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THE PREDICATE OF THE CURRENT MATHEMATICAL KNOWLEDGE
SUBSTANTIALLY INCREASES THE CONSTRUCTIVE AND INFORMAL

MATHEMATICS AND WHY IT CANNOT BE ADAPTED TO ANY
EMPIRICAL SCIENCE

APOLONIUSZ TYSZKA

Abstract. We assume that the current mathematical knowledge K is a finite set of
statements in the public domain which is time-dependent. This set exists only theoretically.
IgnoringK and its subsets, sets exist formally in ZFC theory although their properties can
be time-dependent (when they depend onK) or informal. In every branch of mathematics,
the set of all knowable truths is the set of all theorems. This set exists independently
of K . Algorithms always terminate. We explain the distinction between algorithms whose
existence is provable in ZFC and constructively defined algorithms which are currently
known. By using this distinction, we obtain non-trivial statements on decidable setsX ⊆ N
that belong to constructive and informal mathematics and refer to the current mathematical
knowledge on X. This and the next sentence justify the article title. For any empirical
science, we can identify the current knowledge with that science because truths from the
empirical sciences are not necessary truths but working models of truth from a particular
context.
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1. Introduction and why such title of the article

This article is a continuation of [16]–[18]. The main mathematical results of this
article were presented at the 25th Conference Applications of Logic in Philosophy and the
Foundations of Mathematics, see http://applications-of-logic.uni.wroc.pl/
XXV-Konferencja-Zastosowania-Logiki-w-Filozofii-i-Podstawach-Matematyki.
We assume that the current mathematical knowledge K is a finite set of statements in the
public domain which is time-dependent. This set exists only theoretically. Ignoring K
and its subsets, sets exist formally in ZFC theory although their properties can be
time-dependent (when they depend on K) or informal. In every branch of mathematics,
the set of all knowable truths is the set of all theorems. This set exists independently
of K . Algorithms always terminate. We explain the distinction between algorithms whose
existence is provable in ZFC and constructively defined algorithms which are currently
known. By using this distinction, we obtain non-trivial statements on decidable setsX ⊆ N
that belong to constructive and informal mathematics and refer to the current mathematical
knowledge on X. This and the next sentence justify the article title. For any empirical
science, we can identify the current knowledge with that science because truths from the
empirical sciences are not necessary truths but working models of truth from a particular
context, see [19, p. 610].
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2. Summary of the main mathematical results

For a set X ⊆ N whose infiniteness is false or unproven, we define which elements of X
are classified as known. No known set X ⊆ N satisfies Conditions (1)-(4) and is widely
known in number theory or naturally defined, where this term has only informal meaning.

(1) A known algorithm with no input returns an integer n satisfying card(X) < ω⇒
X ⊆ (−∞, n].
(2) A known algorithm for every k ∈ N decides whether or not k ∈ X.
(3) No known algorithm with no input returns the logical value of the statement
card(X) = ω.
(4) There are many elements of X and it is conjectured, though so far unproven, that X is
infinite.
(5) X is naturally defined. The infiniteness of X is false or unproven. X has the simplest
definition among known sets Y ⊆ N with the same set of known elements.

We prove that the set

X = {n ∈ N : the interval [−1, n] contains more than
11!

3n + 1
· sin(n) primes o f the f orm k! + 1}

satisfies Conditions (1)-(5) except the requirement that X is naturally defined. If we add
to X some setW satisfying 14 6 card(W) 6 23, then the following statements hold:
X does not satisfy Condition (1),
159827 + 14 6 card(X),
the above lower bound is currently the best known,
card(X) < ω⇒ card(X) 6 159827 + 23,
the above upper bound is currently the best known,
X satisfies Conditions (2)-(5) except the requirement that X is naturally defined.

We present a table that shows satisfiable conjunctions of the form

#(Condition 1) ∧ (Condition 2) ∧ #(Condition 3) ∧ (Condition 4) ∧ #(Condition 5)

where # denotes the negation ¬ or the absence of any symbol.

3. Basic definitions and examples

Algorithms always terminate. Semi-algorithms may not terminate. There is the
distinction between existing algorithms (i.e. algorithms whose existence is provable in
ZFC) and known algorithms (i.e. algorithms whose definition is constructive and currently
known), see [2], [10], [12, p. 9]. A definition of an integer n is called constructive, if it
provides a known algorithm with no input that returns n. Definition 1 applies to setsX ⊆ N
whose infiniteness is false or unproven.

Definition 1. We say that a non-negative integer k is a known element of X, if k ∈ X and
we know an algebraic expression that defines k and consists of the following signs: 1 (one),
+ (addition), − (subtraction), · (multiplication), ˆ (exponentiation with exponent in N),
! (factorial of a non-negative integer), ( (left parenthesis), ) (right parenthesis).

The set of known elements of X is finite and time-dependent, so cannot be defined in
the formal language of classical mathematics. Let t denote the largest twin prime that is
smaller than ((((((((9!)!)!)!)!)!)!)!)!. The number t is an unknown element of the set of twin
primes.
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Definition 2. Conditions (1)-(5) concern sets X ⊆ N.
(1) A known algorithm with no input returns an integer n satisfying card(X) < ω⇒
X ⊆ (−∞, n].
(2) A known algorithm for every k ∈ N decides whether or not k ∈ X.
(3) No known algorithm with no input returns the logical value of the statement
card(X) = ω.
(4) There are many elements of X and it is conjectured, though so far unproven, that X is
infinite.
(5) X is naturally defined. The infiniteness of X is false or unproven. X has the simplest
definition among known sets Y ⊆ N with the same set of known elements.

Condition (3) implies that no known proof shows the finiteness/infiniteness of X. No
known set X ⊆ N satisfies Conditions (1)-(4) and is widely known in number theory or
naturally defined, where this term has only informal meaning.

Let [·] denote the integer part function.

Example 1. The set X =

{
N, if [ ((((((((9!)!)!)!)!)!)!)!)!

π
] is odd

∅, otherwise
does not satisfy

Condition (3) because we know an algorithm with no input that computes
[ ((((((((9!)!)!)!)!)!)!)!)!

π
]. The set of known elements of X is empty. Hence, Condition (5)

fails for X.

Example 2. ([2], [10], [12, p. 9]). The function

N 3 n
h
−→

{
1, i f the decimal expansion o f π contains n consecutive zeros
0, otherwise

is computable because h = N × {1} or there exists k ∈ N such that

h = ({0, . . . , k} × {1}) ∪ ({k + 1, k + 2, k + 3, . . .} × {0})

No known algorithm computes the function h.

Example 3. The set

X =

{
N, i f the continuum hypothesis holds
∅, otherwise

is decidable. ThisX satisfies Conditions (1) and (3) and does not satisfy Conditions (2),
(4), and (5). These facts will hold forever.

4. Number-theoretic results

Edmund Landau’s conjecture states that the set Pn2+1 of primes of the form n2 + 1 is
infinite, see [14], [15], [21].

Statement 1. Condition (1) remains unproven for X = Pn2+1.

Proof. For every set X ⊆ N, there exists an algorithm Alg(X) with no input that returns

n =

{
0, if card(X) ∈ {0, ω}

max(X), otherwise

This n satisfies the implication in Condition (1), but the algorithm Alg(Pn2+1) is unknown
because its definition is ineffective. �
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Statement 2. The statement

∃n ∈ N (card(Pn2+1) < ω⇒ Pn2+1 ⊆ [2, n + 3])

remains unproven in ZFC and classical logic without the law of excluded middle.

Let f (1) = 106, and let f (n + 1) = f (n) f (n) for every positive integer n.

Statement 3. The set

X = {k ∈ N : (106 < k)⇒ ( f (106), f (k)) ∩ Pn2+1 , ∅}

satisfies Conditions (1)-(4). Condition (5) fails for X.

Proof. Condition (4) holds as X ⊇ {0, . . . , 106} and the set Pn2+1 is conjecturally infinite.
Due to known physics we are not able to confirm by a direct computation that some element
of Pn2+1 is greater than f (106), see [7]. Thus Condition (3) holds. Condition (2) holds
trivially. Since the set

{k ∈ N : (106 < k) ∧ ( f (106), f (k)) ∩ Pn2+1 , ∅}

is empty or infinite, Condition (1) holds with n = 106. Condition (5) fails as the set of
known elements of X equals {0, . . . , 106}. �

Statements 4 and 7 provide stronger examples.

Conjecture 1. ([1, p. 443], [4]). The are infinitely many primes of the form k! + 1.

For a non-negative integer n, let ρ(n) denote 29.5 + 11!
3n + 1 · sin(n).

Statement 4. The set

X = {n ∈ N : the interval [−1, n] contains more than ρ(n) primes o f the f orm k! + 1}

satisfies Conditions (1)-(5) except the requirement that X is naturally defined.
501893 ∈ X. Condition (1) holds with n = 501893. card(X ∩ [0, 501893]) = 159827.
X ∩ [501894,∞) = {n ∈ N : the interval [−1, n] contains at least 30 primes o f the f orm
k! + 1}.

Proof. For every integer n > 11!, 30 is the smallest integer greater than ρ(n). By
this, if n ∈ X ∩ [11!,∞), then n + 1, n + 2, n + 3, . . . ∈ X. Hence, Condition (1) holds
with n = 11! − 1. We explicitly know 24 positive integers k such that k! + 1 is prime,
see [3]. The inequality card({k ∈ N \ {0} : k! + 1 is prime}) > 24 remains unproven. Since
24 < 30, Condition (3) holds. The interval [−1, 11! − 1] contains exactly three primes
of the form k! + 1: 1! + 1, 2! + 1, 3! + 1. For every integer n > 503000, the inequality
ρ(n) > 3 holds. Therefore, the execution of the following MuPAD code

m:=0:
for n from 0.0 to 503000.0 do
if n<1!+1 then r:=0 end_if:
if n>=1!+1 and n<2!+1 then r:=1 end_if:
if n>=2!+1 and n<3!+1 then r:=2 end_if:
if n>=3!+1 then r:=3 end_if:
if r>29.5+(11!/(3*n+1))*sin(n) then
m:=m+1:
print([n,m]):
end_if:
end_for:
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displays the all known elements of X. The output ends with the line [501893.0, 159827],
which proves Condition (1) with n = 501893 and Condition (4) with card(X) > 159827.

�

T. Nagell proved in [8] (cf. [13, p. 104]) that the equation x2 − 17 = y3 has exactly
16 integer solutions, namely (±3,−2), (±4,−1), (±5, 2), (±9, 4), (±23, 8), (±282, 43),
(±375, 52), (±378661, 5234). The set ⋃

(x, y) ∈ Z × Z
(x2 − y3 − 17) · (y2 − x3 − 17) = 0

{(x + 8)8}

has exactly 23 elements. Among them, there are 14 integers from the interval
[1, 2199894223892]. LetW denote the set⋃

(x, y) ∈ Z × Z
(x2 − y3 − 17) · (y2 − x3 − 17) = 0

{k ∈ N : k is the (x + 8)8 − th element o f Pn2+1}

From [15], it is known that card(Pn2+1 ∩ [2, 1028)) = 2199894223892. Hence,
card(W∩ [2, 1028)) = 14 and 14 elements of W can be practically computed. The
inequality card(P(n2 + 1)) > (378661 + 8)8 remains unproven. The last two sentences and
Statement 4 imply the following corollary.

Corollary 1. If we addW to X, then the following statements hold:
X does not satisfy Condition (1),
159827 + 14 6 card(X),
the above lower bound is currently the best known,
card(X) < ω⇒ card(X) 6 159827 + 23,
the above upper bound is currently the best known,
X satisfies Conditions (2)-(5) except the requirement that X is naturally defined.

Definition 3. Conditions (1a)-(5a) concern sets X ⊆ N.
(1a) A known algorithm with no input returns a positive integer n satisfying
card(X) < ω⇒X ⊆ (−∞, n].
(2a) A known algorithm for every k ∈ N decides whether or not k ∈ X.
(3a) No known algorithm with no input returns the logical value of the statement
card(X) < ω.
(4a) There are many elements of X and it is conjectured, though so far unproven, that X
is finite.
(5a) X is naturally defined. The finiteness of X is false or unproven. X has the simplest
definition among known sets Y ⊆ N with the same set of known elements.

Statement 5. The set

X =
{
n ∈ N : the interval [−1, n] contains more than

6.5 +
106

3n + 1
· sin(n) squares o f the f orm k! + 1

}
satisfies Conditions (1a)-(5a) except the requirement that X is naturally defined.
95151 ∈ X. Condition (1a) holds with n = 95151. card(X ∩ [0, 95151]) = 30311.
X ∩ [95152,∞) = {n ∈ N : the interval [−1, n] contains at least 7 squares o f the f orm
k! + 1}.
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Proof. For every integer n > 106, 7 is the smallest integer greater than 6.5 + 106

3n+1 · sin(n).
By this, if n ∈ X ∩ (106,∞), then n + 1, n + 2, n + 3, . . . ∈ X. Hence, Condition (1a)
holds with n = 106. It is conjectured that k! + 1 is a square only for k ∈ {4, 5, 7}, see
[20, p. 297]. Hence, the inequality card({k ∈ N \ {0} : k! + 1 is a square}) > 3 remains
unproven. Since 3 < 7, Condition (3a) holds. The interval [−1, 106] contains exactly
three squares of the form k! + 1: 4! + 1, 5! + 1, 7! + 1. Therefore, the execution of the
following MuPAD code

m:=0:
for n from 0.0 to 1000000.0 do
if n<25 then r:=0 end_if:
if n>=25 and n<121 then r:=1 end_if:
if n>=121 and n<5041 then r:=2 end_if:
if n>=5041 then r:=3 end_if:
if r>6.5+(1000000/(3*n+1))*sin(n) then
m:=m+1:
print([n,m]):
end_if:
end_for:

displays the all known elements of X. The output ends with the line [95151.0, 30311],
which proves Condition (1a) with n = 95151 and Condition (4a) with card(X) > 30311.

�

Statement 6. The set

X = {k ∈ N : card([−1, k] ∩ Pn2+1) < 1010000}

satisfies the conjunction

¬(Condition 1a) ∧ (Condition 2a) ∧ (Condition 3a) ∧ (Condition 4a) ∧ (Condition 5a)

To formulate Statement 7 and its proof, we need some lemmas. For a non-negative

integer n, let θ(n) denote the largest integer divisor of 101010
smaller than n. For a

non-negative integer n, let θ1(n) denote the largest integer divisor of 1010 smaller than n.

Lemma 1. For every integer j > 101010
, θ( j) = 101010

. For every integer j > 1010,
θ1( j) = 1010.

Lemma 2. For every integer j ∈ (6553600, 7812500], θ( j) = 6553600.

Proof. 6553600 equals 218 · 52 and divides 101010
. 7812500 < 224. 7812500 < 510.

We need to prove that every integer j ∈ (6553600, 7812500) does not divide 101010
. It

holds as the set {
2u · 5v : (u ∈ {0, . . . , 23}) ∧ (v ∈ {0, . . . , 9})

}
contains 6553600 and 7812500 as consecutive elements. �
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Lemma 3. The number 65536002 + 1 is prime.

Proof. The following PARI/GP ([9]) command
isprime(6553600^2+1,{flag=2})

returns 1. This command performs the APRCL primality test, the best deterministic
primality test algorithm ([22, p. 226]). It rigorously shows that the number 65536002 + 1
is prime. �

In the next lemmas, the execution of the command isprime(n,{flag=2}) proves the
primality of n. Let κ denote the function

N 3 n
κ
−→ the exponent o f 2 in the prime f actorization o f n + 1︸︷︷︸ ∈ N

Lemma 4. The set X1 = {n ∈ N : (θ1(n) + κ(n))2 + 1 is prime} is infinite.

Proof. Let i = 142101504. By the inequality 2i > 2 + 1010 and Lemma 1, for every
non-negative integer m, the number(

θ1

(
2i · (2m + 1) − 1

)
+ κ

(
2i · (2m + 1) − 1

))2
+ 1 =

(
1010 + i

)2
+ 1

is prime. �

Before Open Problem 1, X denotes the set {n ∈ N : (θ(n) + κ(n))2 + 1 is prime}.

Lemma 5. For every n ∈ X ∩
(
101010

,∞

)
and for every non-negative integer j,

3 j · (n + 1) − 1 ∈ X ∩
(
101010

,∞

)
.

Proof. By the inequality 3 j · (n + 1) − 1 > n and Lemma 1,

θ
(
3 j · (n + 1) − 1

)
+ κ

(
3 j · (n + 1) − 1

)
= 101010

+ κ(n) = θ(n) + κ(n)

�

Lemma 6. card(X) > 629450.

Proof. By Lemmas 2 and 3, for every even integer j ∈ (6553600, 7812500], the number
(θ( j) + κ( j))2 + 1 = (6553600 + 0)2 + 1 is prime. Hence,

{2k : k ∈ N} ∩ (6553600, 7812500] ⊆ X

Consequently,

card(X) > card({2k : k ∈ N} ∩ (6553600, 7812500]) =
7812500 − 6553600

2
= 629450

�

Lemma 7. 10242 ∈ X and 10242 < X1.

Proof. The number 10240 = 211 · 5 divides 101010
. Hence, θ(10242) = 10240. The

number (θ(10242) + κ(10242))2 + 1 = (10240 + 0)2 + 1 is prime. The set{
2u · 5v : (u ∈ {0, . . . , 10}) ∧ (v ∈ {0, . . . , 10})

}
contains 10000 and 12500 as consecutive elements. Hence, θ1(10242) = 10000. The
number (θ1(10242) + κ(10242))2 + 1 = (10000 + 0)2 + 1 = 17 · 5882353 is composite. �
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Statement 7. The set X satisfies Conditions (1)-(5) except the requirement that X is
naturally defined.

Proof. Condition (2) holds trivially. Let δ denote 101010
. By Lemma 5, Condition (1)

holds for n = δ. Lemma 5 and the unproven statement Pn2+1 ∩
[
δ2 + 1,∞

)
, ∅ show

Condition (3). The same argument and Lemma 6 yield Condition (4). By Lemma 4,
the set X1 is infinite. Since Definition 1 applies to sets X ⊆ N whose infiniteness is false
or unproven, Condition (5) holds except the requirement that X is naturally defined. �

The set X satisfies Condition (5) except the requirement that X is naturally defined.
It is true because X1 is infinite by Lemma 4 and Definition 1 applies only to sets X ⊆ N
whose infiniteness is false or unproven. Ignoring this restriction, X still satisfies the same
identical condition due to Lemma 7.

Proposition 1. No set X ⊆ N will satisfy Conditions (1)-(4) forever, if for every
algorithm with no input, at some future day, a computer will be able to execute this
algorithm in 1 second or less.

Proof. The proof goes by contradiction. We fix an integer n that satisfies Condition (1).
Since Conditions (1)-(3) will hold forever, the semi-algorithm in Figure 1 never
terminates and sequentially prints the following sentences:

(T) n + 1 < X, n + 2 < X, n + 3 < X, . . .

Figure 1 Semi-algorithm that terminates if and only if X is infinite

The sentences from the sequence (T) and our assumption imply that for every integer
m > n computed by a known algorithm, at some future day, a computer will be able to
confirm in 1 second or less that (n,m] ∩ X = ∅. Thus, at some future day, numerical
evidence will support the conjecture that the set X is finite, contrary to the conjecture
in Condition (4). �

The physical limits of computation ([7]) disprove the assumption of Proposition 1.
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Open Problem 1. Is there a set X ⊆ N which satisfies Conditions (1)-(5)?

Open Problem 1 asks about the existence of a year t > 2023 in which the conjunction

(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ (Condition 5)

will hold for some X ⊆ N. For every year t > 2023 and for every i ∈ {1, 2, 3}, a positive
solution to Open Problem i in the year t may change in the future. Currently, the answers
to Open Problems 1–5 are negative.

5. Satisfiable conjunctions which consist of Conditions (1)-(5) and their negations

The set X = Pn2+1 satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ (Condition 5)

The set X = {0, . . . , 106} ∪ Pn2+1 satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

The numbers 22k
+ 1 are prime for k ∈ {0, 1, 2, 3, 4}. It is open whether or not there

are infinitely many primes of the form 22k
+ 1, see [6, p. 158] and [11, p. 74]. It is open

whether or not there are infinitely many composite numbers of the form 22k
+ 1, see

[6, p. 159] and [11, p. 74]. Most mathematicians believe that 22k
+ 1 is composite for

every integer k > 5, see [5, p. 23]. The set

X =

 N, i f 22 f (99)
+ 1 is composite

{0, . . . , 106}, otherwise

satisfies the conjunction

(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

Open Problem 2. Is there a set X ⊆ N that satisfies the conjunction

(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ (Condition 5)?

The set

X =


N, i f 22 f (99)

+ 1 is composite
{0, . . . , 106}∪

{n ∈ N : n is the sixth prime number o f the f orm 22k
+ 1}, otherwise

satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

Open Problem 3. Is there a set X ⊆ N that satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ (Condition 5)?

It is possible, although very doubtful, that at some future day, the set X = Pn2+1 will
solve Open Problem 2. The same is true for Open Problem 3. It is possible, although very

doubtful, that at some future day, the set X = {k ∈ N : 22k
+ 1 is composite} will solve

Open Problem 1. The same is true for Open Problems 2 and 3.

Table 1 shows satisfiable conjunctions of the form

#(Condition 1) ∧ (Condition 2) ∧ #(Condition 3) ∧ (Condition 4) ∧ #(Condition 5)

where # denotes the negation ¬ or the absence of any symbol.
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Table 1 Five satisfiable conjunctions

Definition 4. We say that an integer n is a threshold number of a set X ⊆ N, if
card(X) < ω⇒ X ⊆ (−∞, n].

If a set X ⊆ N is empty or infinite, then any integer n is a threshold number of X. If
a set X ⊆ N is non-empty and finite, then the all threshold numbers of X form the set
[max(X),∞) ∩ N.

Open Problem 4. Is there a known threshold number of Pn2+1?

Open Problem 4 asks about the existence of a year t > 2023 in which the implication
card(Pn2+1) < ω⇒ Pn2+1 ⊆ (−∞, n] will hold for some known integer n.

Let T denote the set of twin primes.

Open Problem 5. Is there a known threshold number of T ?

Open Problem 5 asks about the existence of a year t > 2023 in which the implication
card(T ) < ω⇒ T ⊆ (−∞, n] will hold for some known integer n.
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