A common approach to the problem of the infinitude of twin primes, primes of the form n!+1, and primes of the form n!-1
Apoloniusz Tyszka

To cite this version:
Apoloniusz Tyszka. A common approach to the problem of the infinitude of twin primes, primes of the form n!+1, and primes of the form n!-1. 2018. hal-01614087v5
A common approach to the problem of the infinitude of twin primes, primes of the form $n! + 1$, and primes of the form $n! − 1$

Apoloniusz Tyszka

March 24, 2018

Abstract

For a positive integer x, let $\Gamma(x)$ denote $(x − 1)!$. Let $\text{fact}^{-1}: \{1, 2, 6, 24, \ldots \} \to \mathbb{N} \setminus \{0\}$ denote the inverse function to the factorial function. For positive integers x and y, let $\text{rem}(x, y)$ denote the remainder from dividing x by y. For a positive integer n, by a computation of length n we understand any sequence of terms x_1, \ldots , x_n such that x_1 is defined as the variable x, and for every integer $i \in \{2, \ldots , n\}$, x_i is defined as $\Gamma(x_{i−1})$, or $\text{fact}^{-1}(x_{i−1})$, or $\text{rem}(x_{i−1}, x_{i−2})$ (only if $i \geq 3$ and $x_{i−1}$ is defined as $\Gamma(x_{i−2})$). Let $f(4) = 3$, and let $f(n + 1) = f(n)!$ for every integer $n \geq 4$. For an integer $n \geq 4$, let Ψ_n denote the following statement: if a computation of length n returns positive integers x_1, \ldots , x_n for at most finitely many positive integers x, then every such x does not exceed $f(n)$. We prove: (1) the statement Ψ_4 equivalently expresses that there are infinitely many primes of the form $n! + 1$; (2) the statement Ψ_6 implies that for infinitely many primes p the number $p! + 1$ is prime; (3) the statement Ψ_6 implies that there are infinitely many primes of the form $n! − 1$; (4) the statement Ψ_7 implies that there are infinitely many twin primes.

2010 Mathematics Subject Classification: 11A41, 68Q05.

Key words and phrases: computation of length n, prime numbers of the form $n! + 1$, prime numbers of the form $n! − 1$, prime numbers p such that $p! + 1$ is prime, twin prime conjecture.

For a positive integer x, let $\Gamma(x)$ denote $(x − 1)!$. Let $\text{fact}^{-1}: \{1, 2, 6, 24, \ldots \} \to \mathbb{N} \setminus \{0\}$ denote the inverse function to the factorial function. For positive integers x and y, let $\text{rem}(x, y)$ denote the remainder from dividing x by y.

Definition. For a positive integer n, by a computation of length n we understand any sequence of terms x_1, \ldots , x_n such that x_1 is defined as the variable x, and for every integer $i \in \{2, \ldots , n\}$, x_i is defined as $\Gamma(x_{i−1})$, or $\text{fact}^{-1}(x_{i−1})$, or $\text{rem}(x_{i−1}, x_{i−2})$ (only if $i \geq 3$ and $x_{i−1}$ is defined as $\Gamma(x_{i−2})$).

Let $f(4) = 3$, and let $f(n + 1) = f(n)!$ for every integer $n \geq 4$. For an integer $n \geq 4$, let Ψ_n denote the following statement: if a computation of length n returns positive integers x_1, \ldots , x_n for at most finitely many positive integers x, then every such x does not exceed $f(n)$.

Lemma 1. For every positive integer n, there are only finitely many computations of length n.

Theorem 1. For every integer $n \geq 4$, the statement Ψ_n is true with an unknown integer bound that depends on n.
Proof. It follows from Lemma 1.

Let \(\mathcal{P} \) denote the set of prime numbers.

Lemma 2. ([2] pp. 214–215). For every positive integer \(x \), \(\text{rem}(\Gamma(x), x) \in \mathbb{N} \setminus \{0\} \) if and only if \(x \in \{4\} \cup \mathcal{P} \).

Theorem 2. For every integer \(n \geq 4 \) and for every positive integer \(x \), the following computation \(\mathcal{H}_n \)

\[
\begin{align*}
\forall i & \in \{2, \ldots, n-3\} \quad x_i & := & \text{fact}^{-1}(x_{i-1}) \\
x_{n-2} & := & \Gamma(x_{n-3}) \\
x_{n-1} & := & \Gamma(x_{n-2}) \\
x_n & := & \text{rem}(x_{n-1}, x_{n-2})
\end{align*}
\]

returns positive integers \(x_1, \ldots, x_n \) if and only if \(x = f(n) \).

Proof. We make three observations.

Observation 1. If \(x_{n-3} = 3 \), then \(x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\} \) and \(x = x_1 = f(n) \).

If \(x = f(n) \), then \(x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\} \) and \(x_{n-3} = 3 \).

Hence, \(x_{n-2} = \Gamma(x_{n-3}) = 2 \) and \(x_{n-1} = \Gamma(x_{n-2}) = 1 \). Therefore, \(x_n = \text{rem}(x_{n-1}, x_{n-2}) = 1 \).

Observation 2. If \(x_{n-3} = 2 \), then \(x = x_1 = \ldots = x_{n-3} = 2 \).

If \(x = 2 \), then \(x_1 = \ldots = x_{n-3} = 2 \). Hence, \(x_{n-2} = \Gamma(x_{n-3}) = 1 \) and \(x_{n-1} = \Gamma(x_{n-2}) = 1 \).

Therefore, \(x_n = \text{rem}(x_{n-1}, x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\} \).

Observation 3. If \(x_{n-3} = 1 \), then \(x_{n-2} = \Gamma(x_{n-3}) = 1 \). Hence, \(x_{n-1} = \Gamma(x_{n-2}) = 1 \).

Therefore, \(x_n = \text{rem}(x_{n-1}, x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\} \).

Observations 1–3 cover the case when \(x_{n-3} \in \{1, 2, 3\} \). If \(x_{n-3} \geq 4 \), then \(x_{n-2} = \Gamma(x_{n-3}) \) is greater than 4 and composite. By Lemma 2, \(x_n = \text{rem}(x_{n-1}, x_{n-2}) = \text{rem}(\Gamma(x_{n-2}), x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\} \).

Corollary 1. For every integer \(n \geq 4 \), the bound \(f(n) \) in the statement \(\Psi_n \) cannot be decreased.

Lemma 3. (Wilson’s theorem, [2] p. 89). For every positive integer \(x \), \(x \) divides \(\Gamma(x) + 1 \) if and only if \(x \in \{1\} \cup \mathcal{P} \).

Corollary 2. If \(x \in \mathcal{P} \), then \(\text{rem}(\Gamma(x), x) = x - 1 \).

Lemma 4. For every positive integer \(x \), the following computation \(\mathcal{A} \)

\[
\begin{align*}
x_1 & := & x \\
x_2 & := & \Gamma(x_1) \\
x_3 & := & \text{rem}(x_2, x_1) \\
x_4 & := & \text{fact}^{-1}(x_3)
\end{align*}
\]

returns positive integers \(x_1, \ldots, x_4 \) if and only if \(x = 4 \) or \(x \) is a prime number of the form \(n! + 1 \).

Proof. For an integer \(i \in \{1, \ldots, 4\} \), let \(A_i \) denote the set of positive integers \(x \) such that the first \(i \) instructions of the computation \(\mathcal{A} \) returns positive integers \(x_1, \ldots, x_i \). We show that

\[
A_4 = \{4\} \cup \{n! + 1: n \in \mathbb{N} \setminus \{0\} \} \cap \mathcal{P}
\]

Therefore, \(x = f(n) \).
For every positive integer x, the terms x_1 and x_2 belong to $\mathbb{N} \setminus \{0\}$. By Lemma [2], the term x_3 (which equals $\text{rem}(\Gamma(x), x)$) belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x \in \{4\} \cup \mathcal{P}$. Hence, $A_1 = \{4\} \cup \mathcal{P}$. If $x = 4$, then $x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}$. Hence, $4 \in A_4$. If $x \in \mathcal{P}$, then Corollary [2] implies that $x_3 = \text{rem}(\Gamma(x), x) = x - 1 \in \mathbb{N} \setminus \{0\}$. Therefore, for every $x \in \mathcal{P}$, the term $x_4 = \text{fact}^{-1}(x_3)$ belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x \in \{n! + 1 : n \in \mathbb{N} \setminus \{0\}\}$. This proves equality (1). □

It is conjectured that there are infinitely many primes of the form $n! + 1$, see [1], p. 443] and [5].

Theorem 3. The statement Ψ_4 implies that the set of primes of the form $n! + 1$ is infinite.

Proof. The number $3! + 1 = 7$ is prime. By Lemma [4], for $x = 7$ the computation \mathcal{A} returns positive integers x_1, \ldots, x_4. Since $x = 7 > 3 = f(4)$, the statement Ψ_4 guarantees that the computation \mathcal{A} returns positive integers x_1, \ldots, x_4 for infinitely many positive integers x. By Lemma [4], there are infinitely many primes of the form $n! + 1$. □

Lemma 5. If $x \in \mathbb{N} \setminus \{0, 1\}$, then $\text{fact}^{-1}(\Gamma(x)) = x - 1$.

Theorem 4. If the set of primes of the form $n! + 1$ is infinite, then the statement Ψ_4 is true.

Proof. There exist exactly 10 computations of length 4 that differ from \mathcal{H}_4 and \mathcal{A}, see Table 1. For every such computation \mathcal{F}_i, we determine the set S_i of all positive integers x such that the computation \mathcal{F}_i outputs positive integers x_1, \ldots, x_4 on input x. We omit 10 easy proofs which use Lemmas [2] and [5]. The sets S_i are infinite, see Table 1. This completes the proof.

<table>
<thead>
<tr>
<th>\mathcal{F}_i</th>
<th>$x_2 := \Gamma(x_1)$</th>
<th>$x_3 := \Gamma(x_2)$</th>
<th>$x_4 := \Gamma(x_3)$</th>
<th>$x_1, \ldots, x_4 \in \mathbb{N} \setminus {0}$ \iff $x \in \mathbb{N} \setminus {0} = S_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{F}_2</td>
<td>$x_2 := \Gamma(x_1)$</td>
<td>$x_3 := \Gamma(x_2)$</td>
<td>$x_4 := \text{fact}^{-1}(x_3)$</td>
<td>$x_1, \ldots, x_4 \in \mathbb{N} \setminus {0}$ \iff $x \in \mathbb{N} \setminus {0} = S_2$</td>
</tr>
<tr>
<td>\mathcal{H}_4</td>
<td>$x_2 := \Gamma(x_1)$</td>
<td>$x_3 := \Gamma(x_2)$</td>
<td>$x_4 := \text{rem}(x_3, x_2)$</td>
<td>$x_1, \ldots, x_4 \in \mathbb{N} \setminus {0}$ \iff $x = 3$</td>
</tr>
<tr>
<td>\mathcal{F}_3</td>
<td>$x_2 := \Gamma(x_1)$</td>
<td>$x_3 := \text{fact}^{-1}(x_2)$</td>
<td>$x_4 := \Gamma(x_3)$</td>
<td>$x_1, \ldots, x_4 \in \mathbb{N} \setminus {0}$ \iff $x \in {1} \cup {n! + 1 : n \in \mathbb{N} \setminus {0}} = S_4$</td>
</tr>
<tr>
<td>\mathcal{F}_4</td>
<td>$x_2 := \Gamma(x_1)$</td>
<td>$x_3 := \text{fact}^{-1}(x_2)$</td>
<td>$x_4 := \text{fact}^{-1}(x_3)$</td>
<td>$x_1, \ldots, x_4 \in \mathbb{N} \setminus {0}$ \iff $x \in {4} \cup \mathcal{P} = S_5$</td>
</tr>
<tr>
<td>\mathcal{F}_5</td>
<td>$x_2 := \Gamma(x_1)$</td>
<td>$x_3 := \text{rem}(x_2, x_1)$</td>
<td>$x_4 := \Gamma(x_3)$</td>
<td>$x_1, \ldots, x_4 \in \mathbb{N} \setminus {0}$ \iff $x \in {4} \cup {(n! + 1 : n \in \mathbb{N} \setminus {0}} \cap \mathcal{P} = S_6$</td>
</tr>
<tr>
<td>\mathcal{F}_6</td>
<td>$x_2 := \text{fact}^{-1}(x_1)$</td>
<td>$x_3 := \Gamma(x_2)$</td>
<td>$x_4 := \Gamma(x_3)$</td>
<td>$x_1, \ldots, x_4 \in \mathbb{N} \setminus {0}$ \iff $x \in {n! + 1 : n \in \mathbb{N} \setminus {0}} = S_7$</td>
</tr>
<tr>
<td>\mathcal{F}_7</td>
<td>$x_2 := \text{fact}^{-1}(x_1)$</td>
<td>$x_3 := \Gamma(x_2)$</td>
<td>$x_4 := \text{fact}^{-1}(x_3)$</td>
<td>$x_1, \ldots, x_4 \in \mathbb{N} \setminus {0}$ \iff $x \in {n! + 1 : n \in \mathbb{N} \setminus {0}} = S_8$</td>
</tr>
<tr>
<td>\mathcal{F}_8</td>
<td>$x_2 := \text{fact}^{-1}(x_1)$</td>
<td>$x_3 := \Gamma(x_2)$</td>
<td>$x_4 := \text{rem}(x_3, x_2)$</td>
<td>$x_1, \ldots, x_4 \in \mathbb{N} \setminus {0}$ \iff $x \in {4} \cup {p! : p \in \mathcal{P}} = S_9$</td>
</tr>
<tr>
<td>\mathcal{F}_9</td>
<td>$x_2 := \text{fact}^{-1}(x_1)$</td>
<td>$x_3 := \text{fact}^{-1}(x_2)$</td>
<td>$x_4 := \Gamma(x_3)$</td>
<td>$x_1, \ldots, x_4 \in \mathbb{N} \setminus {0}$ \iff $x \in {(n!)! : n \in \mathbb{N} \setminus {0}} = S_{10}$</td>
</tr>
</tbody>
</table>

Table 1: 12 computations of length 4, $x_1 := x$, $x \in \mathbb{N} \setminus \{0\}$ □

Hypothesis. The statements Ψ_4, \ldots, Ψ_7 are true.
Lemma 6. For every positive integer x, the following computation B
\[
\begin{align*}
x_1 &:= x \\
x_2 &:= \Gamma(x_1) \\
x_3 &:= \text{rem}(x_2, x_1) \\
x_4 &:= \text{fact}^{-1}(x_3) \\
x_5 &:= \Gamma(x_4) \\
x_6 &:= \text{rem}(x_5, x_4)
\end{align*}
\]
returns positive integers x_1, \ldots, x_6 if and only if $x \in \{4\} \cup \{p! + 1 : p \in \mathcal{P}\} \cap \mathcal{P}$

Proof. For an integer $i \in \{1, \ldots, 6\}$, let B_i denote the set of positive integers x such that the first i instructions of the computation B returns positive integers x_1, \ldots, x_i. Since the computations A and B have the same first four instructions, the equality $B_i = A_i$ holds for every $i \in \{1, \ldots, 4\}$. In particular,
\[
B_4 = \{4\} \cup \{(n! + 1 : n \in \mathbb{N} \setminus \{0\}) \cap \mathcal{P}\}
\]
We show that
\[
B_6 = \{4\} \cup \{(p! + 1 : p \in \mathcal{P}) \cap \mathcal{P}\}
\]
If $x = 4$, then $x_1, \ldots, x_6 \in \mathbb{N} \setminus \{0\}$. Hence, $4 \in B_6$. Let $x \in \mathcal{P}$, and let $x = n! + 1$, where $n \in \mathbb{N} \setminus \{0\}$. Hence, $n \neq 4$. Corollary 2 implies that $x_3 = \text{rem}(\Gamma(x), x) = x - 1 = n!$. Hence, $x_4 = \text{fact}^{-1}(x_3) = n$ and $x_5 = \Gamma(x_4) = \Gamma(n) \in \mathbb{N} \setminus \{0\}$. By Lemma 2, the term x_6 (which equals $\text{rem}(\Gamma(n), n)$) belongs to $\mathbb{N} \setminus \{0\}$ if and only if $n \in \{4\} \cup \mathcal{P}$. This proves equality (2) as $n \neq 4$. \hfill \Box

Theorem 5. The statement Ψ_6 implies that for infinitely many primes p the number $p! + 1$ is prime.

Proof. The numbers 11 and 11! + 1 are prime, see [11, p. 441] and [7]. By Lemma 6 for $x = 11! + 1$ the computation B returns positive integers x_1, \ldots, x_6. Since $x = 11! + 1 > 6! = f(6)$, the statement Ψ_6 guarantees that the computation B returns positive integers x_1, \ldots, x_6 for infinitely many positive integers x. By Lemma 6, for infinitely many primes p the number $p! + 1$ is prime. \hfill \Box

Lemma 7. For every positive integer x, the following computation C
\[
\begin{align*}
x_1 &:= x \\
x_2 &:= \Gamma(x_1) \\
x_3 &:= \Gamma(x_2) \\
x_4 &:= \text{fact}^{-1}(x_3) \\
x_5 &:= \Gamma(x_4) \\
x_6 &:= \text{rem}(x_5, x_4)
\end{align*}
\]
returns positive integers x_1, \ldots, x_6 if and only if $(x - 1)! - 1$ is prime.

Proof. For an integer $i \in \{1, \ldots, 6\}$, let C_i denote the set of positive integers x such that the first i instructions of the computation C returns positive integers x_1, \ldots, x_i. If $x \in \{1, 2, 3\}$, then $x_6 = 0$. Therefore, $C_6 \subseteq \mathbb{N} \setminus \{0, 1, 2, 3\}$. By Lemma 5 for every integer $x \geq 4$, $x_4 = (x - 1)! - 1$, $x_5 = \Gamma((x - 1)! - 1)$, and $x_1, \ldots, x_5 \in \mathbb{N} \setminus \{0\}$. By Lemma 5 for every integer $x \geq 4$,
\[
x_6 = \text{rem}(\Gamma((x - 1)! - 1), (x - 1)! - 1)
\]
belongs to $\mathbb{N} \setminus \{0\}$ if and only if $(x - 1)! - 1 \in \{4\} \cup \mathcal{P}$. The last condition equivalently expresses that $(x - 1)! - 1$ is prime as $(x - 1)! - 1 \geq 5$ for every integer $x \geq 4$. Hence,
\[
C_6 = (\mathbb{N} \setminus \{0, 1, 2, 3\}) \cap \{x \in \mathbb{N} \setminus \{0, 1, 2, 3\} : (x - 1)! - 1 \in \mathcal{P}\} = \{x \in \mathbb{N} \setminus \{0\} : (x - 1)! - 1 \in \mathcal{P}\}
\]
\hfill \Box
obtain that

Hence, for every integer \(x \) if and only if both \(x \) and \(x+2 \) are prime.

Proof. For an integer \(i \in \{1, \ldots, 7\} \), let \(D_i \) denote the set of positive integers \(x \) such that the first \(i \) instructions of the computation \(D \) returns positive integers \(x_1, \ldots, x_i \). If \(x = 1 \), then \(x_3 = 0 \). Hence, \(D_1 \subseteq D_3 \subseteq \mathbb{N} \setminus \{0, 1\} \). If \(x \in \{2, 3, 4\} \), then \(x_7 = 0 \). Therefore,

\[
D_7 \subseteq (\mathbb{N} \setminus \{0, 1\}) \cap (\mathbb{N} \setminus \{0, 2, 3, 4\}) = \mathbb{N} \setminus \{0, 1, 2, 3, 4\}
\]

By Lemma 2, for every integer \(x \geq 5 \), the term \(x_3 \) (which equals \(\text{rem}(\Gamma(x), x) \)) belongs to \(\mathbb{N} \setminus \{0\} \) if and only if \(x \in \mathcal{P} \setminus \{2, 3\} \). By Corollary 2, for every \(x \in \mathcal{P} \setminus \{2, 3\} \), \(x_3 = x-1 \in \mathbb{N} \setminus \{0, 1, 2, 3\} \).

By Lemma 3, for every \(x \in \mathcal{P} \setminus \{2, 3\} \), the terms \(x_4 \) and \(x_5 \) belong to \(\mathbb{N} \setminus \{0\} \) and \(x_5 = x_3 - 1 = x - 2 \). By Lemma 2, for every \(x \in \mathcal{P} \setminus \{2, 3\} \), the term \(x_7 \) (which equals \(\text{rem}(\Gamma(x), x) \)) belongs to \(\mathbb{N} \setminus \{0\} \) if and only if \(x_5 = x - 2 \in \{4\} \cup \mathcal{P} \). From these facts, we obtain that

\[
D_7 = (\mathbb{N} \setminus \{0, 1, 2, 3, 4\}) \cap (\mathcal{P} \setminus \{2, 3\}) \cap (\{6\} \cup \{p+2 : p \in \mathcal{P}\}) = \{p \in \mathcal{P} : p - 2 \in \mathcal{P}\}
\]

\(\square \)

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [3] p. 39.

Theorem 7. The statement \(\Psi_7 \) implies that there are infinitely many twin primes.

Proof. Harvey Dubner proved that the numbers \(459 \cdot 2^{8529} - 1 \) and \(459 \cdot 2^{8529} + 1 \) are prime, see [8] p. 87. By Lemma 8, for \(x = 459 \cdot 2^{8529} + 1 \) the computation \(D \) returns positive integers \(x_1, \ldots, x_7 \). Since \(x > 720! = f(7) \), the statement \(\Psi_7 \) guarantees that the computation \(D \) returns positive integers \(x_1, \ldots, x_7 \) for infinitely many positive integers \(x \). By Lemma 8, there are infinitely many twin primes. \(\square \)
References

[1] C. K. Caldwell and Y. Gallot, *On the primality of \(n! \pm 1 \) and \(2 \times 3 \times 5 \times \cdots \times p \pm 1 \),* Math. Comp. 71 (2002), no. 237, 441–448.

Apoloniusz Tyszka
Technical Faculty
Hugo Kołłątaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl