A common approach to the problem of the infinitude of twin primes, primes of the form $n!+1$, and primes of the form $n!-1$

Apoloniusz Tyszka

To cite this version:

Apoloniusz Tyszka. A common approach to the problem of the infinitude of twin primes, primes of the form $n!+1$, and primes of the form $n!-1$. 2018. hal-01614087v5

HAL Id: hal-01614087
https://hal.science/hal-01614087v5

Preprint submitted on 24 Mar 2018 (v5), last revised 20 Sep 2023 (v34)
A common approach to the problem of the infinitude of twin primes, primes of the form $n!+1$, and primes of the form $n!−1$

Apoloniusz Tyszka

March 24, 2018

Abstract

For a positive integer x, let $\Gamma(x)$ denote $(x−1)!$. Let $\text{fact}^{-1}: \{1, 2, 6, 24, \ldots\} \rightarrow \mathbb{N} \setminus \{0\}$ denote the inverse function to the factorial function. For positive integers x and y, let $\text{rem}(x,y)$ denote the remainder from dividing x by y. For a positive integer n, by a computation of length n we understand any sequence of terms x_1, \ldots, x_n such that x_1 is defined as the variable x, and for every integer $i \in \{2, \ldots, n\}$, x_i is defined as $\Gamma(x_{i−1})$, $\text{fact}^{-1}(x_{i−1})$, or $\text{rem}(x_{i−2}, x_{i−1})$ (only if $i \geq 3$ and $x_{i−1}$ is defined as $\Gamma(x_{i−2}))$. Let $f(4) = 3$, and let $f(n+1) = f(n)!$ for every integer $n \geq 4$. For an integer $n \geq 4$, let Ψ_n denote the following statement: if a computation of length n returns positive integers x_1, \ldots, x_n for at most finitely many positive integers x, then every such x does not exceed $f(n)$. We prove: (1) the statement Ψ_4 equivalently expresses that there are infinitely many primes of the form $n!+1$; (2) the statement Ψ_6 implies that for infinitely many primes p the number $p!+1$ is prime; (3) the statement Ψ_6 implies that there are infinitely many primes of the form $n!−1$; (4) the statement Ψ_7 implies that there are infinitely many twin primes.

2010 Mathematics Subject Classification: 11A41, 68Q05.

Key words and phrases: computation of length n, prime numbers of the form $n!+1$, prime numbers of the form $n!−1$, prime numbers p such that $p!+1$ is prime, twin prime conjecture.

For a positive integer x, let $\Gamma(x)$ denote $(x−1)!$. Let $\text{fact}^{-1}: \{1, 2, 6, 24, \ldots\} \rightarrow \mathbb{N} \setminus \{0\}$ denote the inverse function to the factorial function. For positive integers x and y, let $\text{rem}(x,y)$ denote the remainder from dividing x by y.

Definition. For a positive integer n, by a computation of length n we understand any sequence of terms x_1, \ldots, x_n such that x_1 is defined as the variable x, and for every integer $i \in \{2, \ldots, n\}$, x_i is defined as $\Gamma(x_{i−1})$, or $\text{fact}^{-1}(x_{i−1})$, or $\text{rem}(x_{i−2}, x_{i−1})$ (only if $i \geq 3$ and $x_{i−1}$ is defined as $\Gamma(x_{i−2}))$.

Let $f(4) = 3$, and let $f(n+1) = f(n)!$ for every integer $n \geq 4$. For an integer $n \geq 4$, let Ψ_n denote the following statement: if a computation of length n returns positive integers x_1, \ldots, x_n for at most finitely many positive integers x, then every such x does not exceed $f(n)$.

Lemma 1. For every positive integer n, there are only finitely many computations of length n.

Theorem 1. For every integer $n \geq 4$, the statement Ψ_n is true with an unknown integer bound that depends on n.

1
Proof. It follows from Lemma [1]. □

Let \(\mathcal{P} \) denote the set of prime numbers.

Lemma 2. ([2] pp. 214–215). For every positive integer \(x \), \(\text{rem}(\Gamma(x), x) \in \mathbb{N} \setminus \{0\} \) if and only if \(x \in \{4\} \cup \mathcal{P} \).

Theorem 2. For every integer \(n \geq 4 \) and for every positive integer \(x \), the following computation \(\mathcal{H}_n \)

\[
\begin{align*}
 x_1 & := x \\
 \forall i \in \{2, \ldots, n-3\} \quad x_i & := \text{fact}^{-1}(x_{i-1}) \\
 x_{n-2} & := \Gamma(x_{n-3}) \\
 x_{n-1} & := \Gamma(x_{n-2}) \\
 x_n & := \text{rem}(x_{n-1}, x_{n-2})
\end{align*}
\]

returns positive integers \(x_1, \ldots, x_n \) if and only if \(x = f(n) \).

Proof. We make three observations.

Observation 1. If \(x_{n-3} = 3 \), then \(x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\} \) and \(x = x_1 = f(n) \).

If \(x = f(n) \), then \(x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\} \) and \(x_{n-3} = 3 \).

Hence, \(x_{n-2} = \Gamma(x_{n-3}) = 2 \) and \(x_{n-1} = \Gamma(x_{n-2}) = 1 \). Therefore, \(x_n = \text{rem}(x_{n-1}, x_{n-2}) = 1 \).

Observation 2. If \(x_{n-3} = 2 \), then \(x = x_1 = \ldots = x_{n-3} = 2 \).

If \(x = 2 \), then \(x_1 = \ldots = x_{n-3} = 2 \). Hence, \(x_{n-2} = \Gamma(x_{n-3}) = 1 \) and \(x_{n-1} = \Gamma(x_{n-2}) = 1 \).

Therefore, \(x_n = \text{rem}(x_{n-1}, x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\} \).

Observation 3. If \(x_{n-3} = 1 \), then \(x_{n-2} = \Gamma(x_{n-3}) = 1 \). Hence, \(x_{n-1} = \Gamma(x_{n-2}) = 1 \).

Therefore, \(x_n = \text{rem}(x_{n-1}, x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\} \).

Observations [1–3] cover the case when \(x_{n-3} \in \{1, 2, 3\} \). If \(x_{n-3} \geq 4 \), then \(x_{n-2} = \Gamma(x_{n-3}) \) is greater than 4 and composite. By Lemma [2], \(x_n = \text{rem}(x_{n-1}, x_{n-2}) = \text{rem}(\Gamma(x_{n-2}), x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\} \). □

Corollary 1. For every integer \(n \geq 4 \), the bound \(f(n) \) in the statement \(\Psi_n \) cannot be decreased.

Lemma 3. (Wilson’s theorem, [2] p. 89). For every positive integer \(x \), \(x \) divides \(\Gamma(x) + 1 \) if and only if \(x \in \{1\} \cup \mathcal{P} \).

Corollary 2. If \(x \in \mathcal{P} \), then \(\text{rem}(\Gamma(x), x) = x - 1 \).

Lemma 4. For every positive integer \(x \), the following computation \(\mathcal{A} \)

\[
\begin{align*}
 x_1 & := x \\
 x_2 & := \Gamma(x_1) \\
 x_3 & := \text{rem}(x_2, x_1) \\
 x_4 & := \text{fact}^{-1}(x_3)
\end{align*}
\]

returns positive integers \(x_1, \ldots, x_4 \) if and only if \(x = 4 \) or \(x \) is a prime number of the form \(n! + 1 \).

Proof. For an integer \(i \in \{1, \ldots, 4\} \), let \(A_i \) denote the set of positive integers \(x \) such that the first \(i \) instructions of the computation \(\mathcal{A} \) returns positive integers \(x_1, \ldots, x_i \). We show that

\[
A_4 = \{4\} \cup \{n! + 1 : n \in \mathbb{N} \setminus \{0\} \} \cap \mathcal{P}
\]

(1)
For every positive integer x, the terms x_1 and x_2 belong to $\mathbb{N} \setminus \{0\}$. By Lemma 2, the term x_3 (which equals rem($\Gamma(x), x$)) belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x \in \{4\} \cup \mathcal{P}$. Hence, $A_1 = \{4\} \cup \mathcal{P}$. If $x = 4$, then $x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}$. Hence, $4 \in A_4$. If $x \in \mathcal{P}$, then Corollary 2 implies that $x_3 = \text{rem}(\Gamma(x), x) = x - 1 \in \mathbb{N} \setminus \{0\}$. Therefore, for every $x \in \mathcal{P}$, the term $x_4 = \text{fact}^{-1}(x_3)$ belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x \in \{n! + 1 : n \in \mathbb{N} \setminus \{0\}\}$. This proves equality (1). □

It is conjectured that there are infinitely many primes of the form $n! + 1$, see [1] p. 443] and [5].

Theorem 3. The statement Ψ_4 implies that the set of primes of the form $n! + 1$ is infinite.

Proof. The number $3! + 1 = 7$ is prime. By Lemma 4, for $x = 7$ the computation \mathcal{A} returns positive integers x_1, \ldots, x_4. Since $x = 7 > 3 = f(4)$, the statement Ψ_4 guarantees that the computation \mathcal{A} returns positive integers x_1, \ldots, x_4 for infinitely many positive integers x. By Lemma 3, there are infinitely many primes of the form $n! + 1$. □

Lemma 5. If $x \in \mathbb{N} \setminus \{0, 1\}$, then $\text{fact}^{-1}(\Gamma(x)) = x - 1$.

Theorem 4. If the set of primes of the form $n! + 1$ is infinite, then the statement Ψ_4 is true.

Proof. There exist exactly 10 computations of length 4 that differ from \mathcal{H}_4 and \mathcal{A}, see Table 1. For every such computation \mathcal{F}_i, we determine the set S_i of all positive integers x such that the computation \mathcal{F}_i outputs positive integers x_1, \ldots, x_4 on input x. We omit 10 easy proofs which use Lemmas 2 and 3. The sets S_i are infinite, see Table 1. This completes the proof.

\mathcal{F}_1	$x_2 := \Gamma(x_1)$	$x_3 := \Gamma(x_2)$	$x_4 := \Gamma(x_3)$	$x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}$ \iff $x \in \mathbb{N} \setminus \{0\} = S_1$
\mathcal{F}_2	$x_2 := \Gamma(x_1)$	$x_3 := \Gamma(x_2)$	$x_4 := \text{fact}^{-1}(x_3)$	$x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}$ \iff $x \in \mathbb{N} \setminus \{0\} = S_2$
\mathcal{H}_4	$x_2 := \Gamma(x_1)$	$x_3 := \Gamma(x_2)$	$x_4 := \text{rem}(x_3, x_2)$	$x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}$ \iff $x = 3$
\mathcal{F}_3	$x_2 := \Gamma(x_1)$	$x_3 := \text{fact}^{-1}(x_3)$	$x_4 := \Gamma(x_3)$	$x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}$ \iff $x \in \{1\} \cup \{n! + 1 : n \in \mathbb{N} \setminus \{0\}\} = S_4$
\mathcal{F}_4	$x_2 := \Gamma(x_1)$	$x_3 := \text{fact}^{-1}(x_2)$	$x_4 := \text{fact}^{-1}(x_3)$	$x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}$ \iff $x \in \{4\} \cup \mathcal{P} = S_5$
\mathcal{A}	$x_2 := \Gamma(x_1)$	$x_3 := \text{rem}(x_2, x_1)$	$x_4 := \text{fact}^{-1}(x_3)$	$x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}$ \iff $x \in \{4\} \cup \{1 \times \mathcal{P} : n \in \mathbb{N} \setminus \{0\}\} = S_6$
\mathcal{F}_6	$x_2 := \text{fact}^{-1}(x_1)$	$x_3 := \Gamma(x_2)$	$x_4 := \Gamma(x_3)$	$x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}$ \iff $x \in \{n! : n \in \mathbb{N} \setminus \{0\}\} = S_7$
\mathcal{F}_7	$x_2 := \text{fact}^{-1}(x_1)$	$x_3 := \Gamma(x_2)$	$x_4 := \text{fact}^{-1}(x_3)$	$x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}$ \iff $x \in \{1 \times \mathcal{P} : p \in \mathcal{P}\} = S_8$
\mathcal{F}_8	$x_2 := \text{fact}^{-1}(x_1)$	$x_3 := \Gamma(x_2)$	$x_4 := \text{rem}(x_3, x_2)$	$x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}$ \iff $x \in \{1 \times \mathcal{P} : n \in \mathbb{N} \setminus \{0\}\} = S_9$
\mathcal{F}_9	$x_2 := \text{fact}^{-1}(x_1)$	$x_3 := \text{fact}^{-1}(x_2)$	$x_4 := \Gamma(x_3)$	$x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}$ \iff $x \in \{\text{fact}(n!) \times \mathcal{P} : n \in \mathbb{N} \setminus \{0\}\} = S_{10}$

Table 1: 12 computations of length 4, $x_1 := x, x \in \mathbb{N} \setminus \{0\}$

□

Hypothesis. The statements Ψ_4, \ldots, Ψ_7 are true.
Lemma 7. For every positive integer x, the following computation \mathcal{C}
\[
\begin{align*}
 x_1 &:= x \\
 x_2 &:= \Gamma(x_1) \\
 x_3 &:= \text{rem}(x_2, x_1) \\
 x_4 &:= \text{fact}^{-1}(x_3) \\
 x_5 &:= \Gamma(x_4) \\
 x_6 &:= \text{rem}(x_5, x_4)
\end{align*}
\]
returns positive integers x_1, \ldots, x_6 if and only if $x \in \{4\} \cup \{p! + 1 : p \in \mathcal{P}\} \cap \mathcal{P}$

Proof. For an integer $i \in \{1, \ldots, 6\}$, let B_i denote the set of positive integers x such that the first i instructions of the computation \mathcal{B} returns positive integers x_1, \ldots, x_i. Since the computations \mathcal{A} and \mathcal{B} have the same first four instructions, the equality $B_i = A_i$ holds for every $i \in \{1, \ldots, 4\}$. In particular,
\[
B_4 = \{4\} \cup \{\{n! + 1 : n \in \mathbb{N}\} \cap \mathcal{P}\}
\]
We show that
\[
B_6 = \{4\} \cup \{(p! + 1 : p \in \mathcal{P}) \cap \mathcal{P}\} \tag{2}
\]
If $x = 4$, then $x_1, \ldots, x_6 \in \mathbb{N} \setminus \{0\}$. Hence, $4 \in B_6$. Let $x \in \mathcal{P}$, and let $x = n! + 1$, where $n \in \mathbb{N} \setminus \{0\}$. Hence, $n \neq 4$. Corollary 2 implies that $x_3 = \text{rem}(\Gamma(x), x) = x - 1 = n!$. Hence, $x_4 = \text{fact}^{-1}(x_3) = n$ and $x_5 = \Gamma(x_4) = \Gamma(n) \in \mathbb{N} \setminus \{0\}$. By Lemma 2, the term x_6 (which equals $\text{rem}(\Gamma(n), n)$) belongs to $\mathbb{N} \setminus \{0\}$ if and only if $n \in \{4\} \cup \mathcal{P}$. This proves equality (2) as $n \neq 4$. □

Theorem 5. The statement Ψ_6 implies that for infinitely many primes p the number $p! + 1$ is prime.

Proof. The numbers 11 and $11! + 1$ are prime, see [11, p. 441] and [7]. By Lemma 6 for $x = 11! + 1$ the computation \mathcal{B} returns positive integers x_1, \ldots, x_6. Since $x = 11! + 1 > 6! = f(6)$, the statement Ψ_6 guarantees that the computation \mathcal{B} returns positive integers x_1, \ldots, x_6 for infinitely many positive integers x. By Lemma 6 for infinitely many primes p the number $p! + 1$ is prime. □

Lemma 7. For every positive integer x, the following computation \mathcal{C}
\[
\begin{align*}
 x_1 &:= x \\
 x_2 &:= \Gamma(x_1) \\
 x_3 &:= \Gamma(x_2) \\
 x_4 &:= \text{fact}^{-1}(x_3) \\
 x_5 &:= \Gamma(x_4) \\
 x_6 &:= \text{rem}(x_5, x_4)
\end{align*}
\]
returns positive integers x_1, \ldots, x_6 if and only if $(x - 1)! - 1$ is prime.

Proof. For an integer $i \in \{1, \ldots, 6\}$, let C_i denote the set of positive integers x such that the first i instructions of the computation \mathcal{C} returns positive integers x_1, \ldots, x_i. If $x \in \{1, 2, 3\}$, then $x_6 = 0$. Therefore, $C_6 \subseteq \mathbb{N} \setminus \{0, 1, 2, 3\}$. By Lemma 5 for every integer $x \geq 4$, $x_4 = (x - 1)! - 1$, $x_5 = \Gamma((x - 1)! - 1)$, and $x_1, \ldots, x_5 \in \mathbb{N} \setminus \{0\}$. By Lemma 5 for every integer $x \geq 4$,
\[
x_6 = \text{rem}(\Gamma((x - 1)! - 1), (x - 1)! - 1)
\]
belongs to $\mathbb{N} \setminus \{0\}$ if and only if $(x - 1)! - 1 \in \{4\} \cup \mathcal{P}$. The last condition equivalently expresses that $(x - 1)! - 1$ is prime as $(x - 1)! - 1 \geq 5$ for every integer $x \geq 4$. Hence,
\[
C_6 = (\mathbb{N} \setminus \{0, 1, 2, 3\}) \cap \{x \in \mathbb{N} \setminus \{0, 1, 2, 3\} : (x - 1)! - 1 \in \mathcal{P}\} = \{x \in \mathbb{N} \setminus \{0\} : (x - 1)! - 1 \in \mathcal{P}\}
\]
□
It is conjectured that there are infinitely many primes of the form \(n! - 1\), see [1, p. 443] and [6].

Theorem 6. The statement \(\Psi_6\) implies that there are infinitely many primes of the form \(x! - 1\).

Proof. The number \((975 - 1)! - 1\) is prime, see [1, p. 441] and [6]. By Lemma [7], for \(x = 975\) the computation \(\gamma\) returns positive integers \(x_1, \ldots, x_6\). Since \(x = 975 > 720 = f(6)\), the statement \(\Psi_6\) guarantees that the computation \(\gamma\) returns positive integers \(x_1, \ldots, x_6\) for infinitely many positive integers \(x\). By Lemma [7] the set \(\{x \in \mathbb{N} \setminus \{0\} : (x - 1)! - 1 \in \mathcal{P}\}\) is infinite. \(\square\)

Lemma 8. For every positive integer \(x\), the following computation \(\mathcal{D}\)

\[
\begin{aligned}
 x_1 &:= x \\
 x_2 &:= \Gamma(x_1) \\
 x_3 &:= \text{rem}(x_2, x_1) \\
 x_4 &:= \Gamma(x_3) \\
 x_5 &:= \text{fact}^{-1}(x_4) \\
 x_6 &:= \Gamma(x_5) \\
 x_7 &:= \text{rem}(x_6, x_5)
\end{aligned}
\]

returns positive integers \(x_1, \ldots, x_7\) if and only if both \(x\) and \(x - 2\) are prime.

Proof. For an integer \(i \in \{1, \ldots, 7\}\), let \(\mathcal{D}_i\) denote the set of positive integers \(x\) such that the first \(i\) instructions of the computation \(\mathcal{D}\) returns positive integers \(x_1, \ldots, x_i\). If \(x = 1\), then \(x_3 = 0\). Hence, \(\mathcal{D}_7 \subseteq \mathcal{D}_3 \subseteq \mathbb{N} \setminus \{0, 1\}\). If \(x \in \{2, 3, 4\}\), then \(x_7 = 0\). Therefore,

\[
\mathcal{D}_7 \subseteq (\mathbb{N} \setminus \{0, 1\}) \cap (\mathbb{N} \setminus \{0, 2, 3, 4\}) = \mathbb{N} \setminus \{0, 1, 2, 3, 4\}
\]

By Lemma [2], for every integer \(x \geq 5\), the term \(x_3\) (which equals \(\text{rem}(\Gamma(x), x)\)) belongs to \(\mathbb{N} \setminus \{0\}\) if and only if \(x \in \mathcal{P} \setminus \{2, 3\}\). By Corollary [2] for every \(x \in \mathcal{P} \setminus \{2, 3\}\), \(x_3 = x - 1 \in \mathbb{N} \setminus \{0, 1, 2, 3\}\).

By Lemma [5] for every \(x \in \mathcal{P} \setminus \{2, 3\}\), the terms \(x_4\) and \(x_5\) belong to \(\mathbb{N} \setminus \{0\}\) and \(x_5 = x_3 - 1 = x - 2\). By Lemma [2] for every \(x \in \mathcal{P} \setminus \{2, 3\}\), the term \(x_7\) (which equals \(\text{rem}(\Gamma(x_5), x_5)\)) belongs to \(\mathbb{N} \setminus \{0\}\) if and only if \(x_5 = x - 2 \in \{4\} \cup \mathcal{P}\). From these facts, we obtain that

\[
\mathcal{D}_7 = (\mathbb{N} \setminus \{0, 1, 2, 3, 4\}) \cap (\mathcal{P} \setminus \{2, 3\}) \cap (\{6\} \cup \{p + 2 : p \in \mathcal{P}\}) = \{p \in \mathcal{P} : p - 2 \in \mathcal{P}\}
\]

\(\square\)

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [3, p. 39].

Theorem 7. The statement \(\Psi_7\) implies that there are infinitely many twin primes.

Proof. Harvey Dubner proved that the numbers \(459 \cdot 2^{8529} - 1\) and \(459 \cdot 2^{8529} + 1\) are prime, see [8, p. 87]. By Lemma [8] for \(x = 459 \cdot 2^{8529} + 1\) the computation \(\mathcal{D}\) returns positive integers \(x_1, \ldots, x_7\). Since \(x > 720! = f(7)\), the statement \(\Psi_7\) guarantees that the computation \(\mathcal{D}\) returns positive integers \(x_1, \ldots, x_7\) for infinitely many positive integers \(x\). By Lemma [8] there are infinitely many twin primes. \(\square\)
References

[1] C. K. Caldwell and Y. Gallot, *On the primality of \(n! \pm 1\) and \(2 \times 3 \times 5 \times \cdots \times p \pm 1\)*, Math. Comp. 71 (2002), no. 237, 441–448.

Apoloniusz Tyszka
Technical Faculty
Hugo Kołłątaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl