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A common approach to the problem of the infinitude
of twin primes, primes of the form n! + 1, and primes

of the form n! − 1

Apoloniusz Tyszka

Abstract

For a positive integer x, let Γ(x) denote (x − 1)!. Let fact−1 : {1, 2, 6, 24, . . .} → N \ {0}
denote the inverse function to the factorial function. For positive integers x and y, let
rem(x, y) denote the remainder from dividing x by y. For a positive integer n, by a
computation of length n we understand any sequence of terms x1, . . . , xn such that x1 is
defined as the variable x, and for every integer i ∈ {2, . . . , n}, xi is defined as Γ(xi−1), or
fact−1(xi−1), or rem(xi−1, xi−2) (only if i > 3 and xi−1 is defined as Γ(xi−2)). Let f (4) = 3,
and let f (n + 1) = f (n)! for every integer n > 4. For an integer n > 4, let Ψn denote the
following statement: if a computation of length n returns positive integers x1, . . . , xn for at
most finitely many positive integers x, then every such x does not exceed f (n). We prove:
(1) the statement Ψ4 equivalently expresses that there are infinitely many primes of the
form n! + 1; (2) the statement Ψ6 implies that for infinitely many primes p the number
p! + 1 is prime; (3) the statement Ψ6 implies that there are infinitely many primes of the
form n! − 1; (4) the statement Ψ7 implies that there are infinitely many twin primes.

2010 Mathematics Subject Classification: 11A41, 68Q05.

Key words and phrases: computation of length n, prime numbers of the form n! + 1, prime
numbers of the form n! − 1, prime numbers p such that p! + 1 is prime, twin prime conjecture.

For a positive integer x, let Γ(x) denote (x − 1)!. Let fact−1 : {1, 2, 6, 24, . . .} → N \ {0}
denote the inverse function to the factorial function. For positive integers x and y, let rem(x, y)
denote the remainder from dividing x by y.

Definition. For a positive integer n, by a computation of length n we understand any sequence
of terms x1, . . . , xn such that x1 is defined as the variable x, and for every integer i ∈ {2, . . . , n},
xi is defined as Γ(xi−1), or fact−1(xi−1), or rem(xi−1, xi−2) (only if i > 3 and xi−1 is defined as
Γ(xi−2)).

Let f (4) = 3, and let f (n + 1) = f (n)! for every integer n > 4. For an integer n > 4, let Ψn

denote the following statement: if a computation of length n returns positive integers x1, . . . , xn

for at most finitely many positive integers x, then every such x does not exceed f (n).

Lemma 1. For every positive integer n, there are only finitely many computations of length n.

Theorem 1. For every integer n > 4, the statement Ψn is true with an unknown integer bound
that depends on n.

Proof. It follows from Lemma 1. �
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Let P denote the set of prime numbers.

Lemma 2. ([4, pp. 214–215]) . For every positive integer x, rem(Γ(x), x) ∈ N \ {0} if and only
if x ∈ {4} ∪ P.

Theorem 2. For every integer n > 4 and for every positive integer x, the following
computationH 

x1 := x
∀i ∈ {2, . . . , n − 3} xi := fact−1(xi−1)

xn−2 := Γ(xn−3)
xn−1 := Γ(xn−2)

xn := rem(xn−1, xn−2)

returns positive integers x1, . . . , xn if and only if x = f (n).

Proof. We make three observations.

Observation 1. If xn−3 = 3, then x1, . . . , xn−3 ∈ N \ {0} and x = x1 = f (n).
If x = f (n), then x1, . . . , xn−3 ∈ N \ {0} and xn−3 = 3.
Hence, xn−2 = Γ(xn−3) = 2 and xn−1 = Γ(xn−2) = 1. Therefore, xn = rem(xn−1, xn−2) = 1.

Observation 2. If xn−3 = 2, then x = x1 = . . . = xn−3 = 2.
If x = 2, then x1 = . . . = xn−3 = 2. Hence, xn−2 = Γ(xn−3) = 1 and xn−1 = Γ(xn−2) = 1.
Therefore, xn = rem(xn−1, xn−2) = 0 < N \ {0}.

Observation 3. If xn−3 = 1, then xn−2 = Γ(xn−3) = 1. Hence, xn−1 = Γ(xn−2) = 1.
Therefore, xn = rem(xn−1, xn−2) = 0 < N \ {0}.

Observations 1–3 cover the case when xn−3 ∈ {1, 2, 3}. If xn−3 > 4, then xn−2 = Γ(xn−3) is greater
than 4 and composite. By Lemma 2, xn = rem(xn−1, xn−2) = rem(Γ(xn−2), xn−2) = 0 < N \ {0}.

�

Corollary 1. For every integer n > 4, the bound f (n) in the statement Ψn cannot be decreased.

Lemma 3. (Wilson’s theorem, [2, p. 89]). For every positive integer x, x divides Γ(x) + 1 if and
only if x ∈ {1} ∪ P.

Corollary 2. If x ∈ P, then rem(Γ(x), x) = x − 1.

Lemma 4. For every positive integer x, the following computationA
x1 := x
x2 := Γ(x1)
x3 := rem(x2, x1)
x4 := fact−1(x3)

returns positive integers x1, . . . , x4 if and only if x = 4 or x is a prime number of the form n! + 1.

Proof. For an integer i ∈ {1, . . . , 4}, let Ai denote the set of positive integers x such that the first i
instructions of the computationA returns positive integers x1, . . . , xi. We show that

A4 = {4} ∪ ({n! + 1 : n ∈ N \ {0}} ∩ P) (1)

For every positive integer x, the terms x1 and x2 belong to N \ {0}. By Lemma 2, the term x3

(which equals rem(Γ(x), x)) belongs to N \ {0} if and only if x ∈ {4} ∪ P. Hence, A3 = {4} ∪ P.
If x = 4, then x1, . . . , x4 ∈ N \ {0}. Hence, 4 ∈ A4. If x ∈ P, then Corollary 2 implies
that x3 = rem(Γ(x), x) = x − 1 ∈ N \ {0}. Therefore, for every x ∈ P, the term x4 = fact−1(x3)
belongs to N \ {0} if and only if x ∈ {n! + 1 : n ∈ N \ {0}}. This proves equality (1). �
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It is conjectured that there are infinitely many primes of the form n! + 1, see [1, p. 443]
and [5].

Theorem 3. The statement Ψ4 implies that the set of primes of the form n! + 1 is infinite.

Proof. The number 3! + 1 = 7 is prime. By Lemma 4, for x = 7 the computation A returns
positive integers x1, . . . , x4. Since x = 7 > 3 = f (4), the statement Ψ4 guarantees that the
computation A returns positive integers x1, . . . , x4 for infinitely many positive integers x. By
Lemma 4, there are infinitely many primes of the form n! + 1. �

Lemma 5. If x ∈ N \ {0, 1}, then fact−1(Γ(x)) = x − 1.

Theorem 4. If the set of primes of the form n! + 1 is infinite, then the statement Ψ4 is true.

Proof. There exist 10 computations of length 4 that differ fromH andA. We claim that every
such computation F returns positive integers x1, . . . , x4 for infinitely many positive integers x.
We omit the easy proof (which uses Lemmas 2 and 5) as it is based on case analysis. �

Hypothesis. The statements Ψ4, . . . ,Ψ7 are true.

Lemma 6. For every positive integer x, the following computation B

x1 := x
x2 := Γ(x1)
x3 := rem(x2, x1)
x4 := fact−1(x3)
x5 := Γ(x4)
x6 := rem(x5, x4)

returns positive integers x1, . . . , x6 if and only if x ∈ {4} ∪ {p! + 1 : p ∈ P} ∩ P

Proof. For an integer i ∈ {1, . . . , 6}, let Bi denote the set of positive integers x such that the first i
instructions of the computation B returns positive integers x1, . . . , xi. Since the computationsA
and B have the same first four instructions, the equality Bi = Ai holds for every i ∈ {1, . . . , 4}.
In particular,

B4 = {4} ∪ ({n! + 1 : n ∈ N \ {0}} ∩ P)

We show that
B6 = {4} ∪ ({p! + 1 : p ∈ P} ∩ P) (2)

If x = 4, then x1, . . . , x6 ∈ N \ {0}. Hence, 4 ∈ B6. Let x ∈ P, and let x = n! + 1, where
n ∈ N \ {0}. Hence, n , 4. Corollary 2 implies that x3 = rem(Γ(x), x) = x − 1 = n!. Hence,
x4 = fact−1(x3) = n and x5 = Γ(x4) = Γ(n) ∈ N \ {0}. By Lemma 2, the term x6 (which equals
rem(Γ(n), n)) belongs to N \ {0} if and only if n ∈ {4} ∪ P. This proves equality (2) as n , 4. �

Theorem 5. The statement Ψ6 implies that for infinitely many primes p the number p! + 1 is
prime.

Proof. The numbers 11 and 11! + 1 are prime, see [1, p. 441] and [7]. By
Lemma 6, for x = 11! + 1 the computation B returns positive integers x1, . . . , x6. Since
x = 11! + 1 > 6! = f (6), the statement Ψ6 guarantees that the computation B returns positive
integers x1, . . . , x6 for infinitely many positive integers x. By Lemma 6, for infinitely many
primes p the number p! + 1 is prime. �
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Lemma 7. For every positive integer x, the following computation C

x1 := x
x2 := Γ(x1)
x3 := Γ(x2)
x4 := fact−1(x3)
x5 := Γ(x4)
x6 := rem(x5, x4)

returns positive integers x1, . . . , x6 if and only if (x − 1)! − 1 is prime.

Proof. For an integer i ∈ {1, . . . , 6}, let Ci denote the set of positive integers x such that the
first i instructions of the computation C returns positive integers x1, . . . , xi. If x ∈ {1, 2, 3}, then
x6 = 0. Therefore, C6 ⊆ N \ {0, 1, 2, 3}. By Lemma 5, for every integer x > 4, x4 = (x − 1)! − 1,
x5 = Γ((x − 1)! − 1), and x1, . . . , x5 ∈ N \ {0}. By Lemma 2, for every integer x > 4,

x6 = rem(Γ((x − 1)! − 1), (x − 1)! − 1)

belongs toN \ {0} if and only if (x − 1)! − 1 ∈ {4} ∪ P. The last condition equivalently expresses
that (x − 1)! − 1 is prime as (x − 1)! − 1 > 5 for every integer x > 4. Hence,

C6 = (N \ {0, 1, 2, 3})∩ {x ∈ N \ {0, 1, 2, 3} : (x− 1)!− 1 ∈ P} = {x ∈ N \ {0} : (x− 1)!− 1 ∈ P}

�

It is conjectured that there are infinitely many primes of the form n! − 1, see [1, p. 443]
and [6].

Theorem 6. The statement Ψ6 implies that there are infinitely many primes of the form x! − 1.

Proof. The number (975 − 1)! − 1 is prime, see [1, p. 441] and [6]. By Lemma 7, for
x = 975 the computation C returns positive integers x1, . . . , x6. Since x = 975 > 720 = f (6), the
statement Ψ6 guarantees that the computation C returns positive integers x1, . . . , x6 for infinitely
many positive integers x. By Lemma 7, the set {x ∈ N \ {0} : (x − 1)! − 1 ∈ P)} is infinite. �

Lemma 8. For every positive integer x, the following computationD

x1 := x
x2 := Γ(x1)
x3 := rem(x2, x1)
x4 := Γ(x3)
x5 := fact−1(x4)
x6 := Γ(x5)
x7 := rem(x6, x5)

returns positive integers x1, . . . , x7 if and only if both x and x − 2 are prime.

Proof. For an integer i ∈ {1, . . . , 7}, let Di denote the set of positive integers x such that the first i
instructions of the computation D returns positive integers x1, . . . , xi. If x = 1, then x3 = 0.
Hence, D7 ⊆ D3 ⊆ N \ {0, 1}. If x ∈ {2, 3, 4}, then x7 = 0. Therefore,

D7 ⊆ (N \ {0, 1}) ∩ (N \ {0, 2, 3, 4}) = N \ {0, 1, 2, 3, 4}
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By Lemma 2, for every integer x > 5, the term x3 (which equals rem(Γ(x), x)) belongs to N \ {0}
if and only if x ∈ P \ {2, 3}. By Corollary 2, for every x ∈ P \ {2, 3}, x3 = x − 1 ∈ N \ {0, 1, 2, 3}.
By Lemma 5, for every x ∈ P \ {2, 3}, the terms x4 and x5 belong to N \ {0} and
x5 = x3 − 1 = x − 2. By Lemma 2, for every x ∈ P \ {2, 3}, the term x7 (which equals
rem(Γ(x5), x5)) belongs to N \ {0} if and only if x5 = x − 2 ∈ {4} ∪ P. From these facts, we
obtain that

D7 = (N \ {0, 1, 2, 3, 4}) ∩ (P \ {2, 3}) ∩ ({6} ∪ {p + 2 : p ∈ P}) = {p ∈ P : p − 2 ∈ P}

�

A twin prime is a prime number that is either 2 less or 2 more than another prime number.
The twin prime conjecture states that there are infinitely many twin primes, see [3, p. 39].

Theorem 7. The statement Ψ7 implies that there are infinitely many twin primes.

Proof. Harvey Dubner proved that the numbers 459 · 28529 − 1 and 459 · 28529 + 1 are prime,
see [8, p. 87]. By Lemma 8, for x = 459 · 28529 + 1 the computationD returns positive integers
x1, . . . , x7. Since x > 720! = f (7), the statement Ψ7 guarantees that the computation D returns
positive integers x1, . . . , x7 for infinitely many positive integers x. By Lemma 8, there are
infinitely many twin primes. �
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