The physical limits of computation inspire an open problem that concerns abstract computable sets $X \subseteq N$ and cannot be formalized in the set theory ZFC as it refers to our current knowledge on X
 Slawomir Kurpaska, Apoloniusz Tyszka

To cite this version:

Slawomir Kurpaska, Apoloniusz Tyszka. The physical limits of computation inspire an open problem that concerns abstract computable sets $\mathrm{X} \subseteq \mathrm{N}$ and cannot be formalized in the set theory ZFC as it refers to our current knowledge on X. 2020. hal-01614087v12

HAL Id: hal-01614087 https://hal.science/hal-01614087v12

Preprint submitted on 15 Sep 2020 (v12), last revised 10 May 2024 (v35)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The physical limits of computation inspire an open problem that concerns abstract computable sets $\mathcal{X} \subseteq \mathbb{N}$ and cannot be formalized in the set theory $Z F C$ as it refers to our current knowledge on X

Sławomir Kurpaska, Apoloniusz Tyszka

Abstract

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 2$. Edmund Landau's conjecture states that the set $\mathcal{P}_{n^{2}+1}$ of primes of the form $n^{2}+1$ is infinite. Landau's conjecture implies the following unproven statement Φ : $\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq[2, f(7)]$. Let B denote the system of equations: $\left\{x_{i}!=x_{k}: i, k \in\right.$ $\{1, \ldots, 9\}\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, 9\}\right\}$. We write down a system $\mathcal{U} \subseteq B$ of 9 equations which has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(9))$. Let Ψ denote the statement: if a system $\mathcal{S} \subseteq B$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{9}, then each such solution $\left(x_{1}, \ldots, x_{9}\right)$ satisfies $x_{1}, \ldots, x_{9} \leqslant f(9)$. We write down a system $\mathcal{A} \subseteq B$ of 8 equations. Theorem 1. The statement Ψ restricted to the system \mathcal{A} is equivalent to the statement Φ. Open Problem. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1)-(5)? (1) There are many elements of \mathcal{X} and it is conjectured that \mathcal{X} is infinite. (2) No known algorithm decides the finiteness/infiniteness of \mathcal{X}. (3) There is a known algorithm that for every $k \in \mathbb{N}$ decides whether or not $k \in \mathcal{X}$. (4) There is a known algorithm that computes an integer n satisfying $\operatorname{card}(\mathcal{X})<\omega \Rightarrow \mathcal{X} \subseteq(-\infty, n]$. (5) There is a naturally defined condition C, which can be formalized in $Z F C$, such that for almost all $k \in \mathbb{N}$, k satisfies the condition C if and only if $k \in \mathcal{X}$. The simplest known such condition C defines in \mathbb{N} the set \mathcal{X}. Condition (5) excludes artificially defined set \mathcal{X} from the statement (i). We prove: (i) the set $\mathcal{X}=\left\{k \in \mathbb{N}:(f(7)<k) \Rightarrow(f(7), k) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}$ satisfies conditions (1)-(4); (ii) the statement Φ implies that the set $\mathcal{X}=\{1\} \cup \mathcal{P}_{n^{2}+1}$ satisfies conditions (1)-(5). Proving Landau's conjecture will disprove the statements (i) and (ii). Theorem 2. No set $X \subseteq \mathbb{N}$ will satisfy conditions (1)- (4) forever, if for every algorithm with no inputs that operates on integers, at some future day, a computer will be able to execute this algorithm in 1 second or less. Physics disproves the assumption of Theorem 2.

2020 Mathematics Subject Classification: 03D20.

Key words and phrases: algorithm with no inputs that operates on integers, argument against logicism, artificially defined set $\mathcal{X} \subseteq \mathbb{N}$, computable set $\mathcal{X} \subseteq \mathbb{N}$, conjecturally infinite set $\mathcal{X} \subseteq \mathbb{N}$, current knowledge on \mathcal{X}, naturally defined set $\mathcal{X} \subseteq \mathbb{N}$, physical limits of computation, primes of the form $n^{2}+1$.

1. Basic definitions and the philosophical goal of the article

Logicism is a programme in the philosophy of mathematics. It is mainly characterized by the contention that mathematics can be reduced to logic, provided that the latter includes set theory, see [3, p. 199].

Definition 1. Conditions (1)-(5) concern sets $\mathcal{X} \subseteq \mathbb{N}$.
(1) There are many elements of \mathcal{X} and it is conjectured that \mathcal{X} is infinite.
(2) No known algorithm decides the finiteness/infiniteness of \mathcal{X}.
(3) There is a known algorithm that for every $k \in \mathbb{N}$ decides whether or not $k \in \mathcal{X}$.
(4) There is a known algorithm that computes an integer n satisfying $\operatorname{card}(\mathcal{X})<\omega \Rightarrow X \subseteq(-\infty, n]$.
(5) There is a naturally defined condition C, which can be formalized in ZFC, such that for almost all $k \in \mathbb{N}, k$ satisfies the condition C if and only if $k \in \mathcal{X}$. The simplest known such condition C defines in \mathbb{N} the set \mathcal{X}.

Condition (5) excludes artificially defined set \mathcal{X} from Statement 2 .
Definition 2. We say that an integer n is a threshold number of a set $\mathcal{X} \subseteq \mathbb{N}$, if $\operatorname{card}(X)<\omega \Rightarrow X \subseteq(-\infty, n], c f$. [7] and [8].

If a set $X \subseteq \mathbb{N}$ is empty or infinite, then any integer n is a threshold number of \mathcal{X}. If a set $\mathcal{X} \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of \mathcal{X} form the set $[\max (\mathcal{X}), \infty) \cap \mathbb{N}$.

Edmund Landau's conjecture states that the set $\mathcal{P}_{n^{2}+1}$ of primes of the form $n^{2}+1$ is infinite, see [4]-[6].

Definition 3. Let Φ denote the following unproven statement:

$$
\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq(-\infty,(((24!)!)!)!]
$$

Landau's conjecture implies the statement Φ. In Section 4, we heuristically justify the statement Φ without invoking Landau's conjecture.

Statement 1. No known algorithm computes an integer k such that

$$
\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq(-\infty, k]
$$

Proving the statement Φ will disprove Statement 1 . Statement 1 cannot be formalized in ZFC because it refers to the current mathematical knowledge. The same is true for Statements $2 \sqrt{3}$ and Open Problem 1 in the next sections. It argues against logicism as Open Problem 1 concerns abstract computable sets $\mathcal{X} \subseteq \mathbb{N}$.

2. The physical limits of computation inspire Open Problem 1

Definition 4. Let $\beta=(((24!)!)!)!$.
Lemma 1. $\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}(\beta)\right)\right)\right)\right)\right)\right) \approx 1.42298$.
Proof. We ask Wolfram Alpha at http://wolframalpha.com

Statement 2. The set $\mathcal{X}=\left\{k \in \mathbb{N}:(\beta<k) \Rightarrow(\beta, k) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}$ satisfies conditions (1)-(4).

Proof. Condition (1) holds as $\mathcal{X} \supseteq\{0, \ldots, \beta\}$ and the set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite. By Lemma 1 , due to known physics we are not able to confirm by a direct computation that some element of $\mathcal{P}_{n^{2}+1}$ is greater than β, see [2]. Thus condition (2) holds. Condition (3) holds trivially. Since the set

$$
\left\{k \in \mathbb{N}:(\beta<k) \wedge(\beta, k) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}
$$

is empty or infinite, the integer β is a threshold number of X. Thus condition (4) holds.

Proving Landau's conjecture will disprove Statement 2 .
Open Problem 1. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1)-(5)?
Theorem 1. No set $\mathcal{X} \subseteq \mathbb{N}$ will satisfy conditions (1)-(4) forever, if for every algorithm with no inputs that operates on integers, at some future day, a computer will be able to execute this algorithm in 1 second or less.

Proof. The proof goes by contradiction. Since conditons (2)-(4) will hold forever, the algorithm in Figure 1 never terminates and sequentially prints the following sentences:

$$
\begin{equation*}
n+1 \notin \mathcal{X}, n+2 \notin \mathcal{X}, n+3 \notin \mathcal{X}, \ldots \tag{T}
\end{equation*}
$$

Fig. 1 An algorithm whose execution never terminates if the set X is finite
The sentences from the sequence (T) and our assumption imply that for every integer $m>n$ computed by a known algorithm, at some future day, a computer will be able to confirm in 1 second or less that $(n, m] \cap \mathcal{X}=\emptyset$. Thus, at some future day, numerical evidence will support the conjecture that the set \mathcal{X} is finite, contrary to the conjecture in condition (1).

Physics disproves the assumption of Theorem 1

3. Number-theoretic statements Ψ_{n}

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)!$ for every integer $n \geqslant 2$. Let \mathcal{U}_{1} denote the system of equations which consists of the equation $x_{1}!=x_{1}$. For an integer $n \geqslant 2$, let \mathcal{U}_{n} denote the following system of equations:

$$
\left\{\begin{array}{rll}
x_{1}! & = & x_{1} \\
x_{1} \cdot x_{1} & = & x_{2} \\
\forall i \in\{2, \ldots, n-1\} x_{i}! & = & x_{i+1}
\end{array}\right.
$$

The diagram in Figure 2 illustrates the construction of the system \mathcal{U}_{n}.

Fig. 2 Construction of the system \mathcal{U}_{n}
Lemma 2. For every positive integer n, the system \mathcal{U}_{n} has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(n))$.

Let B_{n} denote the following system of equations:

$$
\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

For a positive integer n, let Ψ_{n} denote the following statement: if a system of equations $\mathcal{S} \subseteq B_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant f(n)$. The statement Ψ_{n} says that for subsystems of B_{n} with a finite number of solutions, the largest known solution is indeed the largest possible. The statements Ψ_{1} and Ψ_{2} hold trivially. There is no reason to assume the validity of the statement $\forall n \in \mathbb{N} \backslash\{0\} \Psi_{n}$.

Theorem 2. For every statement Ψ_{n}, the bound $f(n)$ cannot be decreased.
Proof. It follows from Lemma 2 because $\mathcal{U}_{n} \subseteq B_{n}$.
Theorem 3. For every integer $n \geqslant 2$, the statement Ψ_{n+1} implies the statement Ψ_{n}.
Proof. If a system $\mathcal{S} \subseteq B_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then for every integer $i \in\{1, \ldots, n\}$ the system $\mathcal{S} \cup\left\{x_{i}!=x_{n+1}\right\}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n+1}. The statement Ψ_{n+1} implies that $x_{i}!=x_{n+1} \leqslant f(n+1)=f(n)!$. Hence, $x_{i} \leqslant f(n)$.

Theorem 4. Every statement Ψ_{n} is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system B_{n} has a finite number of subsystems.

4. A conjectural solution to Open Problem 1

Lemma 3. For every positive integers x and $y, x!\cdot y=y!$ if and only if

$$
(x+1=y) \vee(x=y=1)
$$

Lemma 4. (Wilson's theorem, [1, p. 89]). For every integer $x \geqslant 2, x$ is prime if and only if x divides $(x-1)!+1$.

Let \mathcal{A} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{1} \cdot x_{1} & =x_{2} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 3 explain the construction of the system \mathcal{A}.

Fig. 3 Construction of the system \mathcal{A}

Lemma 5. For every integer $x_{1} \geqslant 2$, the system \mathcal{A} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}^{2} \\
x_{3} & =\left(x_{1}^{2}\right)! \\
x_{4} & =\left(\left(x_{1}^{2}\right)!\right)! \\
x_{5} & =x_{1}^{2}+1 \\
x_{6} & =\left(x_{1}^{2}+1\right)! \\
x_{7} & =\frac{\left(x_{1}^{2}\right)!+1}{x_{1}^{2}+1} \\
x_{8} & =\left(x_{1}^{2}\right)!+1 \\
x_{9} & =\left(\left(x_{1}^{2}\right)!+1\right)!
\end{aligned}
$$

Proof. By Lemma 3, for every integer $x_{1} \geqslant 2$, the system \mathcal{A} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ divides $\left(x_{1}^{2}\right)!+1$. Hence, the claim of Lemma 5 follows from Lemma 4

Lemma 6. There are only finitely many tuples $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$, which solve the system \mathcal{A} and satisfy $x_{1}=1$. This is true as every such tuple $\left(x_{1}, \ldots, x_{9}\right)$ satisfies $x_{1}, \ldots, x_{9} \in\{1,2\}$.

Proof. The equality $x_{1}=1$ implies that $x_{2}=x_{1} \cdot x_{1}=1$. Hence, $x_{3}=x_{2}!=1$. Therefore, $x_{4}=x_{3}!=1$. The equalities $x_{5}!=x_{6}$ and $x_{5}=1 \cdot x_{5}=x_{3} \cdot x_{5}=x_{6}$ imply that $x_{5}, x_{6} \in\{1,2\}$. The equalities $x_{8}!=x_{9}$ and $x_{8}=1 \cdot x_{8}=x_{4} \cdot x_{8}=x_{9}$ imply that $x_{8}, x_{9} \in\{1,2\}$. The equality $x_{5} \cdot x_{7}=x_{8}$ implies that $x_{7}=\frac{x_{8}}{x_{5}} \in\left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{2}{2}\right\} \cap \mathbb{N}=$ $\{1,2\}$.

Conjecture 1. The statement Ψ_{9} is true when is restricted to the system \mathcal{A}.
Theorem 5. Conjecture 1 proves the following implication: if there exists an integer $x_{1} \geqslant 2$ such that $x_{1}^{2}+1$ is prime and greater than $f(7)$, then the $\operatorname{set} \mathcal{P}_{n^{2}+1}$ is infinite.
Proof. Suppose that the antecedent holds. By Lemma 5, there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{A}. Since $x_{1}^{2}+1>f(7)$, we obtain that $x_{1}^{2} \geqslant f(7)$. Hence, $\left(x_{1}^{2}\right)!\geqslant f(7)!=f(8)$. Consequently,

$$
x_{9}=\left(\left(x_{1}^{2}\right)!+1\right)!\geqslant(f(8)+1)!>f(8)!=f(9)
$$

Conjecture 1 and the inequality $x_{9}>f(9)$ imply that the system \mathcal{A} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$. According to Lemmas 5 and 6, the set $\mathcal{P}_{n^{2}+1}$ is infinite.
Theorem 6. Conjecture 1 implies the statement Φ.
Proof. It follows from Theorem 5 and the equality $f(7)=(((24!)!)!)!$.

Theorem 7. The statement Φ implies Conjecture 1

Proof. By Lemmas 5 and 6 , if positive integers x_{1}, \ldots, x_{9} solve the system \mathcal{A}, then

$$
\left(x_{1} \geqslant 2\right) \wedge\left(x_{5}=x_{1}^{2}+1\right) \wedge\left(x_{5} \text { is prime }\right)
$$

or $x_{1}, \ldots, x_{9} \in\{1,2\}$. In the first case, Lemma 5 and the statement Φ imply that the inequality $x_{5} \leqslant(((24!)!)!)!=f(7)$ holds when the system \mathcal{A} has at most finitely many solutions in positive integers x_{1}, \ldots, x_{9}. Hence, $x_{2}=x_{5}-1<f(7)$ and $x_{3}=x_{2}!<f(7)!=f(8)$. Continuing this reasoning in the same manner, we can show that every x_{i} does not exceed $f(9)$.

Statement 3. The statement Φ implies that the set $\mathcal{X}=\{1\} \cup \mathcal{P}_{n^{2}+1}$ satisfies conditions (1)-(5).

Proof. The set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite. There are 2199894223892 primes of the form $n^{2}+1$ in the interval $\left[2,10^{28}\right.$), see [5]. These two facts imply condition (1). By Lemma 11, due to known physics we are not able to confirm by a direct computation that some element of $\{1\} \cup \mathcal{P}_{n^{2}+1}$ is greater than $f(7)=(((24!)!)!)!=\beta$, see [2]. Thus condition (2) holds. Condition (3) holds trivially. The statement Φ implies that β is a threshold number of $\mathcal{X}=\{1\} \cup \mathcal{P}_{n^{2}+1}$. Thus condition (4) holds. The following condition:
$k-1$ is a square and k has no divisors greater than 1 and smaller than k defines in \mathbb{N} the set $\{1\} \cup \mathcal{P}_{n^{2}+1}$. This proves condition (5).

Proving Landau's conjecture will disprove Statement 3 .
Acknowledgment. Sławomir Kurpaska prepared three diagrams in TikZ. Apoloniusz Tyszka wrote the article.

References

[1] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[2] S. Lloyd, Ultimate physical limits to computation, Nature 406 (2000), 1047-1054, http: //doi.org/10.1038/35023282
[3] W. Marciszewski, Logic, modern, history of, in: Dictionary of logic as applied in the study of language (ed. W. Marciszewski), pp. 183-200, Springer, Dordrecht, 1981.
[4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002496, Primes of the form $n^{2}+1$, http://oeis.org/A002496
[5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A083844, Number of primes of the form $x^{2}+1<10^{n}$, http://oeis.org/A083844
[6] Wolfram MathWorld, Landau's Problems, http://mathworld.wolfram.com/ LandausProblems.html.
[7] A. A. Zenkin, Super-induction method: logical acupuncture of mathematical infinity, Twentieth World Congress of Philosophy, Boston, MA, August 10-15, 1998, http: //www.bu.edu/wcp/Papers/Logi/LogiZenk.htm
[8] A. A. Zenkin, Superinduction: new logical method for mathematical proofs with a computer, in: J. Cachro and K. Kijania-Placek (eds.), Volume of Abstracts, 11th International Congress of Logic, Methodology and Philosophy of Science, August 20-26, 1999, Cracow, Poland, p. 94, The Faculty of Philosophy, Jagiellonian University, Cracow, 1999.

Sławomir Kurpaska
Technical Faculty
Hugo Kołła̧taj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rtkurpas@cyf-kr.edu.pl

Apoloniusz Tyszka
Technical Faculty
Hugo Kołłạtaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail:rttyszka@cyf-kr.edu.pl

