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The physical impossibility of machine compu-
tations on sufficiently large integers inspires
an open problem that concerns abstract com-
putable sets X ⊆ N and cannot be formalized
in the set theory ZFC as it refers to our cur-
rent knowledge on X

Sławomir Kurpaska, Apoloniusz Tyszka

Abstract. Edmund Landau’s conjecture states that the set Pn2+1 of
primes of the form n2 + 1 is infinite. Let β = (((24!)!)!)!, and let Φ

denote the implication: card(Pn2+1) < ω⇒ Pn2+1 ⊆ (−∞, β]. We heuristi-
cally justify the statement Φ without invoking Landau’s conjecture. The
set X = {k ∈ N : (β < k)⇒ (β, k) ∩ Pn2+1 , ∅} satisfies conditions (1)�(4).
(1) There are a large number of elements of X and it is conjectured that
X is infinite. (2) No known algorithm decides the finiteness/infiniteness
of X. (3) There is a known algorithm that for every n ∈ N decides
whether or not n ∈ X. (4) There is an explicitly known integer n such that
card(X) < ω⇒ X ⊆ (−∞, n]. (5) There is an explicitly known integer n such
that card(X) < ω⇒ X ⊆ (−∞, n] and some known definition of X is much sim-
pler than every known definition of X \ (−∞, n]. The following problem is open:
Is there a set X ⊆ N that satisfies conditions (1)�(3) and (5)? The set X =

Pn2+1 satisfies conditions (1)�(3). Let [·] denote the integer part function. For

every explicitly given integer m > 1, the set X =

{
k ∈ N :

[
k
m

]2
+ 1 is prime

}
contains m consecutive integers and satisfies conditions (1)�(3). The state-
ment Φ implies that both sets X satisfy condition (5).

Key words and phrases: complexity of a mathematical definition, computable set
X ⊆ N, current knowledge on X, explicitly known integer n bounds X from above
when X is finite, infiniteness of X remains conjectured, known algorithm for every
n ∈ N decides whether or not n ∈ X, large number of elements of X, mathemati-
cal statement that cannot be formalized in the set theory ZFC, no known algorithm
decides the finiteness/infiniteness of X, physical impossibility of machine computa-
tions on sufficiently large integers.
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1. Basic definitions and the goal of the article
Logicism is a programme in the philosophy of mathematics. It is mainly character-
ized by the contention that mathematics can be reduced to logic, provided that the
latter includes set theory, see [3, p. 199].

Definition 1. Conditions (1)�(5) concern sets X ⊆ N.

(1) There are a large number of elements ofX and it is conjectured thatX is infinite.

(2) No known algorithm decides the finiteness/infiniteness of X.

(3) There is a known algorithm that for every n ∈ N decides whether or not n ∈ X.

(4) There is an explicitly known integer n such that card(X) < ω⇒ X ⊆ (−∞, n].

(5) There is an explicitly known integer n such that card(X) < ω ⇒ X ⊆ (−∞, n]
and some known definition of X is much simpler than every known definition of
X \ (−∞, n].

Definition 2. We say that an integer n is a threshold number of a set X ⊆ N, if
card(X) < ω⇒ X ⊆ (−∞, n], cf. [6] and [7].

If a set X ⊆ N is empty or infinite, then any integer n is a threshold number
of X. If a set X ⊆ N is non-empty and finite, then the all threshold numbers of X
form the set [max(X),∞) ∩ N.

Edmund Landau’s conjecture states that the set Pn2+1 of primes of the form
n2 + 1 is infinite, see [4] and [5].

Definition 3. Let Φ denote the implication:

card(Pn2+1) < ω⇒ Pn2+1 ⊆ (−∞, (((24!)!)!)!]

Landau’s conjecture implies the statement Φ. In Section 4, we heuristically
justify the statement Φ without invoking Landau’s conjecture.

Statement 1. There is no explicitly known threshold number of Pn2+1. It means that
there is no explicitly known integer k such that card(Pn2+1) < ω⇒ Pn2+1 ⊆ (−∞, k].

Proving the statement Φ will falsify Statement 1. Statement 1 cannot be for-
malized in the set theory ZFC because it refers to the current mathematical knowl-
edge. The same is true for Statements 2–4 and Open Problem 1 in the next sections.
It argues against logicism as Open Problem 1 concerns abstract computable sets
X ⊆ N.
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2. The physical impossibility of machine computations on
sufficiently large integers inspires Open Problem 1

Definition 4. Let β = (((24!)!)!)!.

Lemma 1. β ≈ 1010101025.16114896940657
.

Proof. We ask Wolfram Alpha at http://wolframalpha.com. �

Statement 2. The setX = {k ∈ N : (β < k)⇒ (β, k)∩Pn2+1 , ∅} satisfies conditions
(1)�(4).

Proof. Condition (1) holds as X ⊇ {0, . . . , β} and the set Pn2+1 is conjecturally infi-
nite. By Lemma 1, due to known physics we are not able to confirm by a direct com-
putation that some element of Pn2+1 is greater than β, see [2]. Thus condition (2)
holds. Condition (3) holds trivially. Since the set

{k ∈ N : (β < k) ∧ (β, k) ∩ Pn2+1 , ∅}

is empty or infinite, the integer β is a threshold number of X. Thus condition (4)
holds. �

In Statement 2,
card(X) < ω⇒ X ⊆ (−∞, β]

and the sets
X = {k ∈ N : (β < k)⇒ (β, k) ∩ Pn2+1 , ∅}

and
X \ (−∞, β] = {k ∈ N : (β < k) ∧ (β, k) ∩ Pn2+1 , ∅}

have definitions of similar complexity. The following problem arises:

Open Problem 1. Is there a set X ⊆ N that satisfies conditions (1)�(3) and (5)?

Theorem 1. Assume that for every positive integers b and s, at some future day, ma-
chine computations will be possible on every integers from the interval [−b, b] and
this will be possible with the speed of s FLOPS. These assumptions contradict the
current paradigm of physics, although they alone have no consequences in mathe-
matics formalized in ZFC. We claim that our assumptions alone imply that no set
X ⊆ N will satisfy conditions (1)-(4) forever.

Proof. The proof goes by contradiction. Since conditons (2)�(4) will hold forever,
the algorithm in Figure 1 never terminates and sequentially prints the following
sentences:

n + 1 < X, n + 2 < X, n + 3 < X, . . . (T)

http://wolframalpha.com
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Yes

No

Start

k := 1

Is
n+k ∈ X?

Print "n + k < X"

Print "The set X is infinite"

k := k + 1Stop

Fig. 1 Algorithm whose execution never terminates if the set X is finite

The sentences from the sequence (T) and our assumptions alone imply that for
every explicitly given integer m > n, at some future day, a computer will be able to
confirm in 1 second or less that (n,m] ∩ X = ∅. Thus, at some future day, numerical
evidence will support the conjecture that the setX is finite, contrary to the conjecture
in condition (1). �

3. Number-theoretic statements Ψn

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. LetU1 de-
note the system of equations which consists of the equation x1! = x1. For an integer
n > 2, letUn denote the following system of equations:

x1! = x1
x1 · x1 = x2

∀i ∈ {2, . . . , n − 1} xi! = xi+1

The diagram in Figure 2 illustrates the construction of the systemUn.

!
x1

squaring x2 ! x3 . . . xn−1 ! xn

Fig. 2 Construction of the systemUn

Lemma 2. For every positive integer n, the systemUn has exactly two solutions in
positive integers, namely (1, . . . , 1) and

(
f (1), . . . , f (n)

)
.
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Let

Bn =
{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
For a positive integer n, let Ψn denote the following statement: if a system of equa-
tions S ⊆ Bn has at most finitely many solutions in positive integers x1, . . . , xn, then
each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 f (n). The statement Ψn says
that for subsystems of Bn with a finite number of solutions, the largest known solu-
tion is indeed the largest possible. The statements Ψ1 and Ψ2 hold trivially. There is
no reason to assume the validity of the statement Ψ9, cf. Conjecture 1 in Section 4.

Theorem 2. For every statement Ψn, the bound f (n) cannot be decreased.

Proof. It follows from Lemma 2 becauseUn ⊆ Bn. �

Theorem 3. For every integer n > 2, the statement Ψn+1 implies the statement Ψn.

Proof. If a system S ⊆ Bn has at most finitely many solutions in positive integers
x1, . . . , xn, then for every integer i ∈ {1, . . . , n} the system S ∪ {xi! = xn+1} has at
most finitely many solutions in positive integers x1, . . . , xn+1. The statement Ψn+1
implies that xi! = xn+1 6 f (n + 1) = f (n)!. Hence, xi 6 f (n). �

Theorem 4. Every statement Ψn is true with an unknown integer bound that de-
pends on n.

Proof. For every positive integer n, the system Bn has a finite number of subsystems.
�

4. A conjectural solution to Open Problem 1
Lemma 3. For every positive integers x and y, x! · y = y! if and only if

(x + 1 = y) ∨ (x = y = 1)

Lemma 4. (Wilson’s theorem, [1, p. 89]). For every integer x > 2, x is prime if and
only if x divides (x − 1)! + 1.

LetA denote the following system of equations:

x2! = x3
x3! = x4
x5! = x6
x8! = x9

x1 · x1 = x2
x3 · x5 = x6
x4 · x8 = x9
x5 · x7 = x8

Lemma 3 and the diagram in Figure 3 explain the construction of the systemA.
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x1
squaring x2 +1

or x2 = x5 = 1

x5

!

x6
!

x3

!

x4

+1
or x3 = x8 = 1

x8

!

x9

x5 · x7 = x8x3 · x5 = x6

x4 · x8 = x9

Fig. 3 Construction of the systemA

Lemma 5. For every integer x1 > 2, the system A is solvable in positive integers
x2, . . . , x9 if and only if x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are
uniquely determined by the following equalities:

x2 = x2
1

x3 = (x2
1)!

x4 = ((x2
1)!)!

x5 = x2
1 + 1

x6 = (x2
1 + 1)!

x7 =
(x2

1)! + 1
x2

1 + 1
x8 = (x2

1)! + 1
x9 = ((x2

1)! + 1)!

Proof. By Lemma 3, for every integer x1 > 2, the system A is solvable in posi-
tive integers x2, . . . , x9 if and only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of

Lemma 5 follows from Lemma 4. �

Lemma 6. There are only finitely many tuples (x1, . . . , x9) ∈ (N \ {0})9, which solve
the systemA and satisfy x1 = 1. This is true as every such tuple (x1, . . . , x9) satisfies
x1, . . . , x9 ∈ {1, 2}.

Proof. The equality x1 = 1 implies that x2 = x2
1 = 1. Hence, for example,

x3 = x2! = 1. Therefore, x8 = x3 + 1 = 2 or x8 = 1. Consequently, x9 = x8! 6 2. �

Conjecture 1. The statement Ψ9 is true when is restricted to the systemA.
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Theorem 5. Conjecture 1 proves the following implication: if there exists an integer
x1 > 2 such that x2

1 + 1 is prime and greater than f (7), then the set Pn2+1 is infinite.

Proof. Suppose that the antecedent holds. By Lemma 5, there exists a unique tuple
(x2, . . . , x9) ∈ (N\{0})8 such that the tuple (x1, x2, . . . , x9) solves the systemA. Since
x2

1 + 1 > f (7), we obtain that x2
1 > f (7). Hence, (x2

1)! > f (7)! = f (8). Consequently,

x9 = ((x2
1)! + 1)! > ( f (8) + 1)! > f (8)! = f (9)

Conjecture 1 and the inequality x9 > f (9) imply that the system A has infinitely
many solutions (x1, . . . , x9) ∈ (N \ {0})9. According to Lemmas 5 and 6, the set
Pn2+1 is infinite. �

Theorem 6. Conjecture 1 implies the statement Φ.

Proof. It follows from Theorem 5 and the equality f (7) = (((24!)!)!)!. �

Theorem 7. The statement Φ implies Conjecture 1.

Proof. By Lemmas 5 and 6, if positive integers x1, . . . , x9 solve the systemA, then

(x1 > 2) ∧ (x5 = x2
1 + 1) ∧ (x5 is prime)

or x1, . . . , x9 ∈ {1, 2}. In the first case, Lemma 5 and the statement Φ imply
that the inequality x5 6 (((24!)!)!)! = f (7) holds when the system A has at most
finitely many solutions in positive integers x1, . . . , x9. Hence, x2 = x5 − 1 < f (7)
and x3 = x2! < f (7)! = f (8). Continuing this reasoning in the same manner, we can
show that every xi does not exceed f (9). �

Statement 3. The set X = Pn2+1 satisfies conditions (1)�(3). The statement Φ

implies that the set X satisfies condition (5).

Proof. Since the set Pn2+1 is conjecturally infinite, condition (1) holds for X. Con-
dition (3) holds trivially. By Lemma 1, due to known physics we are not able
to confirm by a direct computation that some element of Pn2+1 is greater than
f (7) = (((24!)!)!)! = β, see [2]. Thus condition (2) holds for X. Suppose that the
statement Φ holds. This implies that β is a threshold number of X = Pn2+1. Thus
condition (4) holds for X. The definition of Pn2+1 is much simpler than the def-
inition of Pn2+1 \ (−∞, β]. The last two sentences imply that condition (5) holds
for X. �

Let [·] denote the integer part function.

Statement 4. For every explicitly given integer m > 1, the set X =
{
k ∈ N :[

k
m

]2
+ 1 is prime

}
contains m consecutive integers and satisfies conditions

(1)�(3). The statement Φ implies that the set X satisfies condition (5).

Proof. The set X contains m consecutive integers because the number 2 is prime

and the equality
[

k
m

]2
+ 1 = 2 holds for every integer k ∈ {m, . . . , 2m − 1}. The rest

of the proof goes as in the proof of Statement 3, although the statement Φ allows us
to compute a threshold number of X that depends on m. �
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