (I −Q)−1(I −Qt)w

and lim
t→∞

x[t] =M−1
(
A>Σ

−1
b +N−1

x0
)

= x∗.

A. Mean square error
To evaluate the algorithm performance, we follow the ap-

proach in [15] and define the performance metric as the mean
square error between the current estimate x[t] and the true
configuration x̄:

Ht :=
1

N
E
[
‖x[t]− x̄‖22

]
,

where the expectation is taken on both the relative measure-
ment noise n and the absolute measurement noise a. Note that
H∞ = limt→∞Ht. The performance metric can be computed
in terms of the spectrum of the matrix Q and of the coefficients
φi := v(i)>N v(i).

Proposition 7 (Mean square performance). The following
equality holds

Ht =
1

N

N∑
i=1

[
φi ξ

2t
i + τ

1− ξ2t
i

1− ξi

]
. (9)

Proof. We express w in terms of x̄, n and a as

w = τA>Σ
−1
Ax̄ + τA>Σ

−1
n + τN−1

x̄ + τN−1
a

= (I −Q) x̄ + τA>Σ
−1
n + τN−1

a

Given w and (8) we compute x[t]− x̄ as

x[t]− x̄ = Qta + τ

t−1∑
n=0

Qn
(
A>Σ

−1
n +N−1

a
)

(10)

From the definition of Ht we have

Ht =
1

N
E
[
tr
[
(x[t]− x̄)(x[t]− x̄)>

]]
By using (10) and through some (omitted) algebraic manipu-
lations involving the properties of the trace operator, we get

Ht =
1

N
tr

[
NQ2t + τ

(
I +Qt

) t−1∑
n=0

Qn

]
=

1

N
tr
[
NQ2t + τ

(
I +Qt

) (
I −Qt

)
(I −Q)

−1
]

=
1

N
tr
[
NQ2t + τ

(
I −Q2t

)
(I −Q)

−1
]
.

The result follows from the spectral decomposition of Q.

The monotonicity property of Ht is stated in the next result.

Proposition 8 (Monotonicity of Ht). Ht is nonincreasing and
is strictly decreasing if G contains at least two connected
nodes.

Proof. We will show that each of the terms in the sum (9) is
nonincreasing in t. Let us compute the finite increment

Ht+1 −Ht =
1

N

N∑
i=1

ξ2t
i

[
φi
(
ξ2
i − 1

)
+ τ (ξi + 1)

]
=

1

N

N∑
i=1

ξ2t
i (ξi + 1) [φi (ξi − 1) + τ ]

=
1

N

N∑
i=1

ξ2t
i (ξi + 1) τ (1− φi µi) ,
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where we used ξi = 1 − τµi. Notice that, since |ξi| < 1 and
τ > 0, every term is nonincreasing if φi µi ≥ 1. Using the
definition of φi and expanding µi = v(i)>Mv(i), we have

φi µi =
(
v(i)>N v(i)

)(
v(i)>A>Σ

−1
Av(i) + v(i)>N−1

v(i)
)

≥
(
v(i)>N v(i)

)(
v(i)>N−1

v(i)
)

using v(i)>A>Σ
−1
Av(i) ≥ 0. Since N and N−1 are diagonal

φi µi ≥
[∑

j |v
(i)
j |2 ν2

j

] [∑
j |v

(i)
j |2 ν−2

j

]
≥ 1

where the last inequality holds since the weighted arithmetic
mean is never smaller than the weighted harmonic mean.
Furthermore, if there exists i such that φi µi > 1 and ξi 6= 0,
then Ht is strictly decreasing. To get φi µi > 1, we need
v(i)>A>Σ

−1
Av(i) > 0, which happens if G contains at least

two connected nodes.

B. Limited need for cooperation

For every ε > 0, we can define a near-optimal stopping
time, after which the estimation error is only a (1 + ε) factor
larger than the optimal one:

t∗ε = inf {t : Ht < (1 + ε)H∞} .

A consequence of the stability of the matrix Q, uniform in N
and not dependent on the topology of the network (Lemma 5),
is the following estimate of the near-optimal stopping time,
illustrated by simulations in Figure 3.

Proposition 9 (Universal bound on stopping time). It holds

t∗ε ≤
ν̂2

2τ
log

(
2ν̂2

τε

)
, (11)

where ν̂2 = max ν2
i .

Proof. Using (9) in the definition of t∗ε , we immediately
deduce that

t∗ε = inf

{
t :

N∑
i=1

[
φi ξ

2t
i + τ

1− ξ2t
i

1− ξi

]
< τ

N∑
i=1

1 + ε

1− ξi

}
.

By taking an upper bound on the second term of the left-hand
side of the inequality, we have

t∗ε ≤ inf

{
t :

N∑
i=1

φi ξ
2t
i < τε

N∑
i=1

1

1− ξi

}
.

Recall that φi = v(i)>N v(i) with the v(i)s forming an
orthonormal basis for RN . Therefore the φis are convex
combinations of ν2

i which can be upper-bounded by ν̂2.
Recall also that Assumption 1 implies |ξi| ≤ 1 − τ ν̂−2 and

1
1−ξi ≥

1
2−τν̂−2 > 1

2 . Then, we can upper-bound each term
of the summation of the left-hand side and lower-bound the
terms of the sum of the right-hand side.

t∗ε ≤ inf
{
t : ν̂2

(
1− τ ν̂−2

)2t
<
τε

2

}
.

By solving for t in the above inequality we get

t∗ε ≤
log
(

2ν̂2

τε

)
2 log 1

1−τν̂−2

,

and then the result follows.

This result shows that in order to achieve a certain accuracy
(relative to the optimal estimator) the necessary number of
steps does not depend on the topology of the measurement
graph or even on the number of nodes. On a large graph of
size N , this fact implies that only a limited portion of the
graphs (independent of N ) needs to be “explored”. Thus, we
may say that only a limited amount of cooperation is necessary
to solve this estimation problem.

This phenomenon should be compared with other networked
estimation problems. Let us briefly consider the following fun-
damental example: all nodes take noisy measurements of the
same quantity θ and perform an average consensus algorithm
to obtain the optimal estimate. The analysis in [15] shows that
in this case Ht := 1

NE [‖x[t]− θ1‖] = max{1/
√
t, 1/N} on

cycle graphs. This fact implies that a given accuracy requires a
time proportional to N2. Hence, in the case of consensus, the
cooperation of all nodes is required to meet the specification.

Remark 1 (Vanishing relative noise). Let us assume homoge-
neous measurements ν2 = 1 and consider the limit σ2 → 0. By
the change of variable z[t] = x[t]− x̄, algorithm (6) becomes
equivalent to an average consensus algorithm with symmetric
communication graph G and transition matrix I − c

dmax
A>A,

where c ∈ (0, 1). Consistently with the discussion above, the
bound (11) diverges in such a limit.

Remark 2 (Limited benefit in Jacobi algorithm). As we did in
Section III, the problem can be reformulated as the estimation
from relative measurement only, by adding a virtual reference
node. Within this reformulation, the results in the PhD thesis of
Barooah [22, Thm 3.3.4] permit to deduce that also the Jacobi
algorithm enjoys a limited benefit property similar to (11)
when applied to system (2).

VI. CONCLUSION AND FUTURE WORK

This note has studied the estimation of a distributed state
based on absolute and relative measurements. Using an intu-
itive electrical interpretation of the problem, we have shown
that the error of the least squares optimal estimator depends on
the topology of the graph that encodes the measurements. Pro-
vided the heterogeneity between the measurements is bounded,
the topology determines whether the error decreases to zero
as the number of unknown variables grows to infinity: for
instance, this happens on fully connected networks, but not
on cycle networks.

We have assumed that all nodes have access to absolute
information: it is then natural to ask what happens if only some
of the nodes have access to it. In principle, our framework
(including the electrical interpretation) can be extended to this
more general case, but some parts of the analysis would be
significantly different. For instance, Proposition 8 does not
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Fig. 3. Simulation of algorithm (6) on a cycle graph with N = 160, N =
400 I , Σ = I (I is the N × N identity matrix), τ = 1

3
, ε = 0.01. The

plot shows the mean square error of the algorithm (6) starting from several
initial conditions, together with the expected performance Ht. The vertical
solid line indicates the near-optimal stopping time t∗ε and the vertical dashed
line the corresponding upper bound (11).

hold and the cost Ht is not decreasing. A detailed study is
left to future research.

In this work we have also studied a gradient descent
algorithm to compute the optimal estimator. Its analysis has
brought an interesting insight: the ratio between the error of the
current estimate and the optimal error can be made arbitrarily
small within a number of iterates that does not depend on
the number of unknowns, the number of measurements, or the
topology of the graph that puts them in relation. This finding
suggests that the estimate of a given node does not essentially
benefit from measurements about nodes that are “far” in the
graph. In this sense, the advantages of cooperation are limited
in our problem, which regards the distributed estimation of
a distributed parameter. We have argued that this property is
not shared by other estimation problems, like the distributed
estimation of a common parameter, where global cooperation
improves the estimate. In fact, the literature has investigated
the advantages of cooperation in distributed estimation and
learning (e.g., [23, Chapter 12] [24]), but the question of
quantifying the right amount of cooperation has not been
systematically approached yet.
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