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The physical limits of computation inspire an open problem that
concerns abstract computable sets X ⊆ N and cannot be formal-
ized in the set theory ZFC as it refers to our current knowledge
on X

Sławomir Kurpaska, Apoloniusz Tyszka

Abstract. Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2.
Edmund Landau’s conjecture states that the set Pn2+1 of primes of the form
n2 + 1 is infinite. Landau’s conjecture implies the following unproven statement Φ:
card(Pn2+1) < ω⇒ Pn2+1 ⊆ [2, f (7)]. Let B denote the system of equations:

{
xi! = xk : i, k ∈

{1, . . . , 9}
}
∪
{
xi · x j = xk : i, j, k ∈ {1, . . . , 9}

}
. We write down a systemU ⊆ B of 9 equations

which has exactly two solutions in positive integers, namely (1, . . . , 1) and ( f (1), . . . , f (9)).
Let Ψ denote the statement: if a system S ⊆ B has at most finitely many solutions in positive
integers x1, . . . , x9, then each such solution (x1, . . . , x9) satisfies x1, . . . , x9 6 f (9). We write
down a system A ⊆ B of 8 equations. Theorem 1. The statement Ψ restricted to the sys-
tem A is equivalent to the statement Φ. Open Problem. Is there a set X ⊆ N that satisfies
conditions (1)�(5)? (1) There are many elements of X and it is conjectured that X is infi-
nite. (2) No known algorithm decides the finiteness/infiniteness of X. (3) There is a known
algorithm that for every k ∈ N decides whether or not k ∈ X. (4) There is a known algorithm
that computes an integer n satisfying card(X) < ω⇒ X ⊆ (−∞, n]. (5) There is a naturally
defined condition C, which can be formalized in ZFC, such that for almost all k ∈ N, k sat-
isfies the condition C if and only if k ∈ X. The simplest known such condition C defines in N
the set X. We define a set X ⊆ N. We prove: (i) the set X satisfies conditions (1)�(5)

except the requirement that X is naturally defined; (ii) the statement Φ implies that the
set X = {1} ∪ Pn2+1 satisfies conditions (1)�(5). Proving Landau’s conjecture will disprove
the statements (i) and (ii). Theorem 2. No set X ⊆ N will satisfy conditions (1)�(4)

forever, if for every algorithm with no inputs that operates on integers, at some future day,
a computer will be able to execute this algorithm in 1 second or less. Physics disproves the
assumption of Theorem 2.
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1. Basic definitions and the philosophical goal of the article
Logicism is a programme in the philosophy of mathematics. It is mainly character-
ized by the contention that mathematics can be reduced to logic, provided that the
latter includes set theory, see [3, p. 199].

Definition 1. Conditions (1)�(5) concern sets X ⊆ N.

(1) There are many elements of X and it is conjectured that X is infinite.

(2) No known algorithm decides the finiteness/infiniteness of X.

(3) There is a known algorithm that for every k ∈ N decides whether or not k ∈ X.

(4) There is a known algorithm that computes an integer n satisfying
card(X) < ω⇒ X ⊆ (−∞, n].

(5) There is a naturally defined condition C, which can be formalized in ZFC, such
that for almost all k ∈ N, k satisfies the condition C if and only if k ∈ X. The simplest
known such condition C defines in N the set X.

Condition (5) excludes artificially defined sets X from Statements 2 and 3.

Definition 2. We say that an integer n is a threshold number of a set X ⊆ N, if
card(X) < ω⇒ X ⊆ (−∞, n], cf. [7] and [8].

If a set X ⊆ N is empty or infinite, then any integer n is a threshold number
of X. If a set X ⊆ N is non-empty and finite, then the all threshold numbers of X
form the set [max(X),∞) ∩ N.

Edmund Landau’s conjecture states that the set Pn2+1 of primes of the form
n2 + 1 is infinite, see [4]–[6].

Definition 3. Let Φ denote the following unproven statement:

card(Pn2+1) < ω⇒ Pn2+1 ⊆ (−∞, (((24!)!)!)!]

Landau’s conjecture implies the statement Φ. In Section 4, we heuristically
justify the statement Φ without invoking Landau’s conjecture.

Statement 1. No known algorithm computes an integer k such that

card(Pn2+1) < ω⇒ Pn2+1 ⊆ (−∞, k]

Proving the statement Φ will disprove Statement 1. Statement 1 cannot be
formalized in ZFC because it refers to the current mathematical knowledge. The
same is true for Statements 2–4 and Open Problem 1 in the next sections. It argues
against logicism as Open Problem 1 concerns abstract computable sets X ⊆ N.
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2. The physical limits of computation inspire Open Problem 1
Definition 4. Let β = (((24!)!)!)!.

Lemma 1. log2(log2(log2(log2(log2(log2(log2(β))))))) ≈ 1.42298.

Proof. We ask Wolfram Alpha at http://wolframalpha.com. �

Statement 2. The set

X = {k ∈ N : (β < k)⇒ (β, k) ∩ Pn2+1 , ∅}

satisfies conditions (1)�(4).

Proof. Condition (1) holds as X ⊇ {0, . . . , β} and the set Pn2+1 is conjecturally infi-
nite. By Lemma 1, due to known physics we are not able to confirm by a direct com-
putation that some element of Pn2+1 is greater than β, see [2]. Thus condition (2)
holds. Condition (3) holds trivially. Since the set

{k ∈ N : (β < k) ∧ (β, k) ∩ Pn2+1 , ∅}

is empty or infinite, the integer β is a threshold number of X. Thus condition (4)
holds. �

Let [·] denote the integer part function. For a non-negative integer n, let g(n)
denote the number of positive integers k such that 2k divides 2β ·

[
n
β

]
and n > β.

Lemma 2. The function g : N→ N satisfies g(0) = . . . = g(β − 1) = 0 and maps
N ∩ [β,∞) onto itself taking every value in N ∩ [β,∞) infinitely many times.

Statement 3. The set

X =
{
n ∈ N : g(n)2 + 1 has no divisors greater than 1 and smaller than g(n)2 + 1

}
satisfies conditions (1)�(5) except the requirement that X is naturally defined.

Proof. We use Lemma 2 and argue as in the proof of Statement 2. �

Proving Landau’s conjecture will disprove Statements 2 and 3.

Open Problem 1. Is there a set X ⊆ N that satisfies conditions (1)�(5)?

Theorem 1. No set X ⊆ N will satisfy conditions (1)-(4) forever, if for every
algorithm with no inputs that operates on integers, at some future day, a computer
will be able to execute this algorithm in 1 second or less.

Proof. The proof goes by contradiction. Since conditons (2)�(4) will hold forever,
the algorithm in Figure 1 never terminates and sequentially prints the following
sentences:

n + 1 < X, n + 2 < X, n + 3 < X, . . . (T)

http://wolframalpha.com
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Yes

No

Start

k := 1

Is
n+k ∈ X?

Print "n + k < X"

Print "The set X is infinite"

k := k + 1Stop

Fig. 1 An algorithm whose execution never terminates if the set X is finite

The sentences from the sequence (T) and our assumption imply that for every in-
teger m > n computed by a known algorithm, at some future day, a computer will
be able to confirm in 1 second or less that (n,m] ∩ X = ∅. Thus, at some future day,
numerical evidence will support the conjecture that the set X is finite, contrary to
the conjecture in condition (1). �

Physics disproves the assumption of Theorem 1.

3. Number-theoretic statements Ψn

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. LetU1 de-
note the system of equations which consists of the equation x1! = x1. For an integer
n > 2, letUn denote the following system of equations:

x1! = x1
x1 · x1 = x2

∀i ∈ {2, . . . , n − 1} xi! = xi+1

The diagram in Figure 2 illustrates the construction of the systemUn.

!
x1

squaring x2 ! x3 . . . xn−1 ! xn

Fig. 2 Construction of the systemUn

Lemma 3. For every positive integer n, the systemUn has exactly two solutions in
positive integers, namely (1, . . . , 1) and ( f (1), . . . , f (n)).



5

Let Bn denote the following system of equations:{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪
{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
For a positive integer n, let Ψn denote the following statement: if a system of equa-
tions S ⊆ Bn has at most finitely many solutions in positive integers x1, . . . , xn, then
each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 f (n). The statement Ψn says
that for subsystems of Bn with a finite number of solutions, the largest known solu-
tion is indeed the largest possible. The statements Ψ1 and Ψ2 hold trivially. There is
no reason to assume the validity of the statement ∀n ∈ N \ {0} Ψn.

Theorem 2. For every statement Ψn, the bound f (n) cannot be decreased.

Proof. It follows from Lemma 3 becauseUn ⊆ Bn. �

Theorem 3. For every integer n > 2, the statement Ψn+1 implies the statement Ψn.

Proof. If a system S ⊆ Bn has at most finitely many solutions in positive integers
x1, . . . , xn, then for every integer i ∈ {1, . . . , n} the system S ∪ {xi! = xn+1} has at
most finitely many solutions in positive integers x1, . . . , xn+1. The statement Ψn+1
implies that xi! = xn+1 6 f (n + 1) = f (n)!. Hence, xi 6 f (n). �

Theorem 4. Every statement Ψn is true with an unknown integer bound that de-
pends on n.

Proof. For every positive integer n, the system Bn has a finite number of subsystems.
�

4. A conjectural solution to Open Problem 1
Lemma 4. For every positive integers x and y, x! · y = y! if and only if

(x + 1 = y) ∨ (x = y = 1)

Lemma 5. (Wilson’s theorem, [1, p. 89]). For every integer x > 2, x is prime if and
only if x divides (x − 1)! + 1.

LetA denote the following system of equations:

x2! = x3
x3! = x4
x5! = x6
x8! = x9

x1 · x1 = x2
x3 · x5 = x6
x4 · x8 = x9
x5 · x7 = x8

Lemma 4 and the diagram in Figure 3 explain the construction of the systemA.
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x1
squaring x2 +1

or x2 = x5 = 1

x5

!

x6
!

x3

!

x4

+1
or x3 = x8 = 1

x8

!

x9

x5 · x7 = x8x3 · x5 = x6

x4 · x8 = x9

Fig. 3 Construction of the systemA

Lemma 6. For every integer x1 > 2, the system A is solvable in positive integers
x2, . . . , x9 if and only if x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are
uniquely determined by the following equalities:

x2 = x2
1

x3 = (x2
1)!

x4 = ((x2
1)!)!

x5 = x2
1 + 1

x6 = (x2
1 + 1)!

x7 =
(x2

1)! + 1
x2

1 + 1
x8 = (x2

1)! + 1
x9 = ((x2

1)! + 1)!

Proof. By Lemma 4, for every integer x1 > 2, the system A is solvable in posi-
tive integers x2, . . . , x9 if and only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of

Lemma 6 follows from Lemma 5. �

Lemma 7. There are only finitely many tuples (x1, . . . , x9) ∈ (N \ {0})9, which solve
the systemA and satisfy x1 = 1. This is true as every such tuple (x1, . . . , x9) satisfies
x1, . . . , x9 ∈ {1, 2}.

Proof. The equality x1 = 1 implies that x2 = x1 · x1 = 1. Hence, x3 = x2! = 1.
Therefore, x4 = x3! = 1. The equalities x5! = x6 and x5 = 1 · x5 = x3 · x5 = x6 imply
that x5, x6 ∈ {1, 2}. The equalities x8! = x9 and x8 = 1 · x8 = x4 · x8 = x9 imply that
x8, x9 ∈ {1, 2}. The equality x5 · x7 = x8 implies that x7 =

x8
x5
∈
{

1
1 ,

1
2 ,

2
1 ,

2
2

}
∩ N =

{1, 2}. �



7

Conjecture 1. The statement Ψ9 is true when is restricted to the systemA.

Theorem 5. Conjecture 1 proves the following implication: if there exists an integer
x1 > 2 such that x2

1 + 1 is prime and greater than f (7), then the set Pn2+1 is infinite.

Proof. Suppose that the antecedent holds. By Lemma 6, there exists a unique tuple
(x2, . . . , x9) ∈ (N\{0})8 such that the tuple (x1, x2, . . . , x9) solves the systemA. Since
x2

1 + 1 > f (7), we obtain that x2
1 > f (7). Hence, (x2

1)! > f (7)! = f (8). Consequently,

x9 = ((x2
1)! + 1)! > ( f (8) + 1)! > f (8)! = f (9)

Conjecture 1 and the inequality x9 > f (9) imply that the system A has infinitely
many solutions (x1, . . . , x9) ∈ (N \ {0})9. According to Lemmas 6 and 7, the set
Pn2+1 is infinite. �

Theorem 6. Conjecture 1 implies the statement Φ.

Proof. It follows from Theorem 5 and the equality f (7) = (((24!)!)!)!. �

Theorem 7. The statement Φ implies Conjecture 1.

Proof. By Lemmas 6 and 7, if positive integers x1, . . . , x9 solve the systemA, then

(x1 > 2) ∧ (x5 = x2
1 + 1) ∧ (x5 is prime)

or x1, . . . , x9 ∈ {1, 2}. In the first case, Lemma 6 and the statement Φ imply
that the inequality x5 6 (((24!)!)!)! = f (7) holds when the system A has at most
finitely many solutions in positive integers x1, . . . , x9. Hence, x2 = x5 − 1 < f (7)
and x3 = x2! < f (7)! = f (8). Continuing this reasoning in the same manner, we can
show that every xi does not exceed f (9). �

Statement 4. The statement Φ implies that the set X = {1} ∪ Pn2+1 satisfies condi-
tions (1)�(5).

Proof. The set Pn2+1 is conjecturally infinite. There are 2199894223892 primes
of the form n2 + 1 in the interval [2, 1028), see [5]. These two facts imply condi-
tion (1). By Lemma 1, due to known physics we are not able to confirm by a direct
computation that some element of {1} ∪ Pn2+1 is greater than f (7) = (((24!)!)!)! = β,
see [2]. Thus condition (2) holds. Condition (3) holds trivially. The statement Φ

implies that β is a threshold number of X = {1} ∪ Pn2+1. Thus condition (4) holds.
The following condition:

k − 1 is a square and k has no divisors greater than 1 and smaller than k

defines in N the set {1} ∪ Pn2+1. This proves condition (5). �

Proving Landau’s conjecture will disprove Statement 4.

Acknowledgment. Sławomir Kurpaska prepared three diagrams in TikZ. Apolo-
niusz Tyszka wrote the article.
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